

Low-Speed Tunnel Tests of Some Split Flap Arrangements on a $48-\mathrm{deg}$ Delta Wing Parts I and II

Part I

By
The Tunnel Staff
Part II
By

J. F. Holford, B.A., and J. W. Leathers

Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2996*
September, 1952

Summary.-The report is in two parts, following a general introduction. In Part I the effects of solid and vented flaps at various positions on a delta wing have been measured, and a drag coefficient found which uses an 'effective area ' to cover the effect of venting (Fig. 15). A method of estimating the flap drag is given for this wing thickness. and delta angle (Fig. 17).
It is shown that equal upper- and lower-surface flaps can cause a breakdown in the lift similar to that previously found on unswept wings ${ }^{1,2}$, but the area in which this occurs is not likely to be used when such flaps are used as air brakes (Fig. 14).
In Part II the effects of lower-surface split flaps in various chordwise and spanwise positions on a delta wing have been measured for a range of flap deflections.
The results show that for small flap angles a type of flow exists in which the flow re-attaches to the wing surface behind the flap, causing zero or negative flap lift increments and positive pitching moments. Transition to this type of flow depends on the ratio of the height of the flap trailing edge off the wing surface to its distance ahead of the wing trailing edge, and also on the flap aspect ratio.
General Introduction.-A series of low-speed wind-tunnel tests have been made to investigate the behaviour of split flaps on one or both surfaces of a delta wing. The investigation is split into two parts described separately in the body of the report. Part I deals mainly with the estimation of the drag of such flaps with special reference to their use as air brakes on aircraft. Part II deals with an investigation into the phenomena of flow re-attachment behind the flaps and its effect on the flap characteristics.

PART I

The Drag of Brake Flaps on a Delta Wing

1. Introduction.-A study has been made in the past of the effect of brake flaps on unswept wings ${ }^{1,2}$. It was found that the drag could be predicted if the wing thickness and fore-and-aft position of the flap were included in the variables. It was also found that when equal upper

[^0]and lower surface flaps of chord $0 \cdot 1 c$ were placed at $0 \cdot 3 c$ from the leading edge, a breakdown of the flow occurred, such that at a positive angle of incidence the lift coefficient was even less than it would have been with upper-surface brake flaps only ${ }^{2}$, and the flow was very unsteady.
Tests have now been made using a 10 per cent thick delta wing with the leading edge swept back 48 deg, to find the drag of brake flaps in various positions, and to look for any positions to be avoided as causing a breakdown in the flow similar in type to that previously found.

The main results are:
(a) A coefficient is defined which takes account of venting between the brake flap and wing surface by giving an equivalent flap area (Fig. 15)
(b) In terms of this coefficient it is shown that the variations of drag coefficient with flap chord or span or spanwise position are small when tested on a delta wing without body (Fig. 7)
(c) The drag is a function of fore-and-aft position relative to the centre-line chord, and this function is different when the body, or ducts, etc., modify the pressure distribution on the wing (Fig. 17). These variations in drag will be less on a thinner wing since they arise from the pressure field due to thickness
(d) An area is defined inside which equal upper and lower surface brake flaps may cause a breakdown in the lift curve. This appears to involve a relationship between the size of the brake flap and its distance from the trailing edge of the delta, so that the dangerous area for a small chord flap is further to the rear than for a larger chord flap (Fig. 14).
2. Model.-The wing and flaps are shown in Fig. 1 and Table 1. The wing is of RAE 101 section (10 per cent thick with its maximum thickness at $0 \cdot 3 c$). The flap chords were approximately 4 and 8 per cent c, where c is the centre-line chord, and the general layout of the tests is most easily seen from Fig. 2. All the flaps shown were tested at no lift, and those tested over an incidence range are marked. In Fig. 13 some additional flap positions are shown, used to determine the area of flow breakdown more exactly. The flaps were set at 60 deg in all cases, with hinges on the lines shown. The 'vented ' flaps have the same solid part as the 'solid ' flaps, but are carried at a distance from the wing surface leaving a constant gap of one-third of the smaller flap chord (or one-sixth of the larger).

The drag differences due to adding flaps to the wing are expressed as coefficients C_{F}, using a flap area S_{i}. In the case of vented flaps, the effective area is determined by adding 0.55 times the gap area to the solid area. This rough rule is only correct for small gaps, and the question of a more general coefficient is further discussed in section 5 for larger gaps.
3. Results at $C_{L}=0$.-The flap drag coefficients C_{F} are tabulated in Figs. 3 and 4, the change of no-lift angle in Fig. 5, and the change of pitching moments in Fig. 6. Some anomalous results may be noted in Figs. 5 and 6, but these are associated with the breakdown of flow mentioned above and will be discussed later.

The drag results show:
(a) The coefficient used brings the solid and vented flap drags into good agreement
(b) The drag of flaps of different chord is proportional to S_{F}
(c) The drag coefficient of flaps of the same chord is reduced slightly by increasing the flap span, this effect being less when the flaps are vented (Fig. 7)
(d) The drag varies with fore-and-aft position of the flaps relative to the centre-line chord. The mean value of this variation is shown in Fig. 17.
4. Results over C_{L} Range.-4.1. Drag.-Fig. 8 shows the increase of drag with incidence for an upper surface flap, and decrease for a lower surface flap: the drag for equal flaps on both surfaces is also shown, and remains nearly constant. It will be seen that the same curves are obtained for small and large chord, vented, and solid flaps, with the one exception that the drag of small solid flaps mounted near the trailing edge on the upper surface of the wing does not increase much with increasing C_{L}. Since the flap chord was 4 per cent only of the root chord, this will be an effect of the thick boundary layer on the model at the low Reynolds number of the test.
4.2. Lift.-Figs. 9 to 12 show the changes in the lift due to flaps. From Figs. 9 and 10, uppersurface flaps are seen to displace the no lift angle, with little change in lift slope, while lowersurface flaps may reduce the slope. With equal upper- and lower-surface flaps (Figs. 11 and 12), the effect of flaps is normally to make no change in no-lift angle, but to reduce the lift slope slightly.

It is however obvious that at certain positions on the wing, a breakdown of flow is occurring, so that flaps on both surfaces may reduce the lift at a given incidence even more than similar upper-surface flaps used alone (see 2AB on Figs. 10 and 12 in position 2).

Extra flap positions were tested to define more precisely the area of flow breakdown (Fig. 13), and this area is shown in Fig. 14. It is seen that the distance from the trailing edge is doubled when the flap chord is doubled, so that it appears that a sufficiently long surface behind the flap can stabilise the flow. On this model, the worst breakdown occurs when the trailing edge is 5 flap chords behind the flap.

The effect on lift of venting the flaps is small, but in the case of flap 2AB (Fig. 12), venting reduces the suddenness of the change from one type of flow to the other, and provides a transition curve.

Some tests were made on a different wing of larger size to check the scale effect from 1 to 3×10^{6}. The effect of increased Reynolds number was similar to the effect of venting, it reduced the suddenness of the change in type of flow, but did not reduce the final loss of lift.
5. Comparison of Present Results with Miscellaneous Brake Flap Tests on Delta Aircraft Models.-To compare tests with different flap angle β, the coefficient C_{F} is divided by $\sin ^{2} \beta$. Since the gap between flap and wing is sometimes large, the method of allowing for gap is extended. With a large gap and small flap, the drag of the supports becomes appreciable, and the area of supports is added to the solid flap area. The results are replotted in this form, and show that for gaps larger than 0.3 times the flap chord, the drag is nearly constant at 1.2 times the drag of the flap with zero gap. Combining this with the previous rule of adding 0.55 times the area of small gaps to the solid area provides a definition of effective flap area, i.e., effective flap area $=$ solid flap area + support area $+0.55 \times$ gap area, with the proviso that effective flap area is never greater than 1.2 times the solid flap + supports.

All the models compared have wings of 10 per cent thickness ratio with leading-edge sweepback between 45 deg and 53 deg, and the models are sketched in Fig. 16. The complete model results do not in general agree with the wing results (Fig. 17), having lower drag for forward flaps and higher for rear flaps. This is related to changes in pressure distribution caused by bodies and duct systems.

The jet bomber model with wing leading-edge entries has a more forward position of the wing thickness leading to a maximum suction line at $C_{L}=0$ near the leading edge (see Figs. 16b and 16e). The flaps are located behind the position of the suction peak, instead of on it, as for the wing alone ${ }^{8}$. The resulting flap drag is lower than for the flap on the wing alone.

For flaps placed nearer the trailing edge, the effect of thickening the wing to enclose ducts increases the flap drag. In Fig. 16b, rear flaps are shown on two versions of a bomber model in which (a) the ducts are centrally placed relative to the wing chord, and (b) they are dropped so
that they leave the upper surface of the wing nearly unaltered. These two cases are represented by open and closed circles in Fig. 17, where it will be seen that the drag of rear flaps in case (b) (closed circles) agrees with that of a flap on the wing alone, while the drag in case (a) is considerably higher. The effect of a body is less easy to estimate : the rear flaps on the jet fighter model have the higher drag value, whereas the slimmer body of a delta model tested at the National Physical Laboratory (Fig. 16d) does not alter the flap drag from the ' wing ' value.

The results of this survey are disappointing in that they do not provide a rule for estimating the drag of brake flaps on any delta aircraft: but they do give limits between which it is likely to lie for a 10 per cent wing of 50 deg leading-edge sweep, and some indication of how the drag varies with the pressure field. These variations will be less on a thinner wing.

One comparison between delta models with $45-\mathrm{deg}$. and 60-deg leading-edge sweep (Ref. 7) shows the flap drag coefficient to be 25 per cent less on the 60 -deg delta.
6. Conclusions.-(a) A coefficient C_{F} is defined for expressing the drag of the brake flaps which takes account of the gap between the wing surface and the flap (Fig. 15). This coefficient is plotted for $\alpha=0$ against position of the flap relative to the centre-line chord of a delta wing and various delta aircraft models all with 10 per cent thick wing section, in Fig. 17. The difference between the wing-alone results and those for the aircraft models is explained in a general way in terms of the changes in pressure distribution on the wing due to fuselage interference and to changes in wing thickness to accommodate ducts and jet pipes.
The drag of equal upper- and lower-surface flaps is little affected by incidence ; the changes due to lift on the drag of single-surface flaps is shown in Fig. 8.
(b) Equal upper- and lower-surface flaps may cause a breakdown in flow if placed in the areas indicated in Fig. 14 (wing alone). These areas are not likely to be used in practice. Experiments should be made at higher Reynolds number if brake flaps are proposed which might cause such a breakdown of flow.

NOTATION

c	Wing centre-line chord
\bar{c}	Wing mean chord
c_{F}	Brake flap chord
b_{F}	Brake flap span
g	Gap between brake flap and wing in the plane of the flap
β	Brake flap angle of deflection
$\Delta \alpha$	Change in no-lift angle due to brake flaps
$\Delta C_{M 0}$	Change in pitching-moment coefficient due to brake flaps
ΔC_{D}	Change in drag at constant C_{L} due to brake flaps
C_{F}	Flap drag coefficient $=\Delta C_{D} \times S / S_{F}$

where S is the wing area
S_{F} is effective flap area
For solid flaps, $\quad S_{F}=$ flap area
For vented flaps, $\quad S_{F}=$ flap area + bracket area $+0.55 \times$ gap area
with the proviso that effective flap area is never greater than $1.2 \times$ area of solid flap + brackets.

REFERENCES

No. Author
1 Adamson
Title, etc.
Brake flaps : recent wind-tunnel tests on a complete model and on rectangular wings fitted with brake flaps. R.A.E. Report Aero. 1685. June, 1941.

2 R. H. Whitby and F. J. Bigg ..

3 G. F. Moss Measurements of aileron and elevator hinge moments on the Avro 707B with unbalanced and balanced controls. R.A.E. Tech. Note Aero. 2079. A.R.C. 13,905. October, 1950.

4 A. V. Roe Tunnel Staff .. Wind-tunnel tests on the Avro 707. A. V. Roe W.T. Report WT/7/49. July, 1949.

5 J. Seddon, D. J. Kettle and J. Scanlon.

Low-speed tests on a $1 / 7$ scale model of a twin-engined jet fighter with a delta wing. R.A.E. Report Aero. 2306. A.R.C. 12,247. December, 1948.

6 D. J. Kettle Addendum to R.A.E. Report Aero. 2306. R.A.E. Report Aero. 2306a. A.R.C. 12,405. March, 1949.

7 R. Jones, C. J. W. Miles and P. S. Pusey.

Experiments in the Compressed Air Tunnel on swept-back wings, including two delta wings. R. \& M. 2871. March, 1948.

8 D. J. Raney

Low-speed tunnel investigation of the pressure distribution over a delta wing of aspect ratio 3 at small incidences. R.A.E. Tech. Note Aero. 2062. A.R.C. 13,657. July, 1950.

TABLE 1
Details of Delta Wing and Brake Flaps
All linear dimensions given as a percentage of the wing centre-line chord c.

$$
c=19 \cdot 0 \mathrm{in} .
$$

Wing

Wing quarter-chord point (pitching moments referred to this point)
Distance aft of leading edge at centre-line of model $49 \cdot 8$
Brake flaps

TABLE 1-continued
Details of Delta Wing and Brake Flaps
Brake flap positions on wing

Flap Symbol	Flap Span	Wing chord at flap centre-line	Spanwise position (Distance of flap from model centre-line)	Chordwise position Distance of flap hinge from:	
				(a) leading edge at wing centre-line	(b) local leading edge (per cent local chord)
(a) Basic flap positions					
1A	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$39 \cdot 5$	$23 \cdot 8$
2 A	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$60 \cdot 5$	$50 \cdot 3$
2B	$15 \cdot 8$	$61 \cdot 8$	$34 \cdot 2$	$60 \cdot 5$	$36 \cdot 1$
3A	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$81 \cdot 6$	$76 \cdot 8$
3B	$15 \cdot 8$	$61 \cdot 8$	$34 \cdot 2$	$81 \cdot 6$	$70 \cdot 2$
3 C	$15 \cdot 8$	$44 \cdot 1$	$50 \cdot 0$	$81 \cdot 6$	$58 \cdot 3$
2 AB	$31 \cdot 6$	$70 \cdot 5$	$26 \cdot 3$	$60 \cdot 5$	$43 \cdot 8$
3 AB	$31 \cdot 6$	$70 \cdot 5$	$26 \cdot 3$	$81 \cdot 6$	$73 \cdot 9$
3 ABC	$47 \cdot 4$	$61 \cdot 8$	$34 \cdot 2$	$81 \cdot 6$	$70 \cdot 2$
(b) Additional flap positions used for investigation of breakdown of flow					
D	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$31 \cdot 6$	$13 \cdot 9$
E	$15 \cdot 8$	$73 \cdot 5$	$23 \cdot 7$	$39 \cdot 5$	$17 \cdot 7$
F	$15 \cdot 8$	$73 \cdot 5$	$23 \cdot 7$	$44 \cdot 7$	$24 \cdot 8$
G	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$52 \cdot 6$	$40 \cdot 4$
H	$15 \cdot 8$	$67 \cdot 6$	$28 \cdot 9$	$52 \cdot 6$	$30 \cdot 0$
J	$31 \cdot 6$	$100 \cdot 0$	0	$60 \cdot 5$	$60 \cdot 5$
K	$15 \cdot 8$	$70 \cdot 5$	$26 \cdot 3$	$60 \cdot 5$	$44 \cdot 1$
L	$15 \cdot 8$	$52 \cdot 9$	$42 \cdot 1$	$60 \cdot 5$	$25 \cdot 4$
M	$15 \cdot 8$	$79 \cdot 4$	$18 \cdot 4$	$68 \cdot 4$	$60 \cdot 2$
N	$15 \cdot 8$	$52 \cdot 9$	$42 \cdot 1$	$68 \cdot 4$	$40 \cdot 0$

TABLE 2
Lift, Drag and Pitching Moment without Flaps

$$
R=1 \cdot 0 \times 10^{6}
$$

α	C_{L}	C_{D}	C_{m}
0	0	0.0087	0
$3 \cdot 4$	$0 \cdot 176$	0.0130	$-0 \cdot 0170$
$7 \cdot 0$	0.351	$0 \cdot 0253$	$-0 \cdot 0326$
10.3	0.512	0.0521	-0.0419
14.2	0.663	$0 \cdot 1008$	-

TABLE 3
Lift; Drag due to Flaps
$R=1.0 \times 10^{6}$
(a) Solid flaps. Lower surface

α	C_{L}	ΔC_{D}	C_{F}	α	C_{L}	ΔC_{D}	C_{F}
1A-S				2A-S			
$-10 \cdot 7$	-0.498	$0 \cdot 0284$	$2 \cdot 025$	-7.4	-0.342	$0 \cdot 0190$	$1 \cdot 355$
-7.3	-0.336	$0 \cdot 0238$	$1 \cdot 695$	- $3 \cdot 7$	-0.167	0.0187	$1 \cdot 33$
-3.9	$-0 \cdot 160$	0.0196	$1 \cdot 395$	- $0 \cdot 2$	0	$0 \cdot 0171$	$1 \cdot 22$
-0.4	0	0.0165	1-175	+ $3 \cdot 2$	+0.163	$0 \cdot 0155$	$1 \cdot 105$
+ 3.2	$+0 \cdot 171$	0.0139	$0 \cdot 99$	$+6.7$	+0.325	$0 \cdot 0140$	0.995
$6 \cdot 9$	$0 \cdot 338$	0.0120	$0 \cdot 855$				
$10 \cdot 4$	$0 \cdot 503$	$0 \cdot 0096$	$0 \cdot 685$				
$+13.8$	$+0.648$	$0 \cdot 0107$	$0 \cdot 76$				
3A-S				1A-L			
- -11.9	-0.513	0.0147	1.045	-7.1 -3.7	-0.322	0.0462	1.645
-8.5	-0.339	0.0127	0.905	-3.7	-0.160	0.0389	1-385
-4.6	$-0 \cdot 150$	$0 \cdot 0129$	$0 \cdot 92$	-0.1	-0.001	0.0330	1-175
-1.1	+0.001	0.0125	$0 \cdot 89$	+ 3.5	$+0 \cdot 161$	$0 \cdot 0282$	$1 \cdot 005$
$+2 \cdot 6$	0. 189	0.0127	0.905	$5 \cdot 8$	$0 \cdot 269$	$0 \cdot 0260$	0.925
$6 \cdot 2$	$0 \cdot 354$	0.0110	$0 \cdot 785$	$10 \cdot 6$	$0 \cdot 486$	$0 \cdot 0211$	$0 \cdot 75$
$9 \cdot 8$	0.515	$0 \cdot 0074$	0.525	+14.1	+0.633	$0 \cdot 0232$	$0 \cdot 825$
$+13 \cdot 2$	$+0.651$	$0 \cdot 0068$	$0 \cdot 485$				
2A-L				3A-L			
$-11 \cdot 7$	-0.497	0.0435	1.55	$-13 \cdot 2$	-0.523	0.0354	1.26
-7.9	-0.330	$0 \cdot 0400$	1.425	-9.6	-0.355	$0 \cdot 0286$	$1 \cdot 02$
-4.7	-0.155	0.0378	1.345	$-6 \cdot 0$	-0.170	$0 \cdot 0264$	$0 \cdot 94$
$-1 \cdot 2$	0	0.0344	$1 \cdot 225$	-2.2	$+0.002$	0.0249	$0 \cdot 885$
$+2 \cdot 4$	+0.148	0.0316	1-125	+1.3	$0 \cdot 179$	0.0236	$0 \cdot 84$
$6 \cdot 0$	$0 \cdot 296$	$0 \cdot 0290$	1.035	$4 \cdot 9$	$0 \cdot 349$	$0 \cdot 0216$	$0 \cdot 77$
$9 \cdot 4$	$0 \cdot 445$	0.0276	0.985	$8 \cdot 5$	$0 \cdot 511$	$0 \cdot 0146$	$0 \cdot 52$
$+13 \cdot 1$	$+0 \cdot 577$	$0 \cdot 0348$	$1 \cdot 24$	$+11.8$	$+0 \cdot 658$	$0 \cdot 0051$	$0 \cdot 18$
3C-L				2AB-L			
-13.0	-0.523	$0 \cdot 0334$	$1 \cdot 19$	$-11 \cdot 6$	-0.284	0.0771	$1 \cdot 37$
- $9 \cdot 5$	-0.344	$0 \cdot 0303$	1.08	$-8 \cdot 3$	-0.128	$0 \cdot 0710$	1.265
$-5 \cdot 7$	-0.168	$0 \cdot 0282$	1.005	- $4 \cdot 9$	0	$0 \cdot 0652$	$1 \cdot 16$
$-2 \cdot 3$	0	$0 \cdot 0260$	0.925	-1.3	+0.122	$0 \cdot 0606$	$1 \cdot 08$
+ 1.2	+0.168	$0 \cdot 0243$	0.865	+ $2 \cdot 1$	$0 \cdot 239$	$0 \cdot 0562$	1.00
4.8	$0 \cdot 329$	$0 \cdot 0215$	$0 \cdot 765$	$5 \cdot 4$	$0 \cdot 353$	$0 \cdot 0514$	0.915
$8 \cdot 2$	$0 \cdot 485$	-0.0189	0.675	$+8 \cdot 8$	+0.460	$0 \cdot 0511$	$0 \cdot 91$
$+11.6$	$+0.618$	$0 \cdot 0203$	$0 \cdot 725$				
3AB-L				3ABC-L			
$-15 \cdot 6$	-0.544		$1 \cdot 235$	$-17 \cdot 9$	-0.562	$0 \cdot 1071$	$1 \cdot 275$
$-12 \cdot 0$	-0.363	0.0536	0.955	-14.2	-0.405	$0 \cdot 0742$	$0 \cdot 885$
-8.3	$-0 \cdot 183$	$0 \cdot 0466$	$0 \cdot 83$	$-10 \cdot 3$	-0.191	$0 \cdot 0641$	0.765
-4.6	0	$0 \cdot 0452$	$0 \cdot 805$	$-6 \cdot 7$	-0.003	$0 \cdot 0652$	$0 \cdot 775$
-1.0	$+0 \cdot 164$	$0 \cdot 0442$	$0 \cdot 785$	$-3 \cdot 0$	+0.158	$0 \cdot 0645$	$0 \cdot 77$
+ $2 \cdot 6$	$0 \cdot 327$	$0 \cdot 0417$	$0 \cdot 74$	$+0.4$	0.319	$0 \cdot 0625$	$0 \cdot 745$
$6 \cdot 2$	$0 \cdot 490$	0.0334	$0 \cdot 595$	$3 \cdot 8$	$0 \cdot 468$	0.0560	$0 \cdot 665$
+ $9 \cdot 7$	$+0 \cdot 642$	$0 \cdot 0181$	$0 \cdot 32$	+7.3	$+0 \cdot 614$	$0 \cdot 0441$	$0 \cdot 525$

TABLE 3-continued

Lift; Drag due to Flaps

(b) Vented flaps. Lower surface

α	C_{L}	ΔC_{D}	$C_{\text {F }}$	α	C_{L}	ΔC_{D}	C_{F}
$3 \mathrm{~A}-\mathrm{S}$				1A-L			
$-12 \cdot 4$	-0.515	$0 \cdot 0225$	$1 \cdot 355$	$-10 \cdot 8$	-0.463	$0 \cdot 0579$	$1 \cdot 89$
$-8 \cdot 8$	$-0 \cdot 350$	$0 \cdot 0179$	$1 \cdot 075$	$-7 \cdot 4$	-0.316	$0 \cdot 0490$	$1 \cdot 60$
$-5 \cdot 3$	-0.176	$0 \cdot 0165$	0.99	$-3 \cdot 9$	-0.154	$0 \cdot 0418$	$1 \cdot 365$
$-1 \cdot 6$	0	0.0155	0.93	-0.2	0	$0 \cdot 0354$	1-155
+1.9	$+0 \cdot 159$	0.0148	0.89	+ 3.2	+0.156	$0 \cdot 0315$	$1 \cdot 025$
$5 \cdot 5$	$0 \cdot 327$	$0 \cdot 0140$	$0 \cdot 84$	$6 \cdot 8$	$0 \cdot 316$	$0 \cdot 0276$	0.90
$9 \cdot 0$	$0 \cdot 490$	$0 \cdot 0100$	$0 \cdot 60$	$10 \cdot 3$	$0 \cdot 476$	$0 \cdot 0242$	$0 \cdot 79$
$+12 \cdot 5$	$+0.636$	$0 \cdot 0078$	$0 \cdot 47$	$+13 \cdot 8$	+0.621	$0 \cdot 0279$	
2A-L				$3 \mathrm{~A}-\mathrm{L}$			
$-11 \cdot 6$	-0.475	$0 \cdot 0503$	1.64	$-13 \cdot 3$	-0.516		1-365
$-8 \cdot 3$	-0.317	$0 \cdot 0437$	1.425	$-9 \cdot 6$	-0.346	$0 \cdot 0326$	1.065
- 4.9	-0.145	$0 \cdot 0401$	$1 \cdot 31$	- $6 \cdot 0$	-0.158	$0 \cdot 0287$	0.935
-1.2	-0.001	$0 \cdot 0369$	1.205	$-2 \cdot 5$	+0.002	$0 \cdot 0264$	0.86
+ $2 \cdot 2$	$+0.150$	0.0338	$1 \cdot 10$	+ 1.2	$0 \cdot 174$	$0 \cdot 0254$	$0 \cdot 83$
$5 \cdot 5$	$0 \cdot 301$	$0 \cdot 0309$	$1 \cdot 01$	$4 \cdot 7$	$0 \cdot 343$	$0 \cdot 0231$	$0 \cdot 755$
9.0	$0 \cdot 446$	0.0288	$0 \cdot 94$	$8 \cdot 1$	$0 \cdot 505$	$0 \cdot 0164$	$0 \cdot 535$
$+12 \cdot 6$	$+0.579$	$0 \cdot 0332$	1.085	$+11.9$	+0.653	$0 \cdot 0080$	$0 \cdot 26$
$2 \mathrm{AB}-\mathrm{L}$				3AB-L			
$-14 \cdot 4$	-0.395	$0 \cdot 0999$	1-63	$-16 \cdot 0$	-0.521	$0 \cdot 0838$	1.365
$-10 \cdot 9$	-0.242	$0 \cdot 0828$	1.35	$-12 \cdot 4$	-0.357	$0 \cdot 0638$	$1 \cdot 04$
$-7 \cdot 5$	$-0 \cdot 109$	$0 \cdot 0752$	1.225	- $8 \cdot 8$	$-0 \cdot 183$	$0 \cdot 0553$	$0 \cdot 90$
$-4 \cdot 1$	0	$0 \cdot 0704$	1.15	- $5 \cdot 1$	0	0.0506	$0 \cdot 825$
-0.6	+0.132	$0 \cdot 0651$	$1 \cdot 06$	-1.5	+0.153	0.0476	$0 \cdot 775$
$+2 \cdot 8$	$0 \cdot 262$	0.0588	0.96	+ $2 \cdot 1$	$0 \cdot 316$	0.0465	$0 \cdot 76$
$6 \cdot 1$	$0 \cdot 387$	$0 \cdot 0542$	$0 \cdot 885$	$5 \cdot 6$	0.475	$0 \cdot 0379$	$0 \cdot 62$
+ $9 \cdot 5$	$+0.514$	$0 \cdot 0531$	$0 \cdot 865$	+9•1	$+0.629$	$0 \cdot 0231$	$0 \cdot 375$
$3 \mathrm{ABC}-1$							
$-14 \cdot 4$		$0 \cdot 0818$	0.89				
$-10 \cdot 7$	$-0 \cdot 181$	$0 \cdot 0759$	$0 \cdot 825$				
$-7 \cdot 0$	-0.001	$0 \cdot 0737$	$0 \cdot 80$				
- $-3 \cdot 4$	+0.147 +0.305	0.0711 0.0696	0.775 0.755				
${ }^{0}$	0.305	$0 \cdot 0696$	0.755				
$+3 \cdot 5$ +6.9	0.453 +0.600	$0 \cdot 0627$	$0 \cdot 68$				
$+6.9$	$+0.600$	$0 \cdot 0495$	$0 \cdot 54$				

TABLE 3-continued

Lift; Drag due to Flaps

(c) Solid flaps. Both surfaces

α	C_{L}	$\triangle C_{D}$	C_{F}	α	C_{L}	ΔC_{D}	C_{F}
1A-S				2A-S			
0	0	$0 \cdot 0343$	$1 \cdot 22$	0		$0 \cdot 0327$	1-165
$3 \cdot 3$	$0 \cdot 165$	0.0348	$1 \cdot 24$	$3 \cdot 5$	$0 \cdot 161$	$0 \cdot 0326$	$1 \cdot 16$
$6 \cdot 5$	$0 \cdot 323$	$0 \cdot 0362$	$1 \cdot 29$	$6 \cdot 8$	$0 \cdot 317$	$0 \cdot 0316$	1-125
2B-S				3A-S			
$3 \cdot 4$	$0 \cdot 152$	$0 \cdot 0374$	$1 \cdot 33$	$3 \cdot 1$	$0 \cdot 162$	$0 \cdot 0267$	0.95
$6 \cdot 4$	$0 \cdot 304$	$0 \cdot 0381$	$1 \cdot 355$	$6 \cdot 8$	$0 \cdot 336$	$0 \cdot 0254$	$0 \cdot 905$
3C-S							
	0	$0 \cdot 0290$	$1 \cdot 035$	2AB-S 0 0 0.0740 1.32			
				$2 \cdot 9$$6 \cdot 3$	$0.006 \quad 0.0718$		1.281.29
$3 \cdot 8$	0.095				0.145	$0 \cdot 0723$	
$5 \cdot 7 \quad 0 \cdot 178$							
7.6 0.257				3AB-S			
					0	$0 \cdot 0510$	0.91
				$3 \cdot 6$	$0 \cdot 152$	$0 \cdot 0499$	$0 \cdot 89$
				$6 \cdot 7$	$0 \cdot 311$	0.0484	$0 \cdot 86$

1A-L

1A-L				2A-L			
0	0	$0 \cdot 0707$	$1 \cdot 26$	0	0	$0 \cdot 0696$	1.24
$3 \cdot 4$	$0 \cdot 149$	$0 \cdot 0722$	$1 \cdot 285$	$2 \cdot 7$	$0 \cdot 095$	$0 \cdot 0690$	$1 \cdot 23$
$6 \cdot 8$	$0 \cdot 292$	$0 \cdot 0758$	$1 \cdot 35$	$6 \cdot 4$	$0 \cdot 254$	$0 \cdot 0688$	$1 \cdot 225$
$10 \cdot 0$	$0 \cdot 452$			$9 \cdot 7$	$0 \cdot 387$	$0 \cdot 0695$	$1 \cdot 24$
				$13 \cdot 1$	$0 \cdot 520$		
2B-L				3A-L			
0	0	$0 \cdot 0743$	$1 \cdot 325$	0	0	$0 \cdot 0503$	0.895
$1 \cdot 8$	-0.004			$3 \cdot 6$	$0 \cdot 167$	0.0515	$0 \cdot 915$
$4 \cdot 0$	$0 \cdot 028$			$7 \cdot 2$	$0 \cdot 347$	$0 \cdot 0505$	$0 \cdot 90$
$6 \cdot 1$	$0 \cdot 113$			$10 \cdot 7$	$0 \cdot 501$	$0 \cdot 0511$	0.91
$7 \cdot 3$	$0 \cdot 207$			$13 \cdot 9$	$0 \cdot 621$	$0 \cdot 0544$	0.97
$10 \cdot 2$	$0 \cdot 342$						
$12 \cdot 7$	$0 \cdot 478$						
$3 \mathrm{C}-\mathrm{L}$				2AB-L			
0	0	$0 \cdot 0523$	0.93	0	0	$0 \cdot 1442$	$1 \cdot 285$
$2 \cdot 1$	$0 \cdot 073$	$0 \cdot 0527$	0.94	$1 \cdot 8$	$+0.062$		
$3 \cdot 4$	$0 \cdot 126$	$0 \cdot 0535$	$0 \cdot 955$	$3 \cdot 0$	+0.092	$0 \cdot 1430$	$1 \cdot 27$
$6 \cdot 7$	$0 \cdot 305$	$0 \cdot 0555$	$0 \cdot 99$	$4 \cdot 8$	-0.092		
$10 \cdot 2$	$0 \cdot 446$			$6 \cdot 5$	-0.030	0.1299	$1 \cdot 155$
				$8 \cdot 1$	+0.041		
				$11 \cdot 3$	+0.182		
				$14 \cdot 2$	+0.325		
3AB-L							
0	0	$0 \cdot 0983$					
$3 \cdot 5$	$0 \cdot 144$	$0 \cdot 0973$	0.865				
$7 \cdot 0$	$0 \cdot 288$	0.0973	$0 \cdot 865$				

TABLE 3-continued
Lift; Drag due to Flaps
(d) Vented flaps. Both surfaces

α	C_{L}	ΔC_{D}	C_{F}	α	C_{L}	ΔC_{D}	C_{F}
1A-L				$2 \mathrm{AB}-\mathrm{L}$			
		$0 \cdot 0767$	$1 \cdot 25$	0	0		
$3 \cdot 1$	$0 \cdot 137$	$0 \cdot 0778$	$1 \cdot 27$	$2 \cdot 0$	-0.010		
				$2 \cdot 9$	-0.007		
				$3 \cdot 8$ $5 \cdot 4$	-0.018 +0.005		
2A-L				$7 \cdot 1$	0.039		
0	0	0.0736	$1 \cdot 20$	$8 \cdot 6$	0.087		
$2 \cdot 7$	0.098	$0 \cdot 0737$	$1 \cdot 20$	$11 \cdot 1$	$+0.176$		
$5 \cdot 1$	0.151 0.913	$0 \cdot 0752$	1.225				
$6 \cdot 6$ $7 \cdot 7$	0.213 0.249		$1 \cdot 225$	2B-L			
$9 \cdot 8$	$0 \cdot 368$			2B-L 0	0	$0 \cdot 0768$	1.25
$12 \cdot 6$	0.494			$3 \cdot 1$	0.018	$0 \cdot 0758$	$1 \cdot 235$
				$6 \cdot 5$	$0 \cdot 151$	$0 \cdot 0778$	$1 \cdot 27$
3A-L				$9 \cdot 6$ 12.5	$0 \cdot 445$	$0 \cdot 0823$	$1 \cdot 34$
0	0	$0 \cdot 0579$	0.945	$12 \cdot 5$			
$2 \cdot 8$	$0 \cdot 111$	$0 \cdot 0579$	$0 \cdot 945$				
$6 \cdot 9$	$0 \cdot 271$	$0 \cdot 0594$	0.97				

TABLE 4
Pitching Moment; Flaps on Both Surfaces

C_{L}	C_{m}	C_{L}	C_{m}
3C-S (Solid)		$2 \mathrm{AB}-\mathrm{L}$ (Vented)	
0	0	0	0
0.014	0.0308	0.018	+0.0184
0.095	0.0264	0.151	+0.0033
0.178	0.0208	0.293	-0.0178
0.257	0.0183		

TABLE 5
Extra Flap Positions (D to N) on Both Surfaces : Lift

$$
R=0.67 \times 10^{6}
$$

Flap chord $=7.89$ per cent c; flap span $=15 \cdot 8$ per cent c

DIMENSIONS GIVEN AS PERCENT WING CENTRE-LINE CHORD
Fig. 1. Wing and brake flaps.

FLAP CHORD $=3.95$

FLAP CHORD $=7.89$

FLAPS ON ONE SURFACE ONLY

FLAP CHORD $=3.95$

FLAP CHORD $=7.89$

FLAPS ON BOTH SURFACES

* Lift and drag measured over a range of incidence.

PITCHING MOMENT MEASURED OVER ARANGE OF INCIDENCE. $\longrightarrow A T C_{L}=O$ ONLY.

DIMENSIONS GIVEN AS PERCENT WING CENTRE LINE CHORD.
Fig. 2. Layout of tests.

FLAP CHORD $=3.95 \%$ CENTRE LINE CHORD

Fig. 3. Flap drag C_{F} at $C_{L}=0$. One surface.

FLAP CHORD $=7.89 \%$ CENTRE LINE CHORD

FLAP CHORD $=3.95 \%$ CENTRE LINE CHORD

FLAP CHORD $=7.89 \%$ CENTRE LINE CHORD. * MEASUREMENTS OVER A C RANGE indicate breakdown of flow with THESE FLAP ARRANGEMENTS.

Fig. 4. Flap drag C_{F} at $C_{L}=0$. Both surfaces.

FLAP CHORD $=3.95 \%$ CENTRE LINE CHORD

FLAP CHOPD $=7.89 \%$ CENTRE LINE CHORD.
Fig. 5. 4 (no-lift angle) due to flaps (degrees). Lower surface.

FLAP CHORD $=3.95 \%$ CENTRE LINE CHORD

FLAP CHORD $=7.89 \%$ CENTRE LINE CHORD
Fig. 6. $\Delta C_{m} \times 10^{3}$ due to flaps. $C_{L}=0$. Lower surface.

Fig. 7a. Solid flaps.

Fig. 7b. Vented flaps.

Figs. 7a and 7b. Effect of flap span on drag.

Fig. 8. Variation of flap drag with lift.

Fig. 9. Lift with brake flaps. One surface.
$C_{F}=3.95$ per cent C.

Fig. 10. Lift with brake flaps. One surface. $C_{F}=7 \cdot 69$ per cent C.

Fig. 11. Lift with brake flaps. Both surfaces. $C_{F}=3.95$ per cent C.

Fig. 12. Lift with brake flaps. Both surfaces. $C_{F}=7 \cdot 89$ per cent C.

Fig. 13. Lift with brake flaps. Extra flap positions.
$C_{F}=7.89$ per cent $C . \quad b_{F}=15 \cdot 8$ per cent C.

Fig. 14. Region in which solid flaps on both surfaces may cause breakdown of flow. $b_{F}=15.8$ per cent C. (Contours drawn for midpoint of flap hinge.)

THE DRAG OF THE BRACKETS HAS BEEN SUBTRACTED FROM THE DRAG OF FLAP WITH GAP, ASSUMING THIS DRAG TO BE THE SAME PER UNIT AREA AS FOR THE FLAP.
Fig. 15. Effect of gap width on flap drag at $C_{L}=0$.

Figs. 16a to 16e. Models from which brake flap drag data in Fig. 17 are taken.

Fig 17. Flap drag coefficient for 10 per cent thick deltas of about 50-deg sweep at $C_{L}=0$.

PART II
The Effects of Flow Re-attachment Behind Split Flaps on a Delta Wing

1. Introduction.-It has been found in flight tests of a delta wing aircraft that the forwardmounted split flaps produced trim changes which were grossly non-linear with flap deflection. Wind-tunnel tests confirmed this, and also showed that for small flap deflections the flaps reduced the lift at constant incidence.

The existence of a region on a delta wing where flap behaviour is unusual has been noted in Part I. It was shown that in certain positions on the wing, single-surface brake flaps produced marked losses of lift slope resulting in negative lift increments at incidence with flaps on the lower surface (see Fig. 2). It was also shown that the effects of upper- and lower-surface flaps were sometimes additive (Fig. 2a) but sometimes caused a breakdown of flow resulting in negative overall lift slopes over a small range of incidence near zero lift (Fig. 2b). Both these effects were thought to be due to a re-attachment of flow to the wing surface behind the flap at some incidences but not at others. It was suggested that the occurrence of a flow of this sort depends on the relation between the chord of the flap and its distance from the trailing edge of the wing.

These phenomena are not peculiar to wings of delta plan-form, the breakdown of the lift curve with flaps on both surfaces having been found on unswept wings with brake flaps mounted well forward (Ref. 1).

In order to obtain some systematic data on this behaviour some model tests have been made on a delta wing with a range of lower-surface flaps and the results are presented here.
2. Description of Tests.-The model consisted of a 10 per cent thick delta wing and flaps of chord about 8 per cent wing centre-line chord which were used in Part I. The notation of Part I has been retained. The unit flap has a span of 16 per cent wing centre-line chord per side; its fore-and-aft position is designated by the numbers 1,2 , etc., where $3 \frac{1}{2}$ refers to a trailing-edge flap, and its spanwise position by the letters A, B, etc., where A is nearest to the centre-line. The layout may be seen in Fig. 1 and dimensions are given in Table 1.

The following table shows the flap arrangements used, all being tested over a range of flap deflections up to 60 deg.

| Spanwise position | | Chordwise position | Flap aspect ratio |
| :--- | :--- | :--- | :--- | :---: |

Measurements of lift, drag and pitching moment over the incidence range 0 to 8 deg were made, the pitching moments being quoted about an axis $0 \cdot 33 \bar{c}$ aft of the leading edge of the standard mean chord (0.541 centre-line chord) instead of about $0.25 \bar{c}$ (0.498 centre-line chord) as in Part I. The tests were made in the Royal Aircraft Establishment 5 - ft Wind Tunnel at a Reynolds number of 0.67×10^{6} based on the wing mean chord. One arrangement of flaps, $2 \frac{1}{2} \mathrm{AB}$ deflected 25.5 deg, was tested at a Reynolds number of $1 \cdot 0 \times 10^{6}$ and showed no scale effect over this range.
3. Discussion of Results.-The results show that there are two types of behaviour:
(a) For all the flaps tested except those at the wing trailing edge, small flap deflections cause zero or negative lift increments (Fig. 3), positive pitching-moment increments (Fig. 4)
and negligible changes in lift-curve slope (Fig. 5). Some tuft observations confirmed that this occurs when the flow breaking away from the flap trailing edge re-attaches to the wing surface behind the flap.
(b) For larger flap angles increasing flap deflection results in a positive lift increment, a negative pitching-moment increment and a loss of lift-curve slope depending on the chordwise position of the flap.
The tests on flaps $2 \frac{1}{2} \mathrm{AB}$ show that the change from (a) to (b) is a fairly sharp one.
The range of flap angle for which the flow re-attaches increases as the flap is moved forward on the wing. Following the suggestion of Part I an attempt has been made to correlate the flap lift increments with the relation between h, the height of the flap trailing edge from the wing surface, and l, the distance of the flap trailing edge ahead of the wing trailing edge. Values at zero incidence of flap lift coefficient* $C_{F L}$ per degree of flap angle are plotted against h / l in Fig. 6. Some results extracted from Part I are also included. This method of presentation enables a single curve to be drawn through all the results at a given flap span; which suggests that the chordwise position of the flap affects the lift only through its effect on h / l.

The effect of flap span shown in Fig. 6 may be due to its effect on flap aspect ratio or to the effect of spanwise position on the (delta) wing. Fig. 3 shows the flap lift increments at $\alpha=0$ deg and at $\alpha=8 \mathrm{deg}$, and it will be seen that the critical flap angles are the same. This change in pressure distribution is larger than that due to spanwise movement of a flap at a given α, suggesting that the local wing pressure distribution does not effect the critical. To check the aspect ratio effect, some measurements with 4 per cent chord flaps (from Part I) have been used. These results are plotted in Fig. 7 together with the two curve ' flaps AB ' and ' flaps A ' from Fig. 6. The accuracy is bad due to the small size of the flaps but the points suggest a value of (h/l) $)_{\text {erit }}$ nearer to 0.15 than to 0.2 and thus that the variation is with aspect ratio rather than with spanwise position. This critical value of (h/l) then varies with flap aspect ratio as shown in Fig. 8. A point extracted from some National Advisory Committee for Aeronautics tests on a twodimensional wing of $65-210$ section (Ref. 2) is also shown. This fits in well with the present results, indicating that the effect of wing plan-form is small. A point extracted from some model tests on a Delta wing fighter (Ref. 3) is also shown. This also agrees with the present results.
4. Conclusions.-(a) The results show that split flaps on the lower surface of a wing exhibit a critical value of the ratio of the height of the flap trailing edge from the wing surface (h) to its distance from the wing trailing edge (l).
(b) At values of h / l below this critical, the flow re-attaches to the wing surface behind the flap and this results in negative lift increments and positive pitching moments.
(c) The critical value of h / l varies with the aspect ratio of the flap. The critical obtained from some N.A.C.A. tests on a two-dimensional wing (Ref. 2) fits in well with the present results, indicating that the effect of wing plan-form is small, at any rate at large flap aspect ratio.

REFERENCES

No.	Author	Title, etc.
1	R. H. Whitby and F. J. Bigg	Wind-tunnel tests on the effect of brake flaps on lift and trim. R.A.E. Report Aero. 1744. A.R.C. 5860. March, 1942.
2	R. N. Olson and J. N. Benezra	High speed wind tunnel investigation of dive recovery flaps for lift control on the NACA 65-210 aerofoil. N.A.C.A./T.I.B./1090. A.R.R. 6D23. August, 1946.
3	athers and J.F. Holf	R.

$$
* \text { Where } C_{F}{ }^{\prime \prime}=\Delta C_{L} \times \frac{\text { Wing area }}{\text { Flap area }}
$$

TABLE 1
Details of Wing and Flaps
All linear dimensions given as a percentage of the wing centre-line chord c

$$
c=19 \cdot 0 \mathrm{in}
$$

TABLE 2
Effect of Flaps at Constant Incidence

2 AB (hinge line at $0 \cdot 605 c$)

δ_{F} (deg)	α (deg)	ΔC_{L}	ΔC_{D}	ΔC_{m}
	0	-0.007	0.0148	0.0206
	2	-0.007	0.0142	0.0194
20	4	-0.008	0.0136	0.0181
	6	-0.009	0.0132	0.0168
	8	-0.009	0.0119	0.0140
	0	+0.028	0.0415	0.0632
	2	+0.012	0.0399	0.0624
40	4	-0.004	0.0375	0.0615
	6	-0.020	0.0347	0.0605
	8	-0.036	0.0310	0.0567
	0	0.146	0.0624	0.0571
	2	0.115	0.0620	0.0601
60	4	0.083	0.0602	0.0631
	6	0.051	0.0578	0.0662
	8	0.020	0.0548	0.0708

$2 \frac{1}{2} \mathrm{AB}$ (hinge line at $0 \cdot 711 \mathrm{c}$)

$\begin{gathered} \delta_{F} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ΔC_{L}	ΔC_{D}	ΔC_{m}
20	0	-0.007	$0 \cdot 0130$	$0 \cdot 0223$
	2	-0.007	$0 \cdot 0127$	$0 \cdot 0211$
	4	-0.008	$0 \cdot 0123$	$0 \cdot 0197$
	6	-0.009	$0 \cdot 0121$	$0 \cdot 0184$
	8	-0.009	$0 \cdot 0111$	$0 \cdot 0188$
24	0	$+0.003$	$0 \cdot 0165$	$0 \cdot 0311$
	2	-0.005	$0 \cdot 0158$	$0 \cdot 0312$
	4	-0.012	$0 \cdot 0149$	0.0314
	6	-0.019	0.0135	0.0320
	8	-0.027	$0 \cdot 0123$	$0 \cdot 0322$
$25 \cdot 5$	0	$+0.008$	$0 \cdot 0176$	0.0311
	2	0	0.0172	0.0315
	4	-0.007	$0 \cdot 0163$	$0 \cdot 0318$
	6	-0.014	$0 \cdot 0149$	$0 \cdot 0324$
	8	-0.022	$0 \cdot 0140$	0.0333
30	0	$0 \cdot 045$	$0 \cdot 0228$	$0 \cdot 0289$
	2	0.035	$0 \cdot 0231$	$0 \cdot 0293$
	4	$0 \cdot 025$	$0 \cdot 0229$	$0 \cdot 0301$
	6	0.015	$0 \cdot 0222$	$0 \cdot 0315$
	8	$0 \cdot 005$	$0 \cdot 0213$	$0 \cdot 0328$
40	0	$0 \cdot 112$	$0 \cdot 0356$	0.0191
	2	$0 \cdot 101$	$0 \cdot 0372$	$0 \cdot 0197$
	4	$0 \cdot 089$	$0 \cdot 0381$	$0 \cdot 0201$
	6	$0 \cdot 077$	$0 \cdot 0391$	$0 \cdot 0206$
	8	$0 \cdot 066$	$0 \cdot 0400$	$0 \cdot 0228$
60	0	$0 \cdot 210$	$0 \cdot 0554$	$0 \cdot 0078$
	2	$0 \cdot 195$	$0 \cdot 0582$	$0 \cdot 0079$
	4	0. 180	$0 \cdot 0605$	$0 \cdot 0078$
	6	$0 \cdot 165$	$0 \cdot 0629$	$0 \cdot 0078$
	8	$0 \cdot 150$	$0 \cdot 0672$	$0 \cdot 0095$

TABLE 2-continued

3 AB (hinge line at $0 \cdot 816 c$)

δ_{F} (deg)	α (deg)	ΔC_{L}	ΔC_{D}	ΔC_{m}
	0	0.053	0.0109	-0.0029
	2	0.051	0.0123	-0.0041
20	4	0.050	0.0137	-0.0044
	6	0.049	0.0151	-0.0040
	8	0.047	0.0163	-0.0032
	0	0.171	0.0300	-0.0294
	2	0.167	0.0340	-0.0305
40	4	0.162	0.0377	-0.0308
	6	0.157	0.0414	-0.0303
	8	0.153	0.0463	-0.0295
	0	0.248	0.0504	-0.0399
	2	0.243	0.0556	-0.0413
60	4	0.237	0.0608	-0.0418
	6	0.231	0.0662	-0.0416
	8	0.226	0.0739	-0.0411

2 ABJ (hinge line at 0.605 c)

δ_{F} (deg)	α (deg)	ΔC_{L}	ΔC_{D}	ΔC_{m}
		-0.013	0.0079	0.0152
	0	-0.013	0.0075	0.0127
12.5	2	-0.012	0.0070	0.009
	6	-0.011	0.0067	0.0099
	8	-0.011	0.0066	0.0095
	0	+0.006	0.0254	0.0470
	2	+0.001	0.0243	0.0452
24	4	-0.005	0.0230	0.0431
	6	-0.011	0.0213	0.0410
	8	-0.016	0.0200	0.0395
	0	0.127	0.0521	0.0496
	2	0.107	0.0524	0.0507
40	4	0.088	0.0521	0.0516
	6	0.069	0.0509	0.0532
	8	0.049	0.0506	0.0546
	0	0.219	0.0779	0.0481
	2	0.193	0.0790	0.0490
60	4	0.167	0.0790	0.0506
	6	0.141	0.0789	0.0531
	8	0.115	0.0815	0.0573

$3 \frac{1}{2} \mathrm{AB}$ (hinge line at 0.921 c)

δ_{F} (deg)	α (deg)	ΔC_{L}	ΔC_{D}	ΔC_{m}
	0	0.099	0.0100	-0.0381
20	2	0.103	0.0127	-0.0399
	4	0.107	0.0154	-0.0422
	6	0.111	0.0182	-0.0441
	8	0.115	0.0232	-0.0456
	0	0.196	0.0284	-0.0716
	2	0.200	0.0338	-0.0740
40	4	0.204	0.0389	-0.0768
	6	0.208	0.0445	-0.0792
	8	0.212	0.0541	-0.0811
	0	0.275	0.0493	-0.0921
	2	0.277	0.0564	-0.0949
60	4	0.280	0.0634	-0.0981
	6	0.283	0.0711	-0.1003
	8	0.285	0.0839	-0.1018

$2 \frac{1}{2} \mathrm{ABJ}$ (hinge line at 0.711 c)

$\stackrel{\delta_{F}}{(\operatorname{deg})}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ΔC_{L}	ΔC_{D}	ΔC_{m}
$11 \cdot 5$	0	-0.018	$0 \cdot 0066$	$0 \cdot 0201$
	2	-0.019	$0 \cdot 0061$	$0 \cdot 0182$
	4	-0.019	$0 \cdot 0055$	0.0166
	6	-0.019	$0 \cdot 0050$	$0 \cdot 0159$
	8	-0.020	$0 \cdot 0046$	$0 \cdot 0157$
$20 \cdot 5$	0	$0 \cdot 046$	$0 \cdot 0170$	$0 \cdot 0226$
	2	$0 \cdot 039$	$0 \cdot 0178$	$0 \cdot 0227$
	4	$0 \cdot 033$	$0 \cdot 0180$	$0 \cdot 0230$
	6	$0 \cdot 027$	$0 \cdot 0179$	$0 \cdot 0242$
	8	$0 \cdot 020$	$0 \cdot 0184$	$0 \cdot 0259$
40	0	$0 \cdot 163$	$0 \cdot 0411$	$0 \cdot 0105$
	2	$0 \cdot 152$	$0 \cdot 0438$	$0 \cdot 0110$
	4	$0 \cdot 141$	$0 \cdot 0462$	$0 \cdot 0121$
	6	$0 \cdot 130$	$0 \cdot 0482$	$0 \cdot 0141$
	8	0.119	$0 \cdot 0519$	$0 \cdot 0167$
60	0	$0 \cdot 235$	$0 \cdot 0711$	0.0119
	2	$0 \cdot 221$	$0 \cdot 0739$	$0 \cdot 0114$
	4	$0 \cdot 208$	$0 \cdot 0769$	$0 \cdot 0119$
	6	$0 \cdot 195$	$0 \cdot 0807$	$0 \cdot 0137$
	8	$0 \cdot 181$	$0 \cdot 0867$	$0 \cdot 0167$

TABLE 2-continued

$2 \frac{1}{2} \mathrm{~A}$ (hinge line at 0.711 c)				
$\begin{gathered} \delta_{F} \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} \alpha \\ (\mathrm{deg}) \end{gathered}$	ΔC_{L}	ΔC_{D}	ΔC_{m}
24	0	-0.011	$0 \cdot 0081$	$0 \cdot 0129$
	2	-0.011	$0 \cdot 0079$	$0 \cdot 0105$
	4	-0.011	$0 \cdot 0075$	$0 \cdot 0086$
	6	-0.011	$0 \cdot 0069$	$0 \cdot 0071$
	8	-0.011	0.0074	$0 \cdot 0054$
40	0	$+0.017$	$0 \cdot 0177$	0.0256
	2	0.013	$0 \cdot 0178$	$0 \cdot 0253$
	4	$0 \cdot 008$	$0 \cdot 0173$	$0 \cdot 0248$
	6	$+0.003$	$0 \cdot 0166$	$0 \cdot 0247$
	8	-0.001	$0 \cdot 0166$	$0 \cdot 0250$
60	0	$0 \cdot 090$	$0 \cdot 0290$	$0 \cdot 0201$
	2	0.083	$0 \cdot 0302$	$0 \cdot 0191$
	4	0.077	$0 \cdot 0309$	$0 \cdot 0187$
	6	0.071	0.0315	$0 \cdot 0191$
	8	$0 \cdot 064$	$0 \cdot 0327$	0.0202

TABLE 3
Basic Wing Characteristics

α (deg)	C_{L}	C_{D}	C_{m}
0	0	$0 \cdot 0080$	$-0 \cdot 0015$
2	$0 \cdot 100$	$0 \cdot 0104$	$-0 \cdot 0020$
4	$0 \cdot 200$	$0 \cdot 0152$	$-0 \cdot 0031$
6	$0 \cdot 300$	$0 \cdot 0227$	$-0 \cdot 0051$
8	$0 \cdot 400$	$0 \cdot 0348$	$-0 \cdot 0077$

Fig. 1. Wing and flaps.

∞

Fig. 2. Example of unusual flap behaviour (from Part I).

Fig. 3a. Flap lift increment at $\alpha=0 \mathrm{deg}$.

Fig. 3b. Flap lift increment at $\alpha=8 \mathrm{deg}$.

Fig. 4. Pitching moment due to flaps at $\alpha=0$ deg.

Fig. 5a. Variation of lift slope with chordwise position of flap $A B$.

Fig. 5b. Variation of lift slope with flap angle for flap $2 \frac{1}{2} \mathrm{AB}$.

Fig. 6. Correlation of flap lift with position of flap trailing edge. $\alpha=0$ deg.

Fig. 7. Effect of flap chord on lift. $\alpha=0 \mathrm{deg}$.

Fig. 8. Variation of critical value of h / l with flap aspect ratio.

Publications of the Aeronautical Research Council

ANNUALTTGHNTCALITHORTCOTTHEAERONAUTICAL RISEARCH $\mathbb{C O U N C H L}(B O U N D \mathbb{V} O U M \mathbb{M})$
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5rs. 9d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Scaplanes, etc. 63 s . ($64 \mathrm{~s} . \mathrm{gd}$.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Fiutter, Icing, Stability and Control Structures, and a miscedlaneous section. 5os. (5Is. gd.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control Structures. 63s. (64s. 9d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9d.)
Vol II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (49s. 3 d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8rs. 9d.)
Vol II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gos. (92s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84f. (86s. 3d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84.s. (86s. 3d.)

1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 1305. (1325. 6d.)
Vol. II. Aircraft, Airscrews, Controls. 1305. (I 325.6 d .)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (132s. 3 d.)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s. (1325.3d.)
Annual Reports of the Aeronautical Research Council1937 2s. (2s. 2d.) 1938 rs. 6d. (1s. 8d.) $1939-48$ 3s. (3s. 3d.)
Hudez to all Reports and Memoranda published in the Annual Technical Reports, and separately-
April, 1950 - - - R. \& M. 2600 25. 6 d. (25. 8d.)
Author Inder to all Reports and Memorandla of the Aeronautical Research Council-
r909-January, 1954 R. \& M. No. 2570 rjs. (r 5 s. 6 d.)
Indezes to athe Technicall Reports of the Aeronautical Research Councill-

December I, 1936-June 30 , 1939 R \& M. No. 1850 Ys. 3 d. (rs. 5d)
uly 1, 1939-June 30 , 19445
R. \& M. No. 88 go 1s. 3 d. (1s. 5d.)
uly 1, 1945-June 30,1946
R. \& M. No. 1950 ws. (Is. $2 d$.)

July $\mathrm{I}, 1946$-December 31,1946
$\begin{array}{ll}\text { R. \& M. No. } 2050 & \text { 1s. (1s. 2d.) } \\ \text { R. \& M. No. } 2 \mathrm{I} 50 & \text { 1s. } 3 \text { d. (1s. } 5 \mathrm{~d} .\end{array}$
January $\mathrm{I}, 1947$-June 30,1947
R. \& M. No. 2250 15. 3d. (1s. 5d.)

Published Reports and Memoranda of the Aeronautical Research Combuil-
 Street, Cardiff; Tower Lane, Bristcl, I; 8o Chichester Street, Belfast, or through any booksellet.

[^0]: * R.A.E. Tech. Note Aero. 2124, received 18th March, 1952.
 R.A.E. Tech. Note Aero. 2188, received 12th February, 1953.

