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One-Dimensional Treatment of Non-Uniform Flow 

R. D. TYLER 
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Summary.--For one-dimensional flow of a perfect gas, conditions at a station of a duct are defined by any four 
independent properties. Standard methods exist for the calculation of any other desired property from the given 
four independent properties. 

The 6bject of this paper is to illustrate the errors likely to arise when the simple one-dimensional flow methods are 
applied to a circular section duct in which a boundary layer exists. Graphical results are presented, for the case of 
a one-seventh power law boundary-layer velocity profile, showing the ratio of the true mean values calculated with 
allowance for the boundary-layer, to quantities derived from the simple one-dimensional calculation. Various boundary- 
layer thicknesses and a range of Mach numbers are dealt with. 

Specifically three examples are worked out in detail, with different selections of the four independent variables, the 
selections being chosen to cover problems of common interest. The results of the first two examples might be applied, 
for instance, to the problem of the performance or design of a duct discharging adiathermally to atmosphere, from a 
reservoir with known stagnation conditions. The errors are usually small. Thus calculations by simple one-dimensional 
theory differ by less than about 21 per cent up to a ' one-dimensional ' M a c h  number M = 1, and 5 per cent up to 
M --- 2, from the values obtained by assuming a boundary-laye T thickness at exit of 10 per cent of the duct radius. 
For other boundary-layer thicknesses the errors are roughly in.proportion. The results of the third example indicate 
the errors likely to arise in the analysis of other quantities at a station, from measurements of mass flow, area, total 
temperature and static pressure. Here the accuracy of the one-dimensional method is within 2 per cent up to a free- 
stream Mach number M '  = 2 for any boundary-layer thickness. Total pressure is an exception, the error in this case 
approaching 10 per cent at M '  = 2. 

General equations are presented for use in cases not covered by these examples. They are analogous to the one- 
dimensional equations, and give ratios of mean flow quantities to their sonic values, as functions of Mach number and 
correction factors, graphically presented, which depend on the velocity distribution. As a further illustration of possible 
application of the theory, the correction factors may be used for the calculation of momentum fltix or kinetic energy 
flux from the mean velocity and mean density. 

Introduction.--The analysis of many flow problems assuming the flow to be one-dimensional, 
is a useful approximation. At first sight this is surprising, since the flow model which forms the 
basis of the one-dimensional method differs profoundly from the actual physical situation. For 
instance the one-dimensional method ignores the existence of a non-uniform and possibly changing 
velocity profile, and it assumes happenings a t  the walls of the duct, e.g., friction, to be felt 
instantaneously over the whole cross-section. However the one-dimensional method is so to be 
preferred for its simplicity, that  it is important, as indeed in all approximate theories, to have 
some knowledge of its accuracy. 

One aspect of the general problem of the assessment of the accuracy of the one-dimensional 
method is considered here. The cue is taken from the statement that  ' suitable mean values ' of 
the parameters of flow should be used in the one-dimensional equations. To investigate the. 
significance of this, the one-dimensional uniform distributions of flow parameters have been 
replaced by non-uniform distributions, and equations developed which are analogous to the  
one-dimensional equations, but which are in terms of ' suitable mean values '. Results calculated 
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using this refinement, have been compared with results obtained using one-dimensional formulae. 
In this way, some idea of the percentage inaccuracy resulting from the use of one-dimensional 
formulae for flow calculations should have been obtained. 

The discussion has been restricted to problems which may be solved without reference to the 
one-dimensional friction factor. For simplicity the fluid has been assumed to be a perfect gas 
with constant specific heats. 
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LIST OF SYMBOLS 

Cross-sectional area of duct 
Specific heat at constant pressure 
Impulse 
Specific enthalpy 
0 , 1 , 2 , 3  
0 , 1 , 2 , 3 . . .  
Mass flow rate 
Mach number 
Expansion index in equation (A.26) 
Pressure 
Temperature 
Velocity 
Heat  received by fluid across wails of duct per unit mass of flow 
Radial distance from centre-line of duct 
Gas constant 
Radius of duct 
Specific entropy 
Work delivered by fluid across walls of duet per unit mass of flow 
Co-ordinate measured along duct 
Force in direction of flow 
Defined by equation (A.29) 
Defined by equation (A.35) 
Ratio of specific heats 
Boundary-layer thickness 
Parameters defined by equations (A.5) and (A.6) 
Coefficient of dynamic viscosity 
Dissipation function 
Density 
Availability 

Suffix ~ refers to atmospheric conditions 
Suffix 0 refers to stagnation conditions 
Suffix s refers to sonic conditions 
Prime ifldicates free-stream conditions 
Bars indicate mean values 



Equations and Assumptions of  One-dimensional Theory.--Consider the steady continuous 
one-dimensional flow of the fluid which initially occupies the portion ABCD of the duct of Fig. 1, 
between any two sections 1 and 2, drawn at right-angles to the straight centre-line. Let the 
fluid receive heat Q and deliver work W across the walls AB and CD of the duct per unit  mass of 

® 
® Q 

i 
X ' ~ O'wech~n 

FIG. 1. 

flow, and let a force X in the direction of flow be exerted on the fluid by the walls of the duct 
and by any objects within ABCD. Then in the absence of gravity or any other body force, 
application of the law of conservation of matter, Newton's second law, and the first law of 
thermodynamics yields" 

Continuity Equation: 

plAlql = p2A2q2 (1) 

Momentum Equation: 

X - =  F~ --  FI (2) 

Energy Equation: 

Q - W --  cpTo~ --  %To1 . . . . . . . . . . . . . .  (3) 

where m = pAq = mass flux . . . . . . . . . .  . . . . .  (4) 

F 
A -- p + Pq~ = impulse/unit area . . . . . . . . . .  (5) 

q~ 
To = T + 2cp --  total  temperature . . . . . . . . . .  (6) 

The assumptions inherent in these equations are that  at sections 1 and 2: 

' (a) axial heat conduction is negligible 

(b) only normal stresses are exerted on tile fluid under consideration by surrounding fluid or 
moving surfaces 

(c) velocity components at fight-angles to the centre-line are negligible 

(d) the normal stress ~-~ ~ is negligible 

(e) the difference in kinetic energy of turbulent motion between sections 1 and 2 is negligible 

(f) all parameters of flow are uniformly distributed across the duct. 

3 
A* 
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I t  is desirable to stress the fact that  these assumptions apply only to conditions at the places 
where fluid enters or leaves the region ABCD, i.e., at sections 1 and 2. I t  is to be noted that  
any violation of the assumptions within ABCD may be tolerated. Thus viscous dissipation 
within ABCD, for example, represents a purely internal effect and does not constitute a flow of 
energy, momentum or mass to or from the fluid under consideration. Also, in crossing the 
boundaries DA and BC, the fluid may experience shear stresses at s tat ionary surfaces, such as 
would be found at the walls or in a porous boundary, because the fluid actually in contact is 
then at rest relative to them, and hence no work is done. 

I t  is conceivable that  the conditions of assumptions (a), (c), (d) and (e) will be fulfilled in most 
cases of flow in ducts, except in the vicinity of shock waves, or for ducts of rapidly changing area. 
However, the presence of a boundary layer at the walls of the duct will always cause the flow 
to depart from the conditions of assumptions (b) and (f). The former is tantamount  to assuming 
the dissipation function # to be negligible over sections 1 and 2. 

Equatioras of Flow i~¢ Terms of Mea~ Values.--It is proposed to examine the particular assump- 
tion of one-dimensional theory, that  all parameters of flow are uniformly distributed across the 
duct at the entry and exit sections of the portion of the duct under consideration. To do this, 
equations have been developed which take account of the non-uniform distributions due to the 
presence of the boundary layer. Their derivation is given in Appendix I. Assumptions (a) to 

e ~ " " " ( ) or the one-dimensional theory have been retained, but the last assumption has been replaced 
by  the more realistic assumption that  only static pressure and total temperature are uniform 
across the sections 1 and 2 of the duct*. In particular the velocity is allowed to be non-uniformly 
distributed, and this entails non-uniform distributions of density, temperature, total pressure, etc. 

The equations are: 

Continuity Equatiom 

~ A ~  = ~ , A ~  . . . . . . . . . . . . . . . .  (7) 

Momer~tum Equatiom 

x = & -  & . . . . . .  . . . . . . . . . .  (8) 

E~ergy Equation: 

0 -- W = %T02 -- % T 0 ~  . . . . . . . . . . . . . .  (9) 

where m =/sAc~ . . . . . . . . . . . . . . . . . .  (10) 

F 
A - - P  + ~ q ~  . . . . . . . . . . . . . . . .  (~1) 

G~7 ~ 
To --~77' ~-- 2c~ . . . . . . . . . . . . . . . . .  (12) 

In these equations mean density ~ and mean velocity ~7 are such that  

~q is the mass flux per unit area, 

G~{ ~ is the momentum flux per unit area, 

and G ~  a is the kinetic energy flux per unit area. 

* I t  may be shown from. the equations of motion tha~ the static pressure across a turbulent boundary layer is 
approximately uniform, and Young 2 states that  ' the few available experimental data confirm that  the powerful 
mechanism of energy interchange of eddying motion tends to produce a nearly uniform distribution of energy across 
the boundary layer when the surface is insulated '. Within the laminar sublayer, however, total temperature will 
only be strictly uniform for flow with the Prandtl number unity and the surface insulated. 
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Mean temperature ~" has been defined in such a way that  

P - R T  . . . . . . . .  

and then T is the mean mixing temperature 

(13) 

and )767 is the volume flux per unit area. 

The quantities ~2, ~ and ~, of which general definitions are given in Appendix I, may be seen 
to be correction factors, which take account of the fact that  differently weighted means must 
be taken when determining mass flux, momentum flux, etc. ~, ~ and ~ become uni ty  if the 
flow is uniformly distributed, and in general their values depend on the velocity distribution. 
ExpliCit formulae for ~2, ~3 and ~ for the particular case of flow in a circular pipe with the velocity 
distribution: 

q , - -  0 ~ < y ~ < d  

q 
q , - - I  ~ < ~ y < ~ R  

(14) 

are derived in Appendix I and plotted against ~/R1 for Various values of free-stream Mach number 
M '  in Fig. 2. For moderate Reynolds numbers this velocity distribution approximates to tha t  of 
flow in a pipe of radius R1, with a turbulent boundary layer of thickness 8, q' being the free- 
stream velocity and y the distance from the wall. 

In developing the theory it has been found convenient to define a quant i ty  

2 . . . .  (15) 
r R n T  . . . . . . . . . . . . .  

_~r is referred to as ' mean Mach n u m b e r ' ;  it might be interpreted physically by  regarding it, 
in the light of elementary kinetic theory, as proportional to the square root of the ratio of directed 
to random kinetic energy of the molecules. 

Mean total  pressure fi0 has been defined as the total  pressure of the corresponding uniform 
stream which possesses the same value of the availability flux as the non-uniform stream. This 
definition associates changes of total pressure with losses, since the availability of a system is 
defined as the maximum value of the useful work tha t  can be obtained from the system- 
atmosphere combination for all possible changes of state of the system 3. 

With this definition it is shown in Appendix n that  

l o g l S , - - m  A p q l ° g p ° d A "  .. (16) 

General Formulae for Mean Flow Quantities.--It is possible to express all mean quantities in 
terms of mass flow rate, area, total  temperature and static pressure, which have unequivocal 
values at any section. I t  proves more convenient however, to express all quantities, including 
static pressure, in terms of mass flow rate, area, total temperature and mean Mach number, 
which serves as a parameter. The derivations are given in Appendix I, and the equations, with 
the exception of tha t  for mean total pressure, are compared with the corresponding one-dimensional 
equations below. I t  may be observed tha t  if the flow is uniformly distributed, the mean value 
equations become identical with the one-dimensional equations. 

5 
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Mean Value Equations 

P =  A 

T ~  T o 
v(1  + ~ - -  1 

2 2Cr=) 

k j {  
1 m 1 

v'(rR) Ax/T0 v% 

~ ' - - !  - )  
- -  M~[ + 2 

(17) 

(18) 

(19) 

= ~/(rR) v %  
• ° 

1 - /Y -- 1214~ 
2 

(20) 

y - - 1  (21) 

One-dimensional Equations 

P =  A 

T =  To 

_~r= (1 + - -  

1 
y - - 1  

1 + 2 M~ 

P -- ~¢/(yR) A~/To 

2 M2) 

I + Y - - 1  } 2 M2 

M 2 

.. (22) 

. .  (23) 

.. (24) 

q = V(rR) x/T0 
1 + ~  - 1  

2 M~J 
(2s) 

(26) 

Flow in Entry Length.--Most instances of compressible flow in ducts fall into the category of 
entry length problems, since, particularly in supersonic flow, ducts will rarely be long enough 
for pipe flow to be established. Indeed for flow in parallel pipes, the choking length may b e  
shorter than the entry length. The discussion that follows has therefore been restricted to entry 
length flows, the assumption being made that the flow consists of two parts, namely the boundary 
layer in which all viscous action is confined, and a free stream in which, in the absence of shock 
waves, the flow is homentropic. Flow with heat exchange has not been considered, because the 
assumption of uniform total temperature then ceases to be valid. 



Under  these conditions any flow is part icularized by  constant  values of mass flow rate m ,  
total  tempera ture  To and free-stream total  pressure Po'. I t  is shown in Appendix  I tha t  the  
s t ream area A is related to these quanti t ies  by  the  expression 

J ( R ) m ~ / T o l  ! + - - 2  ~ . . . . . . .  (27) A =  

with Y~ = ~ ~ ,  i = 1, 2 . . . . . . . . . . . . .  (28) 

I t  is convenient,  as in one-dimensional  theory__ ~ to refer all flow quanti t ies  to their  value at 
the  sonic condition, defined as tha t  at  which M = 1 and ~ = ~ = 77 = 1, i.e., the  flow is 
uniformly distributed. The sonic values, designated by  suffix ,, serve merely  as reference values. 
I t  is i rrelevant  whether  or not  the  flow ever at ta ins  the  sonic condition. 

Equa t ion  (27) together  with equations (17) to (21) now give:  

General Value 

A = P o '  Y1 

1 m 

Yoh; 

+ ' - -  1 3~2)(1 + 
2 

~ , -  1 ~ M~)~ I. 
2 ~ /  j 

T =  T o 

2 

p o ,  . 2 

= V ' ( r R ) ~  1 + ~' - 1 ] 
2 M~/ 

~7 

7 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 



Ratio  

Sonic  Value  

A 

A 
s - - "  

p 
J)s-- 

T 
Ts - -  

qs 

- - - \ ~ : ~  i 
'V L • ~\ - -~-- - /  J 

r + l  

Yo(r + 1y-~ 
~ \  2 } 

~-~)(~ +~-~)  j 
2 2 Sa 

..(. + > - _ ~ . . )  " 
2 

1 e,,7 ~ 2 ~  ] r ~ J  J 
P~ (1 g - - -  

2 f P  

F, -" r/ 
2 

2(1 _}_ y - ,  1 2 ~7/') 
1 + 7  

A s =  Po' 

Ps - 
Po' 

TO 
=--/y + 1 " T, k ~--W-) 

pO t 

t?s = R T o  I 

C +--7 -~ 
8 

(3s) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 



Sonic Value--continued 

qs -- 

Fs 

V(yRTo)  

R ~ + 1  
= N  (~ ) ' v 'T°  /{7 q-2 1/I 

One-d~mensional Formula 

Ps 

A 
As 

- -  M ~ 

7 + 1 ]t'--I 
• 2 

~ + 1  
T 2 
T , - -  ~, -- 1 

- - - -  M s 1 +  2 
l 

y + 1 ).~-' 
p 2 

P' l 1 q-Y--2 1M2 "" 

F _ _  2 

F , -  M J  1 ~ -- 1 2 MS 

~+~7 

1 4- , - ) ,M 2 

1 + ~  

.. (45) 

. .  ( 4 6 )  

.. (47} 

. .  (48} 

. .  ( 4 9 )  

. .  (so) 

. .  ( s l ) .  

. .  ( s 2 >  

Applicatwn to Typical Flow Calculations.--The above equations enable such calculations to be- 
carried out as are normally made with one-dimensional formulae, but with regard to the existence 
of non-uniform velocity profiles at sections 1 and 2 of the duct under consideration, and hence. 
enable the accuracy of the one-dimensional results to be assessed. 

For simplicity all flows discussed will be supposed to originate from a region where conditions. 
are uniform, which will be taken as section. 1. This could be either a stagnation region of infinite 
area, or a region where the boundary-layer thickness is zero. 
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For illustration, three commonly arising types of problem will be discussed: 

(i) Analysis of the performance of a duct of given design: the stagnation conditions are 
given at 1, the geometry (area) of the duct is known, and one other boundary condition 
(e.g., pressure) is given at section 2. I t  is required to calculate all other flow quantities 
at section 2 

(if) Design of duct for given performance: the stagnation conditions are given at 1, the duct 
area is to be determined from data given at 2 (e.g., rate of mass flow and pressure) 

(iii) Analysis of flow at a section : values of mass flow rate, total temperature, area and static 
pressure are known at a section from (easily performed) measurement;  all the other 
quantities are to be deduced at that  section. 

The numerical examples which follow are for flow in a duct  of circular section of radius R~, 
boundary-layer thickness ~, with the velocity distribution given by equation (14). 

Example 1.--Consider a problem of type (i) above, where the static pressure is given at 2, 
e.g., a duct of given exit area discharges fluid from a large reservoir to atmosphere, under 
homentropic free-stream conditions. It  is required to calculate the rate of mass flow, and the 
stream properties at the exit, section 2. 

The one-dimensional procedure in this instance is as follows :---values of Po', Te, P2 and A2 are 
given. Appropriate use is made of equations (41) to (52). p, is first calculated from Po'. Hence 
p2/p~ --~ M~--~ A d A ,  ~ A,  - ~  m knowing p,'  and To. Also M2 --~ T2/T,, p2/p, etc., --~ T~, p2 etc., 
since the sonic values are known from To and P0'. 

The generalized procedure is the same, except that  equations (35)-(46) are used, together 
with the values of Y~, ~ and v appropriate to the Mach number and boundary-layer thickness 
at 2. 

Fig. 3 shows the results of such a calculation. The ratios of the one-dimensional results to the 
results accounting for the non-uniform velocity distribution, are plotted against O/R~ for different 
exit pressures. These pressures are designated by the one-dimensional values of the exit Mach 
numbers M. The M -= 0 curves are for the limiting case of incompressible flow (any exit pressure), 
obtained separately by simple calculation. 

Table 1 gives actual figures for use if the curves of Fig. 3 are not sufficiently accurate. 

TABLE 1 

M 0 1 2 

~/R 1 0.2  0 .6  1.0 0.2 0 .6  1-0 0 .2  0-6  1.0 

m/fit 

po/5 
r / ,T  
r /T 
¢/~ 

1"050 1.144 
1"000 1.000 
1"000 1"000 
1'000 1-000 

1 '224 
1'000 
1 '000 
1"000 

1"063 
1.045 
0-987 
0-984 

1.188 
1.136 
0.964 
0.959 

1.295 
1.215 
0.945 
0.941 

1.098 
1.154 
0"956 
0-948 

1 '059 
1.050 
1-040 
1-036 
1"000 
1-000 

1.144 
1.144 
1"093 
1.115 
1.000 
1.000 

1"224 
1;224 
1"200 
1"190 
1 '000 
1"000 

1"047 
1'050 
1"038 
1'035 
1"016 
1"058 

1-139 
1.144 
1.118 
1"111 
1 '043 
1"168 

1.219 
1.224 
1-195 
1-186 
1.063 
1.260 

1-040 
1"050 
1.033 
1.030 
1.055 
1.111 

1-304 
1" 543 
O' 878 
0"864 
1" 126 
1-144 
1-108 
1-101 
1" 158 
1' 353 

1" 496 
1"976 
0"819 
O' 806 
1"206 
1' 225 
1.185 
1-176 
1-240 
1 • 586 

i 

All values are unity at ~/R I -~ O. 
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Example 2.--Consider a problem of type (ii) above, e.g., calculate the exit area of a nozzle 
discharging fluid from a large reservoir, given the ~mass flow rate and the exit pressure. The 
procedure is similar to tha t  for example 1, and the results are given in Fig. 4. 

Example 3.--Consider a problemof  type (iii) above, where it  is required to deduce values of 
other f lowquanti t ies  from measurements of m, To, A and p. The simplest procedure here is to 
calculate M from equation (17) for the appropriate boundary-layer thickness at the section, and 
hence the values of T/To, etc., from equations (18) to (21). These values may then be compared 
With the values of T/To, etc., obtained one-dimensionally using equations (22) to (26). The 
results are plotted in Fig. 5. In this case the ratio of the one-dimensional values to the mean 
values are plotted against d/R1 at constant values of free-stream Mach number M', a procedure 
which simplified the computations. 

Discussion of Results of Flow Calculations.--The curves in Figs. 3, 4 and 5, which present 
ratios of the one-dimensional solutions to the mean-value solutions, indicate directly the errors 
inherent in the one-dimensional method due to its neglect of the existence of the boundary layer. 
In  most cases tile error tends to increase with Mach number, and also with boundary-layer 
thickness. 

I t  may be seen tha t  for examples 1 and 2, which concerned ducts working between known 
upstream stagnation conditions and downstream static pressure, the one-dimensional method 
gives results accurate to about 2½ per cent up to M = 1 and 5 per cent up to M = 2, so long 
as the boundary-layer thickness does not exceed 10 per cent of the radius. For thicker boundary 
layers the errors increase nearly in proportion. 

For example 3, namely the analysis of mean quantities at a section from measurements of 
m, To, A and p, the accuracy of the one-dimensional method is within 2 per cent up to M' = 2 
for any boundary-layer thickness. (Note tha t  the vertical scale in Fig. 5 is ten times tha t  of 
Figs. 3 and 4.) Total pressure is an exception, the error in this case approaching 10 per cent 
at M '  =-- 2. This means tha t  a pitot traverse cannot be dispensed with if mean total  pressure, 
or losses, are accurately required. 

Conclusions.--The review of the basic assumptions of the one-dimensional method has stressed 
tha t  for many applications one-dimensional conditions need only be met at the places where 
fluid enters or leaves the portion of the duct under consideration. 

A generalization of the one-dimensional method has been developed, and used to assess tile 
influence of the boundary layer on its accuracy. The generalization takes account of the non- 
uniform distributions of flow parameters due to the presence of the boundary layer. Equations, 
analogous to the one-dimensional equations, have been presented which give the ratios of mean 
flow quantities to their sonic values, as functions of Mach number and correction factors which 
depend on the velocity distribution. 

Calculations were made using these equations, of flow in a duct of circular cross-section, under 
the assumption of homentropic free-stream conditions, and a turbulent  boundary layer having a 
one-seventh power law velocity distribution. Results were compared with results of one- 
dimensional calculations, for typical flow problems. 

In the case of ducts working between known upstream stagnation conditions and downstream 
static pressure, the one-dimensional method gave results accurate to about 2½ per cent up to 
M = 1 and 5 per cent up to M = 2, so long as the boundary layer thickness did not exceed 
10 per cent of the radius. For thicker boundary layers the errors increased roughly in proportion. 

When used to deduce mean values of flow quantities at a section from measurements of mass 
flow rate, area, total temperature and static pressure, the one-dimensional method was accurate 
to within 2 per cent up to M' = 2 for any boundary-layer thickness, for all quantities except 
total  pressure, for which the errors approached 10 per cent. 
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APPENDIX I 

D e r i v a t i o n  o f  M e a n  V a l u e  E q u a t i o n s  

Reference is made  to Fig. 1. Wi th  non-uni form distr ibut ions of veloci ty  across AD and BC,. 
and  the  assumptions given after  equat ion (6) the  equat ions  of cont inui ty ,  m o m e n t u m  and  ene rgy~  
(1), (2) and (3) m a y  be wr i t ten  for the  single s t reamtube  of area aA normal  to the  flow, and 
s u m m e d  over the  whole cross-section to give 

Z p q  OA =- m = Z p q  OA . . . . . . . . . . . . . .  (A.1) 
1 2 

X = Z ( p  + oq ~) aA  - -  ~r(p + pq~) aA  . . . . . . . . . .  (A.2) 
2 1 

m ( Q  " W )  = _rpq (cpT  + ½q2) aA - -  _ r p q ( c p r  + ½q') OA . . . . . .  (A.3) 
"2 1 

Following Le Fevre  4 let 

-roq~aA = ~ A  

Z q  aA  = ~qA . .  

¢ =  . .  

= R ? .  . .  

(A.4) and  (A.6) give 

Z, pq aA  = ~O,A . .  

Xp q  a OA ~--- ~ 3 ( ? A  • 

Hence  equa t ion  (A, 1) m a y  be wr i t ten  

~1A141 = m = ~ 2 A ~ q ~ .  

i - - 0 , 1 , 2 , 3  
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(A.4} 

(A.5) 

(A.6) 

(A.7) 

. .  ( A . S )  

. .  ( A . 9 )  

. .  ( A . 1 0 )  

. . . . . .  (A.11), 



Since p = constant  across any  section, (A.2) becomes, using (A.9) 

X = (Aft -@ fiA~eOff)2.- (Ap 2f_/~A~e q,)l 

or  X : F~ --  F~ . . . . . .  • 

. .  ( A . 1 2 )  

. .  ( A . 1 3 )  

where F = Ap + ~AGq ~ . . . . . . . . . . . . . .  (A.14) 

= mean impulse 

F r o m  (A.3) using pip = R T  and equations (A.5) and (A.10) 

m ( O -  W ) - -  

m 

Dividing by  m = 

2 - w = 

Q - w =  

Using (A.7) 

Z2(~Pq + ½Pqa) 3A -- Z(~2~q +~½pq~)~A 

cp ½/sA G~ a ) .  

R ~ n 4 -  

- 1 - ,  ( c p n T  1 -5 (%~ T + ~Gq )~ --  + ~Gq )~ . . . .  . .  (A.15) 

or  Q .... w = cl, To~ --. % T o ~  . . . . . . . . . . . . . .  (A.16) 

Gq' . . . . . . . . .  (A.17) where To = ~ T -~- 2c~ . . . . . . . .  

To = to ta l  temperature ,  assumed uniform across any  section. 

Equat ions  (A.11), (A.'12 i and (A.15) are respectively the equations of cont inui ty ,  m o m e n t u m  
and  energy for flow in a duct  wi th  non-uniform distr ibutions of flow parameters ,  in terms of the  
mean  values of density,  ve loc i ty  and temperature ,  and the parameters  ~2, G and ~ defined by  
equat ions  (A.4) to (A.7). 

Derivation of General Formulae for Mean Flow Quantities.--The mean flow quant i t ies  m a y  be 
expressed in terms of mass flow rate,  area and to ta l  tempera ture  as follows. 

From equat ion (A.17), division by  ~ T gives 

+ ~ ~d ~ To . . . . . .  (a.18) 

This suggests defining a mean Mach number  by  the relat ion 

~ _  ~d~ . .  (A.19) 
y R n T  . . . . . . . . . . . . . . .  

W i t h  this definition (A. 18) becomes 

1 + Y  --  l ~ r ~ - -  T-2° 
2 n T  

T To (A.20) 
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E l i m i n a t i o n  of ~2V f rom (A.19). a n d  (3,.20) gives .. . • : -~ ..~ :... 

, / r 0  / I  ! .  , .  : .  . .  . (A.21  

,, c2 £ v£ J 

From the equation of state (A.7) and continuity (A. 1 I) 

toRT 
• . . . . (A.22} 

P - -  A O ~  . . . . . . .  " " . " .  " ' . " .  " " " " 

a n d  e l imina t ion  of ~ a n d  T f r o m  (A.20), (A.21) an  d (A.22) g i y e s . . '  :: .... : : :_ ..: . . .: ,. , .;o.-. 

F r o m  m = ~ A c ]  a n d  ( A . 2 1 )  " " i ,' ' , % :  ..... '~ -: ; " , : . " : .  .... : 

1 
P - -  ,V / ( yR)  A 1 / T o  V ~ 3  'v. t 2fdr ~ J ,  . . . . . .  (A.24} 

F r o m  (A.14), (A.21), (A.23) a n d  (A.24) 

- ~  ~ / { - M '  ( 1 - F  t ' - 1  ) }  . . . . .  ( A . 2 5 }  

T h e s e  equa t ions  give t h e  .mean va lues  of t e m p e r a t u r e ,  ve loc i ty ,  p ressure ,  d e n s i t y  a n d  impulse. 
in t e r m s  of mass  flow ra te ,  area,  t o t a l  t e m p e r a t u r e  a n d  m e a n M a c h  n u m b e r .  

, - . . . .  ¢ ,  , . - ,  , -  v ¢ . .  , . . 

Expressions for V .and ~ . - - F o r m a l  express ions  will n o w  be deve loped  for ~ a n d  ~. us ing  t h e  
a s s u m e d " v e l o c i t y  d i s t r ibu t ion  (see ' equat ibn (14)) " ". ~-' .' :' "-~ ' : .- .: ~~ 

,q ,, ( y ~ l / ~ t  " ' i 

q, \ ~ /  0 £ ' y  ~.- ~, i.e., in t h e  b o u n ~ l a r y " i a y e r  .[ : "  . . . . .  : . . . .  .. 

. .  

"-:1:earTh '" ' "' " '": : "  ' " qq = 1. ~ ~ - y ~ <  R,,  i.e., in t h e  free,s~ ., ' ,:, " 
. . : . :  , .. ; ~, ,.: .'. : ; . . .  - :  : : . . "  , ]  .:, , .  , ' . , .  , . . [ .  , - 

In  each  case t h e  i n d e p e n d e n t  var iable ,  u p o n  wh ich  t h e  va lues  of ~ .and ~ u l t i m a t e l y  depend,.  
will be  n, t he  expans ion  i ndex  in equa t ions  (A.26), -$./R~.; {he p ropor:t ional bounda ry - l aye r ,  t h i cknes s  
a n d  M ' ,  t h e  f r ee - s t r eam Mach  n u m b e r .  :: 

F rom'  t h e  def ini t ion of v, e q u a t i o n  (A.5) ' " ' ' : 

v c j A  = Z q  ~ A .  : . . . . .  ' ' : .  ~<.. :<  . . . .  -. . .-.. - . :  

A p p l y i n g  this  to  a c i rcu la r  d u c t  of r ad ius  R,  a n d  w i t h  t he  ve loc i ty  d i s t r ibu t ion  g iven  b y  
e q u a t i o n  s A.26) .'. 

~A : i = q '  o ~rdr ::"": ' : '" . . . . . . . .  : 

, F r~fyV/" " ' :  ~q"rgRl'~--'q l,,Jok-~? 2;:TI;(.R I - - . ~ ) d v  "--]-- f : l  27/:(  "~1 __  Y)d ' . , ' ) ) ]  

. . ,  , , , 
,7 2 e'( " 'rR1/6( R1 

• 1 4  



Integrating 

From the definition of ~ equation (A.6) 

q~ 
~ -- ~ .  

Using (A.4) 
2pq ~ dA (~A)' 

~, = ( z p q  dA)' (~A) 

Zpq ~ dA 
~' --  (Xpq dA)' (PA)'-~ 

o q i d A  

Define 

kp ' /kq ' /  A " "" 

Since p and To are constant across any section 

p T'  
~ = ? -  . . . . . .  

and 

( I + Y - - I M @ T  ' ( 1 +  y - 1  - - i f -  = - W -  MS) T.  

Therefore 

2 1] ~z-¢- 1 ~ )  + 

i - - 1  

l + - y - M  '~ T ' =  1 +  2 M'~ --T T .  

Therefore 
T '  1 

- - ~ - M  '~ 1 - -  o 

P 

(A.32) in (A.29) yields 

where 

= (R1) 1 _t_~ -- 1 

- - 1  1 +  7 
2 

__M,2{1_(9  jn 
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. :  . .  . .  

(.-?R 
+ Jl \d  

(A.27) 

(A.28) 

(A.29) 

(A.3o) 

(A.31) 

(A.S2) 

(A.33) 

(A.34) 

(A.35) 



Performing the integration in equation (A.35) after expanding the integrand by the Binomial 
Theorem 

Z i 

l q - ~ M  '~ 

Now from (A.4) with i = 1 and i = 0 respectively 

Zoq ~A No ~A 
(~ - -  ~ A ' fi - -  A ! 

Xoq ~A 
- -  2 p  oA 

2 

~4 

2j + i + n 

. . . . . .  (A.36) 

2 P-~-q aA p q' qr 

x ~ A  
P 

Y1 
From A.29) qq,-  y .  . . . .  

and substituting in (A.27) 

From (A.28) and (A.29) 

(Yoh'(Y,h 
~i = \ Y l /  \ Y o /  . . . .  

with Y~ given by equations (A.34) and (A.36). 

n + l  + 1  . 

. . . . . . . .  (A.37) 

. . . . . . . .  (A.3S) 

. . . . . . . .  (A.39) 

Using equations (A.38) and (A.39) ~ and ~ may be calculated for any values of free-stream 
Math number M r, relative boundary-layer thickness ~/R~ and the parameter n. 

Relation Between Free-stream and M e a n  Mach  N u m b e r s . - - I t  is desirable to relate the free- 
stream Mach number M r, in terms of which the expressions for $i and ~ are given, to the mean 
Mach number 2F/, in terms of which the formula for mean flow quantities are given 

and 

as 

since/5 = constant. 

7 R~ T 
qr~ 

M'2 - -  ? R T '  

T' 
r p T 

16 
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Now from (A.4) and (A.29) with 

i - . 0 ,  

Using (A.37) M ' - ~ -  v \ Y o /  

Using (A.39) M '3 -- ~2~2 Y 2 .  

? 
t - -  Y 0  ° 

P 

V o  • 

~po" 

By continuity 
~b 

A - ~ 

1 
- -  Yz p 'q' 

from (A.37) and (A.41). 

A - - Y l x / T 0  1 + - -  
y -- 1 M,~" ~ 

2 / 

y + I  
2 ( v - ~ )  

by standard one-dimensional formula, applicable in the free stream. 
(A.42) 

Apo' - -  V l  [-~3 ~ 2 27 " 

. . . . . .  (A.41) 

. . . . . .  (A.42) 

. . . . . .  A.43) 

Substituting for M '  from 

. . . . . .  (A.44) 

A P P E N D I X  II  

Interpretation of M e a n  Total Pressure 

De f in i t ion . - -The  mean total  pressure P0 of a non-uniform stream having uniform total  tempera- 
ture is defined as the total pressure of tha t  uniform stream having the same total  temperature 
and mass flux as the non-uniform stream, and possessing the same value of availability flux. 

Consider two thermodynamic systems consisting of t hemass  m of fluid tha t  flows past a given 
section in unit  time, of the  uniform and non-uniform streams respectively. Then for atmospheric 
conditions designated by suffix ~, the availability of the uniform flow system is 3 

A = m ( h o -  T ~ s ) -  m ( h , - -  T~s,) . . . . . . . . . .  (A.45) 

whilst tha t  of the non-uniform flow system is 

Z = fA p q(ho - Tos) d A  - -  ~(h~, - -  Toso) 

: mho - -  fA pqT~s dA --  m(h~ - -  T~s~) 

since h0, the stagnation enthalpy is uniform. 

17 
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Equating A and ~, and writing s = R l o g o -  

gives 

m logo rio = fA Pq log~ Po dA 

or logo/50 = ~ A oq logo Po dA . 

v 

(T°)~-I in (A.45) and s = R log~ (To)'-~ in (A.46) 
:5o Po 

. .  ( A . 4 7 )  

. .  ( A . 4 S )  

For the velocity distribution (A.26), the following expression may be derived for loge(Po/lb0-- ') 
using methods similar to those of Appendix I" 

logo ~0°, = Z a j  
j=l 2 j +  1 + n  

r -- 1 1 j ~ M  '~ 

1 + 7  - -1  - w - M  '~ 

= n ~--  M "  2y 

i=1 1 + Y1 Y '~) 

( Y1-- 1 - -  
' ~ loge(1 + , - - 3  ) y 1 YI ~ M'2 " " (A.49) 

where aj 
i=i 1 

j=l j "  
• ° (A.S0) 
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FIG. 2. ~2, ~a, and ~2 vs. d/R 1 for various values of M'.  

~2, ~a and ~ are correction factors defined by equa- 
tions (A.4) to (A.6) (see also after equation (12)). 
Values plotted here are for a duct of radius R~ 
having a turbulent boundary layer of thickness d 
with a 1/7th power law velocity profile, and a 

unifolTn free stream of Mach number M'.  
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FIG. :3. Results of Example I. 

Curves give ratio of one-dimensional values to mean values 
at exit of a duct of given exit radius R 1, working between 

-known upstream stagnation conditions and exit pressure, 
for various exit boundary-layer thicknesses d, and Mach 
numbers 3I  (see example 1). Homentropic free s t ream;  
turbulent boundary layer with 1/7th power law velocity 

distribution. 
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Fro.  4. Result  of example  2. 

Curves give rat io of exit  a rea  ca lcula ted  one- 
dimensionally to true exit  area, for given mass  flow 
rate  through a duct  of exi t  rad ius  R1, working 
between known ups t ream s tagna t ion  condit ions and  
exit  pressure, for various exi t  bounda ry - l aye r  thick-  
nesses. ~, and  Mach number  M (see example  1). 
Homentropic  free s t ream ; tu rbu len t  b o u n d a r y l a y e r  

with 1/7kh power law veloci ty  distr ibut ion• 
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FIG. 5. Result  of example  3. 

Curves give rat io of one-dimensional  values  to mean  values 
of flow parameters ,  deduced from given values  of mass  flow, 
area, to ta l  t empera ture  and  s ta t ic  pressure a t  a section. 
Duct  of radius  R 1 ; tu rbulen t  b o u n d a r y  of th ickness  d wi th  
1/Tth power law veloci ty  profile ; uni form free s t r eam of 

Mach number  M ' .  
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