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Summary.--Practical difficulties in cruising below minimum drag speed have long been known but not fully explained. 
The reasoning proposed by Painlev6 in 1910 purported that flight below minimum drag speed should be fundamentally 
unstable, so that  any speed error would lead to a divergence. This reasoning is shown to be invalid on the ground of 
the general theory of dynamic stability in uncontrolled flight, Painlev6's criterion being a grossly inadequate approxi- 
mation to the condition of phugoid stability. However, the criterion may be fully vindicated for the case of flight 
controlled by the elevator in such a way as to maintain constant height. In this form, the criterion seems not only to 
explain qualitatixiely the troubles encountered in slow cruising, but  also to lead to a good quantitative estimate of 
speed variation following an initial disturbance. The criterion also applies to the problem of ultimate height response 
to an elevator deflection. 

The concept of stability of partially controlled flight is further developed, leading to a general theory of ' stability 
with constraint ', i.e., when a control (elevator, throttle, etc.) is used to suppress one component of the disturbance. 
The theory may be useful as giving approximate solutions of problems in which the pilot moves his control so as to 
keep one component of the disturbance always as small as possible. The principles of the theory are set out in section 4.1, 
and several examples given in sections 4.2, 4.a and 4.4. Flight tests are needed to explore further the validity of this 
method of approximation. 

1. I n t r o d u c t i o n . - - A s  early as 1910, i.e., a year before the publication of the pioneering Bryan's  
book on stability in aviation =, the French mathematician Painlev6 published a paper* on the 
theory of flight, in which a simple and interesting stability criterion was put  forward for the 
first time. He asserted that  level flight could only be stable in what he termed ' r6gime normal ', 
,i.e., at speeds exceeding that  corresponding to minimum drag. According to Painleve; level 
flight at lower speeds would be unstable. 

Painlev6's criterion was originally accepted in France and Germany, and it became widely 
known through a popular textbook ' Fluglehre ' by von Mises" (first German edition in 1918). 
The criterion seemed plausible because, even in those early days of aviation, the danger of 
stalling was already fully recognised, and therefore a principle exposing the disadvantage of 
' s low'  flight had an excellent chance of success. However, the criterion was soon objected to 
by Fuchs and Hopf in their textbook on AerodynamicsL published in Germany in 1922. In their 
analysis, it was shown to be inconsistent with the full theory of dynamic stability developed 
on Bryan's lines. It  appeared that  a flight in the ' low-speed r6gime ' (but above stalling speed) 
could be perfectly stable, and this conclusion was soon confirmed by flight tests. Since 1922, 
there were no serious at tempts by continental aerodynamics to defend the principle. 

* R.A.£. Report Aero. 2504, received 10th June, 1954. 
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"~Painlevd's criterion seems to have never been analysed by British scientists, and the theory 
of aircraft stability has been steadily developed in this country on the firm basis of Bryan's  
work. However, reasoning similar to that  of Painlev6 was occasionally propounded by  
technicians. Recently, t h e ' m i n i m u m  drag l imi t '  has been revived and has become a mat ter  
of widespread interest in connection with the concept of ' comfortable cruising speed ' suggested 
by flight tests 1~,'3,17 In spite of serious difficulties in defining the ' comfort in cruising ', there 
seems to exist a common belief that  cruising can only be comfortable if the speed exceeds that  
corresponding to minimum drag by at least a certain fraction (to be determined experimentally). 

In this paper, an at tempt is made to analyse the matter  from the point of view of the modern 
theory of longitudinal stability. The original ideas of Painlev6 are first discussed and somewhat 
extended (sections 2.1, 2, 3), and the relationship between 'min imum d r a g '  a n d ' m i n i m u m  
power '  limits explained. It  is then shown (section 2.4) that  Painlev~'s theory may  be considered 
only as an imperfect at tempt to approximate the condition for phugoid stability, the results 
being unsuccessful as far as uncontrolled flight is concerned. If, however, a flight can be partially 
controlled by the pilot so as to maintain constant height (or, more strictly, to keep a rectilinear 
flight path), then Painlev6's criterion becomes perfectly valid--section 2.5. The case of instability 
in such conditions is examined in more detail in section 2.6, and the results seem t o  
agree reasonably with some flight tests evidence. An alternative interpretation of the minimum 
drag limit is then discussed (section 3), viz., the criterion for ultimate height response of an 
aircraft after elevator deflection" this response is reversed at speeds below the minimum drag 
limit. 

The reasoning which has vindicated Painlevg's criterion in the case of constant height, may  be 
further developed so as to lead to a more general concept of restrained stability under part ial  
control The mat ter  is investigated on general lines in section 4.1, and several simple examples 
given in section 4.2,3,4. 

The Appendix deals with a certain simplified criterion of dynamic longitudinal stability as 
compared with that  of Painlev4 and with the full condition of phugoid stability. 

Acknowledgements are due to Mr. S. 13. Gates for his detailed criticism, and in particular for 
his general mathematical  scheme of the restrained stability, as described in section 4.1 ; also 
to Mr. H. H. B. M. Thomas for his help in editing some more difficult parts  of the text. The 
illustrations have been prepared by Miss F. M. Ward. 

2. Painlevd's Criterion. Stability at Strictly Constant Height.--2.1. Stability Criterion Based 
on Thrust Curves, or on Polar Diagram, for the Case of Constant Available Thrust . --The simplest 
graphical method of calculating the ordinary level flight performance consists in tracing two 
curves representing the thrust required T~o and available T~v (or alternatively" power required 
Pr~ and available P~v) against the flight speed V (or against the corresponding kinetic pressure 
q = ½p V~). The two points of intersection of these curves give two different solutions V1, V2 
(or ql, q~) corresponding to the fast or slow flight, respectively. Of four alternative sets of curves, 
we shall use the thrust curves plotted against kinetic p r e s su re - -  T~o and T~ versus q (Fig. 1), 
as they are most convenient for explaining Painlev6's criterion. The reasoning is as follows" 

Let us first assume that  the thrust available (at a certain alti tude,and a certain throttle setting) 
is constant, i.e., independent of speed, so tha t  the curve of Ta~ is a straight horizontal line in Fig. 1. 
And let us consider the aircraft flying in equilibrium conditions corresponding to the point of 
intersection 1 (fast flight). Suppose that  the speed is altered somewhat, e.g., increased, owing 
to an accidental disturbance. As seen from Fig. 1, the thrust  required (drag) then becomes 
greater than the thrust  available so that  there will be a decelerating resultant force, and the 
speed will tend to decrease back to its original value. Similarly, if the speed is accidentally 
decreased, there will be a resultant accelerating force, again tending to restore the original 
conditions. The equilibrium at 1 must therefore be considered as stable. Inversely, the flight in 
conditions corresponding to the point 2 (slow flight), while satisfying equilibrium conditions, 
must be ¢ons ider.ed as unstable, by similar reasoning. If the velocity is slightly increased 
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~Above V~, it must go on increasing until the value V1 is reached- while an accidental 
decrease of the velocity below V~ should lead to a further decrease, up to a stall. 

Let us suppose now that  the engine is thrott led down, or the altitude increased, so that  the 
propulsive thrust  gradually diminishes. The curve of Tro remains unchanged, b u t  the horizontal 
line representing T~v shifts downwards, and the two points of intersection (1 and 2) move along 
the curve and get gradually nearer to each other. Ultimately when T~v falls to a certain value 
T~v., ~,,. these points coincide at m, and we have the conditions of flight at minimum thrust, or 
minimum drag. Such a flight should be considered as neutrally stable. 

The conclusion is that  the flight should be stable if it corresponds to a point of the T~o-curve 
lying to the right of m, and unstable in the opposite case. In other words, the condition of 
stabili ty would be that  the speed should exceed that  corresponding to minimum drag. Analyti- 
cally, this condition may be expressed by the inequality • 

dT~o/dq > 0 . . . . . . . . . . . . . . . . .  (2.1.1) 

I t  is more convenient to express this inequality in terms of the lift and drag coefficients CL, C~. 
To obtain this, let us consider the fundamental equilibrium equations for level flight • 

Cz~Sq-~ D = T~,, , CLSq-= L = W ,  . . . . . . . . . .  (2.1.2) 
which can also be written • 

T~o = W .  C~/CL, , q = W/SCL . . . . . . . . . . .  (2.1.3) 

The equations (2.1.3) had to be used, in fact, to determine the curve of T~o versus q from the 
polar curve of the aircraft • 

C~ -~ F(Ci,) . . . . . . . . . . . . . . . . . .  (2.1.4) 

(see Fig. 2). I t  is particularly convenient to replace the dimensional quantities T and q by the 
following non-dimensional ones • 

T CD qS 1 
W Cz W CL . . . . . . . . . . . . . . . . .  (2.1.5) 

and this has been done in Fig. 1 by simply modifying the scales. In such a way, the curve of 
T~ versus q becomes really a curve of C~/CL versus (1/CL). The condition of stability can now 
be writ ten • 

or finally 

d ( C d C L )  CL - -  
d(1/Cz.) > 0 , o r  - -  dCz. > 0 . . . . . . . .  (2 .1 .6)  

CD dCD 
CL dCL :> 0 . . . . . . . . . . . . . . .  (2.1.7) 

This inequality may be found even more simply by considering Fig. 2. The polar curve there 
corresponds to the Tro-curve in Fig. 1, while a straight line 012 (through origin 0, with the slope 
Ta~/W), corresponds to the line of Ta~ of Fig. 1. The points 1 and 2 again represent two 
alternative solutions for a given value of the available thrust, giving fast and slow flight, 
respectively. Reducing the available thrust is represented by rotating the line 012 in Fig. 2 
anti-clockwise, and the limiting case given by the tangent 0m from the origin to the polar 
curve. I t  is seen directly in the figure that,  at the point m, we have C~/CL = dCn/dCL, and 
the inequality (2.1.7) is satisfied only along the  lower arc ' a m '  of the polar curve, but not 
along the upper arc above m. The point m gives the minimum value of the ratio C~/CL, or  
the minimum value of the drag for a given weight. Painlev6's criterion is therefore often 
formulated in such a way that  the flight is s~able only when the speed exceeds that corres]aondi~g to 
the m i n i m u m  drag. 
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-~ The above theory (in an obsolete form, and different notation) was given by Painlev6 as 
applicable to airscrew-propelled aircraft. Painlev6 believed tha t  the thrust  of an airscrew 
driven by an orthodox aero-engine could be considered with sufficient accuracy as independent 
of speed. We now know that  this is far from true and that,  in such cases, the thrust decreases 
considerably as the speed increases. Remarkably enough, Painlev£s assumption applies fairly 
well to many modern jet engines. 

I t  must be mentioned that  the above reasoning would also apply, with very little change, 
to inclined rectilinear flight. The equations (2.1.5) would then be replaced by • 

T Ca qS 1 
tan ~, -- = - -  , . . . . . .  (2.1.8) W cos y Cc ' W cos ~ CL 

~, being the angle between the flight path and the horizontal, assumed constant (positive for 
climb, negative for descent).  I t  is seen that  the diagram in Fig. 1 would remain unchanged, only 
with some modification in the meaning of the co-ordinates. The stability condition would 
remain (2.1.6) or (2.1.7). In the following sections, we shall always consider level flight (r = 0) 
for simplicity, but the results will also apply to inclined flight. 

2.2. Modified Forms of Stability Criterion for the Case of Propulsive A irscrews (variable available 
thrust).--A simple modification of Painlev6's criterion for the case of fixed pitch airscrews may 
be obtained by assuming that  the available thrust  is a linear decreasing function of the kinetic 
pressure q (Everling's assumptionT), thus writing" 

T~v = To -- C, sSq . . . . . . . . . . . . . . . . .  (2.2.1) 

where CAs is supposed to be a constant ' airscrew drag coefficient ', cf. Ref. 8, p. 31. This will 
be represented in Fig. 1 by the inclined straight line T~,, and the points of intersection with the 
curve T~o will now be 1' and 2' (in Fig. 1, the points 2 and 2' happen to coincide, but this is 
unimportant).  Throttl ing down the engine will be represented again by a downward shift of 
the line T~v, and the limiting conditions given by the line T~'~,m~, touching the Tro curve at m', 
instead of m. Apart  from this difference, the entire reasoning will be quite similar to that  of 
the Section 2.1, and the condition of stability (2.1.1) will be replaced by • 

dTre/dq > dT~/dq . . . . . . . . .  . . . . . .  (2.2.2) 

and hence we obtain, instead of (2.1.6) and (2.1.7) • 

d(C~/CL) 
d ( l l C ~ )  > - -  C,,~ . . . . . . . . . . . . . . .  (2.2.3) 

o r  
C~ + C,s dC~ 

CL dCr > 0 . . . . . . . . . .  . . .  (2.2.4) 

The inequality (2.2.4) may be again found in a particular simple way by considering the 
polar curve in Fig. 2. The equation (2.2.1) may be divided by W and written, in terms of Ca 
and CL, thus " 

Ca + C,s To 
CL -- W '  • . . . . . . . . . . . . . . . . .  (2.2.5) 

and this is represented by the straight line 0 ' t '2 '  through the new origin 0', the segment 00' 
being equal to C.~s. Throttl ing down the engine means rotat ing this line about 0' anti-clockwise, 
and the critical point (m') is obtained by simply drawing a tangent to the polar curve through 0'. 
We have obviously • 

Cz, + C~s dC~ 
CL -- dCL at the point I m ' ,  

gnd theref0re the inequality (2.2.4) defines the arc am' on the curve, below m'. 
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EverLlng~s assumpt ion is cer ta lniy  not  exact,  and the iines in Fig. i representing the avai lable 
th rus t  against  q are general ly somewhat  curved, while the  corresponding lines in Fig. 2 are 
ne i the r  s t ra ight  nor concurrent  to a point.  However,  we can now define Cxs as 

1 OT~ . . . . . . . .  (2.2.6) 
Cxs --  S ~q ' " . . . . . . .  

this  being not  a constant  bu t  real ly a funct ion of kinetic pressure, height  and throt t le  position. 
The condi t ion of s tabi l i ty  will still be represented by  (2.2.3) or (2.2.4), provided the appropr ia te  
value of Cxs is introduced.  The correction involved is usual ly  of l i t t le  importance,  and a rough 
es t imate  of the  mean  value of C~s will general ly be good enough. 

An a l te rna t ive  method  of analysis  is often used, based on power curves (P~o and P ~  versus q) 
ins tead  of the  th rus t  curves. I t  is usual ly  presented in such a way  as to lead to a s tabi l i ty  cri terion 
seemingly different from tha t  obtained above. The results of the two methods  must,  however,  
be exac t ly  identical ,  and it m a y  be useful to show tha t  it  is so. Let  us consider the simple case 
when the power available P,,~ does not  depend on speed, so tha t  the  curve of P~,. becomes a hori-  
zonta l  s t ra ight  line, an assumpt ion which holds, very  nearly,  in the case of constant-speed 
airscrews. This  horizontal  line again intersects  the curve of P~ at  two points  corresponding 
to fast  and  slow flight, respectively. A reasoning, exact ly  similar to tha t  of section 2.1, leads to 
the  condi t ion of s tab i l i ty  in the form : 

dP~o/dq > 0, . . . . . . . . . . . . . . . .  (2.2.7) 

analogous to (2.1.I). The power required is, in view of (2.1.3) : 

P~ = V.T,o = W V  Co/CL, • . . . . . . . . . . . . .  (2.2.8) 

and  hence (2.2.7) becomes : 

Y d(Co/CL) + C_2 d__V > 0 . . . . . . . . . . . . .  (2.2.9) 
dq CL dq 

We have,  howeve r :  
q = ½pV 2 , hence dq = pV d V ,  . . . . . . . . . .  (2.2.10) 

and  
q = W/SCL , hencedq  = W/S.  d(1/CL), . .  . . ,  . . . .  (2.2.11) 

and subs t i tu t ing  in (2.2.9), we obta in  : 

C.  W dCL - -  tiC,, 
d(IlCL) + C-~-L g-S-~ 72 > 0 , or dCL -Jr- "~-Co > 0,  . .  (2.2.12) 

or f ina l ly :  
3 C~ riCo 

dcL > O . . . . . . . . . . . . . . .  (2.2.13) 2'CL 

The cri terion obta ined differs clearly from (2.1.7), and it is seen at once tha t  the relevant  cri t ical  
point  m "  on the polar curve (Fig. 2) lies higher than  m. I t  has been shown before t ha t  m 
corresponds to the min imu m value of the drag (or min imum of C,/CL), and it is easily shown 
tha t  m"  corresponds to the m i n i m u m  of the power required. We have indeed, from (2.2.7,10,11): 

• P,o -= W(2WIpS)  1/2 Cz,/CL 3/2 . . . . . . . . . . . . .  (2.2.14) 

and this  becomes min imum when : 

d(Co/CL ~/~) 3 Co dC~) . .  (2.2.15) 
dCL - - 0  , O r 2 C L - - d C ~  . . . . . . . . . .  

The s tab i l i ty  required in the present  case seems therefore to be tha t  the speed should exceed that 
corresponding to the m i n i m u m  power, or tha t  CL should be less than  its respective value. 

5 



-- The difference be tween the two criteria (2.1.7) and (2.2.13) is easily explained. Ill the former 
case the  assumpt ion was tha t  of constant  thrus t  available, while ill the  la t ter  tile power has been  
assumed constant.  I t  is important ,  however,  t ha t  the  requi rement  (2.2.13) is equivalent  to  
the  more general one (2.2.4), if tile proper value of C.~s is in t roduced.  In  our present  case, the  
thrust  available is not  constant  but  inversely proport ional  to V • 

Pay 
T~v = V , '  • . . . . . . . . . . . . . . . . .  (2.2.16) 

the  corresponding airscrew drag coefficient CAs is obta ined as follows • 

C ~ s -  dT~v 1 dT~,v P,,,, T~,~ D 
• S dq - -  p S V  d V  : p S V  ~ - -  p S V  2 - -  p S V  ~' 

and  thus finally " 

CAs----- {Ca . . . . . . . . . . . . . . . . . . .  (2.2.17) 
Subst i tut ing this into (2.2.4), we obtain (2.2.13), q.e.d. 

Tile above reasoning can, of course, be generalized for the case of the  power available P,~ being 
an arbi trary function of speed, but  it is obvious tha t  the criterion (2.2.13) will apply  generally,  
so tha t  it suffices to determine C,s in each part icular  case. Suppose, for instance, tha t  P ~  is 
proport ional  to all arbi t rary power of speed, thus • 

Pa,~ = K V ~  . . . . . . . . . . . . . . . . . . .  (2.2.18) 
where K and p are constants. We have then  • 

T~.~ = P~v /V  = K V  p-I . . . . . . . . . . . . . . .  (2.2.19) 
hence • 

c . s  = - 1 dTo  (1 - -  :b)KW'-" (1 -- p)T,  (1 - -  p)D 
p S V  d V  - -  p S V  - -  p S V  2 - -  p S V  2 ' 

and finally "' 

C,s = 1 --  p Cz, (2.2.20) . . , . , ° . , ° . . . . ° . . . 

Subst i tu t ing this into (2.2.4), we get, as the requi rement  for s tabi l i ty • 

3 - -  p C~ dC~ 
2 CL ~ > 0 . . . . . . . . . . . . .  (2.2.21) 

This inequal i ty  is a generalization of the two previous ones. In  the case of constant  thrust  p = 1, 
and we obtain (2.1.7). If the  power is assumed constant,  then  p = 0, and this gives (2.2.13). 
We may  consider also the case t5 = ½ which, according to Bryan t  and McMillan 9, applies fairly 
well to fixed-pitch airscrews. We have  then  " 

C . s  = ~Cz ,  . . . . . . . . . . . . . . .  . . . .  (2.2.22) 
and the stabil i ty criterion in the  form • 

5 Cz~ dC~ 
4 Cz dCL > 0 . . . . . . . . . . . . . . .  (2.2.23) 

This case is obviously an in te rmedia te  one be tween the two considered previously. 

2.3. Spec ia l  Case  o f  the P o l a r  Curve  A p p r o x i m a t e d  by a P a r a b o l a . - - T h e  polar curve is of ten 
approximated  by a simple parabola • 

Ca = C2~o + sCr  2, • . . . . . . . . . . . . . . .  (2.3.1) 

where C~0 is a constant  being the min imu m value of Ca (at CL : 0) and s is another  cons tan t  
coefficient. The parabola, with proper choice of the  cons tan ts ,  may  coincide wi th  the true polar  
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'along its major and most important  part, but  the agreement always breaks down near the stall, 
,.e., for CL exceeding a certain considerable value (cf. Fig. 2). If this approximation is adopted, 
the analysis given in sections 2.1 and 2.2 takes a particularly simple form. If the curve of thrust  
available T~v versus q is assumed to be a straight line (equation 2.2.1 with constant Cxs, including 
the case of T~v = To = const when C,s = 0), then even the performance calculation becomes 
very simple. The equilibrium condition T~ = Tro is then • 

T o -  C , s S q  = G S q ,  . . . . . . . . . . . . . . . . . . .  (2.3.2) 
which, dividing by W and introducing CL = W / S q ,  becomes • 

To C~ + C~s 
W -- CL ' . . . . . . . . . . . . . . . .  (2.3.3) 

or, making use of (2.3.1) and simplifying • 

To 
s C d  - -  ~z  CL + (C~o + C,s) = 0 . . . . . . . . . . .  (2.3.4) 

This is a quadratic equation for CL, with the two solutions • 

CL,,2 - -  2 W s  =F -2#-s s ' "" " 

giving the values of CL for two points of intersection 1' (or 1) and 2 in Fig. 2. When To decreases, 
then the lower value rises and the higher one falls, until  they coincide for • 

To, m~. = 2W~/ { (CDo + C~s)s), . . . . . . . . . . . .  (2.3.6) 

the common value C~m (or CLm) at the point of contact m' (or m) becoming" 

CLm" = ~ CDO-}- C'A'S} (2.3.7) 
- -  , • • . . . . . . . . . . . . .  

S 

with the corresponding value of CD" 

CD~' = 2C~0 + Czs . . . . . . . . . . . . . . . . .  (2.3.8) 

It  may be also noticed that  

CLm , hence V~V, = V~ ~ . . . . . . . . . . .  (2.3.9) 
o 

The Painlev6's stabili ty criterion now reduces to CL < CLm, or C~ < CDm, the latter condition 
taking the particularly simple form • 

C. < 2C.0 q- C,s (or C~ < 2Cvo for Cas = 0) . . . . . . . .  (2.3.I0) 

I t  should be stressed that  the simple performance calculation given above applies exclusiveiy 
when C.s = const, in particular C.s = 0 (jet engines), but not if C.s depends on Cv, i.e., in usual 
cases of propulsive airscrews. In the latter cases, the graph of T~ is not a straight line but  a 
curve, the equation (2.3.4) must be replaced by a more complicated one of higher degree, and 
the solution is more easily obtained graphically. 

As to Painlev6's s tabil i ty criterion, however, it is always represented by (2.3.10) if a parabolic 
polar curve is assumed. We have seen indeed that  the criterion is always represented by  the 
inequali ty (2.2.4), provided a proper value for C,s is introduced. Now, the equation (2.3.1) gives : 

d C d d C L  = 2sCL, . . . . . . . . . . . . . . . . . .  (2.3.11) 

so tha t  (2.2.4) becomes: 

2sCL 2 < C~ + Cxs , 

or, substi tuting sCL 2 from (2.3.1) : 

2 ( G  - G o )  < co + c ,s ,  . . . . . . . . . . . .  (2 .3 .12)  

which  is iden t ica l  w i t h  (2.3.10), q.e.d. 
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We may  consider the  case of the power  available being proport ional  to an arbi t rary  power of 
speed (@ 2.2.18). CAs is then  given by  (2.2.20), and hence the  stabil i ty criterion (2.3.10) becomes • 

4CD o 
C ~ < I +  fi , . .  

wi th  the following part icular  cases : 

p = 1 (jet engines):  

p = ½ (fixed-pitch airscrews) • 

p = 0 (constant-speed airscrews) : 

. . . . . . . . . . . . . .  (2.3.13) 

C~ < 2Cv0 = Cvm . . . . . .  (2.3.143) 

C~ < -~ Coo = ~C~m . . . .  (2.3.14b) 

CI) < 4CD O" = 2CDH1 = CDln t! . .  (2.3.14c) 

I t  may  be not iced that ,  for the  point m" of m i n i m u m  power required, t h e d r a g  coefficient is 
twice tha t  correspbnding to the  point m of m i n i m u m  drag. All l imit ing points defined by (2.3.14) 
lie well below the  stalling region, so tha t  the approximat ion of the  polar by  a parabola  is justified. 
Numerical example. In  Fig. 2, a major  part  of the polar is approximated  by  the  parabola : 

C a = 0 " 0 0 9 + 0 " l C L  ~ , so t h a t C h 0 = 0 . 0 0 9  , s = 0 . 1  

For  performance calculation, assume S = 500 sq ft, W = 10,830 lb, p = 0. 0015625 slugs/cu ft 
(corresponding to the  al t i tude of about 14,000 ft), then  for any CL " 

" 

Assuming first constant thrust available (C~s = 0) T~v = To = 0- 1275W, we obtain from (2.3.5) • 

C L 1 = 0 " 0 7 5  , Cry= 1"2, 

and h e n c e  • 
Vl = 608 ft/sec ---- 360 knots , V ~ =  152 ff/sec = 90 knots. 

The m i n i m u m  thrust  required (mininmm drag) is, from (2.3.6) ' 

To, i . i .  = 0 " 0 6 W ,  

the  corresponding lift and drag coefficients, from (2.3.7,8,9) " 

Crm = 0 .3  , CDm ----- 0"018, 
and  the  ' c r i t ica l '  speed" 

V~, = 304 ft/sec = 180 knots. 

According to Painlev6's criterion, flying would be stable only for speeds exceeding 180 knots.  

Assuming next  thrust available linearly decreasing with kinetic pressure (see 2.2.1), with 
To = 0 .1325W , CAs = 0.006 (constant), 

we obtain similarly from (2.3.5) • 
C ~ = 0 ' 1 2 5  , C i 2 =  1"2, 

and hence 

V'~ = 470.95 ft/sec ~ 279 knots, V'~ = 90 knots.  

The m i n i m u m  value of To required becomes, from (2.3.6) • 

To, mi, = 0. 07746W, 
the  corresponding lift and drag coefficients, from (2.3.7,8,9) " 

C 2 ~ = ~ / ( 0 " 1 5 )  = 0 . 3 8 7 3  , C ; ~ = 0 . 0 2 4 ,  

the  ' c r i t ica l '  speed" 

V5 = 267.55 ft/sec -"- 158 knots,  

a n d  flying at speeds below this would be unstable. 
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If ' the power available is assumed flr@ortzonal to various powers oJ speed, the limiting conditions 
re calculated simply from (2.3.14), and we get : 

Iorp- - -  1 , 

forp  = } , 

for p = 0 , 

C v = O . O 1 8 = C D ~ ,  

C ~ = 0 . 0 2 4  , 

C o = 0 . 0 3 6 ,  

CL = 0.3 , 

CL = 0"3873 , 

CL=0"5196  , 

V = 180 t~mts , 

V = 158 knots , 

V = 137 knots . 

Fhe agreenlent of the values for p ----= ½ with those found above for CAs = const = 0.006 is, of 
~urse, accidential and due to the value of CAs being exactly 1 of the corresponding C,.) 

2.4. Fallacy of Painlevd's Criterion in Uncontrolled Flight ; Comparison with the Criterion for 
'hugoid Stability.--The first criticism of the Painlev6's principle was published by Fuchs and 
[opf ~ ill 1922. They pointed out that, in Painlev£s reasoning, the only flight disturbance 
dmit ted was a change of speed along the path, and hence the aircraft was considered as a body 
,ith only one degree of freedom. If this tacit assumption were true, the conclusions would be correct. 
[owever, an uncontrolled aircraft possesses many degrees of freedom and, even if the disturbance 
; purely longitudinal, i.e., confined to the vertical symmetry plane, there are three of t hem:  
1 addition to speed variation, the aircraft may move in the direction normal to the original 
ight path, and also rotate about its lateral axis. The three component motions are inter- 
ependent. Even if the initial disturbance affects only one degree of freedom, the two remaining 
nes become immediately involved. For example, if the aircraft has accelerated initially along 
:s path, the lift increases producing a vertical velocity component ; this is followed by a change 
f incidence, and the resulting moment  about the centre of gravity generates a rotation about the 
tteral axis (pitching). Each of the component disturbances gives rise to new forces and moments  
ffecting the entire disturbed motion in a favourable or adverse manner, and its uKimate course 
epends on the properties of all forces and moments, and not merely on the forces in the flight 
irection produced by the initial disturbance. The true problem to be solved is, therefore, much 
rare complicated than the simplified one envisaged by Painlev6. Furthermore, it would be 
1sufficient to find out whether the forces and moments  initially arising tend to modify the 
lotion favourably, i.e., act against the initial disturbance: The tendency may change as the 
isturbance develops and, even if persisting, it may not bring the aircraft to the original state 
f equilibrium but induce oscillations about this equilibrium, not necessarily damped. It is seen 
hat the problem belongs essentially to the field of dynamics, and cannot be solved or even 
nderstood on purely static considerations. The correct approach consists in drawing up dif- 
~rential equations of motion, and in finding and analyzing their solutions. The equations should 
e derived under the assumption that  the accidential initial source of disturbance no longer 
cts, and no new similar sources appear, also that the pilot does not interfere through his 
Dntrols. The equations have therefore an invariable form, independent of the initial disturbance. 

stability criterion, to be determined by analyzing t h e  equations, riaust therefore be quite 
eneral and applicable in all cases, whatever the initial disturbance may have been. 

Fuchs and Hopf discussed the differential equations of longitudinally disturbed motion, and 
tiled to find any connection between the conditions of dynamic stability based on these equations, 
nd Painlev6's criterion. They therefore condemned the latter as completely meaningless. 

Although Fuchs and Hopf's criticism must still be considered as fundamentally correct, it may 
e worthwhile to re-consider the general equations of motion and to try to find a connection 
etween the true stability conditions and Painlev£s criterion. The equations, in the usual 
imensionless form (neglecting density changes with height), are 8' 18 : 

(D -- -- +  CLo = 0 ] 

- z , A  = o  [ 
+ (zD + + (D + = o ( 

I 

o l 

- +Do=o ] ! 
(2.4.1) 

9 



"where,the meaning of symbols is as follows : ~  

D : d / d v  (differential operator) ; ~ : t f l  (aerodynamic time) 

: W / g p S V  : V C L / 2 g  (unit of aerodynamic time) 

¢~ " =- u / V  (dimensionless velocity increment in x-direction) 

= w / V  (dimensionless velocity increment in z-direction, 
or increment of the incidence ~) 

0 (angular displacement in pitch) ; ~ : qZ : DO (dimen- 
sionless rate of pitch) 

ff = W / g p S l  = VZ/ l  (relative density) 

i s  = k ] / l  ~ (coefficient of moment of inertia about lateral 
axis y) 

Force derivatives (neglecting effects of compressibility and elastic distortion) are • 

x , , - =  - -  CD - -  C , s ,  x ,  = ½ ( C L - -  a . d C ~ / d C L ) ,  z,, = - -  CL, z ,  = - -  ½(a + CD), . .  (2.4.3) 

and ' compound ' pitching-moment derivatives, similarly" 

~o = - -  f f m , / i B ,  ~ = - -  m J i B ,  z -= - -  m;~/iB, ~ = - -  f fm , , / i~  . . . . . .  (2.4.4) 

The solution of the system (2.4.2) depends on finding four roots" ~, 22 ( = -  R =J= i J) and 
~,  a, ( =  - -  r 4 -  i j )  o f  the determinantal stability quartic • 

(~) : ~' + B ~  ~ + c ,~  ~ + D ~  + E ,  : 0, 

where the coefficients are" 

B I  : N ~  + ~, + Z, CI  = P I  + N~v  + Q~Z +,o~ ,  

E~ = R~co - -  T I ~ ,  . . 
with " 

W D ~ 0 O t O I 4 t 

D~ = P~ ~ + R~x + Q~o - S ~ ,  

. .  (2.4.2) 

. .  (2.4.5) 

.. (2.4.6) 

N ~ :  - -  x,, - -  z~ = ½(a + C~) + C~ + C.~, p,  = x,,z. - x~,z,, = ½(a + c~)(c~ ~y + c.~) 

+ ½c~ ( c ~ -  dC~'~  'zs-;J 

Q'~ : - x,, : c~ + c~ ,  R~ = - ½C~z.  : ½cL% s ~  : ½c~ - x . :  ~ dC~  
- ~a  dCL ' 

T~ = -- ½C~z~ = kC~(a + C~) 

The conditions of stability are that  all four roots of the quartic are either real and 
complex with negative real parts, and this requires that  all coefficients be positive : 

B l > O ,  C 1 > 0 ,  D I > O ,  E I > O  . . . . . . .  

and that  the Routh discriminant be also positive : 

= B I ( C 1 D 1  - -  B I E J  -- D? > 0 . . . . . . . . . . .  (2.4.9) 

The conditions (2.4.8) have obviously no connection with Painlev6's criterion, it will suffice 
therefore to consider (2.4.9). DI and El  being normally small in comparison with B~ and C~, 
the inequality (2.4.9) may practically be replaced by the following simpler one : 

C1D1 - -  B1E1  > 0 . . . . . . . . . . . . . . .  (2.4.10) 

10 

.. (2.4.7) 
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This is the approximate condition for positive phugoid damping, as may be seen from the known 
(Bairstow s) approximate factorisation of the quartic : 

A (~) --= (1~ + 2Rt + H)(t2 + 2rl + h) = 0 . . . . . . .  (2.4.11) 

where 2R -"- B1, H1 -"- CI, 2r -"- D~/C~ -- B1EI/C~ 2, h -"- E~/C~ . . . . .  (2.4.12) 

and the first quadratic factor corresponds to the short-period oscillatory mode, the second 
factor the phugoid mode. r is the phugoid damping factor. By making use of (2.4.6,7) and neglec- 
ting unimportant  terms, we may express r in terms of fundamental derivatives, as shown in Ref. 8. 
The conditions for positive phugoid damping may then be written in the approximate form'*: 

2r C ~ + C A s (  2co ) d C ~  ~(~ + g) -- o~ 
C--~L-"- CL 1 --2~o + av ~ + aCL (2o)+av) ~ > 0 .  .. (2.4.13) 

Comparing this inequality with (2.2.4) which represents Painlev6's criterion, we notice at on,ce 
at both terms of the latter do appear here, but there are two additional terms, of comparable 

magnitude and equal importance. I t  is seen that  Painlev6 s criterion simply omits the terms 
depending on the moment derivatives, o~, v, z, a not surprising fact as the moment equation 
was completely ignored in the derivation. The inequality (2.4.13) would reduce to (2.2.4) if a 
were infinite. In all practical cases the two criteria differ very considerably as shown in Figs. 
7a to 7d, where 2r (from 2.4.13) has been plotted against o~ for several values of v, and horizontal 
straight lines representing the Painlev6's values : 

2rp = C~ + Cxs -- CL dC~/dCL . . . . . . . . . . . .  (2.4.14) 
are shown for comparison. In all cases, we have assumed a = 4, s = 0.1, C~ o = 0.01. In Figs. 
7a and 7b a low value Cc ---= 0.2 was assumed, with x = 0.5v or 0 respectively, and, in  Figs. 
7c and 7d, we have a large value CL = 1. I t  is seen that  the lines representing Painleve s values 
are very different from the rigorous curves, and often, especially for high CL, they show different 
signs. The final conclusion is that  Painlevfi's criterion is inapplicable for an uncontrolled aircraft. 

2.5. Validity of Painleve's Criterion when Height is Kept Constant by the Pilot Through Elevator 
Control.~The main cause of failure of the Painlevd's criterion was found in the fact that  an 
initial disturbance consisting in a velocity increment along its horizontal path produced a 
vertical acceleration and velocity components leading to short-period oscillations. A new line 
of investigation therefore presents itself: whether it is possible that  the vertical velocity com- 
ponent can be effectively suppressed. This can obviously not happen without a pilot's (or auto- 
pilot's) appropriate action. Such an action, however, may be taken by the pilot with comparative 
ease, by simply trying to operate the elevator so as to maintain constant height. I t  is true that  
such an operation will never be completely (mathematically) successful, in particular immediately 
after a sharp initial disturbance involving change of height. Nevertheless, a n  experienced pilot 
may, if he wishes, quicldy regain the original height with a good approximation, by observing his 
altimeter (or, less advisable, his rate of climb indicator), and countering any deviations from 
that  height as best he can. Thereafter, he may keep the height practically constant by very 
slight elevator adjustments, until  the next accidental disturbance. I t  should be understood tha t  
his initial action, after a sudden disturbance, is by no means completely determined (so as to 
be mathematically tractable). Two pilots, in exactly similar circumstances, will never perform 
it exactly in the same way, and each of them may improve his technique instinctively or con- 
sciously so as not only to counter the actual height deviation but also to anticipate and forestall 
overshooting in the opposite direction. The initial period of erratic height recovery may thus 
be considerably shortened. Once, however, this period has passed, and the skilled pilot perseveres 
in his determination, little will depend on his individual style. The motion wili proceed almost 
as i f  the height were maintained exactly constant. This does not mean. at all that  the entire dis- 
turbance would have disappeared by then, because none of the variables ~, z~, 0 and q need have 

* The formula (2.4.13) is equivalent to the formula (20c) of Ref. 8, with the z term omitted. The derivative 
dC~/dCz was, however, replaced [here by 2sCz (see 2.3.1.), as the polar was approximated by a parabola right from 
the start. 
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".been brought down to zero yet. The further time history o{ the motion will be governed, with 
a fair accuracy, by the ordinary equations of motion (2.4.2), with two modifications. Firstly, 
we shall have an additional condition expressing the assumption that  the height is maintained 
constant, or that  the verticaI velocity component is zero • 

d H / d t  : VO - -  w = V(O - -  z$) = 0 ,  or0-----z~ 
• . . . . . . .  ( 2 . 5 . 1 )  

(see, e.g., Ref. 11, Fig. 3 and equation (3.17)). Secondly, in our system of equations (2.4.1), 
the third (moments) equation must be omitted when considering the aircraft motion. The 
equation will apply in modified form, including on the right-hand side the term representing the 
effect of elevator movement, thus " 

~¢~ + ( z D  + co)& + ( D  + v ) 4  = - -  ~v . . . . .  . . .  ( 2 . 5 . 2 )  

where the compound derivative ~ (elevator effect coefficient) is • 

= - -  ffm,/iB - -  f f C  ~ C , , ,  
ie 21 ~ . . . . . . . . . . . .  (2.5.3) 

I t  must be clearly understood that  the additional condition (2.5.1) restrains the previous .freedom 
of the aircraft, depriving it of one degree, so that  one of the equations of motion becomes un- 
necessary for investigating stabil i ty;  and the one to go is obviously the moments '  equation, 
that  directly affected by the elevator*. 

The system of equations of motion now becomes • 

(D - -  xu)¢~ - -  xwz~ + aCLO = 0 "1 

- + ( D  - -  - -  4 = 0 

zb - -  0 = 0 . . . . . . . .  ( 2 . 5 . 4 )  

- 4 +  Do=O 

or', eliminating 0 and ~ from the first two equations by means of the two last ones • 

(D - + - = 0 ] 

- -  z,~ --  z~z~ = 0 f . . . . . . . .  (2.5.5) 

Not surprisingly, the order of the system has been decreased, because the previous moments '  
equation, itself of the second order, has been replaced by the algebraic equali ty (2.5.1). What  may  
seem surprising is that  the order has fallen from fourth to merely first. This is because the 
differentials in the second equation have disappeared so that  this differential equation has become 
algebraic. This equation now simply expresses the equilibrium of the normal force components 
or, true to the smali quantities of first order, equilibrium of vertical force components (obviously 
necessary for keeping height con stant). 

The new system of equations (2.5.5) evidently does not involve a short-period oscillation 
any more, and thus represents only a modified sort of phugoid mode of motion which is no 
longer oscillatory but has degenerated into a simple subsidence Or divergence. Eliminating 
zO from (2.5.5), we obtain- 

( } D~ -- x,, + z,~ (k -- x~) £ = 0 (2.5.6) 
Z l v  • • • . o , . . , o , . , 

* The modified moments' equation, in the form (2.5.2), may be used, as shown later, to obtain the time history of ~] 
on the idealized assumption of the height deviation being strictly zero. 

For a more general discussion of the principles of this calculation, the reader should refer to section 4.1. 
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~nd, still  denot ing by  (-- 2r) the oniy root of this  equat ion (now replacing the two small  complex 
roots), we obta in  the  solution in the form • 

¢i = ~0e -2" . . . . . . . . . . . . . . . . . . . .  (2.5.7) 
where (@ 2.4.3) • 

z,~ CL dCD 
2 r =  --  x , ~ - -  ( k -  x~) = Ca + C~s --  , . . . .  (2.5.8) 

z,o a + Ca d~ 

so tha t  the s tab i l i ty  criterion, or condit ion for subsidence, becomes • 

2r : Cz) -[- CAs CL.dC~/dCL ..> 0 
1 + C D / a  . . . . . . . . . . .  (2.5.9) 

and ~o is the  cons tan t  of in tegra t ion  being the value of d at the  ins tan t  a f t e r  which the height  
remains  constant .  The variables z~ and 0 are represented b y  exac t ly  similar  solutions • 

z b  = 0 = Z ~ o e  - 2 ~  ' . .  . • . . . .  ( 2 . 5 . 1 0 )  • . . . . . . . 

where z~o = 00 is the value of zO or 0 at  the  same instant .  The two constants  q;0 and z~0 are not  
independent ,  as t h e y  must  sat isfy  the condit ion z,,~o + z, oZ$o = 0, whence • 

2 C ~  

w0 = a + CD u0 = 00 . . . . . . . . . . . . . . .  (2.5.11) 

The formula (2.5.9), giving the damping  factor and s tab i l i ty  requirement ,  is almost exac t ly  
identical  wi th  the generalized Painlev6's  cri terion (2.2.4). The only difference lies in the  correction 
te rm C~/a in the  denominator .  The correction is due  to z~ being exact ly  --  ½(a+C~), ins tead of 
! - -  ½a), and this  sub t l e ty  has, of course, been overlooked in Pa in levf ' s  derivation.  The correction 
is usual ly  very  small*, so tha t  the  Painlevd's criterion has been vindicated for disturbances in which 
the pilot's elevator control ensures strictly constant height ** 

All conclusions deduced previously  from the  Painlev6's  cri terion also become true in these 
conditions. In  part icular ,  the  flight becomes stable (with subsiding disturbances) or uns tab le  
(with diverging disturbances) according to whether  it occurs a t  CL below Or above, respectively, 
the value corresponding to min imum drag or min imum power. I f  CL exceeds the critical value 
and the pilot tries to keep constant height, he is likely to gain (or loose) speed inordinately following 
any initial disturbance. The phenomenon,  of course, will never  take place in ord inary  cofiditions 
of high-speed flight, bu t  it m a y  become discomfort ing in cruising flight at too low speeds, and  
especially acute when flying wi th  high CL at  great  heights. I t  is in teres t ing tha t  such condit ions 
have  been reported from fl ight- test ing quarters,  viz., by  Cameron TM (1942) and b y  the Engl ish  
Electr ic  Co? 3 (1948) and, in broad lines, the  above theory  is  encouragingly  confirmed by  these 
reports. I t  should be ment ioned  that ,  in the case of h igh-al t i tude cruising,' the ma t t e r  is seriously 
affected by  the air dens i ty  var ia t ion  wi th  height",  ~, so tha t  our theory  requires a considerabIe 
ref inement  on this  score. 

Another  impor tan t  case, where the ins tab i l i ty  at constant  height  m a y  appear  in s t rength,  
m a y  well be tha t  of an aircraft  wi th  parasi te  drag drast ical ly  reduced by  fuji applicat ion of 
boundary- layer  suction, as repeatedly  suggested recent ly  (see, e.g., papers by  Sir ~ .  Jones and  
Head  ~'~5 (1951)). For  such aircraft,  C~o m a y  be m a n y  t imes smaller t han  the present  values, 

* Except near to or at the stall • in the latter case a = 0 and dC~/dCz = Go, and in these particular circumstances the 
condition of stability at constant height becomes, from (2.5.8) • 

2r = C~ + C~s C, dC~ 
" -~ C-~-*~ > 0 . . . . . . . . . . . . . . . . .  (2.S.12) 

and is practically never satisfied. 

** In this paper, only horizontal flight is considered, but it can be easily shown that the criterion still applies, in an 
exactly similar way, to a climbing or descending flight in which the pilot tries to maintain steady rectilinear path. 
The essential point consists in suppressing deviations from the original flight direction. 
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"and hence (see form 2.3.7) the critical value CLm will also be considerably smaller, so that  a large 
part  of the polar curve may become ' unstable ' in Painlev6's sense. We shall come back to this 
point in section 3. 

Two further remarks may be made as to the equations of this section. 

(a) The formula (2.5.11) shows that, in a disturbance at constant height, the incidence increment 
z~ (hence 0) always has an opposite sign to ~, .and i ts  numerical value is normally much less than  
that  of ~--except  near or at the stall, where z~ may become much larger than ~. This is easily 
understood as displaying the manner in which the lift increase due to excess speed is compensated 
by the lift decrease through slightly reduced incidence. 

(b) The time history of the elevator deflection ~7 required to maintain constant height may 
be obtained from (2.5.2), substituting ~ = DO = Dz~, in the following operational form • 

6v -~- - - { D  ~ + (~ + z ) D  + c o } z 0 -  z d  . . . . . . . . . .  (2 .5 .13)  

and, using the solutions (2.5.7) and (2.5.10), in the final algebraic form: 

V = - -  o~ 2CL z - -  2r(v + X) + 4r~ z~0e -2r~ . . . . .  (2 .5 .14)  

As, however, r is always small, and z rather small and relatively unimportant ,  we may write 
this more simply, with sufficient approximation : 

co ~ e _ 2 = _ _ - z b  . . . . . . .  2 . 5 .15 )  ~? -"- - -  ~-w0 ~ . . . . . .  

I t  may be also interesting to see what will happen if the pilot operates two controls simul- 
taneously, e.g., if, in addition to keeping height constant by means of the elevator, he also tries 
to keep speed constant (d = small constant) by applying his throttle. We have then Dd ---- 0, 
and (2.5.5.) becomes:  

(CD + CAs)d + ½a dCD/dCL.z~ : 0 } . . .  . .  .. . .  (2.5.16) 
+ ½(a + = o 

These linear algebraic equations call be simultaneously satisfied only if : 

either, at arbitrary incidence, ~ = z~ = 0 which means that  the pilot has checked the dis- 
turbance completely ; 

or, if 2r (from 2.5.10) is zero, i.e., that  the aircraft is flying at the critical incidence in Painlev4's 
sense--being neutrally stable in this sense ; in such a case ~ may have an arbi t rary small constant 
value, and @ will also be small constant, in the appropriate proportion to d (see 2.5.11). 

2.6. Case of Instability at Strictly Comtant Height.--The case of instabil i ty at strictly constant 
height is particularly interesting. In this case 2r < 0, and the solution (2.5.7) implies that  the 
speed error would increase indefinitely, i.e., that  the speed would either rise to infinity or fall 
to (-- o~), according to whether Uo is positive or negative. Both conclusions are obviously 
absurd, and their fallacy is due to our initial assumptions which no longer hold for large ~/. 
The equations of motion cannot now be linearised as before, and some or all derivatives such as 
a, CL, CD, CAs, dC~/dCL may not be constant. The true motion will be approximated by the 
solution (2.5.7) for only a short while and, subsequently, it will proceed in a different way, 
according to non-linearised equations of motion. I t  is not difficult to guess roughly what may 
happen. If the initial speed error is positive (~o > 0), the speed will increase and CL decrease, 
and the values of CL, CD will follow the polar curve (Fig. 2) from a point s l ightly below 2 towards 
the second point of equilibrium 1' (or 1) where the polar is intersected again by the line of available 
thrust. We may therefore expect that  the motion will ul t imately converge to a new steady 
flight with greatly increased, but finite, speed. If, on the contrary, the initial speed error is 
negative (~0 < 0), the speed will further decrease and CL rise, the values of C~, Co, following the 
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polar from a point slightly above 2 (in Fig. 2) towards the stalling point. It  will then become 
impossible for the pilot to maintain constant height, and unless he checks the stall in time, he 
cannot expect anything but  the usual troubles. 

The second alternative, divergence towards the stall, would present some difficulties to analy- 
tical treatment.  The first alternative, however, accelerated flight converging to the rapid steady 
r~gime, may be dealt with analytically in a comparatively simple way, at least with some 
reasonable simplifying assumptions. We have to start from first principles and handle non-linear 
equations, but we may assume that  the height is kept constant permanently by a suitable 
elevator manoeuvre so that  only two equations are to be considered, v i z . ,  the static condition of 
equilibrium for vertical forces, and the dynamic equation for horizontal acceleration. If, further, 
the point 2 does not lie too high on the polar curve (not too near to the stall), then we may still 
assume tha t  the relevant part  of the polar curve can be approximated by a parabola (2.3.1), 
and tha t  the lift slope a is constant throughout. We may also treat  C~ as small in comparison 
with a. The equations should lead to finding a functional relationship between the speed V and 
time t, so as to enable us to estimate the time needed to approach more or less Closely the new 
steady speed. This time should probably be comparatively long, the acceleration being neces- 
sarily moderate ; but  it may be quite interesting to know what order of magnitude we have to 
reckon with. 

Let us consider the aircraft in steady flight (Fig. 3a) with speed V2 at incidence c~*., corresponding 
to the point 2 in Fig. 2. I t  is subject to the forces W, L~., T*. and D*., the thrust T*. being, in 
general, inclined at a moderate angle 9*. to the horizontal. The equilibrium equations are (replacing 
sin 92 by 9.., and cos 9*. by 1) : 

L2 + r*.9~. = W, . . . . . . . . . . . . . . . . . .  (2.6.1) 

T*. = D*. . . . . . . . . . . . . . . . . . . .  (2.6.2) 

Supposing tile speed has accidentally increased slightly, say to V*.(1 + e*.), and the height is 
maintained co~astant, the aircraft incidence and speed will both vary  and, at an arbitrary time 
t, the conditions will be represented by Fig. 3b. The incidence will now be (cq + A c~), tile inclina- 
tion of thrust  (9,. + A ~), and the forces W, L, T and D. The vertical force components will 
still be in equihbrium : 

L + T(~0*. + A c~) ----- W ,  . . . . . . . . . . . .  (2.6.3)  

where A c¢ has been considered as sufficiently small* for replacing sin (9*. + c¢) by (9*. + c¢). The 
resultant of horizontal components will produce an acceleration d V / d t ,  so that  

W d V  
T -  D . . . . . . . . . . .  (2.6.4) 

g d r '  " . . . . .  

where cos (9*. + c~) has again been replaced by 1. 

We now obtain from (2.6.1,2) : 

L * . + D * . 9 ~ =  W , or L ~ = W  1 + ~  9*. . . . . . . . . .  (2.6.5)  

Let us now consider, for simplicity, only the case when the thrust T does not depend on speed 
(thus Cas = 0), and hence : 

T = T ~  = D * .  = L * .CD* . /CL~ ,  . . . . . . . . . . . . . .  (2.6.6) 
also : 

L = L*.V*.CL/CL*.V*. ~, . . . . . . . . . . . . . . . .  (2.6.7) 

D = D~V2CD/CD*. V ~ 2 =  L*.V2C~/C~*. V*.*. . . . . . . . . . . .  (2.6.8) 

* If, as assumed, the speed increases, i.e., e2 > 0, then A0~ will really be negative throughout the disturbed motion, 
.It. has been shown as .positive in Fig. 3b, merely for facilitating the derivation, 
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"As a is considered as constant, we may also write : 

A ~ - - - -  (CL - -  C, ,2) /a . . . . . . . . . . . . . . . . .  (2.6.9) 

We now in t roduce (2.6.5-9) into (2.6.3,4) and obtain,  respect ively,  af ter some re-arrangement  
and s impl i f i ca t ion  : 

( " )  ( ) c ,  + = + , . . . . . . . . . . . . . .  

V ~ CL~ + C z , , ~  d V  
C~)~ - -  C~) V~ 2 - -  g d t  . . . . . . . . . . . . . . .  (2.6.11) 

These two equations are still quite rigorous, but now a welcome simplification suggests itself, 
v i z . ,  neglecting C2)~/a in (2.6.10) as small in comparison with 1 or to V~/V22 and for consistency 
if not for any clear analytical advantage, neglecting C.29~ in (2.6.11) as small in comparison with 
CL 3. We then get, as a still very good approximation : 

C L V ~ :  CL2V2 ~ , . . . . . . . . . . . . . . . .  (2.6.12) 

V~ 2 d V  
C~ V ~ - -  C o V  ~ : CL,~ - - - - .  . . . . . . . . . . . . . . . .  (2.6.13) 

~ ~ " g d t  

I t  may be noticed that  the equation (2.6.12) simply means L-----L~, which would, of course, 
apply in strictly horizontal flight if neglecting small vertical components of the thrust. The 
equati9n (2.6.13) similarly means that  the drag difference produces the acceleration, a small 
effect of thrust inclination being again neglected. An important  observation is that  the equations 
(2.6.10,11) or (2.6.12,13) can be linearised by assuming the variation of V, Cr. and Co as limited 
to a small range, i .e . ,  by putt ing : 

d C ~  
V - - - - V ~ ( I + ~ ) ,  CL = CL~ + aZ~ , C~ = C=~ + ~ v~ , . .  . .  (2.6.14) 

and considering ~, zb as small, and a and dCo/dc¢ as constants. The equations (2.6.12,13) then 
reduce to the form : 

, . . . . . . . .  (2.6.15) 
1 CL~ ,1 + ~-aw = 0 

thus becoming identical with (2.5.5), except for the small correction term C~ in the expression 
for z ,  (see 2.4.3) which, of course, is due to the small variations of the vertical thrust  components. 
If a similar procedure is applied to the equations (2.6.10,11), then this correction term re-appears, 
along with another correction term C ~  which is due to the initial thrust inclination (this refine- 
ment has never been introduced in the general linearised equations (2.4.1), and it has really 
very little significance). All these corrections are normally quite small and can certainly be 
neglected here. We thereforeuse the simpler system (2.6.12,13), and eliminate CL and Co from 
it by taking in to  account the relationship : 

C~ = C , o  + sCL ~ (in particular, CD~ = Coo + s C L ~ ) ,  . . . . . .  (2.6.16) 
i .e . ,  the parabolic approximation of the polar curve. We obtain : 

V ~ d V  V ~ C .  o V 2 sCL~V~4 
C L 2 ~ g  d t  - - C D ~ .  2 - -  V 2 , . .  . .  . . . . . . .  (2.6.17) 

or, eliminating C~ :  

V ~ d V  ( V  ~ -~ V , ~ ) ( s C ~ ; ' V ~  2 - -  C , , o V  ~) 
C L 2 ~ g  d t  - -  V 2 . . . . . . . . . .  (2.6.18) 
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We have, however, from (2.3.7, 9), with CAs = 0:  

sCL~ = C~o/CL1, . . . . . . . . . . . . . . . .  (2.6.19) 

where CLI corresponds to the alternative equilibrium speed 171 (point 1 in Fig. 2) and, in view 
of (2.6.12), is given b y :  

CL~ : CL~V~/VI  2. . .  . . . . . . . . . . . . . .  (2.6.20) 

Substituting (2.6.19, 20), the equation (2.6.18) finally becomes: 

CL2 d V  _ (V  ~ - -  V22)(V~ ~ -  Y 2) . . . . . . .  (2.6.21) 
C~ o g dt V~ ~ V ~ . . . . .  

I t  is seen tha t  the acceleration becomes 0 at V -  V~ and V = V1, i.e., at the two possible 
equilibrium speeds. Therefore, it must reach a maximum value somewhere in between. I t  is 
easily found by differentiating (2.6.21) that  this happens at the speed : 

V,,---- , v / ( V , V , ) ,  or CL,, = "v/(CLzCL,),  . . . . . . . .  (2.6.22) 

i . e . ,  as could be anticipated, at the minimum drag point (m in Fig. 2), and the maximum 
acceleration is : 

-~- m.. ~- g -C--L-. E 1 . . . . . . . .  , . . . . .  (2.6.23) 

Taking, for instance, the first numerical example of section 2.3 (the constant thrust case), we 
have C90 = 0.009, CL2 = 1.2, CL~ = 0.075, and hence : 

(dV/dt)m,x ~- 0.0675g = 2.17 ft/sec' .  

The accelerations thus have reasonable small values. An illustrative graph of acceleration 
versus speed, according to (2.6.21) is given in Fig. 4, where it was assumed V~/P'2 = 4, thus 
CL~/CLI = 16, as in the above example. The vertical scale on the left refers to the non- 
dimensional expression in (2.6.21), that  on the right gives the values of the acceleration in ft/sec" 
for the particular example considered. There are also two  self-explanatory horizontal scales. 
For  any alternative value of the ratio V~/V~ a different curve should be drawn, but all curves will 
be very similar although with varying quanti tat ive characteristics. 

I t  remains to integrate the differential equation (2.6.21). Separating the variables, we obtain : 

C~ o g dt V ~ d V  

cL. v. '  ( v ' -  v ? ) ( v , ' -  v ' ) '  
.. . .  (2.6.24) 

and it is obvious that  the limits of integration for V should be V2(1 + e2) and V~(1 -- ~1), where 
a small fraction ~, denotes the initial error (excess) of speed over the original equilibrium value, 
and ~ similarly the ult imate error (deficiency) of speed below the new equilibrium value. Inte- 
grating between these two limits we find easily: 

C.o gt,. V~ 2 V - -  V,. V1 V~ ÷ V '  ,',o-.,I 
cL. v.  - 2(v,' v.') ln v + y,  -¢ ln 

-- ! Y l  - -  V~(1 ~e.,_) 

in + v . -  ,-7- 

V1 ( V I - - V = - - V ~ e 2  2 - - e l )  l (2.6.25) +K. In . . . . . . . . .  
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-It will suffice to assume tha t  the initial and ultimate per cent errors are equal :  

sl = ,83 = ~, s a y ,  . . . . . . . . . . . . . . . .  (2.6.26) 

and a further simplification is achieved by expanding in ~, and neglecting second and higher 
powers : 

= 2 C ~ o g ( V d V 2  - -  1) in . . . . . .  V, + G V , -  V2 . (2.6.27) 

For reasonablevalues of V d V 2  and e, the second term in bracket may normally be neglected in 
comparison with the large logarithmic term. Using, in addition, the relationships (see 2.4.3): 

CLo.V2 = 2 J ~ ,  V d Y  ~ = ~2/~, • . . . . . . . . . . . . .  (2.6.28) 

where ~, and ~ are units of aerodynamic time for two equilibrium conditions, respectively, we 
may  bring (2.6.27) to the form:  

1 'J2 ( 2  ~2 -- ZI~ 
& - -  Coo" ~ _ ~, In " Z ~ +  . . . . . . . . .  .. (2.6.29) 

I t  is seen tha t  t,, has been expressed in terms of these two units, minimum drag coefficient, and 
speed error ratio. 

In our previous example C~ 0 = 0.009, CL ~ ----- 1.2, V~ = 152 ft/sec, V d V , .  = 4, and hence the 
formula (2.6.27) gives" 

~ , , = 1 0 4 . 9 ( l n l . 2  5 ~ 
,8 6 '~ " 

and hence 

for e (per cent) ---- 5 4 3 2 1 0-5 0.1 

we have t,, (sec) ---- 329 353 .384 428 501 574 744 

The units of aerodynamic time are, in this case, Z1 ---- 0. 708 sec, Z~ = 2.832 sec and, for ~ = 0-05, 
we obtain from (2.6.29) t,,----333 sec, with only 4 sec error. The exact formula (2.6.25) gives 
again t,, ----- 329 sec. For smaller s, the errors by  neglecting the correction term will be even smaller. 

• The values o•f t,, are seen to be between 5 and 13 minutes in this example. I t  is interesting to 
compare this with the results of flight tests at comparatively low speed and  great height, made 
by  the English Electric Co. Ltd., as described in Ref. 15 (last paragraph of the Addendum). 

I t  should be mentioned that,  in the second alternative, divergence towards the stall, the time 
needed to reach stalling conditions may be much shorter than tha t  calculated above. A calcula- 
tion in  this case would require some awkward analytical approximation for the polar curve 
in the stalling region, and would be rather complicated. However, the general formula for the 
acceleration, easily obtained from (2.6.12,13). 

dV ('G2 C,~) 
- g \ c L 2  . . . . . . . . . . . . . .  ( 2 .6 .s0 )  

shows that,  in this case, the acceleration would be increasingly negative, never becoming 0 again, 
and more or less of the same order of magnitude as in the previous case. However, the difference 
between the initial speed V~ and the stalling speed Vs will be generally small (in our numerical example 
V2 = 152 ft/sec, Vs -"- 140 ft/sec), and therefore the time required would also be much smaller, 
nearer to the order o f  1 minute, or even less. I t  is seen that,  t rying to keep constant height at 
high incidence may lead to a stall quite rapidly, if the initial error of speed is negative. 
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3. Modified Painlevd's Criterion for Ultimate Equilibrium after Elevator Deflection.--There 
exists another problem, of considerable practical importance, for which a criterion very similar 
to Painlev6's has been known for a long t i m e .  The problem was much discussed in the early 
period of aviation, for instance by von Mises 3 (1915), Fuchs and HopP (1922), and others. 
I t  has been re-examined by  von Mises in 1945 (Ref. 6, see especially Section XIV.4). A usual 
qualitative picture, based on graphs such as in our Fig. 1, can be described briefly as follows. 

Suppose that  an aircraft is flying level at one of the two equilibrium speeds ~:ompatlble with 
a given throttle position (points 1 or 2), and then the elevator is deflected through a small angle 

×, say positive (elevator down), so as to induce a small negative (nose-down) pitching moment. 
A complicated disturbance will follow, including both short-period and phugoid oscillations but, 
if, the aircraft is stable and the elevator is kept deflected, a new steady flight will be eventually 
reached, with a somewhat lower incidence than before. The new steady flight path will not be 
horizontal, however, but slightly inclined. The new (reduced) incidence must be such tha t  the 
ensuing positive moment just counterbalances that  produced by the elevator deflection, and 
the new speed must be somewhat greater than before, so that  the lift may still balance the 
weight. Fig. 1 then shows that,  if the initial conditions correspond to the point 1, the thrust  
required will exceed the available one, and the deficiency must be made up by a small positive 
component of the weight in the direction of the new path, the latter necessarily pointing slightly 
downwards. The aircraft will therefore lose height steadily which is an expected response to 
a push-down manouvre. If, however, the initial conditions correspond to the point 2 then, after 
a similar elevator movement, the thrust  required will fall below the available one, the excess 
will be able to compensate all adverse weight component, and hence the new steady path will 
point slightly upwards. The ultimate response will consist in the aircraft gaining height steadily 
(against expectation). I t  must be emphasized that  the initial response was certainly conformable 
to the pilot's intention--this  was often overlooked by earlier writers. The curious phenomenon 
begins by a momentary  descent, followed by a hesitant oscillation, and finally resolves itself 
into a steady climb (' ballooning'  in old pilots' slang). 

All exactly similar reasoning applies, mutatis mutandis, to tile inverse case of small negative 
× (elevator up), followed by an increased incidence and reduced speed. If the initial steady flight 

corresponds to the point 1, then both the immediate and ultimate response involve climbing. 
If, however, the point 2 represents the original flight conditions, then a momentary climb, 
through a hesitant oscillation, finally leads to ' sinking '. 

In either case (7 × <> 0), the point of minimum drag m in Figs. 1 and 2 (or, according to the 
properties of the propulsive system, that  of minimum power m') clearly separates two regions 
displaying different behaviour. If the critical point itself depicts the original steady flight, then 
both up-and-down elevator displacements, supposed really small, eventually lead to another 
steady level flight, with slightly increased (decreased) incidence and decreased (increased) speed. 
All elevator deflection of appreciable magnitude will, however, be followed by an ultimate slow 
loss of height. 

Although the above descriptive reasoning does not account for all details of the phenomenon 
(such as, e.g., the speed effect on pitching moment, represented by the derivative m,,), yet no 
fundamental  error can be detected here. Flight experience, too, amply confirms the conclusions. 
The mat ter  seems never to have been examined analytically in any detail, but this can be done 
quite easily in the following way. The motion following a small elevator deflection 77 × will still 
be governed by  the linearised equations of motion (2.4.2), tile only alteration being that  the 
third equation must now be written : 

z~$ + (xD + o2)z~ + (D + v)~ ---- --  ~v×, . . . . . . . .  (3.1) 

where 8, as defined by (2.6.3), is a measure of elevator effectiveness. A complete solution of the 
modified system would provide a picture of the entire response, which it is not proposed to 
a t tempt  here. The u l t imate  response, however, can be determined quite simply by assuming 
that  a new equilibrium status has been reached (theoretically at t--+ co), so that  ~, z~ and 0 have 

19 



become .constant, and ~ = 0. All terms containing the differential operator D now disappear, 
and (2.4.2) reduces to a simple system of three simultaneous algebraic equations of the first 
degree: 

" l  

- - x f i  - -  x~zO + { C z o  = 0 | 

- -  z , f i  - -  z~z~ = 0 . 
[ 

The solution of this system is : 

. . . . . . . .  (3.2) 

d _ CLz~ ~ _ CLz,~ 0 _ PI ( a t ,  -~  oo) . . . .  (3,3) 
~ ×  2E1 ' a~× 2E1 ' a~× E1 ' 

where the auxiliary symbols El, P~ are as in (2.4.7,8). I t  should be remembered now that  z,~ 
and z~ are normally negative, and P~ positive. It  is seen at once that,  if the static margin is 
positive (E~ > 0) then, for a positive ~ ×, the ultimate value of ~ is positive, and those of z~ and 0 
negative. Thus, the speed is finally increased, the incidence decreased, and the nose brought 
down after a push-down manoeuvre, and vice versa after a pull-up, irrespective of the initial 
flight conditions (below the stall). This is a simple analytical confirmation of the previous general 
reasoning, with one additional piece of information about the atti tude which, although in- 
tuitively plausible, would not be easily demonstrated without algebra. 

The only really interesting further conclusion refers to the ultimate value of the vertical 
velocity component. This, according to (2.6.1) and (3.3), becomes : 

d H  _ V ( O  - -  = _ V ( k z .  + 

dt El 

, O~×V( 

= - @T + + 
l 

. . . . . . .  ( 3 . 4 )  

The expression in brackets is seen to be exactly proportional to the value of 2r in (2.6.9) and 
changes sign w i th  it. Hence, Painlev6's dubious criterion for stability now re-appears as a 
generally applicable firm criterion for the elevator-height response. This may be formulated briefly 
as follows : 

The ultimate height response of an aircraft with positive static margin, after the elevator has been 
deflected and kept so, occurs in the naturally desired direction, i.e., in agreement with the initial 
response, i f  the original speed exceeds that corresponding to minimum drag (or minimum power) 
conditions. A t  lower speeds, the opposite is true. This obviously does not depend on the rate and 
mode of the elevator's initial movement, provided it is ultimately kept deflected and fixed. 

A more detailed numerical analysis shows that  the expression (3.4) assumes, on the average, 
greater negative values at high speeds than positive ones at low speeds. The curious pheno- 
menon of reversed ultimate response at low speeds will, therefore, have a rather  mild form 
generally, but even lack of the normal response, let alone reversal, is unwelcome and disconcerting. 
The matter  may, however, become even more serious in the case of aircraft with exceptionally 
low drag (cf. end of section 2.5), for which a very large part  of the polar curve belongs to the 
region of erratic response. If such aircraft become an engineering reality then the reversed 
height response will dominate over the greater part  of the speed range. I t  is true that  this 
feature is always present in the final stages of landing of orthodox aircraft, but  then the pilot's 
movements occur ill quick succession, and there is little chance for the adverse effect to be fully 
operative. In cruising flight, there has always been a strong tendency to maintain the speed 
above the critical (hence the notion of 'minimum comfortable cruising speed'--see Refs. 12, 
13 and 17). For aircraft with distributed suction, this minimum comfortable cruising speed may  
become very• large indeed, and the mat ter  deserves attention, 
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4. General Theory of Stability Under Constraint, and Alternative Examples.--4.1.  Pr im@les  
of  the Theory . - -The  reasoning of section 2.5 has led to a new concept of stability under partial 
control, where a control is deliberately operated in such a way as to keep one chosen dement  
of the disturbance equal to 0 (or, more generally, constant). In other words, the control is applied 
so as to remove one or more degrees of freedom. In sections 2.5 and 2.6, only the case of the 
vertical velocity component being kept = 0 (or height being kept constant) through a suitable 
elevator movement has been considered, and the results seem to agree well with the available 
flight test evidence. Now, it is obvious that  this is not the only case worth studying, and that  a 
considerable number of analogous problems may be considered, some of them presenting a 
definite practical interest. The general idea remains exactly the same in all cases, i.e., it is 
assumed that  one of the controls is operated so as to keep one of the usual variables or a linear 
combination of them, equal to 0 (or constant), while other elements of the disturbance are still 
free to va ry  according to the (suitably modified) System of dynamic equations. The modification 
of. the system will consist in one equation (that directly affected by the control in operation) 
being removed, while the remaining equations simplify in a manner consistent with tile assump- 
tion. The simplification will usually be very considerable, the order dropping by at least one 
degree but  often by more than that,  and the solutions will often be surprisingly easy and simply 
interpreted. The omitted equation can be used afterwards to find ' a posteriori ' what the control 
movement must have been to produce the result as anticipated ' a priori '. The practical value 
of such an investigation obviously depends on whether the particular case is likely to occur often 
in flight, at least approximately. We shall use the term ' stability under constraint '  (or shorter 
'constrained stabil i ty ')  in such problems, to distinguish it from the stability in the generally 
accepted sense (i.e., in uncontrolled flight). 

The notion of constrained stability may seen unfamiliar and different from the general idea 
of stability of mechanical systems, as universally adopted in theoretical dynamics and engineering 
practice. I t  seems never to have been applied to aircraft nor, as far as is known to the present 
author, to any other vehicles or mechanisms*. The new concept may be subject to criticism, 
and the following arguments in its favour should help to dispel the doubts : 

(a) In each particular case, a system of dynamic equations equivalent to tha t  defined above 
may be obtained by assuming that  the relevant control is actuated by a simple autopilot pro- 
ducing a control deflection proportional to the change of the chosen disturbance element, 
assuming that  the coefficient of proportionality (autopilot's strength) tends to infinity. This 
assumption is virtually equivalent to putt ing the respective disturbance element equal to zero 
right from the start, and hence the solutions must be identical in both cases. A true autopilot, 
of course, never has an infinite strength b u t , i f  tile strength is sufficiently large, the stability 
characteristics differ little from the limiting ones. That  is why, when dealing with autopilots 
of variable strength and plotting frequencies and damping factors against strength, one usually 
considers also the limiting case which is illustrated by asymptotes in stability diagrams 8,16 
It  is quite possible for a human pilot to act similarly to an autopilot of considerable strength. 

(b) In fact, a human pilot may do better than this. Instead of operating the control according 
to a definite rigid function or the response of a detecting instrument (as an autopilot does), he 
operates, to quote Hopkin and Dunn 16, 'according to some personal and variable function of 
the response of his senses (directly or through instruments, or both) '. In such a way, he may 
keep the relevant disturbance element permanently suppressed in a more efficient way than the 
strongest autopilot, not only countering every small deviation, but also anticipating and fore- 
stalling the next deviation in tile opposite direction. That  this is really possible, can be seen 
by observing how a cyclist or motorist is able to follow a prescribed path with a great accuracy 
by almost imperceptible movements of his handlebar or steering wheel, irrespective of accidental 

• *However, a somewhat similar concept was used by_ Mitchell, Thorpe and Frayne 10, i945, who introduced, as a 
standard of comparison for various cases of lateral respohse, the response to aileron deflection with sideslip suppressed 
by an appropriate rudder action. This may be called a ' res t ra ined response.' A theoretical stability calculation, 
given recently by  Lean 17 in connection with his analysis of deck landing, leads to the same results as those obtained 
in section 2.5 of this paper, and some ideas of ' restrained stabili ty ' may be discovered there, 
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" concussions. Although an aircraft, with its many  degrees of freedom, may be not quite as docile, 
it should still be managed easily enough for the theory of restrained stabil i ty to apply with a 
reasonable accuracy. This is certainly so, e.g., in the case when the pilot tries to maintain a 
fixed horizon position on his Windscreen, and similarly in many  other cases. The accuracy will 
undoubtedly be better  if the control used is one of the main control surfaces which act directly 
and almost instantaneously, and poorer when using throttles, t r imming tabs, etc., which act 
indirectly and with more lag. The matter  may and should be investigated experimentally. 

(c) In each case, a short transitory period following a more or less violent initial disturbance 
is not subject to our theory, as mentioned already in section 2.5. This period is usually short, 
however, especially for an able and experienced pilot, and very soon the conditions envisaged 
by  the theory will be reached and maintained. 

Before proceeding to examine some more particular cases of interest, we shall give the following 
discussion of constrained stabili ty in general terms, on lines suggested by.S. ]3. Gates • 

Let x~, x~, x 3 , . . ,  be small increments, from their equilibrium values, of the dynamical co- 
ordinates of a system whose stability is to be examined. And let the linearised equations of 
uncontrolled motion be • 

A(~)  + A(x2) + A(x~) . . . . . . . . .  = o 
gl(xl) + g~(x~) + g~(x~) . . . . . . . . . .  o 
&(~) + &(x~) + &(x~) . . . . . . . . . .  o 

. . . . . . .  (4.1.1) 

• , ° , , o , , , , ,  , o , * ° , . , , ,  ° , , , o  ° , ° , , , ° ,  , 

F,(x,) + F~(x=) + F,(x.) . . . . . . . . . .  0 

where the symbols f ,  g, h . . . .  F represent linear homogeneous functions of the respective 
variables and their time derivatives, the number of equations being, of course, equal to tha t  
of the variables. Suppose the last equation is the only one that  is affected when the system 
becomes subject to a certain external control whose deflection will be denoted by  7. If this  
control is operated, the last equation is modified by  the inclusion of the control term on the 
r ight-hand side • 

FI(x~) + F~(x~) + F~(x~) + . . . . . .  ~ ,  • . . . . . . .  (4.1.2) 

where ~ is a Constant coefficient. In general, there may be an arbitrary initial disturbance 
represented by the values xl0, X2o, X~o . . . . .  at t = 0. 

Suppose now that  human operator is instructed to actuate his control in such a way as to bring 
one of the variables, say x~, down to zero, and thereafter maintain it permanent ly  suppressed. 
His instruction is merely to observe an instrument measuring xl and to t ry  to bring its reading 
to zero and keep it there, as best he can. Accordingly, his ~ will really be related to the observed 
x~, however small. Symbolically, we may write • 

= H(x~) . . . . . . . . . . . . . . .  (4.1.3) 

where H is an undetermined function dependent on the psychological features of the operator. 
The full system of equations governing the motion is then :  

(4.1.4) 

A(~) +L(x~) +A(~)  . . . . . . . .  o 
g~(x~) + g~(x~) + g~(x~) . . . . . . . .  o 
&(xl) + &(x~) + &(x~) . . . . . . . .  o 
" ' ' ' ° ' ' ' ' ' ' . ' . * , . , * o , , , . . , . . l o ,  

. , * , , ° , , , ~ , , o , ° , . . ° , . , , . . , . . , . , ,  
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This is merely a formal presentation of what happens and, ~n view of the indeterminate nature 
of the function H,  it is not suggested that  any analytical procedure may be applied to solve the 
system (4.1.4). However, we may assume that  the operator is so successful in keeping the xz 
reading very small (at least, after a lapse of time short compared with the duration of the entire 
disturbed motion) that  the terms f~(x~), g~(x~), h~(x~), . . . F~(x~) have become small in comparison 
with the remaining terms of the equations. The motion will then be governed, with sufficient 
approximation, by the simpler system of equations : 

x ~ = 0  

A(x ) + A(x ) . . . . . . .  0 

+ go(x ) . . . . . . .  o . . . . . . . . . .  ( 4 . 1 . s )  

° ° "  ° . °  ° °  ° ° ° °  ° ' ' °  ° ' °  ° " *  ° . a  

with the control equation : 

F2(x=) + F3(x~) . . . . . .  an .  . :  . . . . . . . . . .  (4.1.6) 

The concept of restrained stability thus consists in using the system of equations (4.1.5) 
instead of (4.1.1). Equation (4.1.6) plays no part  in the solution of the stability problem. To 
make its meaning quite clear we should consider what would happen in practice. The ~ supplied 
by the operator would still depend on xl (however small) according to (4.1.3), whilst (4.1.6) 
corresponds to the idealised (humanly impossible)case of xl being strictly 0 throughout. 

I t  may be noted that,  if the motion represented by (4.1.5) happens to be stable, then ~7 ulti- 
mately tends to 0. If, however, the motion is unstable, ~ will diverge (or oscillate with increasing 
amplitude), just as other variables x~, x3 . . . . .  

I n  the particular case of section 2.5, the quant i ty  suppressed was not one of the dynamical 
co-ordinates but  a linear combination of two of them, viz. (O - -  da), but clearly a mere change of 
variables .brings the analysis into line with the above general scheme. 

With  the above arguments and restrictions in mind, a few interesting particular cases will 
be examined in the following sections 4.2, 4.3, 4.4 and 4.5, the range failing far short of exhausting 
all the many possibilities. 

4.2. Stabil i ty  at Constant At t i tude Under Elevator ControI . - -This  is the case when the aircraft 
is not allowed to rotate in pitch, and thus defined by the assumption : 

0 = 0  , h e n c e ~ = 0 ,  • . . . . . . . . . . . . .  (4.2.1) 

which means that  the longitudinal at t i tude remains fixed relative to the ground, so that  the 
horizon main ta ins  a constant posi t ion on the windscreen. The system of equations (2.4.1) becomes : 

(D -- x,,)~ -- x~z~ = 0 1 
- -zS,+ ( D - - z ~ ) ~ = 0  f '"  . . . . . . . . . . .  (4.2.2) 

i.e., is reduced to the second order. The determinantal  equation becomes a quadratic : 

X ~ + N l , ~ + P ~ = 0 , h e n c e ) l l , ~ = - ~ T  - -P~  , .. . .  (4.2.3) 

(@ formulae 2.4.7), and identical with the analogous equation for an aircraft with autopilot 
of 0-type, of infinite strength, as given in Ref. 8 (section 5.1). Except for conditions at or beyond 
the stall, or sometimes in the transonic range, the coefficients N~, P~ are always positive, so that  
the motion is fundamentally stable. In addition, we have normally : 

2~ < < ¼N, ~ . . . . . . . . . . . . . . . .  (4.2.4) 
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so that  the two stability roots are reai and weli approximated by"  

~ -"- - -  N~  , ,12 ""- - -  P ~ / N I  . . . . . . . . . . .  (4.2.5) 

The exact complete solutions of the system (4.2.2), assuming the in/tiM values of d, ZO to be 
d0, zOo, are easily found • 

d ---- do ea='+ x,~o + (x,, -- &)do (eao , _ e a'') /'] 

& -- ;h ~ . . . .  ( 4 . 2 . 6 )  

zO = zOoe , x,, - & x zOo + ( x .  - & ) d o  _ J 
These formulae may be simplified, using the approximation (4.2.5) and the expressions (2.4.3), 
and neglecting x,, when accompanying a, and x, ~ when accompanying CL 2. We then obtain • 

1 ( dC,~"~ _,,_ a ( x , -  &) ,  . .  (4.2.7) 
x - & & - & -"-  a , x = C L .2 - -  2 C L 

and hence 

d = doe a'~ - -  CL - -  adC~/d°~ (zOo + 2C___Za do) (e ~'~- e ~') 

. .  (4.2.8) 

- Wo + do - -  &') 
g gt 

These approximate solutions still satisfy the initial conditions exactly. The root ;h being large 
and negative, and (CL - -  dCz~/d~z) being very much smaller than a, the disturbance will be well 
described after a short time by the simple equations : 

d -~- doe ~=~ ~ .,,_ 2CL ~ e . ~ .  ~ (4.2.9) 

The expressions (4.2.9) satisfy, approximately, the second of the equations (4.2.2), if we neglect 
the small acceleration term DZO. We have thus • 

2CLd + azb -"- 0, . . . . . . . . . . . . . . .  (4.2.10) 

which means that,  during the later stage, there is practically no incremental lift. 

The motion clearly consists of two subsidences, one of which is heavily damped while the 
other one persists much longer. The mere fact that  there are no oscillations (there is only one 
change of sign of d and ZO, or none at all) shows sufficiently tha t  this sort of disturbance is much 
' ca lmer '  than the usuM free phugoid oscillation. In addition, even the smaller damping factor 
(-- &) is considerably greater than the usual phugoid damping factor r, as given by (2.4.18). 
We have, from (4.2.5) and (2.4.7), with a sufficient accuracy : 

dC~ C~ ~ (4.2.11) 
- & - . . -  + - 7-dT + - -  7 . . . . . . . . . . . .  

Examining Figs. 7a to 7d we see that  this value lies between 2ras and 2rmox. Hence the damping 
factor for an aircraft kept ' a t  fixed horizon '  is always positive and normally at least twice 
tha t  for an aircraft in uncontrolled flight. This seems to agree well, at least qualitatively, with 
flight experience. 

The formula (4.2.1 I) may be represented in a modified form (assuming for simplicity CAs ---- 0). 
The resultant aerodynamic force in disturbed flight can be resolved into comfbonents along the 
z and x axes reversed, instead of L and D. These may be called ' normal ' and ' tangential ', 
respectively, and the corresponding dimensionless coefficients denoted by C, and C, (Fig. 5). 
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- °  

- We have  then  ' 

C,, = CL cos ZO + C~ sin zO -~ CL + CvzO 

C~ = Cv cos zO - CL sin zb -"- C~ --  CLzO 
hence 

d C .  d e ,  dC~  
d~ - -  a + C~-"-  a , do~ - -  d~  - -  Cz , 

and accordingly, for zO - +  0 : 

Ct dC ,  

a dcz 

The condit ion for s tabi l i ty (~, 

C, 

C, d Q  
a d e  - -  - -  2~ . 

< 0 ) then becomes • 

dC, 
C~ dC > O, . .  

• 6 O d . .  (4.2.12) 

. . . . . . . .  (4.2.13) 

. . . . . . . . . .  (4.2.14 

. . . . . . . . . . . .  (4.2.15) 

analogy to (2.1.7). We find an analogous graphical illustration, which presents an interes t ing 
in t roducing a C, vs. Ct ' po la r  curve ', ins tead of the  usual CL vs. CD polar. I t  must  be r e a l i s e d  
however,  tha t  only one Cc vs. CD curve exists for a given aircraft, while there  m a y  be as m a n y  
C, vs. Ct curves as a l ternat ive initial equi l ibr ium conditions. The original polar curve being 
given, we m a y  draw, th rough  arbi t rary points of it, the  corresponding C,, vs. C, curves. This is 
shown in Fig. 6 where the original polar curve is the same as in Fig. 2. I t  is seen tha t  the  slope 
d C J d C ,  is usually negative,  and certainly smaller than  CJC~, th roughout  the  normal  incidence 
range. The inequal i ty  (4.2.15) is therefore always satisfied. 

4.3. S tab i l i t y  at Cons tant  Speed  Under  Elevator  C o n t r o l . - - S u p p o s e  now tha t  the  pilot operates 
his elevator  so as to main ta in  constant  speed, so tha t  • 

d = 0  . . . . . . . . . . . . . . . . . . .  (4.3.1) 
The sys tem of equat ions (2.4.2) becomes • 

- -  ~w + ½CLo = o 

( D  - -  z~,)zO - -  D o  = 0 . . . .  " . . . . . .  (4:3.2) 

i .e. ,  is reduced to the  first order. The only s tabi l i ty  root is (see 2.4.4) • 

z~CL 1 + C~/a 

- -  CL - -  2x,, - -  ½CL dCz~/dCL . . . . .  

or, in t roducing the symbol  s from (2.5.7) ' 

I + C ~ / a  

..... (4.3.3) 

4s or, with sufficient accuracy, i = --  I /4s  . . . . .  (4.3.4) 

It  is seen tha t  the  stabil i ty root is always negative,  and has generally surprisingly high values. 
If, for instance, s = 0.1, as in Fig. 2, then I ---= --  2.5. The paramete r  s, being a measure of 
the  induced drag, decreases considerably when the aspect ratio increases. We have  therefore 
to deal with a s trong subsidence, especially rapid for aircraft with large aspect ratio. 

The exact complete  solutions of the sys tem (4.3.2), assuming the  initial  error in incidence to 
be zOo, are easily found : 

zO = zOoe ~ , 0 = (1 --  2as)zO0e ~ , . . . . . . . . .  (4.3.5) 

I t  m a y  be interest ing to find the vertical  veloci ty componen t  (see 2.6.1) : 

d H / d t  = V(O - -  zO) =-- - -  2asVzOoe ~'/i' , . . . . . . . . . . . .  (4.3.6) 
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~hence  the gain of height,  af ter  a t ime  t, is : 

A H  - -  2asV~z~o (1 --  C ~) (4.3.7) 
. ~  * * , , * , , , • • , ° • • 

The  exponent ia l  te rm decreases rapidly,  and the u l t imate  gain or loss of height,  prac t ica l ly  
reached after  quite  a short  t ime, becomes s imply  (using 4.3.4 and 2.4.3) : 

2 ~ 4as~V2CL 
(AH),__+~o = - -  8as V~Wo = - -  Wo . . . . . . . . .  (4.3.8) 

g 

This  expression assumes very  small  values in normal  cases. Let  us assume, for  instance : 

a = 4 ,  s = 0 . 1 ,  V ----- 400 ft/see, CL = 1,  g ---- 32 ft/sec ~, . .  . .  (4.3.9) 
then  : 

(zlH)~__~ = --  800z~0, 

where z~o is measured in radians.  Hence, we obtain : 

(AH)t_.._>o~ ----- --  14 ft per one degree ini t ial  error in incidence. 

• An  interes t ing conclusion is that ,  if the  pilot keeps the speed constant  by  means  of his elevator,  
the  he ight  remains  prac t ica l ly  constant  wi th  a very  good accuracy. 

4.4. Some Examples  of Restrained Stability Under Throtile Contro i . - -The  th ro t t le  control  is 
general ly  less efficient t han  tha t  by  the elevator, because of unavoidable  lag and ra ther  sluggish 
response. I t  is also undesirable to juggle cont inuously  wi th  the  engine controls (cf. Ref. 13). 
W i t h  these reservat ions,  it m a y  still be interest ing to invest igate  a few examples. 

(a) Assuming first t ha t  the  speed is maintained constant, we must  omit  the first of t h e  equat ions  
(2.4.2), and the terms wi th  ~ in the remaining ones. We then  obtain,  replacing z~ by  (-- ½a) ' 

(D  + - = 0 
(4.4.1) 

f 
j • • • • • , , , • • 

( zD + ~o)Tb + (D + ~)~ = 0 

and  this is, of course, the familiar  sys tem of equations of the  pure  short-period oscillation, w i th  
the  s tab i l i ty  quadra t ic  : 

;t~ + (v + z + ½a)~ + (co + ½aN) = 0 . . . . . . . .  (4.4.2) 

(cf., for instance,  Ref. 18). Mainta ining the speed constant  obviously el iminates the  phugoid  
oscillation. The short-peri0d oscillation is n.ormally well damped,  except some peculiar  cases 
in the  t ransonic  range. 

(b) Let  us assume next  tha t  the attitude is maintained constant (' keeping horizon '), i.e., t h a t  : 

0 = 0 ,  ~ = 0  . . . . . . . . . . . . . . .  (4.4.3) 

and  we must  again omit  the  first of the equations (2.4.2). The remaining equat ions become : 

- -  z,,¢~ + ( D  - -  z w ) ~  = 0 

~¢~ + ( zD + ~o)z~ = 0 f ' "" 

the  sys tem being of the  first order. The only s tab i l i ty  root is • 

Z w ~  - -  ZuO.) 
_ _  ° °  * *  . ,  ° °  

or, replacing z,, by  (-- ½a), and z~ by  (-- CL) " 

= o) - -  a~/2CL 
z .  " . . . . .  
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['he numerator is proportional to the static margin, and will be normally positive. It  is therefore 
lecessary for stability that  the denominator be negative • 

z > nlCL . . . . . . . . . . . . . . . . .  (4.4.7) 

We shall have to deal, therefore, with a subsidence if ~ is negative, zero, or very small positive, 
)ut with a divergence if ~ is large and positive. The derivatives s and z being usually the most 
lncertain ones, it is seen that  the stability in this case is doubtful. 

(c) If, finally, the height is maintained constant, i.e.: 

0 = ~ , ~ = D ~  . . . . . . . . . . . . . .  ( 4 . 4 . s )  

"see section 2.6), we obtain : 
A A 

- -  Zu~ ,  - -  Z w W  ~ 0 

~¢, + {D ~ + (~ + z)D + ~o}~ = 0 

~ith the stability quadratic : 

~ + (~, + z)~ + (~ - a~12C,.) = O. 

, . . . . . .  (4.4.9) 

• . .  . .  (4.4.10) 

We have obtained a quadratic rather similar to (4.4.2), with the damping factor considerably 
:educed, and with the constant term (thus frequency) depending on the static margin, instead 
?f the manoeuvre margin. This represents a modified form of short-period oscillations. 

a 

BI, C1, D1, E1 

C~s 

C~ 

CDO 

CL 

C J,g 

C£ 

C~ 

c 

D 

D 

g 

H 

H , h  

iB 

K 

kB 

LIST OF SYMBOLS 

Lift curve slope 

Coefficients of stability quartic, see (2.4.5) 

Airscrew drag coefficient, see (2.2.1) and (2.2.5) 

Drag coefficient 

Value of C~ at zero lift 

Lift coefficient 

Pitching-moment coefficient 

'Normal force' coefficient, see (4.2.19.) and Fig. 5 

'Tangential force' coefficient, see (4.2.12) and Fig. 5 

Wing mean chord 

Drag, Ib 

Differential operator, see (2.4.2) 

Gravity constant, ft/sec 2 

Height, ft 

Free terms of quadratic factors of stability quartic, see (2.4.11) 

Inertia coefficient, see (2.4.2) 

Constant, see (2.2.18) 

Radius of gyration of aircraft about lateral axis, ft 
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L 

l 

mq 

14¢ u 

m~ 

m,  

N1, P1, Q1, "~. 
R1, $I, Tz.jF 

P 

P,v 

P,o 
# 

q 

q 

R 

y 

S 

s 

T 

Tar 

To 
t 

t. 

~t 

V 

W 

W 

LiST OF S Y M B O L S - - c o n t l n u e d  

Lift, lb 

Representative length (usually tail arm), ft 

Rotary damping derivative in pitch, dimensionless 

Pitching-moment derivative due to u, dimensionless 

Pitching-moment derivative due to w, dimensionless 

Pitching-moment derivative due to rate of change of w, dimensionless 

Pitching-moment derivative due to elevator displacement:, dimensionless 

Shorthand constants, see (2.4.7) 

Power, lb ft per sec 

Power available 
Power required 

Exponent, see (2.2.18) 

Kinetic pressure, lb/sq ft, in sections 2.1, 2.2, 2.3 

Rate of pitch, in radians per sec, in form (2.4.2.) only 

Rate of pitch, dimensionless, see (2.4.2) 

Damping factor of short-period oscillation, dimensionless 
Routh discriminant, see (2.4.9) 

Damping factor of phugoid oscillation, dimensionless 
Gross wing area, sq ft 
See (2.3.1) 

Thrust, lb 

Thrust available 

Thrust required 

Thrust at zero speed, see (2.2.1) 

Time, sec 

Time needed for an aircraft flying at constant height, disturbed from 
unsteady equilibrium, to reach steady equilibrium, see (2.6.25) 

Unit of aerodynamic time, sec, see (2.4.2) 

Longitudinal increment of velocity in disturbed flight, ft/sec 

Longitudinal increment of velocity in disturbed flight, dimensionless, 
see (2.4.2) 

Velocity of aircraft in undisturbed flight, ft/sec 

Weight of aircraft, lb 

Normal increment of velocity in disturbed flight, ft/sec 

Normal increment of velocity in disturbed flight, dimensionless, see 
(2.4.2) 
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x~, x~ 

z,,, z~ 

( X  . 

O~ o 

0 

# 

P 

cr 

Y, 

CO 

LIST OF S Y M B O L S I c o n t i n u e d  

Longitudifial force derivatives" due to u or w,  dimensionless, see (2.4.4 i 

Normal force derivatives due to u or w, dimensionless, see (2.4.4) 
Wing incidence, radians 

Effective incidence in undisturbed flight, see (A.7) 

Compound pitching-moment derivative due to elevator displacement, 
see (2.5.3) 

Rotary damping derivative in yon K~rm~n and Biot's notation, see (A.7) 

Small fractions denoting initial or final errors of speed, see (2.6.25) 
Angular displacement of elevator, radians 

Angular displacement of aircraft in pitch from equilibrium position, 
radians 

Compound pitching-moment derivative due to u ,  dimensionless, see 
(2.4.5) 

Relative density of aircraft, see (2.4.3) 

Compound rotary damping derivative, dimensionless, see (2.4.5) 
Air density, slugs/cu ft 

Parameter of static stability in yon K~rm~n and Blot's notation, see (A.7) 
Aerodynamic time, dimensionless, see (2.4.3) 

Compound pitching-moment derivative due to rate of change of w,  
dimensionless, see (2.4.5) 

Compound pitching-moment derivative due to w, dimensionless, see (2.4.5) 

No. Author 

1 P. Painlev6 . . . . . .  

2 G .H.  Bryan . . . . . .  

3 R. yon Mises . . . . . .  

4 R. Fuchs and L. Hopf . . . .  

5 Th. von K~rm~n and M. A. Biot 

6 R. von Mises . . . . . .  

7 E. Everling . . . . . .  

8 S. Neumark . . . . . .  

. • 

REFERENCES 

Title, etc. 

]~tude sur le r~gime normal d'un a~,roplane. La Technique Aero- 
nautique, Vol. I, pp. 3 to 11. Paris, I910. 

Stability in aviation. MacMillan and Co., Ltd. London, 1911. 

Fluglehre. Springer-Verlag, Berlin. 1915. 

Aerodynamik. Springer-Verlag, Berlin. 1922. Second edition, 1934, 
VoI. I, Ch.V. 

Mathematical methods in engineering. McGraw-Hill Book Co., Inc. 
New York and London, 1940, Ch. VI, Sect. 8, pp. 249 to 255. 

Theory offlight. McGraw-Hill Book Co., Inc. New York and London, 
1945. 

Der Aufstieg yon Flugzeuge. Z.F.M., Vol. 7, p. 124. 1910. 

The disturbed longitudinal motion of an uncontrolled aircraft and of 
an aircraft with automatic control. R. & M. 2078. January, 1943. 

29 



No. Author 

9 L . W .  Bryant and G. A. MclV[illan .. 

10 K. Mitchell, A. W. Thorpe and E. M. 
Frayne 

11 S. Neumark . . . . . . . .  

12 D. Cameron . . . . . .  

13 English Electric Co., Ltd. .. 

14 M.R.  Head . . . . . .  

15 M. Jones and M. R. Head . .  

R E F E R E N C E S - - c o n t i n u e d  

Title, etc. 

Further analysis of the experiments on longitudinal stability of a 
twin-engined monoplane with airscrews running. R. & M. 2310. 
1940. 

The theoretical response of a high speed aeroplane to the application 
of ailerons and rudder• R. & M. 2294. May, 1945. 

Dynamic longitudinal stability in level flight, including the effects 
of compressibility and variation of atmospheric characteristics 
with height. R.A.E. Report Aero. 2265. A.R.C. 11726. May, 1948. 

The minimum power and speed for continuous cruising. A. & A.E.E. 
Report Res/163. A.R.C. 5743. January, 1942. 

.. Minimum comfortable cruising speed. Aerodynamic Tech. No te  
Ae.26. January, 1948, with an Addendum, August, 1951. 

•. The boundary layer with distributed suction. R. & M. 2783. April, 
1951. 

.. The reduction of drag by distributed suction. Proceedings, 3rd 
Anglo-American Aeronautical Conference, Brighton. September, 
1951. 

Theory and development of automatic pilots, 1937-1947. R.A.E. 
Report IAP. 1459. A.R.C. 13,825. August, 1947. 

16 H .R .  Hopkin, R. W. Dunn and Staff of 
Automatic Control Section, Instru- 
ments Division of I.A.P. 

17 D. Lean . . . . . . . . . .  

18 S. Neumark . . . . . . . .  

The carrier deck-landing properties of five jet-propelled aircraft 
(Appendix IV). R.A.E. Report Aero. 2465. A.R.C. 15,494. 
June, 1952. 

Analysis of short-period longitudinal oscillations of an aircraft: 
interpretation of flight tests. R. & M. 2940. September, 1952. 

A P P E N D I X  

Remarks on von Kdrmdn  and Blot's Criterion of 
Longitudinal Stability 

In connection with section 2.4 it may be worthwhile to analyse a curious simple criterion of 
longitudinal dynamic stability, proposed by yon K~rm/m and Biot in their book on Mathematical 
Methods in Engineering 5 (1940), Section VI.8, pp. 249 to 255. Their investigation follows the 
usual lines, although the variables used are part ly different from those in our equations (2.4.1). 
There is, however, one unusual simplifying assumption (page 250) that  ' the drag carv be neglected 
or that it is balanced at every ira.taut by a propeller thrust of equal magnitude.' This assumption does 
not lower the order of the determinantal equation which still remains a quartic ; however, its 
coefficients become much simpler. A further simplification is introduced by the moment deriva- 
tives m~ and m,, being tacitly neglected. Instead of following the analysis of Ref. 5 (with its 
entirely different notation), it will be simpler to see what effect the simplifying assumptions h a v e  
on our results of section 2.4. We have to put  Ca = C_,s = 0, dCg/dCL ---- 0, and also to neglect 
g and ~. The coefficients (2.4.6) of the stability quartic then become : 

Bl : ½a + v , C ~ =  oo + ½av + ½C,, ~ , D ~ =  ½CL~v , E l =  ~7--Llr %, . .  (A.1) 

and the approximate expression for phugoid damping (2.4.13) takes the strikingly simple form : 

~=-- co .. . (A.2) 2r _,.,_ aCL . . . . . . . . . . .  ' 
CL (2co + av) = 
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The condit ion for dynamic  s tab i l i ty  (positive phugoid damping  ) thus  becomes : 

< ~ , . . . . . . . . . . . . . . . . . .  ( A . 3 )  

and  this  is almost  identical  wi th  yon KArm~n and Biot 's  criterion-given by  their  inequa l i ty  (8.19). 
The  la t te r  contains a small  correction t e rm due to the  fact t ha t  t hey  used the exact  R o u t h  
discr iminant  (2.4;9). Following their  procedure, we obta in  from (A. 1) : 

--- B I ( C 1 D 1 -  BIE~) - -  D~ ~ = }aCL~{(v + ½a)(v 2 -  co) + { C L % } ,  . .  (A.4) 
and  the condit ion for s tab i l i ty  becomes : 

co < ~  2 v ~ a  . . . . .  

This  is, apar t  from notat ion,  completely ident ical  wi th  the inequa l i ty  (8.19) of Ref. 5*. 

If the  procedure of Ref. 5 were followed but  the  der ivat ive m,', (hence z) retained,  the  formula  
(A.4) and inequali t ies (A.3) and (A.5) would be modified : 

= ¼aCL~[(r + Z + ½a){~(~ + Z) --  co} + ½CL=(v + Z)],  . .  . .  (A.8) 

co < ( v + z ) , ,  • . . . . . . . . . . . . . . .  ( A .  9 )  

( ) . . . . . .  (A.10) c° < (v + X) ~ + 2 r + 2 Z - { - a  . . . . .  

To discuss proper ly  these results, we mus t  notice first t ha t  the  correction terms depending on 
CL 2 in (A.5) and (A. 10) are pract ical ly  negligible. Let  us consider, e.g., the cases of Figs. 7a to 7d, 
where a = 4. Suppose tha t  v = 3 and  x ----- 0 or 1.5. Then tile inequali t ies (A.3,5) give : 

~ o < 9  or co < 9 + 0 . 3 C L  ~ , 
and  (A.9,10) s imilar ly  : 

< 13.5 or o) < 1 3 . 5 + 0 . 3 4 6 C c  ~ 

I t  is seen t ha t  the  effect of z (neglected in Ref. 5) m a y  be quite  considerable bu t  tha t  of the  
correction terms depending on CL ~ is very  small. This is i l lus t ra ted  in Fig. 8 where the inequali t ies 
(A.3,5,9,10) are represented by  curves (yon KArm~n and Biot 's  s tab i l i ty  boundaries).  Only  the  
cases CL = 1 and Cc = 0 are i l lustrated,  and  it is seen tha t  the  corresponding curves are pract i -  
cally the  same. 

Irrespect ive of this negligible correction, the  s tab i l i ty  cr i ter ion under  discussion leads to 
results grea t ly  different from those given b y  the fuller theory.  In  the s tab i l i ty  condit ion (2.4.13) 
there are three terms, and yon  K~rm~n and Biot 's  simplification leads to neg lec t ing  the two 
first terms entirely.  I t  is easily seen, however,  t ha t  the  neglected terms are general ly of the  
same order of magni tude  as the only one retained, and they  m a y  often be greater. Neglect ing 
the  first two terms, the  damping  factor would be given by  : 

2 r =  aCL zv(v + z) - c° (2co + av) ~ ' " . . . . . . . . . . . . .  (A.II) 

and the corresponding curves are shown as broken lines in Figs. 7a to 7d. It is seen that these 
lines deviate so considerably from the correct full lines that they cannot be regarded as valid 
approximations. 

*This inequal i ty  was given in the  form : 

< ~ + 2 ~ o  
1 + &% . . . . . . .  

and it is easily found t h a f  the  meaning  of the symbols  0, 8 and ¢% is : 

= 4co/Cp , ~ = 2~,/C~ , O~o = C~/a, 
So tha t  (A.5) and (A.6) are equivalent .  
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(A.6) 

, . . . . .  (A.7) 



The condition of stability given by (A.3) or (A.9) implies that  the aircraft  becomes dynamically 
unstable if co exceeds some moderate positive value, i.e., if the ' s t a t i c  s tabi l i ty '  is too large. 
This is really a warning against large static margins, and the limit imposed would be quite low 
in most cases, cutting across the usual range of these margins in quite an unexpected way. 
Now, the diagrams corresponding to the fuller theory show that  the phugoid damping decreases 
with rising m only in a very narrow range, and, with further increasing co, improves gradually, 
so that  : 

(2r),,_).~-+ Ca + CAs . . . . . . . . . . . . . . .  (A.12) 

The drag coefficient is thus mainly responsible for the phugoid damping of aircraft with great  
static stability. 

There is no doubt t h a t  yon K~rmdm and Biot treated their solution only as an academic 
example of mathematical  technique, and were far from propounding any general requirement 
of very small static margins. In fact, they added a somewhat vague remark to the effect that ,  
if the neglected terms were re-instated, a somewhat different stability boundary would be 
obtained. However, the remark may easily be overlooked, and that  is what apparently happened 
in the well known textbook on Theory of Flight by yon Mises 6 (1945). His analysis is essentiMly 
the same as that  of von K~rm~n and Biot, and the following statement concludes the analysis • 
' An aeroplane is stable in level flight with respect to longitudinal disturbances if it is statically 
stable and if the static stability does not surpass a limit determined by the damping factor and 
the other force derivatives '. The parabolic stability boundary re-appears in yon Mises' presenta- 
tion, and any doubts are dismissed by the remark that  ' t h e  more precise formula does not 
change the procedure considerably '. The t ruth  is that, if the neglected drag terms are re-instated, 
the stability boundary is altered completely. Using our formula (2.4.13), we would obtMn the 
equation of the stability boundary in the form : 

4(C~, + C.~.s) m2 + 4a(C~ + CAs -- ½C.r. dCzffdCc)~,~, 

+  '(cD + c.s - CLaC /dCL + CL 21 + ¢) v - -  a C L  2 Co O,  . .  
a 

where ¢ is the assumed value of the ratio z/v. The boundary is practically almost always an ellipse, 
and a few examples, corresponding to Figs. 7a to 7d, are shown in Fig. 8. The phugoid damping is 
positive outside the boundary. It  is seen that,  even if the rotary damping derivative v = 0, 
the damping will be positive if 

2 

4(c  + c.s)' 

and this is usually quite a moderate value. 
cated by (A.3) or (A.9). 

. . . . . . . . . . . . . .  (A.14) 

The position is completely different from that  indi- 

One additional remark may be made. The formula (2.4.13) may  be written in the form:  

2r /C~ + C.s 
~ L - -  CL - - - -  \ -dC~L./ + 2co + a~, dCL + a CL (2~ + av) ~ > 0 ,  . .  (A.18) 

and it is seen then that the first term (in brackets) alone represents the original Painlev4's theory, 
while the third one corresponds to that of yon K~rm£n and Biot. The former theory takes into 
account only the drag derivatives, the latter neglects them and emphasises the moment deriva- 
tives. The fuller formula (A. 15) combines the two terms, but there is in addition the ' interference 
term' which involves both drag and moment derivatives. 
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