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Summery.--An analysis of aircraft response and loading conditions in symmetrical manoeuvres is presented with a 
particular recognition of the designer's needs. 

The analysis is based on the theory of aircraft response to elevator induced longitudinal manoeuvres.' Basic response 
functions have been derived for the chosen, exponential type of elevator motion, and from these, general expressions 
have been obtained for various derived response quantities, such as tailplane loads, elevator hinge moments, normal 
accelerations at the tail, etc. 

A computational method which reduces the calculations to a routine is given in Appendix B. The method allows 
the evaluation of.the complete time histories of response quantities or, alternatively their significant maxima. 

The simplifying assmnptions underlying the analysis are critically reviewed and possible limitations of the method 
are discussed. 

1. Introduct ion.--For some time now it has been felt that  new trends in aircraft design, 
manifesting themselves by  new aerodynamic shapes, the a t ta inment  of still higher Mach numbers 
and higher performances in general have altered the characteristics of aircraft behaviour in flight, 
and in particular the aircraft response to various disturbances. This development is associated 
with changes in the numerical values of the different parameters affecting the aircraft behaviour. 
Some of these parameters whose effect could in the past be either disregarded or assumed to be 
the same for all aircraft types have now become of primary importance, whereas others have 
lost much of their original significance. Parameters which have become more important  are 
(a) low air densities associated with high altitude (b) high static margins of swept-winged aircraft 
at high subsonic Mach numbers and (c) low aerodynamic damping and high wing loading, whereas 
the coefficient C,, 0 (less tail) is now often less significant because of its small magnitude. 

In this connection it is worth mentioning the significance of the non-dimensional coefficient ~o 
which can be considered as the generalized static stabili ty coefficient or as the main aerodynamic 
' spring constant ' (cf. sections A. 1 and B.3). For the aircraft of five or ten years ago its numerical 
value fluctuated between 0 and 10 ; today values of 50 are not uncommon, 100 quite feasible, and 
200 and more on their way. With  a low co value the aircraft, regarded as a dynamic system, is 
either overdamped or only slightly underdamped, resulting in an aperiodic or nearly aperiodic 
response to, say, an instantaneous or impulsive disturbance. A high co value renders the aircraft 
considerably underdamped with all the dynamic consequences. 

All these new trends have a direct bearing on the loading conditions of aircraft in longitudinal 
pilot-induced manoeuvres, which form the subject of this report. In view of the advantages of 
the present rational approach it was decided to investigate what could be done to simplify the 
calculations whilst preserving strictly the realistic character of the fundamental conditions. 

* R.A.E. Report Structures 177, received 15th June, 1955. 
(4651) 
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In the present analysis which relates to elevator-induced manoeuvres, several parameters 
which, as mentioned above, have been hitherto neglected, have been taken into account ; others, 
e.g., those connected with unsteady flow phenomena and with elastic structural deformations are 
still neglected. 

A workable method is derived for obtaining time histories of the various response quantities 
and for the calculation of the maxima of those quantities reached in the pull-out manoeuvre 
considered, the severity of the manoeuvre being covered by means of suitable constants. I t  is 
hoped that  the method will be of assistance to the aircraft designer. 

This paper embraces various aspects of the same problem, and the following short review of 
the contents is made for the benefit of those readers who might be interested mainly in some 
particular aspect of the subject. 

Sections 1 to 4 and section 13 contain remarks of general interest. 

Sections 5 to 9 are devoted to the presentation and discussion of the flhysical aspects of a pull- 
out manoeuvre and of the various response quantities. 

The mathematical analysis is presented in Appendix A. 

Section 12 contains approximate formulae for a quick, though only rough, estimation of the 
maxima of the tailplane load. 

In Appendix 13 the full com2butational method is presented; it should be used in conjunction 
with tile explanatory remarks of section 10. 

Remarks on the choice of the mean rate of elevator movement are given in section 11. These 
may be of interest to readers who want to use either the full method of Appendix B or the 
approximate formulae of section 12. 

2. Earlier Work.--Historically the first rational method for calculating dynamic tailplane loads 
was presented in this country in 1921 by  J. Case and S. ]3. Gates 1. Tile method was based on 
rigorous solutions of the linearized equations of motion of the aircraft, and it was checked against 
solutions obtained by step-by-step integration of the equations of motion; the method could be 
applied to any particular case. One of the simplifying assumptions was to take the static stabil i ty 
of the aircraft to be zero, as it was then found tha t  this parameter affected the tailplane loads 
only slightly. In 1928 Bolas and Allward suggested another method 2 based on the step-by-step 
solution of the equations of motion allowing the static stabil i ty of the aircraft to be taken into 
account. 

In 1941 S. B. Gates 6 proposed some very simple formulae for the tail load estimation, and 
indicated the necessity for further refinement. As far as tile writer is aware tha t  was the first 
suggestion in the past for a generalized treatment of this problem for the designer's use. 

Since 1938 several other methods *, 7, s, 9,10,11,12, is, 25, based on the aircraft response to a specified 
elevator motion have been published. All ' inverse method ', that  is one where the time history 
of the normal acceleration is postulated, has been suggested in this country by  Howard and Owen% 
A similar, though in some respects more elaborate method, appeared in America 15 in 1951, the 
form of the time history of the normal acceleration being identical with that  assumed by  Howard 
and Owen. Other authors 5,1G, 17 have also been attracted by  the idea of the ' inverse me thod '  

I t  is not claimed tha t  this short review embraces all the existing methods for calculating tail 
loads in longitudinal manoeuvres. I t  is also outside the scope of this paper to compare the merits 
and limitations of the various methods. The mere number of these investigations indicates the 
growing interest and the importance of the problem, and perhaps also the difficulties encountered 
in deriving a satisfactory method. 

Tile present method in a less elaborate form has been used for particular problems 14, and in its 
present form is now incorporated in Vol. 2 of Air Publication 97019. 
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3. Method of A~flroach.--The basic problem is solved analytically (@ Appendix A); t h e  
response of an aircraft to the specified type of elevator motion is obtained in general terms, and 
then expressions are derived for the various response quantities such as the tailplane load, the  
elevator hinge moment, the angular velocity and acceleration ill pitch, together with general 
conditions for maxima of these quantities. Thus all these quantities are given in terms of the 
dimensions and inertias of the aircraft, its aerodynamic derivatives, the speed and height of 
flight, the maximum normal acceleration reached in the manoeuvre and the mean rate of elevator 
movement. The analysis covers only  incremental values of the various quantities as affected 
by the manoeuvre itself ; ally resPonse quantities shown in the main text or appendices represent 
incremental values only. 

The notation adopted is; as far as possible, that  commonly used in the analysis of )the static 
and dynamic stability of aircraft;  it is based on the ' Nomenclature ' of Bryant  and Gates 2° with 
some additional notation introduced by Dr. Neumark ~1. The notation used is given and explained 
in the List of Symbols and in section B.3 of Appendix B. 

The presentation of the analytical work in terms o f  non-dimensional quantities allows the 
comparison between the results obtained for different aircraft types to be made in the most 
consistent way. The non-dimensional forms are in general also best suited for the derivation 
of workable computational schemes. A computational method for the calculation of normal 
accelerations, tailplane loads and other response quantities of interest to the designer is given in 
Appendix B. It  permits the required computations to be performed merely as a routine. 

The available test results, particularly those reported by Matheny la, have been used to a s s e s s  
the reliability of the analytical t reatment  and of the simplifying assumptions. These assumptions 
are : 

(a) The forward speed of the aircraft is taken to be Constant throughout the manoeuvre 
(b) The component of  the aircraft weight along the normal to the flight pa th  is taken to be 

constant 
(c) The lift contribution due to the elevator deflection is neglected* 
(d) The tailplane pitching moment about its own quarter-chord point due to the elevator 

deflection is neglected* 
(e) The effects of the structural dynamic response of the aircraft is disregarded 
(f) The disturbed motion of the aircraft conforms to the quasi-steady aerodynamic treatment 
(g) The aerodynamic derivatives are constant. 

Any possible limitations to the present method resulting from those assumptions are discussed 
in the next section. 

Other flight test results reported by Matheny 2~ and by H. H. Brown ~ have been used for the 
estimation of the maximum rates of elevator movement likely to be used by pilots in different 
types of aircraft. The derivation of a general expression for this rate is discussed in section 11. 
This is the quant i ty  which--together with the maximum normal acceleration to be reached in 
the manoeuvre--has  to be specified to make the general results of the present analysis applicable 
to practical cases. 

4. Simplifying Assumptions.--The analytical t reatment  of the problem expounded in Appendix 
A is based on certain simplifying assumptions. Without these assumptions any generalization 
of the problem would be impossible. However, they may  impose certain limitations on the final 
results obtained, and these will now be discussed. 

The assumption of small disturbances makes it possible to linearize the equations of motion of 
the aircraft so that  they can be integrated. Now the disturbances considered (elevator deflections 

* Appendices C and D indicate how these effects can be taken into account. 
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responsible for the manoeuvre) are far from small, and this might be expected to be responsible 
for considerable errors. However, the comparison of results obtained from linearized equations 
of motion with those obtained from step-by-step integrations, and also with flight test results TM 

indicates that  the errors involved are small and can be disregarded especially for manoeuvres of 
short duration which are the primary concern of this analysis. 

The assumption of a constant forward speed of the aircraft throughout the manoeuvre normally 
introduces only small errors as can be seen from Matheny's work la. In exceptional cases, par- 
ticularly at high subsonic speeds, they may become appreciable since a small decrease in forward 
speed and a corresponding decrease in Mach number during a manoeuvre may significantly 
affect the numerical values of the various aerodynamic derivatives as the manoeuvre develops. 
Particularly important  here are changes in the ~C,,/~o~ derivative. Thus the condition of constant 
derivatives postulated by the linearized equations of motion is not fulfilled in these rare cases, 
and the exact response of the aircraft can be obtained onl through a step-by-step integration 
which is a rather laborious procedure. For design purposesYt is suggested that  two manoeuvres 
treated in accordance with the present method, one at the highest value of ~C~/3c~, and the other 
at its lowest value, would cover the true manoeuvre giving possibly somewhat conservative 
tailplane loads. Cases where the aeroplane becomes statically unstable are excluded from these 
considerations. 

The linearized form of the equations of motion of the aircraft postulates also that  the derivatives 
should be constant with varying angle of incidence and elevator angle. Very often they are 
constant or very nearly so, but  if they are not it is usually sufficient to tal~e their mean values 
over the estimated ranges of the appropriate angles. 

The aircraft is assumed to be a rigid body. In many cases such an assumption should be quite 
satisfactory, but  there may be instances where the elastic properties of the aircraft structure 
affect significantly the response in the manoeuvre, the important  modes being wing and tailplane 
in torsion, and the rear fuselage in bending. These effects can be dealt with part ly by estimating 
the aerodynamic derivatives as modified by structural elastic properties, and disregarding any 
dynamic effects. For this purpose the only additional quantities required are numerical values 
of the appropriate structural stiffnesses. The derivatives so modified should then be used. In 
most cases this procedure will be adequate. If, however, the natural  frequencies of any of the 
elastic modes are comparatively low, and the initial rate of elevator movement high, tile dynamic 
response, of the structure may appreciably modify the basic aircraft response or any of the derived 
response quantities; e.g., the maximum download at the tailplane occurring in the early stages 
of the manoeuvre might be considerably affected. The present approach does not cover such 
instances ; they must be worked out on their own merits. 

The contribution to the total  lift due to the elevator deflection has been neglected in the first 
equation of motion, that  of normal forces acting on the aeroplane. Errors due to this neglect are 
usually small on tailed aircraft. The effect becomes more pronounced for aeroplanes with short 
tail arms and very high static margins when errors may be as high as 10 per cent. In such cases 
tile procedure of Appendix D may be applied. 

The unsteady flow ,,bhenomena have been disregarded except for the delay in the downwash 
appearing at the tail. This has been taken into account in the usual way by the inclusion of the 
fourth term in the second equation of motion, equation (2), or the first term in equation (4). 
Further  work is needed to investigate under which flight conditions these phenomena significantly 
affect the response of aircraft, and to assess the probable errors resulting from tile application 
of the present method. 

5. Qualitative Remarks on the Manoeuvre.--Before proceeding to a detailed discussion of the 
problem, some physical aspects of a longitudinal manoeuvre will first be considered. I t  is assumed 
tha t  the manoeuvre itself, produced by a specified elevator movement, is not affected by the 
aircraft at t i tude during the steady flight immediately preceding it ; this is true for a very rapid 
pull-out manoeuvre and particularly for its initial stages of a relatively short duration in which 
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all the response quantities reach their absolute maxima. Some numerical calculations have shown 
that  even with a vertical dive as the initial flight condition the errors resulting from this assump- 
tion are not excessive. If the initial at t i tude corresponds to straight and level flight these errors 
are negligibly small. 

A rapid pull-out manoeuvre is produced by an elevator deflected quickly upwards, held in 
this position for a short time, and then reversed. During such a manoeuvre the motion of the 
aircraft is continuously disturbed, and there are continuous changes in the angle of incidence ~, 
and in the angular pitching velocity q. These two quantities will be called basic response 
quantities. The derived response quantities, for instance the tailplane load or the elevator hinge 
moment, are linear combinations of the basic response quantities or their  derivatives with respect 
to time. 

When considering the dynamic response of an aircraft, the aircraft itself may be regarded as a 
dynamic system of two degrees of freedom, possessing its inertias, aerodynamic spring constants 
and aerodynamic damping coefficients. In modern aircraft these parameters are usually such that  
the system is less than critically damped, and tile response is oscillatory in character showing 
appreciable overshoots in the various response quantities. Because of this the semi-empirical 
treatments of the past-- invariably based on steady state considerations--should be abandoned. 

The time histories of different response quantities in a rapid pull-out manoeuvre have been 
calculated for an example representative of modern aircraft, and are shown in Fig. 2 (a) to (h). 
At any time the numerical incremental values of the basic r.esponse quantities ~ and q and their 
derivatives with respect to time are, in general, different from zero. There is a certain relationship 
between the angle of incidence ~( = z~), its derivative do:/dt a n d t h e  angular velocity in pitch q 
(proportional to ~); this relationship is given by equation (3). I t  follows that  do~/dt is not equal 
to q unless c~ is zero. These two quantities may even be of opposite signs. The incremental 
angle of incidence ~, the coefficient of normal acceleration n and the velocity component w of the 
centre of gravity of the aircraft are all proportional to one another, and thus their time histories 
are similar. The coefficient of normal acceleration increases right from the beginning of the 
manoeuvre and reaches its first maximum after a short time. If the initial rate of elevator 
movement is high enough, and the elevator is not reversed this maximum will be the absolute 
maximum" any subsequent maxima including the asymptotic value will be less. The difference 
between this first maximum and the asymptotic value will be termed ' the dynamic overshoot ' 

Changes in any other response quant i ty  with time are of a similar character" decaying oscillation 
- -wi th  the possible exceptions manifest during the very early stages of the manoeuvre. With 
the elevator deflected and held all those quantities tend to their respective asymptotic values 
which for all practical purposes are normally reached after a time of two or three seconds, and 
then the at t i tude of the aircraft corresponds to a steady circling in a vertical plane provided the 
simplifying assumptions still apply. The assumption of the component of the aircraft weight 
along the normal to the flight path being constant specially applies when the aircraft is flying 
along the near-horizontal portions of the circle. 

The  net aerodynamic load*at the tailplane is given by 

P = }pV2S'(al~'o~ + a2~) 

where c~'~, is the resultant effective angle of incidence at the tail. The two contributions to the 
net load, P~ and P~ corresponding to the two terms in this expression are numerically of opposite 
signs; in pull-out manoeuvres P~ is positive (an upload). 

In accordance with equation (13) of Appendix A the component P~ itself is a linear combination 
of three quantities g, q, and do~/dt, as follows 

1 ' 
- -  dc~/ " + V q ~ V dot-dt " 

* The expression ' net load '  is used here to describe the total incremental aerodynamic load at the tailplane due to 
the manoeuvre alone. 
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Thus the net tail load has the following four components: 

component, responsible for the static stability of aircraft, may be termed the restori~cg load. 
q component is connected with the increase in the angle of incidence c~' at the tail due to the 

angular velocity of the aircraft in pitch;  it usually provides the main contribution to the 
damping of the short-period mode. 

dcz/dt component providing another contribution to the damping originates from the fact 
that  any changes in the downwash at the wing appear at the tail only after a time 1IV. 
Under steady flight conditions this component becomes zero. 

component represents the disturbing force, and is solely responsible for the manoeuvre; 
as such it can rightly be called the ma~coeuvrisg load. In general this load is variable during 
a single manoeuvre. 

These four components correspond to the second, third, fourth and fifth terms of the second 
equation of motion, equation (2) respectively. 

As shown in Appendix A, section A.4.5 the net tail load may also be expressed thus : 

d~ 

where z~ is an alternative symbol for the incremental angle of incidence e, a n d ,  stands for the 
non-dimensional time, the unit of time being ~ = W/goSV. T h u s ,  = t/~. 

The contribution to the net tail load due to the aircraft response alone is then 

= A + C d /dJ, 

a n d  tha t  due to the elevator movement is P~ =Aa2~. Changes in the two contributions and also 
in their sum, tile net load, can be studied in Fig. 2 (f), (g), and (h) (where all the loads are given 
per unit  maximum coefficient of normal acceleration ~,,~). 

Changes in P~ are rather similar to those in ~ or I¢ but, owing to the C dz~/d, term, P~ reaches 
its first maximum sooner than ~¢. P~ is proportional to t h e  elevator deflection throughout the 
manoeuvre. ' 

Referring again to Fig. 2 (h) it can be seen that  the first minimum of the net tail load P1 
: (maximum download) occurs in the early stages of the manoeuvre when the elevator is not ye t  
fully deflected, and there has already been some response. The first maximum upload P~ occurs 
a t  a time when the two contributions to the net load, P .  and P,, have both practically reached 
their maxima. This maximum net load usually corresponds to the critical condition for the torque 
at the tailplane combined with a relatively high upload. 

Should the elevator be reversed at about the time of P2 a further increase in the upload, usually 
accompanied with a decrease in the tailplane torque, would result. 

In a hypothetical manoeuvre where the elevator is deflected instantaneously-- the case 
-represented by dotted lines in Fig. 2-- the  maximum download P0 occurs right at the beginning 
of the manoeuvre, its numerical value being greater than PI, the maximum download in the case 
,of a gradual elevator application. However, the first maximum upload P~ differs little in the 
two cases. 

In the empirical formulae of the past the tail load has been taken as the sum of two quantities" 
the ' balancing load '  and the ' manoeuvring load ', and the underlying physical picture of the 
manoeuvre has been extremely simplified. I t  seems as well at this point to review briefly tha t  
.simplified picture and the terms usually associated with it in order to compare them with those 
offered by the present approach . . . . . . . . . . .  
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Within the empirical approach the aircraft is considered to be flying level when the angle of 
incidence is suddenly increased to produce the maximum specified acceleration at its centre of 
• gravity;  the angular acceleration is zero at the instant this normal acceleration is experienced, 
the  balancing tail load being that  calculated accordingly. Further it is assumed that  any such 
manoeuvre is produced by an instantaneous application of a manoenvring load at the tail 
calculated from a prescribed formula. The net tailplane load at the beginning of the manoeuvre 
is then the sum of the balancing load and that  manoeuvring load, and it has been customary to 
take the chordwise centre of pressure position of the net load anywhere between the leading edge 
and the half-chord point of the mean tailplane chord without any reference to the angle of 
incidence or the elevator angle necessary to produce the corresponding chordwise load distribution. 

In spite of the fact that  such an empirical approach proved to be extremely useful in the past, 
the exact interpretation of the manoeuvre conceived in this way was difficult if not impossible. 
The sudden change in the angle of incidence accompanied by the sudden increase in the normal 
acceleration from lg to, say, ng would imply an eventual flight in a gravitational field of intensity 
rig. The aircraft does not rotate about its lateral axis even if ' manoeuvring '  load is defined 
through the specified angular acceleration about this axis. Thus the tailplane loading does not 
contain any damping contributions. Except for the sign of the manoeuvring load there is no 
true relationship between the numerical value of that  load, as obtained from the various empirical 
formulae, and the maximum normal acceleration expected to be reached in a real manoeuvre. 

6. Elevator Movement.--For the mathematical  t reatment of the problem an exponential 
function of time, equation (5) has been chosen to represent in a general form the time history 
of the elevator movement in pull-out manoeuvres. When choosing this function the following 
considerations have been taken into account. 

There is practically an unlimited number of possible types of time histories of the elevator 
movement in longitudinal manoeuvres. However, the available records of such time histories 
indicate that  for the most rapid manoeuvres the elevator movements may be reduced to a few, 
possibly only two types, namely : 

(a) the elevator deflected quickly by some angle, held in this position for a short period, 
and then reversed 

(b) the elevator deflected quickly and immediately reversed possibly well beyond its initial 
steady-state position. 

An inspection of Fig. 1 shows that  both these types of elevator motion can be represented by 
the exponential function chosen. General solutions for any such motion are given in Appendix A 
so that  complete time histories of any of the desired response quantities may be obtained. 

.Of the two above elevator movements the first (a) is considered as possibly more appropriate 
for design purposes where the basic specified quant i ty  is the maximum normal acceleration 
(say nlg) to be reached in the manoeuvre and never exceeded. I t  is suggested that  a pilot is 
unlikely to apply the second type of movement (b) in manoeuvres invoicing tile maximum normal 
acceleration specified, and if he at tempted to do so he would often exceed that  acceleration by a 
considerable amount. This view seems to be well substantiated by some flight test results 
reported by H. H. Brown 2~ where for most of the type (b) manoeuvres the prescribed maximum 
incremental value of normal acceleration was exceeded by anything up to 50 per cent, and on one 
occasion by as much as 75 per cent. 

The exponential function chosen, equation (5) is also rather ' flexible' in that  by varying the 
three parameters k, f, and ,~ a large variety of elevator motions can be obtained. This property 
may also prove useful when checking the results calculated by the present method against those 
from suitable flight tests; it is expected that  for rapid manoeuvres it will usually be possible 
to approximate the recorded elevator motion by this exponential function. 

At variance with the fairly popular assumption of elevator movement time histories represented 
by a few straight line segments, the function chosen is a continuous one, and thus the mathematical 
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search for maxima of the various response quantities is more straightforward. In addition to 
the elevator motion given by equation (5) an alternative motion has been considered and suggested 
in connection with the method given in Vol. 2 of A.P. 97019. The proposal consists in using the 
same expression, equation (6) for both the initial and the reversed elevator movement 
(@ section 9). 

7. Elevator Moved Instantaneously and then Held.--The hypothetical manoeuvre produced 
by an instantaneous elevator deflection, being a s i t  were a limiting manoeuvre, may be considered 
as a sort of useful datum for the discussion of other longitudinal manoeuvres. Formulae covering 
this case are given in Appendix A, sections A.3(a) and A.5, and Appendix B, section B.8. A 
numerical example is shown by dotted lines in Fig. 2 (a) to (h) where all the response quantities 
are plotted against the generalized time (see section A.1) ; with the exception of coefficients of 
normal acceleration they are given in terms of maximum incremental g reached in the manoeuvre. 

From Fig. 2 (b) it is seen tha t  the incremental normal acceleration increases right from the 
beginning of the manoeuvre, reaches its first maximum n,,g, and then through decaying oscillations 
tends to an asymptotic value n~g. For a given elevator deflection V0 the coefficient n~ may be 
expressed thus 

n~ = -- c~r/oD Ks y . . . . . . . .  (cf. equation (23)) 

or in terms of dimensional quantities 

½p V~S'la2*lo 
WcH,. 

which is of course what one would obtain from static considerations of the equilibrium of pitching 
moments in a steady circling case. Strictly speaking the asymptotic value n~ is reached after an 
infinite time but  for all practical purposes it can be assumed tha t  it  is reached within a few seconds 
from the beginning of the manoeuvre. I t  should be noted that  the same value of n~ is obtained 
also in other manoeuvres where the initial elevator movement is not instantaneous but  gradual, 
and tha t  in general it does not depend on the time history of that  movement, but  on the final 
elevator angle alone. 

From the last equation it can be seen that  the elevator angle ~0 required to reach an incremental 
value of the asymptotic normal acceleration n~g increases directly with the manoeuvre margin 
H,,. The angle ~0 increases also with the aircraft weight W and decreases with increasing air 
density p at a constant true air speed V. However, when considering these changes it should be 
borne in mind tha t  the manoeuvre margin itself is a function of W and p ; with the simplifying 
assumptions made in the present treatment H,, may be written thus : 

1 ~C.~ gpSl ~ 
H , ~ -  a ~ Wc mq. 

The incremental value of the angle of incidence c~ is given as 

1 (see equation (15)) ~a ~ ~ na 

and the asymptotic value of the angular velocity in pitch q~ in radians per second 

a 

q~ -- 2~D n~ 
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or in terms of dimensional quantities 

qa = @ ~//~a " 

The first maximum normal acceleration n,~g occurs at a time corresponding to J ,  = ~ (cf. 
Fig. 2 (b)). With the usual values of significant parameters this time may b'e of the order of 
one or two seconds, and more, but in extreme cases it may be well below ½ second. 

The peak value n,,g shows a dynamic overshoot. Within the short-period mode considered, the 
aircraft represents a dynamic system with one degree of freedom and thus obeys the same laws 
as a single mass-spring-damping mechanical system. In the non-dimensional notation used the 
basic parameters are : 

~/(R ~ + i f )  natural  undamped frequency 

J natural damped frequency 

R damping coefficient. 

For an instantaneous disturbance (step function) the dynamic overshoot depends solely on the 
ratio R/J. At R/J ---= 0 (zero damping) the overshoot is 100 per cent of the steady asymptotic 
value. With R and J values of modern aircraft it may reach 50 per cent or even more. Tile 
conditions may be studied from Fig. 11 where K~ and Ks plotted against R/J represent response 
factors for the asymptotic values of normal acceleration (or angle of incidence ~) and its first 
maximum respectively. 

When the two parameters R and J are written in terms of dimensional quantities thus 

Wc 

r ~,2 tail (1  ~ / 2  d 's"~ 1 S'/'2 ~ 1~] R = ½L-- k,  --~ (rn,),oss + + a, + 

then in conjunction with Fig. 11 the effect of changes in any of the basic quantities can be 
discussed, especially if numerical values of the remaining quantities are known. 

In general it Call be expected that  with an increase in the manoeuvre margin H~ the overshoot 
is increased, but  it is decreased if the tail arm l Js increased. 

The time history of the net tail load is shown in Fig. 2 (h) by the dotted line. I t  starts with 
a value Po which is entirely due to the instantaneous deflection of the elevator through an 
angle 70. Obviously 

Po = Aa2~o = ½ p V ~ S '  a2~o . 

In a pull-out manoeuvre 70 represents an upward movement of the elevator and thus with the 
accepted sign convention it is negative, and so is also P0 representing a download. As the man- 
oeuvre develops the negative value of the tail load decreases, then changes its sign and reaches 
its maximum positive value P~ slightly before the maximum acceleration n,~g is reached. All 
the changes in the net load are due to the response of the aircraft. In accordance with equation 
(18) the general expression for the tail load can be written thus : 

c P = A ( B ~  + d~ + " 



The last term in the bracket corresponds to the elevator contribution P~ to tile net load, which 
is P0 in this case and remains constant throughout the manoeuvre. The other two terms taken 
together represent the contribution due to the aircraft response P~ which numerically is of 
opposite sign to the ~ contribution. I t  should be remembered that  zO in the above expression is 
equal to the angle of incidence ~ and is proportional to the coefficient of normal acceleration n. 
Usually the coefficient C is much smaller than B, and therefore the changes in the P~ contribution 
to ne t  tail load are rather similar to the changes in the normal acceleration (see Fig. 2 (b) and (g)). 

The peak value P2 is usually an upload and is combined with a high torque on tile tailplane. 
A pure torque is experienced earlier in the manoeuvre when the net load becomes zero, i.e., when 
the two contributions P~ and P~ are numerically equal and opposite. The numerical value of 
this  torque is obtained by multiplying P0 by the distance between the two centre of pressure 
positions: one, the chordwise c.p. of the load due to the angle of incidence alone, and the other 
due to the elevator deflection when c~ = 0. Since this statement applies to incremental loads 
only it needs to be suitably modified when the initial loading conditions preceding the manoeuvre 
are taken into account. 

In cases when the static stabil i ty of the aircraft tess tail is positive, i.e., when (OC,,,/O~)~o~a~ ~ 
is negative, the maximum upload P~ becomes effectively a down load being then the absolute 
minimum down load in the manoeuvre. 

The asymptotic value of the net load at the tail may be expressed thus : 

A BK~ + A a~o 

where the two contributions are clearly separated. In terms of dimensional quantities P~ becomes 

p = ½ p V P S , [  S ' l  1 1 de a l l a~0  

where 
W 

- -  goSl" 

The effective angle of incidence at the tail is 

' - -  - -  - -  I -  @ a ~ ] o .  c~ ef~ Sc all,, 

The rotational character of the motion under steady-state conditions is recognizable in these 
expressions by  the appearance of the manoeuvre margin H,~ and of the term a/2~ in the round 
bracket. 

The last expression for P~ permits a discussion on the effects of changing some of the basic 
parameters. In a pull-out manoeuvre P~ decreases with increasing manoeuvre margin H~ the 
decrease being much more rapid than in the case of the normal acceleration n~i The difference 
between the absolute maximum P~ and the asymptotic value Po may be regarded as the dynamic 
overshoot, although in relation to the net loads, this concept is of little practical use. In addition 
to normal accelerations and  tailplane loads, Fig. 2 (d) and (e) show also the time histories of the 
angular velocity in pitch q and of the normal acceleration at the tail n~. Owing to the assumption 
of an instantaneous elevator application, nt has a finite value right at the beginning of the 
manoeuvre. 

8. Elevator Moved Gradually and then He ld . - -The  type of elevator movement chosen~is given 
by  the equation ~ = ~ 0 ( 1 -  e -k~) which for all practical purposes may be considered as 
representing an elevator gradually deflected at first, and then held ate0. If the mean rate of 
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its movement (see section A.2) is relatively high then the behaviour of the various response 
quantities is, on the whole, similar to that  described in the preceding section. In the early stages 

• of tile manoeuvre there may be major changes in those response quantities which depend directly 
on the time history of the elevator movement. The. asymptotic values of all the quantities, 
however, remain unchanged. Full lines in Fig. 2 apply to the manoeuvre as obtained with 
gradual elevator deflection. 

The changes in normal acceleration are similar to those observed with an instantaneous elevator 
application; the corresponding full curve is now slightly displaced from the dotted curve; the 
first maximum n~ attains a somewhat lower value, and occurs later than J~ = ~. After that,  
through decaying oscillations, the coefficient n approaches its asymptotic value. The deviations 
from the instantaneous case become the more pronounced the lower the mean rate of elevator 
movement ;_ the primary purpose of the present analysis is to find the critical loading conditions 
for an aircraft in longitudinal manoeuvres; these are obtained with the highest rates of elevator 
movement which a pilot is able or likely to apply. 

For the general t reatment this rate, expressed in degrees per second, does not represent the 
parameter which really matters, that  means one whose significance could readily be appreciated 
wi th  reference to the response properties of various aircraft. The non-dimensional generalized 
rate k as defined by equation (7) is here the more suitable parameter. By itself or in combination 
with the two main factors R and J it affects in the most direct way the behaviour of the aircraft, 
and particularly the numerical values of the maxima of response quantities. On one occasion it 
has been found that  rates of about 10 deg/sec and 100 deg/secmeant  for two different types of 
aircraft t he  same ' quickness'  of the elevator movement in that  the dynamic character of the 
ensuing manoeuvre was in both cases identical. 

With  a decrease in the mean elevator rate (or k value) the coefficient of the first maximum 
acceleration n .  decreases, and the time of its occurrence is delayed. At a certain relatively low 
rate the peak. value ~,, becomes equal to the asymptotic value n~. At such low rates n,,, has also 
ceased to be the absolute maximum; instead, one of the subsequent maxima shows the greatest 
overshootl bu t  this overshoot is now negligibly small. 

When the elevator rate is further decreased down to a value corresponding to h = R a kind of 
limiting case is obtained; no maxima of ~ can now be observed; the time Jr,~ of the would-be 
-first maximum is delayed to 2~ and the corresponding [Jr, ~¢] curve shows there an inflection 
point with a horizontal tangent;  further similar inflection points occur at J~ = 4~, 6a, etc. 
This  t y p e  Of response is shown in Fig. 12. The normal acceleration increases monotonically 
th roughout  the manoeuvre and approaches its asymptotic value ~;  the response becomes quasi- 
aperiodic in its character. The very low elevator rate considered (h = R) has no practical 

'significance from the standpoint of rapid pull-out manoeuvres but  it is of interest as a limiting 
-case. 

A s  compared with the instantaneous case of section 7 the time history of the net tailplane load 
is very different during the early stages of the manoeuvre. The load starts from zero and soon 
reaches a maximum download P~ (strictly speaking a minimum, see Fig. 2 (h)). This maximum 
occurs when the elevator has not yet been fully deflected, and the relieving contribution of the 
aircraft response (or of the effective angle of incidence at the tail) is about to override the increase 
in the ~-contribution. The numerical value of P~ is always less than the instantaneous value P0 
of the preceding section. Thus the ratio P~/Po is less than one, and for a given aircraft and 
specified flight conditions it depends solely on the mean elevator rate drl ~dr or on the value of the 
coefficient k. The numerical example of Fig. 2 for the gradual elevator application has been- 
'calculated for a rate given by the condition k = 4J + R (@ section 11) ; the corresponding drj/dt 
is of the order of 90 deg/sec. In order to ascertain the effects of changes in the mean elevator 
rate values of P~_have been calculated together with the times of occurrence J~ for a few elevator 
rates. The ringed points in Fig. 2 (h) show the positions of the corresponding peaks. I t  should 
be noted that  in each of the calculated cases the value of the maximum elevator angle ~0 was 
:adjusted so that  the first maximum normal acceleration should be equal to the specified value 
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of 6.5g. The effects of changing the elevator rate can best be studied from Fig. 3 where P1, 
the time J~, and ~0 are plotted against the rate in degrees per second. The maximum elevator 
angle ~0 varies very little within the range of high elevator rates; at lower rates ~o becomes 
greater, but  below a certain rate it loses its practical significance since--as has been seen--either 
tile asymptotic value of normal acceleration or one of tile later maxima represents the absolute 
maximum. The time of occurrence of tile maximum down load J,1 decreases with increasing the 
rate, and becomes zero for tile instantaneous elevator application. The net download P1 increases 
when the rate is increased, the changes being more rapid at lower values of the rates; thus for 
the numerical example considered a change in tile rates say, from 20 deg/sec to 40 deg/sec increases 
P~ by 37 per cent, but a change from 120 deg/sec to 140 deg/sec would raise P1 by only 4 per cent. 
Calculations made on several types of aircraft show that  with practical mean elevator rates the 
ratio P~/Po often assumes values of the order of 0-6 to 0.7 but anything from 0.5 to 0.8 may 
be expected. In exceptional cases P~/Po values even outside this range may be obtained, say, 
if the aerodynamic damping of the aircraft (given by the coefficient R) is unusually low or if the 
elevator power control system unduly restricts the maximum elevator rate. Changes similar 
to those shown in Fig. 3 can be found for any aircraft and any condition of flight though tile 

numer i ca l  implications of this figure apply only to tile particular example considered. The 
maximum value of the net upload at the tail P,  is little affected by the initial elevator rate ; with 
decreasing rate it decreases slightly and is somewhat delayed, but it always occurs before the 
peak maximum acceleration n,,g. At high elevator rates P~ is reached when, for all practical 
purposes, tile elevator has already been deflected to its maximum angle ~0. The general remarks 
on P2 made in the preceding section apply here as well. The asymptotic value of the net tail 
load P~ is the same as in the case of instantaneous elevator movement and thus remarks on P~ 
made in section 7 again apply in this case. 

Consider now the changes in the angular velocity in pitch q which occur in a pull-out manoeuvre. 
As soon as the elevator starts to deflect tile aircraft begins to rotate about its lateral axis at a 
varying rate q with respect to a system of axes fixed in space. In general q differs from tile rate 
do~/dt at which the angle of incidence changes with time; in fact q is a function of both the rate 
do~/dt and the angle ~ itself. The time history of q shown in Fig. 2 (e) is fairly typical;  q increases 
from zero to reach its first absolute maximum at about J ,  ----- ~/2, then decreases considerably 
to a minimum which is still positive (nose-up), and finally through decaying oscillations approaches 
its asymptotic value. As can be seen from the graph the angular velocities obtained wittl 
instantaneous and high-rate gradual elevator movements differ relatively little from each other. 
I t  is of interest to note the rather large dynamic overshoot of the first maximum of this response 
quantity. Changes in the angular acceleration in pitch, dq/dt can be estimated from Fig. 2 (c). 
The first maximum det~ends largely on the initial mean rate of elevator deflection, whereas the 
subsequent minimum IS only slightly affected by it both being very nearly proportional to tile 
maximum normal acceleration reached in the manoeuvre. This is probably the main reason for 
the considerable scatter of recorded values of the first maximum angular acceleration per g found 
in abrupt .pull-out manoeuvres by Matheny% 

Tile normal acceleration at any point of the aircraft is a sum of tile normal acceleration ng at 
tile centre of gravity and the acceleration due to the angular acceleration in pitch dq/dt. The 
latter component varies linearly with the distance from tile centre of gravity. Fig. 2 (d) shows a 
typical time history of the normal acceleration at the tail, nt. The first negative maximum occurs 
m the early stages of tile manoeuvre ; its numerical value for a fighter aircraft may be of the order 
of one or two g. The times of occurrence of this maximum and of the maximum down load P~ 
do not coincide in general. However, when stressing the tail and rear fuselage for P~ it may be 
found that  in certain cases the simultaneous relieving inertia forces due to the negative normal 
acceleration are quite substantial. 

The subsequent positive maximum of nt appearing in the vicinity of J~ = ~ is affected by 
dq/dt to a small though not negligible extent. This maximum is always bigger than n,~. For the 
steady circling case tile asymptotic value of the normal acceleration at the tail is of course, 
equal to that  at the centre of gravity of the aircraft since dq/dt is then zero. 
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9. Elevator Reversed.--A pull-out manoeuvre as discussed in the preceding section will be 
completed by the application of the elevator in the opposite direction in order to bring the 
aircraft back to a lg steady level flight condition. To cover this case, the full expression for the 
elevator deflection, equation (5) may now be used. Time histories of the various response 
quantities can be obtained by substituting ihe expressions of section A.3 (c) into the appropriate 
formulae of section A.4. This procedure can be adopted in all cases where the knowledge of 
aircraft response in such manoeuvres is require d . In particular when comparing appropriate 
flight test. results with the results calculated in accordance with the present analytical method 
the recorded elevator movement must be approximated by  equation (5) as closely as possible. 

In order to calculate for design purposes the response and maxima of the various response 
quantities in a full pull-out manoeuvre the elevator movement, equation (5) could be used. In 
this case an additional assumption must be made, as to how far the elevator would be reversed. 
However, an alternative approach will be made here. For the purposes of A.P. 9701~ it has 
already been suggested that  the type of reversed elevator movement should be the same as that  
used for the initiation of the manoeuvre, i.e., that  given by equation (6) but  with the reversed sign 
The additional assumptions are: 

(i) Before the reversed elevator movement is applied the aircraft is in a steady circling 
att i tude in a vertical plane, the steady incremental normal acceleration being now 
equal to the maximum permissible n,,g. 

The elevator angle required to maintain this steady att i tude is somewhat greater 
than the angle ~o of the first stage of the manoeuvre as discussed in section 8 

(if) The mean rate of the reversed elevator movement is equal to the mean rate of the initial 
movement taken with the opposite sign 

(iii) The maximum reversed elevator angle is such as to reduce the steady circling incremental  
value of n~g value down to zero the latter being the absolute minimum during this 
stage of the manoeuvre. I t  follows that  this maximum reversed angle is equal to the 
elevator angle ~0 used for the initiation of the manoeuvre, taken with the opposite sign. 

This type of reversed elevator motion has been taken as a basis for the computational scheme 
given in Appendix B, section B.5; it reduces considerably the computational work required. 

Of the various maxima of response quantities occurring during the second stage of the 
manoeuvre there are usually only two which are of interest from the design standpoint. These 
are: a further maximum upload at the tailplane Ps, and a maximum normal acceleration at the 
tail both appearing at roughly the same time. The occurrence of the latter maximum is due 
solely to the changes in the dq/dt contribution; its numerical value for fighter aircraft may be 
larger than n,~g by One or two g. 

10. Computational Method.--Appendix A shows the analytical t reatment of the problem, and 
the derivation of formulae for the different response quantities. I t  contains all the information 
required to calculate time histories and maxima of these quantities, allowing a certain latitude 
in making assumptions as to the manoeuvre itself. Appendix t3 is based on the results of Appendix 
A, and gives a method for computing the various response quantities particularly those required 
for design purposes. No direct reference to the derivation of formulae is made, and the numerical 
computations may be performed even with little understanding of the physics of the problem. 
When interpreting the numerical results obtained it  should be borne in mind that  

(i) All the response quantities are related to the coefficient of maximum incremental normal 
acceleration n~ reached in the manoeuvre with the exception of the coefficients of 
normal acceleration themselves. However, for any new value of n~, the quantities 
~0, k, and Ks should be calculated afresh as indicated in section B.5.1.0 
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(ii) The maximum elevator deflection ~0 and the response quantities considered represent 
incremental values in the manoeuvre. Total vMues a t  any time during the manoeuvre 
are obtained by adding the incremental ones to those present in the steady level flight 
conditions preceding the manoeuvre. 

The manoeuvre underlying the computational method of Appendix B may be considered as 
consisting of two stages, namely : 

First stage, the ~ull-out 2br@er.--The initial at t i tude of the aeroplane corresponds to steady level 
flight conditions at the selected true air speed V. The elevator is moved gradually in accordance 
with the general formula. 

= 

w h e r e ,  is the aerodynamic time (cf. section A.1), and k a coefficient related to the mean rate of 
the elevator movement. The maximum elevator angle 70 is chosen in such a way tha t  the maxi- 
mum incremental normal acceleration reached: in the manoeuvre is n,,g, and the corresponding 
total  acceleration (n,~ + 1)g. (In practice this latter normally corresponds to the  boundary of the 
appropriate flight envelope at the chosen speed V). After a Short time asymptotic conditions 
will be reached with a normal acceleration n~g usually somewhat less than n,,,g. In order to reach 
a steady incremental normal acceleration of n,~g, which is the initial condition for the second stage 
of the manoeuvre, the elevator deflection will usually have to be increased to ~ .  This additional 
small deflection is assumed to be made slowly in comparison with the initial rather rapid movement. 

Second stage, the return to levelflight.~This stage of the manoeuvre is initiated when the aircraft 
is flying along the near-horizontal portion of a circle in the vertical plane at a total  steady normal 
acceleration of (n~, + 1)g. The elevator is moved according to the same general formula as in 
the first stage, but in the reverse direction, the time being reckoned anew from zero. The mean 
rate of elevator movement is assumed to be the same as before, and thus the numerical value of 
the coefficient k remains unchanged. The maximum incremental normal acceleration reached in 
this stage is -- ~,,g reducing the total acceleration to lg. I t  follows that  the maximum reversed 
elevator angle equals 70. These two stages of a pull-out manoeuvre are conceived here as forming 
one single manoeuvre but  they can be treated separately as it is immaterial for the second stage 
how its initial steady flight conditions have been reached. If instantaneous elevator movements 
are assumed for the two stages, the resulting manoeuvre, which may be taken as a limiting 
manoeuvre, is the most rapid of all the manoeuvres of the type considered, and maxima of the 
various response quantities, particularly those appearing in the early stages of the manoeuvre 
normally reach their highest values. Thus if this limiting manoeuvre is assumed for design 
purposes conservative loading conditions are usually obtained. The computational scheme, 
however, becomes much simpler; it is given in section B.8 of Appendix t3. The method of 
Appendix B allows the calculation of the time histories of some or all of the response quantities, 
or else the calculation of the various maxima of those quantities only, without obtaining the full 
responses. The last procedure is the shorter ; it is advisable, however, to have the full response 
curves as this provides a better insight into the manoeuvre and may also serve as an additional 
check on the computed values. 

11. The Rate of Elevator Movement.--In order to determine exactly a pull-out manoeuvre of 
the type considered numerical values must be known for all the parameters relating to the aircraft 
and its flight conditions, and two other basic quantities must also be specified, namely the maxi- 
mum normal acceleration to be reached in the manoeuvre and the maximum value of the mean 
rate of the elevator movement [dT/dt]. The proper choice of these two quantities in particular 
cases is outside the scope of the present paper. However, suggestions have already been made 19 
for the estimation of the mean elevator rates. They have been expressed in terms of certain 
quantities, and it  seems suitable to show here how they have been arrived at. 
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If t h e  elevator control circuit imposes no limits to the elevator rates the pilot can apply, then 
the proper choice of the maximum rate becomes a difficult task. The statistical analysis o f  
suitable data may give hints on how to make such a choice in particular cases. Flight test data  
of some 250 pull-out manoeuvres made on twenty different aircraft types have been collected by  
Matheny 23 and out of these nearly 40 of the most rapid manoeuvres have been selected for analysis 
of the trends in the variation of the elevator rate. 

Inspection of the  data indicated tha t  the size of the elevator circuit could have only a secondary 
effect on the rate. Several at tempts were made to correlate the elevator rate with various aircraft 
data, aerodynamic data or their combinations but  in each case considerable scatter was observed. 
I t  was, however, realized tha t  there existed a certain relationship between the elevator rate, 
maximum normal acceleration and the time at which tha t  maximum occurred, in other words 
that  the rate is affected by  the way the aircraft responds to imposed disturbances. I t  seemed 
plausible that  pilots tend to apply higher elevator rates in aircraft responding quickly to disturb- 
ances, and vice versa. 

In order to see whether any such trend existed, the available dimensional data were interpreted 
in terms of the generalized non-dimensional quantities of Appendix A. These considerations 
led to the belief tha t  the expression (k -- R)/J might be a constant for tile most rapid manoeuvres. 
This is borne out by  test data, the scatter being quite moderate. I t  has been suggested for design 
purposes ~9 tha t  the value of (k -- R)/J should be 4, or the generalized elevator rate k = 43" + R. 
The whole proposal must be treated as tentative, and further tests are needed to get more 
information. 

12. At~proximatio#s.--Probably the most important  quan t i t y  from the designer's standpoint 
is the net load at the tailplane, and especially its maxima occurring during the manoeuvre. 
During the early design stages rough estimates of these maxima may be needed, and the following 
formulae can be used for this purpose. These formulae are empirical in character and are based 
on the results obtained through the application of the method given in Appendix B to several 
types of aircraft. 

The formulae for the first maximum imremental download P1 are 

J l  1 t maximum net load P1 = P0 1 + lORIk 

elevator contribution P~I P 0 ~ / { 1  + ~.3R/k} 

and thus the relief due to the aircraft response is 

Now P0 represents the download due to the instantaneous elevator deflection in the limiting 
manoeuvre of section B.8. I t  is given by the formula 

F as ~2 
Po - K~ Jm~ 

or if expressed as far as possible in terms of the basic dimensional quantities 

P0 = -- W ~ H,, 1 + e-'Ru 

where H,,, is tile manoeuvre margin at constant speed V. 
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The ratios PIlPo and P~IlPo corresponding to the above empirical formulae are plotted in Fig. 4 
against k/R. The ringed points show the true values calculated for the four different elevator 
rates of the numerical example discussed in section 8 (see also Figs. 2 (h) and 3). 

Tile application of the simplified formulae for the estimation of the ratios PI/Po and PnI/Po may 
usually involve errors of the order of ± 10 per cent or more. 

The first maximum incremental upload P~ can be roughly estimated from the formula 

• p~ _ WS'(1 de ggSl "~ 
Sa \ - ~ + ~W a)a,n,, + Po 

where the first term represents the contribution due to the effective angle of incidence at the tail, 
and the second the contribution due to the elevator deflection. 

Similarly tile approximate formula for the second maximum incremental upload P8 Js 

-= LSa -- ~ - t -  2 W  

The elevator can be considered to be returned to its initial position. 

13. Comluding Remarks.--The method presented for the estimation of aircraft behaviour in 
symmetric pull-out manoeuvres and for the calculation of various response quantities, including 
the tailplane loads, and of their maxima has been derived in terms of the significant geometric 
and aerodynamic parameters. Thus reliable results will be obtained if exact numerical values 
of the aerodynamic derivatives in question are used. Any errors in their estimation affect the 
accuracy of final results. In this respect the manoeuvre margin H., is the most important  of all 
the derivatives. Within the simplifying assumptions made for the present method all the aero- 
dynamic derivatives involved are the same as those required for the calculation of quantities in 
steady flight conditions and also for the estimation of the longitudinal dynamic stability character- 
istics. I t  is thus essential that  these derivatives be obtained from the best available data. 

The analytical treatment presented is based on several simplifying assumptions. The available 
experimental evidence proves them to be quite adequate. I t  is, however, not unlikely that  under 
special circumstances the errors involved may become considerable. I t  is, therefore, desirable 
that  further theoretical and experimental work should be undertaken to obtain tile necessary 
insight into those additional problems, of which the dynamic structural response and the unsteady 
flow effects are perhaps the two most important. 

The present work applies to tailed aircraft only. A similar approach could also be used for 
the investigation of loading conditions of tailless and delta aircraft in longitudinal manoeuvres. 
Although the disturbance and the significant response quantities are rather different, parts of 
the present analysis could be used directly. 
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LIST OF SYMBOLS 

Coefficient in equation (18); also coefficient in equation (40) 

Coefficient in equation (63) 

OCL/Oc~ for the whole aircraft 

~CL'/~o~' 
~CL'/O~q including the effects of tabs if used 

Coefficient in equation (18) 

OC~,/Orl including tile effects of tabs if used 

Coefficient in .equation (18) 

Hinge-moment coefficient of elevator 

PKching-moment coefficient of aeroplane about its c.g. 

Lift coefficient of aeroplane 

Lift coefficient of tailplane 

Standard mean chord of wing 

Standard mean chord of tailplane 

Coefficient in equation (15) 

Special function (see equations (9)) 

E, special function (see equations (9)) 

Coefficient in equation (27) 

Generalized mean rate or reversed elevator movement 
@ section A.2 

Acceleration due to gravity 

Special function, (see equations (9)) 

Manoeuvre margin, stick fixed (see section 7) 

Restoring margin, stick fixed (= ~C,~/OCL) 
Part of the real stability root (see equation (8a)) 

Non-dimensional frequency of pitching oscillation 

Special function (see equations (9)) 

Special function (see equations (9)) 

K, special function (see equations (9)) 

Value of function K at the time of ~,, 

Value of function K at J ,  = 

Generalized mean rate of elevator movement 
A.2, equation (7)) 

Radius of gyration of aeroplane about the lateral axis 
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LIST OF SYMBOLS--co~#i~ued 

Special function (see equations (9)) 

Distance from the c.g. of the aeroplane to the quarter-chord point of the 
tailplane 

Coefficient in the equation of section B.6.4 

Damping derivative in pitch -- 21 ~(--~7/)~ 

Coefficient in the equation of section B.6.4 

Coefficient of incremental normal acceleration at e.g. of aeroplane 

Coefficient of normal acceleration at the tailplane due to angular acceleration 
in pitch 

Coefficient of total normal acceleration at the tailplane 

Maximum value of ~ in a manoeuvre, incremental value 

Incremental tailplane load 

P due to elevator angle ~0 

First maximum download, net incremental value 

First maximum upload, net incremental value 

Coefficient in equation (46) 

Angular velocity of the aeroplane in pitch 

Non-dimensional form of q (=  ~q) 

Non-dimensional damping factor of pitching oscillation 

Wing area 

Tailplane area 

Coefficient in equation (46) 

Coefficient in equation (55) 

Time in seconds 

Unit of aerodynamic time (seconds), (see section B.3) 

Coefficient in equation (40) 

Coefficient in equation (68) 

True air speed of aeroplane 

Weight of aeroplane 

Incremental velocity component along z axis 

Wing incidence, incremental value 

Effective tail incidence, incremental value 

Coefficient (see equation (46)) 

Coefficient (see equation (40)) 
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LIST OF SYMBOLS--cont inued 

Coefficient (see equation (63)) 

Elevator effectiveness 

Downwash angle at the tail 

Elevator deflection responsible for the manoeuwe 

Maximum value of 

Root of stability equation (see equations (8a) and (8b)) 

Relative density of aeroplane (see section B.3) 

Rotary damping coefficient (see section B.3) 

True air density 

Coefficient in equation (58) 

Non-dimensional time (~  t/~) 
Downwash damping coefficient (see section B.3) 

Static stability coefficient (see section B.3) 

Associated with steady circling conditions 

Associated with maximum incremental normal acceleration 

Due to the effective tail incidence 

Due to the elevator deflection 
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T A B L E  1 

Data for the Numerical Example 

As a n u m e r i c a l  e x a m p l e  a f ighter  t y p e  a i rc ra f t  has  b e e n  chosen  f lying a t  600 f t / see  T .A .S . ,  a t  
a he igh t  of 30,000 ft. The  a i rc ra f t  p e r f o r m s  a r ap id  pu l l -ou t  m a n o e u v r e  in wh ich  it  r eaches  a 
m a x i m u m  i n c r e m e n t a l  n o r m a l  acce le ra t ion  of 6 .5g .  

B = 1 .319  

D = 11 .68  

/~ = 78 

~o = 43"09  

= 2"58  

J = 6 . 4 1  

R = 2 . 5  

C = 0 . 0 5 5 6  

F = 7 3 2 . 4  

= 2 . 6 2  sec. 

= 6 8 . 6 6  

x = 0 . 7 7 4 5  

R/J = 0 . 3 9  

k = 4 J  + R = 2 8 . 1 4 "  co r r e spond ing  to  an  e l e v a t o r  r a t e  

F d ~  - 9 1 . 4  deg/sec.  = 

k 2 

*Cf. section 11. 
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APPENDIX A 

Theoretical Analysis 

A.1. Equations of Motion.--The equations of motion of an aircraft in symmetric manoeuvres 
can be written thus" 

W(dw ~ ~Cz = 0  . . . .  . . . .  ( 1 )  - q V j  + ½pV2S ot 
/ 

W, 2 dq ½p V~Sc OC,. ot -- ½oV2Sc ~C,,, q + ½pV~S,l OCL' I de d~ 
Oq ~ '  V d~ dt 

= - ½p w s ' l  ac ' . .  ( 2 )  

where ~ and ~ stand for the incremental values of the angle of incidence and of the elevator 
deflection respectively. These equations correspond to a system of moving axes fixed in the 
aircraft. They have been established under the following assumptions : 

(a) The forward speed of the aircraft and the overall Mach number are taken to be constant 
throughout the manoeuvre 

(b) The component of the aircraft weight along the normal to the flight path is taken to be 
constant 

(c) The tailplane lift contribution due to the elevator deflection has been neglected in 
equation (1) 

(d) The tailplane pitching moment about its quarter-chord datum due to the elevator 
deflection has been neglected in equation (2) 

(e) The dynamic response of the elastic aircraft structure is disregarded 
(f) The disturbed motion of the aircraft conforms to the quasi-steady aerodynamic treatment 
(g) The aerodymanic derivatives are constant within the ranges of the effective angles of 

incidence and of the elevator deflection. 

The equations of motion in non-dimensional notation assume the following form 

dz0 
dV + ½a~ -- 4 = 0 . . . . . . . . . .  (3) 

x •  + + = - . . . . . . . . .  (4) 

The non-dimensional notation used is basically that  established b y  Bryant  and Gates ~° with 
modifications introduced by NeumarM 1 and others. For the non-dimensional velocity components 
symbols z0 and ~ are used instead of w/V and ~q. Also the letter k is used for a parameter 
characterizing the elevator motion (see equation 5). 

Owing to the non-dimensional notation adopted, the independent variable, time may be 
expressed either as 

(i) the aerodynamic time 3, the time unit being ~ = W/goSV seconds 
o r  

(if) the generalized time J r  (an angular quantity). Its value J r  = 2~ corresponds to the 
natural  period of the damped short-period oscillation of the aircraft in pitch. For any 
value of J r  the corresponding dimensional time in seconds can be evaluated thus : 

t = 5 - ( J J  seconds 

where J r  should be taken in radians. 
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A.2. The Disturbing Funct ion.--The disturbance is due to the  pilot 's  act ion;  the  elevator  
mot ion has been assumed to be given by  the following funct ion of t ime 

,~ = ~0E(1 - e - ~ )  + (1 - e~')e-J*~] . . . . . . .  (5) 

Under  the condit ion tha t  numerical  values of k, f, and ,3 are large, i t  can be t aken  tha t  of the two 
dist inct  portions of this  expression the first, 70(1 --  e -1°') represents the ini t ial  elevator movement ,  
whereas the  second, 70(1 --  e s,) e - I - a - t h e  reversed movement .  This can be readi ly checked by  
comparing the ini t ial  motions in Figs. 1 (a) and 1 (b), bo th  obta ined for the  same value of k;  
for all pract ical  purposes the reversed movement  of Fig. 1 (b) does not  affect the  ini t ial  one. 

A t ,  = 0 ,7  = 0 .  

A t ,  = ,3 the  elevator deflection becomes 

~ = 70(e-i '~ - e-~*3) . 

i n  most  pract ical  cases bo th  f,~ and kr~ are numerica l ly  large and possibly do not  differ much  
from each other. Thus  7a is very  near ly  zero (@ Fig. 1 (c)). 

For  the  case of an elevator applied gradual ly  and then held only the first port ion of the  right-  
hand  side of equat ion (5) is to be retained,  i.e., 

= ~o(1 --  e-~) ; . . . . . . . . . . . . .  (6) 

then  the  rate  at  which the elevator is moved is given by  

d~7 _ ~ok e -~ • 
d* 

I t  is cont inuously  var iable  wi th  time, bu t  a mean  rate  will be specified as half  the  dT/d, value 
at  ~ = 0 (see Fig. 1 (a)). Thus  if ~o is known, the  coefficient k can be expressed in terms of the  
mean  elevator rate  EdT/d'c] 

70 

or, if the  mean  rate  is given in radians per second 

k--_ 2 ~ [ dT] . . . . . .  (7) ~ . . . . . . .  

A.3. Complete Solutions.--From the  equations of motion, equations (3) and (4), the  following 
characterist ic  s tab i l i ty  equat ion is obtained 

~ + (~, + x + ½a)Z + o, + ,,½a = O.  

The roots of this  equat ion m a y  be 

real roots ~1, 2 

complex roots 21, 

where R 

either real or complex;  they  will be wr i t ten  thus : 

= - - R ± !  . . . . . . . . . .  

= - - R ± J i  . . . . . . . . . .  

= ½(~ + x + 1~) ,  i = ~ /{R ~ -  (o, + ~ ) }  

Q O 

0 I 

(Sa) 

(Sb) 

and 
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Complete solutions of the equations of motion can be expressed in terms of the following 
auxiliary functions of time 

R 

H = e -Y J* cos j r  

R 

L ----- e - )-:* sin J r  

K = 1 
_R:.( R sin J r ) ]  e : cos J r  + f 

i R--k Jz 1 1 - - e  ---y- ( c o s J r + R - - k  
K~ = ( R  y k ) ~ +  l j sin J r ) ]  (=  R) 

R +/sin yr l 
J / J  

e \ o o s  J r  + _ _  

k 

/% = e-U*(= E) 

(9) 

E; = e J 

Graphs of some of these functions are given in Figs, 5 to 8. 

First derivatives of the auxiliary functions with respect to the generalized time are as follows" 

dL R L dK _ L 
d ~ )  - ~ - J  ' d(Jr) ' 

dH _~ _ L _ R H  
d(Jr) y ' 

dK~ L dK s L - -  j 
d(Jr5 - E '  d(J~) - -  E:  

dE~ __ k E~ d E I  - - f  E: ,  
d(Jr) J ' d -~)  -- ] 

E ] d E~K~ -- -- k_ Efl£~ -4- L 
d(Jr) j , 

(9a) 

+" 

With the initial conditions r-----za = ~ = 0 complete solutions for z~, and their first two 
derivatives can now be written thus: 

(a) Elevator moved instantaneously and held. 

1 K 

@o J~ 
• ° 
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a d A _  Z. (rob) 
o .  . ,  , .  . o  ° ,  o °  . °  

@o& J 

1 dhO _ H + R L . . . . . . .  (10c) 
~70 d~ '~ J- . . . . . .  

(b) Elevator moved gradually and then held 

7 = 70 (1 - -  e -~') 

1 ~ _  K -  E,oK, . . . . . . . . . .  (lla) 
a7-2 J~ 

1 dz~ k ~7--'o -& -- j,. E a K ~  . . . . . . . . . . . .  ( l lb)  

- - _ _  k 2 
1 d~zO k L  + E~K~ . . . . . . . . . . .  (11c) 

aTo d, ~ J -~ 

(c) Elevator moved gradually and then reversed 

= 70[(1 -- e -~) + (1 -- eYe)e-&] 

__1_1~_~7o ) - 2 I K - - E ~ K ~ I - - ~ [ K - - E : K : I  e-& . . . .  (12a) 

1 &0 
dT0 d~ 

k E~K~ + -4,a E:K: 
I '  d- 

e-:*a . . . . . . . .  (12b) 

1 d~z~ k 

~7o d :  J 
L + ~ EkK~ + [ :  L + y . .  (mc) 

The auxiliary functions, equations (9) apply to cases of complex roots of the stabil i ty equation. 
The following detailed analysis is also made with respect to such cases. The changes to be 
introduced in the various formulae to cope with real stabili ty roots are given in section 13.7 of 
Appendix B. 

A.4. Derived Res'jbonse Quantities.--Values of various derived response quanti t ies  can be 
calculated with the use of complete solutions of the preceding section. General formulae for some 
of those quantities will now be derived. 

A.4.1. Angle of Incidence at the Wing. The linearized form of equations of motion requires the 
incremental angle of incidence at the wing to be identical with z~ ; thus 

~ - z 0 .  

A.4.2. Angle of Incidence at the TaiL--Its effective incremental value is given by 

~'o~ = (1 de'~o: lq l de dc~ 
- -  d U  + W + V do: dt " 

(la) 

The first term of the right-hand side of this equation represents the increase in the angle of 
incidence due to the incremental velocity of the aircraft in the z direction together with the 
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(static) downwash correction; the second term corresponds to the increment due to the angular 
velocity in pitch of the aircraft ; the last term provides a correction required by the fact that  in a 
general case the downwash effect is overestimated in the first term since any change in the down- 
wash produced at the wing appears at the tail only after a time 1/V. 

By using equation (1) q can be eliminated from the last expression which, after being reduced 
to a non-dimensional form, becomes 

, ( de ~ ) ^ (  de) ldz~ . . .  (14) ~ o ~ =  1 - - ~ +  w +  1 + ~  ~d~ . . . .  

A.4.3. Normal Acceleration at c.g. of the aircraft (upwards) is given by ( q V -  dw/dt); in 
accordance with equation (1) it is proportional to ~. Thus the coefficient of normal acceleration 
can be written as 

n =  D.z~ . . . . . . . . . . . . . .  (15) 

where D -- ½p V~ a .  
w / s  

A.4.4. Normal Acceleration at any Point of the aircraft consists in general of two components; 
one is equal to the acceleration at the c.g., the other is due to the angular acceleration in pitch 
dq/dt. The value of the latter component at the tail is (-- 1 dq/dt). Differentiating equation (1) 
enables the corresponding coefficient of acceleration to be written in non-dimensional notation 
thus 

~ = _ D (  2d~z~ d ~') 
7 a g-7 + . . . . . . . . . .  (16) 

and the coefficient of total  normal acceleration at the tail 

[ 1(2:~ g~)l ~ , = n + ~ = D  ~--~ ~d~+Z_ ~ . . . . . . .  

A.4.5. Tailplane Load.--The general expression for the incremental tailplane load is 

P = ½oV~S'(a:% + a~) 

and after substituting ~'e~ from equation (14) it can be written thus 

(17) 

where 

~ ' = A @  eq-cg#  ) 

A = ½p V=S ' 

(IS) 

B =  1 - - ~ +  a, 

de) al c =  I+U~ ~-. 

A.4.6. Angular velocity in pitch is obtained directly from the first equation of motion, equation 
(3) as 

1 (dz0 a z@ (19) 
q=~ U~ +2 . . . . . . . . . . . . .  

26 



A.4.7. Angular acceleration in pitch is obtained with the use of equation (19) • 

dt -- t 2 \dC + 2 d r / "  "" 
(20) 

A.4.8. Elevator hinge moment coefficient is given by  the general formula 

C~ = b,e'o~ + b~ 

and using equation (14) it can be expressed thus 

c ~ - - b l B ~ + b l c & 0  al a~ &-~ + b ~  . . . . . . . . .  ( 2 1 )  

A.5. Elevator Moved Instantaneously and H d d . - - I n  this case only normal accelerations at c.g. 
and tailplane loads will be considered. 

Time histories of the angle of incidence at the wing and of the normal acceleration at the c.g. 
may be obtained with the basic response, equation (10a) as follows: 

angle of incidence ~ K O~ - - ~  - -  ~/oj-~ 

coefficient of normal acceleration 

K .. . . . . .  (22) 
n = - -  @ o D  f2 . . . . . .  

thus either of them varies as function K. This function is shown for various R / J  values in 
Figs. 8 (a) and 8 (b). 

In accordance with equation (10b) the condition for maxima of either c~ or n is given by L = 0. 
Of the infinite number of roots of this equation the two J,,,, = z and J,~ = oo correspond to the 
first (absolute) maximum and to the asymptotic value respectively. Thus 

first maximum 

asymptotic value 

K= (23) n,~ = - -  @ o D  j-~- . . . . . . . . . . . .  

n ,  = - @ . D  K s  . . . . . .  ( 2 4 )  
' y "  " " ° ° ° ° 

I t  follows tha t  the elevator angle required to 
acceleration n,g is 

j2 n,.. 
~o = - -  d D K ~  

produce a specified incremental normal 

. . . . . . . . . . . .  ( 2 s )  

From equations (18), (10a) and (10b) the expression for the tailplane load can be written thus" 

p ~ A j2 .. 
= + (26) 

or related to the coefficient of maximum normal acceleration equation (23) 

P F j= 

where F = WS'  
Sa 
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At the beginning of the manoeuvre, when K = L = 0, equation (26) reduces to 

P = P o  : Aa2~o . . . . . . . . . . . . .  (28) 

In a pull-out manoeuvre (~o negative) P0 represents the maximum download at the tail;  though 
strictly speaking it is not an algebraic minimum. If regarded as the n contribution to the net 
tailplane load (@ section 5) Po remains constant throughout the manoeuvre. The following 
formula gives P0 related to the coefficient of maximum incremental normal acceleration, 
equation (23). 

a Ro ] (29) 
- -  - -  ~ F - -  - -  ° ° • • • • ° ° 

n,~ ~ K~" . . . .  

With  ~ = ~0 = const, the condition for maximum upload in a pull-out manoeuvre is obtained 
from equation (18) as 

B dz~ d2z~ - -  0 
d~ + C d~ ~ 

which is also the condition for the maximum effective angle of incidence at the tail. 
equations (10) this condition can be written thus 

or explicitly 

(CR --  B)L = C J H  

Using 

tan J~ = J . . . . . . . . . . . . .  (30) 

For a negative n0 the first positive root of this equation is associated with the first (absolute) 
maximum upload. This maximum can be obtained as required, either from equation (26) or 
equation (27) with K and L calculated for ]r~ from equations (9). K and L may also be estimated 
from Fig. 8 (a), 8 (b), and 6. 

The asymptotic value of the tailplane load per incremental maximum g is given by  

Po_ O . . . . . . . . . . . .  
n,. !<~k 

or if related to n~ 

A.6. Elevator Moved Gradually and then Held.--A.6.1.  Normal Aecelerations.--With equations 
(15) and (1 la) the coefficient of normal acceleration at the c.g. can be written thus 

n =  --  ~ o D  ~ I K - -  E~oK~I . . . . . . . . .  (33) 

The second term in the bracket depends on the generalised elevator rate £; for an instantaneous 
elevator movement k = oo, and EI, K~ = 0 reducing this expression to the corresponding one of 
the preceding section, equation (22). 

Now the condition for maxima of n is dn/dr = 0 or explicitly 

_ _  R - - k  f 7: 

cos J r  + R - - k s i n J r  = e  J . . . . . . .  (34) ] 
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In most practical cases the numerical value of k is large so that  R < k, and then there is an 
infinite number of roots of this equation each corresponding t0 a maximum or minimum of n. 
The first positive root J,,,, gives the time of occurrence of the first maximum ~,,,, which is in this 
context the absolute maximum. This root may be calculated from the above equation or may 
be read from the graph, Fig. 10. The numerical value n,,~ is then obtained as 

(3 s 

where K,~ is the value of the function K for J r  = f,,~. 

(For the rare cases when k ~< R the response in n does not show any distinct maxima with the 
exception of the aysmptotic value n~ given by equation (24).) 

The maximum elevator angle ~0 required to reach a given incremental acceleration n,,g is 
obtained from equation (35) as 

J 3 
~o - -  ~ D K , , ~  n , .  . . . . . . . . . . . . .  (36) 

The value K,,~ depends on the coefficient k. Thus V0 is also a function of k or of the mean elevator 
rate [dv/dt]; see equation (7). 

The mean rate may be specified in different ways. Two of them will be considered here. 

(a) The mean elevator rate [dv/dt] is specified by the time t' in seconds after which the maximum 
angle ~0 would be reached at that  rate;  thus 

and equation (7) becomes k = 2~/t'. With this value, J,,~ can be calculated from equation (34) 
and then K,,, and v0 from equation (86). 

(b) The mean rate [d.~/dt] is specified directly in degrees per second. In this case the elevator 
angle does not disappear from equation (7). There are therefore four simultaneous equations 
(7), (9), (84) and (36) to be solved for k, K,,, J,,~ and v0. Because of the transcendental forms 
involved tile elimination of variables is not practicable and tile solution must be obtained by 
successive approximations. For this purpose tile following scheme may be used: 

(i) Assume K,~ = K~ (as the first approximation) 

(ii) Find ~o from equation (36) 

(iii) Find k from equation (7). I t  should be noted that  [dv/dt] is of the same sign as v0. 
Thus the coefficient k is always positive 

(iv) Calculate --  (R - -  k) /J  

(v) Find the first positive root J %  of equation (34) 

(vi) Find the new value of K~ for Jr~ obtained under (v) 

Repeat the procedure with the new K,~ value. 

The process is a convergent one; in many cases already the first approximation will be found 
satisfactory. 
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Now, wi th  ~0 known, 
manoeuvre  is given b y  

the formula for finding the elevator angle at  any  t ime during the 

f f  n,~(1 --  E~) . . . . . . .  (37) 7 = 7o(1 - -  E~) - -  ~DK,~ 

B y  el iminat ing ~0 from equat ions (33) and (36) the  coefficient of normal  acceleration at  the 
c.g. of the  aircraft  can be expressed in terms of its m a x i m u m  value n,,, thus"  

'~o~ ( K -  E~K~) . . . . . . . . . . . .  (38) 

The formula for the  coefficient of normal (upward) acceleration at  the  tai l  due to the angular  
veloci ty  in p i tch  of the  aircraft  is obtained from equations (16), (1 lb) and (11 e) as 

or expressed in terms of n~, 

~ D k 2 J L ]  

,~_ k 2jLI (39) i~a ~ I ( 2 k  - a)E~K~ - -  . . . . . . . . .  

The coefficient of the  total normal acceleration at  the tail, n, is equal to the  algebraic sum of 
n and  4, equations (38) and (39) respectively. The condit ion for its max ima  is 

A cos J r  q-- u sin J-c = e ~R :~ . . . . . . . . . . . . . .  (40) 

where A = 1 2J  U = 2 ( R + k ) - - a  k - - R  
- - Y '  A J ' 

and  A --  1 k(2k -- a) -- #a 
: 

o r k f + l  

Usual ly  the second posit ive root of equat ion (40) gives the  t ime of the absolute m a x i m u m  of nt. 

After  an infinite t ime the contr ibut ion ~ due to the angular  acceleration becomes zero, and the  
asympto t ic  value of the  coefficient of normal  acceleration is given b y  

K ~  . . . . . . . .  (41) q 4  a - -  - -  q 4 ~  . . . . . .  

and  is of course the  same for all points  of the  aircraft.  

A.6.2. Tailplane Loads.--The form of equat ion (18) implies two components  of the  net  ta i lplane 
load, one due to the  effective angle of incidence at  the  tail  cdoff, the other  due to the  elevator angle 7- 
Using the formulae of section A.3 (b) these two components  m a y  be wri t ten  thus  : 

tail  load due to odor: 

P~, = A(Bff; + C ~ ) - =  - - @ o ~ 2 I B K  + ( C k -  B)EkKkl .. (42) 

tai l  load due to 7 " 

P,7 = Aa27 = Aa27o(1 --  E~) . . . . . . . . . .  (43) 
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and when related to the maximum normal acceleration in the manoeuvre (n.,g); equation (85), 
they become respectively: 

- -  - -  B K  + ( O k -  B)E~K~ . . . .  (44) 
n~, K,,~ . . . .  

The net load per g is then 

P 
n~ 

F 
~2J"(1 -- Ek) 

K,~ o 

P _P,~+P__~.  
~4m ~m ~m 

(45) 

The condition for its maxima is dEP/n,,J/dr = 0; using equations (11) and (9) it can be written thus 

cos J r  + Q sin J r  = T e ~R:, . . . . . . . .  (46) 

- -  J ~  a= where Q _ C J  k R T =  1 + i ,  
V J ' 

and / '  = Ck - -  B 
k- -  j R ) ~ +  1 

In a pull-out manoeuvre [~o < O, n., > 0] the first and second roots of this equation are associated 
with the maximum download and the maximum upload respectively. For the usual high values 
of the coefficient k these two maxima represent absolute maxima. 

After an infinite time the asymptotic values of the two components of the tail load P~ and P v  
equations (49,) and (43) respectively become 

P.~ = - -  @ o ~  BK~ 

and P~ = Aa2~o 

and again, when related to the maximum normal acceleration n,~g, 

P~'~ - -  F B  K i  . . . . .  (47) ~,~ _~7,~ . . . . . . . . .  

P . ~ _  F a~ff (48) 
 oi- . . . . . . . . . . . . . . .  

The same components when related to the asymptotic value of the normal acceleration 
n~ = - -  Ono • D K ~ / J  ~ reduce to 

- -  F B  . . . . . . . . . . . . . .  (49 )  
¢4a 

F y ,  . . . . . .  (so) 
n. Ko,5 . . . . . . .  
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A.6.3. Elevator Hinge-moment Coefficient.--The general formula for the hinge-moment  co- 
efficient of the elevator, equation (21), is similar to that  for the net tailplane load, equation (18) ; 
thus the various expressions for the two components of C~, the condition for maxima, etc., are 
derived in a similar way;  they are as follows : 

1 1 -  " ] L  
, .  ÷ . . . . .  I , , >  C~, due to ~ off. = - -  ./-L 2 g  z 

C~ due to v: C~,~ = b2v0(1 -- ET0) . . . . . . . . . . . . .  (52) 

The same related to n~ : 

Ch~ _ 

nm 
b2 J ~  a DK,~ (1 - E~). (54) 

The net value of C~ per g 

Ch~ Ck _ _  Ch. + - - .  
n m n m n ~  

The condition for maxima of the net hinge moment is given by 

cos J ,  + Q sin J ,  = T~ e ~Rj,  . . . . . . . . . . . . . .  (55) 

where 
J 2  a l  b~ 

T , , =  1 + / ~  a bl" 

Asymptotic values of C~ and Chn become respectively: 

o 1 ,~T.- bl 
(c,,,~)o = - O~o ~ ~ m ,  (c,,,,)o = b~o .  

, J  v,'X 

The same related to n,~ become 

( c , , & _  b, B Ko ( c ~ ) o _  b~ y~ 
n,~ al D K,,,' m, a DK,  o' 

but related to the asymptotic value n~ 

(c~.)o _ b, B (C,,,)o _ b~ y '  
n~ al D '  n~ a DK~ 

A.6.4. Angular Velocity in Pitch.--In accordance with equation (19) and (11) the angular 
velocity of tile aircraft q in radians per second is given by the following expression 

1 - a) E~K~ 1 q---- -- ~o 2FfyIaK + (½k (s6) 
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and  re la ted  to the coefficient of m a x i m u m  normal  acceleration n,,, 

1 
-] 

- -  _ _  a -- a)EkKk! q 2~DK,, It_ K + ({k o 
t ~ 

Maxima of q occur when  

k j R  Jr 
cos J r +  E s i n J r  = e  . . .  

where  E=[(k--Rfj + 1  J 1  

i 

The asympto t ic  value of q becomes 

k - - R  

J 

a K ~  

and  in terms of n,. and n~ respect ively 

qa _ _  a K a 

n,, 2~D K,, 
m Q 

qa _ _  

n,, 2~D 

Q 

A.6.5. Angular Acceleration in Pitch.--From equat ions 
expressions for this quan t i t y  are obta ined 

(20), (11), and  (35) 

clt -- "" 

1 dq__ 
n,, dt PD K.~L 

The condit ion for m a x i m a  is 

d ~  a d ~  
d ,  ~ + 2 d ,  ~ --  0 

or explicit ly 

_ k~R , 1 .  

A1 cos J r  + u~ sin J r  = e 

where  A I =  1 - - ~ ,  U1 = 2(k + R)  - -  a 
A1 

k - - R  

J ' 

and  ,41= 1 k (2k - -  a) 
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A.7. Elevator Moved Gradually and then Reverse&--This case is characterized by the elevator, 
,deflection given by equation (5) ; the basic response is shown in section A.3 (c). The significance 
of this case can be recognized when interpreting flight test results of rapid pull-out manoeuvres. 
Ho~cever, it has not been used in the derivation of the computational method of Appendix B. 

The various response quantities can be obtained in exactly the same way as in section A.6, 
that  means by substituting the response formulae of section A.3 (c) into the required expressions 
for the derived response quanti t ies  of section A.4. 

% 
. . . .  , L  • 

APPENDIX ]3 

Computational Method 

B. 1. Introductory Remarks.--The computational scheme for the calculation of time histories of 
various response quantities and their maxima presented in this Appendix has been arranged in 
.such a way that  no reference need be made to the derivation of the formulae given in Appendix A. 
However, for the physical interpretation of the manoeuvre and Of the computed responses the 
main text of the report, and particularly section 10 should be consulted. 

The various formulae in the following sections are expressed in terms of certain portmanteau 
coefficients to be calculated from the basic data, and also in terms of quantities E, H, K and L 
which are functions of J r .  Now J , ,  which may be treated throughout as a single symbol, 
represents a measure of time having, however, the character of an angle ; thus it  can be expressed 
in degrees or radians. Changes in any of the response quantities may be plotted against J r  or 
if required against time t in seconds. For this purpose the J r  values taken in radians will have 
to be multiplied by Z/J to obtain t in seconds ; thus 

t = j (Jr) seconds. 

J r  should also be taken in radians in all cases where it appears in an exponent of exponential 
functions. 

If only maxima of response quantities are required the time histories of those quantities need 
not  be computed. In this case J ,  values or times of occurrence should be calculated from the 
conditions for maxima, and then substituted in the appropriate expressions. 

All the quantities and responses can be calculated from the given formulae and equations, but  
the use of graphs and graphical methods as indicated may considerably reduce the labour of 
computation. 

B.2. Numerical Data Required.-- 

a = DCL/~ for the whole aircraft 

a2 _2 8CL'/~ including the effects of tabs if used 

bl = ~CT,/a~' 

b2 = aCh/ar~ including the effects of tabs if used 

c Standard mean chord of wing in feet 
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g 

kB 

I 

f]¢q l.t. 

Acceleration due to gravity ( =  32.2 ft/sec 2) 

Radius of gyration of aeroplane about the lateral axis (ft) 

Distance from aeroplane c.g. to mean quarter-chord point of the tailplane (It) 

Damping derivative in pi tch of the aircraft Without tailplane, ii different 
from zero 

~boundary Coefficient of maximum normal acceleration to be reached in the manoeuvre 

S Wing area (ft =) 

S, Tailplane area (ft ~) 

V True air speed of aeroplane (ft/sec) 

W Weight of aeroplane (lb) 

P 

"~--~/less tail 

de 

d~ 

True air density (slug/It s) 

Static. stability derivative for the aircraft without tailplane 

Downwash derivative at the tail 

Mean elevator rate in degrees per second (in some cases the coefficient k 
may  be specified instead of the mean elevator rate). 

B.3. Basic Formulae.-- 

W 
# gpSl 

( d e a ~ a :  
B= 1 - ~ + ~ j  

1 l = f f  g 

f de'~a, 
c = t l  + \ 

a 

D = ½pV ~ W/S 

8(X k~ ~-~ ,]]ess tail 

s'z h e% 
Sc k - -  dcz/ : 

F - -  WS'  
Sa 

( D  - -  
W c  ~ C,,, 

2gpSks 2 O~z 

Wc S'l  
2goSkB ~ Sc 

_ _  1S'I  2 
"Ptail - -  2 ~ B B  2 a l  

~ TtaiI -{- 72less tail 

~Iess tail -- 
Z 2 

~B~ (~q) lo,stail 

de 
X = ~ Vtail 

R ~ + ] ~ = C o + ½ a ~ -  Wc aN,,, 
2gpSk~ ~ 

R = ½(~ + x + -}a) ] = v / ( ~  + ~a ,  - R ~) 
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~m ~ nboundary - -  1 

Note.--For the  coefficient k see section B.5.1.0. 

. = Ck -- B 
(k - Rf j + 1  

Q _ C j  k - - R  
r j 

J2 a2 T = I + / ,  c~ 

A = l k ( 2 k - - a ) - - t t a  
j ( k -  

J R f +  1 

A =  I _  2] A~= l _ Z J  
A At 

u =  2(k + R) --  a _  k -  R 

J 

K = =  1 + e  -'~/: (@Fig.  11) 

B.4. Special Functions.-- 

j 2  at b2 
T , , =  1 + ~ -  d b 1 

A t - -  1 k(2k -- a) J(k- 
J Rf+i 

a 
J k 2 

k - - R  
J 

Ut = 2(k + R) --  a k --  R 
At J 

K ~  = 1 ( c f .  Fig. l i ) .  

R 
H = e -yJ~ 

R 
L = e -IJ~ 

f = e -}J" 

cos Jr (cf. Fig. 5) 

sin Jr (cf. Fig. 6) 

(cf. Fig. 7) 

K _ 
R 

e-)-Jr(cos J r  R . -}- if- Sln J r ) ]  (cf. Fig. 8) 

= - -  ~ e 7  (cos J , - -  k -- R sin J r ) l  
j R f  + 1 J " 

]3.5. Elevator Moved Gradually.--B.5.1. Formulae for the First Stage of the Manoeuvre (cf. 
section 10).--]3.5.1.0. Evaluation of 7o, k, JT:,, K,, .--  

(i) Wi th  the  R/J value appropriate  to the case considered assume as the  first approximat ion 
K,~ = K,, (see section B.3 or Fig. 11) 

(ii) F ind  the  m a x i m u m  elevator deflection 70 

j2  n,,, radians 
Vo = --  6~D K,-~; 
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(iii) Find k from 

~o 

Id~ 1 is the specified mean elevator rate being of the same sign as ~o where dY 

coefficient k is always positive. 

Thus the 

[d~ 1 is expressed in degrees per second then ~0 should be taken in degrees. Note.--If -dr 

(iv) Find k -- R 
J 

(v) Find the first positive root J~., of the equation K = 0 (see section B.4 or Fig. 10). 

(vi) Find the new value of K,, for f,~ obtained under (v) (see section B.4 or Fig. 8). 
Repeat the procedure with the~new K,,, value. 

The process is a convergent one; usually only two or three repetitions are required to obtain 
satisfactory approximation. 

Note.--The whole calculation need not be repeated if either k -- R as found under 
Y 

(iv) is 20 or more, or the ratio R/J is 1.0 or more. In such cases the elevator deflection 
~0 should be calculated with K~ = K=. 

B.5.1.1. Tailplane loads iv pounds 15er g.--The contribution due to the effective angle of 
incidence at the tail ~'o~" 

- - - -  B K + P  E - - H + k - - R L  
- 7 - -  " 

The contribution due to the elevator angle ~" 

P~__ 

The net tailplane load per g" 

Time histories of the net tail load and of its two components can be obtained by calculating the 
numerical values of these three expressions for several values of J r  between 0 and 240 deg. I t  
is within this range that  the significant maxima occur. A similar remark applies to response 
quantities o f  the following sections. 

The condition for tail load maxima is giv.en by the equation 

cos J~ + Q sin J ,  = T e ~_R:, 

The first two positive roots of this equation J~l and J~, correspond with the first maximum down- 
load and the subsequent maximum upload respectively. The roots can be found from this equation 
by trial and error or graphically as indicated in section B.6.4. 
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B.5.1.2. Angle of incidence at the wing oc in radians per g . - -  

<-- ~o ~ - ( ~  +, 

At Jr.,  (time of maximum acceleration) this becomes 

~X m _ _  1 

n,,, D 

At Jr,,, (time of maximum acceleration) this becomes 

(~'o,f),,, B 
n,,, = Dal" 

B.5.1.3. Effective angle of incidence ~x'eff at the tail in radians per g . - -  

D ,,~al ' J 

B.5.1.4. Elevator angle ~7 in radians per g . - -  

"r] __ J 2  
n,,~ ~DK,, (1 - -  E) . 

B.5.1.5. Coefficient of normal acceleration n at the c.g. of the aeroplane.-- 

Its maximum value n,,, occurs at J r  = J , , ,  (@ section B.5.1.0. (v)). 

B.5.1.6. Coefficient of normal acceleration ~ at the tail due to the angular acceleration in pitch 
o n l y  . - -  

_ k~, F 2 k -  ~ I k - R  L~ l 
R] ~ + 1 J L( J / 

Condition for maxima:  

~jR  jz  
A1 cos J r  + u1 sin J r  = e 

B.5.1.7. Total coefficient of normal acceleration n~ at the tail.-- 

n~=n+~. 

Condition for maxima: 

/~ ~ R  J z  

A c o s J ~ +  U s i n J r  = e  J • 

The maximum upward normal acceleration at the tail in the first stage of the manoeuvre is 
associated with the second positive root of this equation. 
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B.5.1.8. Angular velocity in pitch q in radians per second per g . - -  

n , . -  21DK., k --  ( E  --  
- j R f + l  

Condition for maximum" 

~_~:~ 
cos J r  + x sin J r  = e 

H + - -  

The first positive root has to be considered. 

t3.5.1.9. Elevator hinge-moment coefficient per &--The  contribution due to the effective angle of 
incidence at the tail c~'o," 

n,. al DK.,L J 

The contribution due to the elevator angle ~" 

C, , ,_  b= J= ( l - - E ) .  

The total hinge-moment coefficient per g : 

Ch _ Ct,~ q_ Ch~ 

Condition for maxima" 

cos J r  + .Q sin J r  = T1, e 
/~ jR  jz 

The first two positive roots should be considered. 

B.5.2. Formulae for the Initial Condition of the Second Stage Steady Circling at n,,,g) cf. Section 
10.--]3.5.2.1. TaiIplane load in pounds per &--The  contribution due to the effective angle of 
incidence c~'o~ • 

P ~  = F B .  
nm 

The contribution due to the elevator angle ,/ 

The net tail load per g 

P~ = __ Fa=J ~ 

n,, n~ + ~ or, roughly, l \a  CJiess tal " 

B.5.2.2. Angle of incidence at the wing c~ in radians per g . - -  

O~ a - -  1 

n,~ D 
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B.5.2.3. Effective angle of incidence at the tail (cz'o~)~ in radians per g . - -  

(~'o~)~__ B 
n., Dal 

B.5.2.4. Elevator deflection W per g in radians. 

~ j2 
n , , -  - ~--D--K~" 

]3.5.2.5. Coefficient of normal acceleration at the c.g. of the aer@lane.-- 

n a ----= n m • 

B.5.2.6. Coefficient of normal acceleration g~ at the tail due to the angular acceleration in pitch 
o n l y . - -  

g~-----0. 

t3.5.2.7. Total coefficient or normal acceleration n, at the tail.-- 

]3.5.2.8. Angular velocity in pitch q~ in radians per second per g . - -  

n,,, 21D or • 

]3.5.2.9. Elevator hinge-moment coefficient per &--The  contribution due to the effective angle 
of incidence 

(c,,o)o _ b~ B 
n~ al D " 

The contribution due to the elevator angle 

(C,,,,)~ = _ b~ J ~  

The total  hinge-moment coefficient 

(c~)o = (c~,)~ + (c,,~), 

t3.5.3. Formulae for the Second Stage, @ Section 10.--The various quantities occurring in this 
stage of the manoeuvre, P~, P~, P, cq etc., can be obtained by  adding values found in the first 
stage (taken with opposite signs) to the corresponding values for the steady circling case given 
in section B.5.2. 

For instance the tail load contribution due to cdo~ becomes 

and the contribution due to ,; 

n,,,-- K,. B K + I '  E - - H + - -  

P, F a~ 
~° y ( 1  - E) a.K~ " 

j L --k F B  
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The general conditions for maxima of the various quantities remain the same as in the first stage 
of the manoeuvre, and also the times of occurrence (Jr values) are the same, time being reckoned 
anew from zero at the beginning of this second stage. 

In particular the tailplane load at Jr1 represents now another maximum upload with the 
elevator part ly reversed. The other maximum at Jr2 being small may be disregarded. 

B.6. Remarks on the Use of Gra~hs.-- 

B.6.1. The formulae of sections B.3 and B.4 suffice to calculate the response quantities for any 
values of the parameters involved. The computational work may greatly be reduced, however, 
by making use of tile graphs, Figs. 5 to 11, where various functions are plotted against J r  in 
degrees. If it  becomes necessary, however, to compute exponential functions the values of J r  
should of course be expressed in radians. 

13.6.2. Graphs of the four functions H, L, E and K are given in Figs. 5 to 8 covering the 
practical ranges of the ratio R/J and of the J r  values. K~ values are also shown in Fig. 8, and 
K~ values given in Fig. 11 correspond to the maxima at J r  = 180 deg. H, L and K functions 
could not be obtained from the graphs at low J r  values ; it is suggested that  in many cases values 
of these functions may not be needed in this range of J r .  But if required reference to the original 
equations of section t3.4 should be made. 

/3.6.3. The root Jr,; of section B.5.1.0 (v) can be obtained directly from the graph, Fig. 10. 

B.6.4. Conditions for maxima of the net tail load, of the coefficients of normal acceleration 
~ and g, of the angular velocity in pitch, and of the elevator hinge-moment coefficient are given 
in sections BiS.l.1, B.5.1.6, B.5.1.7, B.5.1.8 and B.5.1.9 as transcendental equations of the 
general form 

M c o s J r + N s i n J r - - - - e  s . 

The first two positive roots of such an equation can be found graphically with the use of the 
graphs, Figs. 9 (a) and 9 (b) thus:  

Draw a circle passing through the origin, the co-ordinates of the centre of the circle being 
½M along the horizontal axis and ½N along the vertical axis. Draw straight lines from the origin 
to the two inter-sections of this circle with the appropriate spiral curve (k -- R)/J and produce 
these straight lines to the peripheral scale, which gives the required values of J r  in degrees. 

The centres of the circles corresponding to the response quantities considered are determined 
as follows : 

Net '  t a i l  l oad  . . . . . .  . . . .  
Coeff icient  of n o r m a l  acce l e ra t ion  ~h . . . .  
Coefficient  of n o r m a l  acce le ra t ion  g . . . .  
A n g u l a r  v e l o c i t y  q . . . . . . . .  
H i n g e - m o m e n t  coeff ic ient  . . . . . .  

absc i s sa  

½T 
~A 

1 
2 

o r d i n a t e  

½Q/T 
½u 
½u~ 
~z 

½(2tT,, 

N/M 

Q 
U/A 

U1/A1 
Z 
(2 

Note.--(a) In cases when the second point of intersection is close to the origin the corresponding 
root may be calculated from the formula 

N 
J r  = ~ + t an-1  ~r radians 

(b) If the numerical value of the first root is small, say below 5 deg, then it is advisable to check 
this root against the original transcendental equation, and to correct it  if necessary. 
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B.7. Response Quantities when J is Imaginary.--B.7.1. All the formulae given in the preceding 
section can be used also in cases when J becomes imaginary, say J = i I ,  where 

I = - + 

The direct use of those formulae would necessitate dealing with imaginary quantities. This 
inconvenience may be obviated by the following changes introduced in the basic formulae, special 
functions and general formulae: 

(i) J replaced by I, but 

(if) expressions I(~)2 + 11 and I(k j R f 4 - 1 1  replaced by 

F(R)'LI_ -- ]] a n d [ (  k - I  R)  2 -  l l respect ively '  

(iii) circular functions replaced by the corresponding hyperbolic ones. 

Thus for instance the function K (section B.4) becomes 

K =  1 - 1 - - e  coshI3 + T s i n h I 3  , 

and the conditi"ons for tail load maxima (section B.5.1.1) 

cosh I ,  q- Q sinh I3 = T e - - -  

Q and T (section B.3) being also altered as required. 

k - - R  I v  
i 

B.7.2. In cases of imaginary J values the maximum normal acceleration is reached after an 
infinite time or, for all practical purposes, a few seconds after the beginning of the manoeuvre. 
The procedure of section B.5.1.0 does not apply here; instead the maximum elevator angle ~0 
can be found from 

I ~ u,,~ -. 
~0 - -  aD R-~ radlans 

where 
1 

K s - -  ~ - -1  

[d~ 1 1 and the coefficient k = 2~ ~ ~?o" 

B.7.3. The equations giving conditions for maxima of the tailplane load, and of the elevator 
hinge-moment coefficient given in sections B.5.1.1. and B.5.1.9 could be used here for finding 
only the first maximum provided they are altered in accordance with section B.7.1. 

The calculations of the first maxima per unit incremental normal acceleration may be con- 
siderably simplified by using the following approximate formulae : 

Fa~I ~ 
first maximum down load -- ~I~2~ 

first maximum hinge-moment coefficient -- -- 

which give slightly conservative values. 

b~I ~ 
~DK~ 
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Second maxima of these quantities and  maxima of all other quantities occurring after an 
infinite time from the beginning of the manoeuvre may be calculated from the formulae for the 
s teady circling case given in section 13.5.2. 

Thus for instance : 
Fa~P 

maximum Up-load at the tail with the elevator fully deflected ---- F B  -- ~----fE~ ' 

maximum up-load at the tail with the elevator reversed (third stage) = F B .  

B.8. Simplified Procedure for Use with Instantaneous Elevator Deflection.---The following pro- 
cedure and formulae apply when the elevator is moved instantaneously through the angle ~0 
at  the beginning of the  first stage of the manoeuvre, and moved instantaneously through ~o in 
the reverse direction at the beginning of the second stage. 

The basic formulae from/1 to U~ inclusive in section B.3 are not required, nor are the functions 
E and  K from section ]3.4. Other basic formulae and special functions are retained unchanged. 

B.8.i. Response and maxima during the first stage of the manoeuvre.--The following table 
contains formulae for tail loads, etc., which correspond with the general formulae of sections 
B.5.1.i to ]3.5.1.9 as shown by  the first column of the table. 

Sect ion  F o r m u l a  Condi t ion  for  m a x i m a *  

B.5.1.1 

B.5.1.1 

B.5.1.1 

B.5.1.2 

B.5.1.3 

I3.5.1.4 

B.5.1.5 

B.5 .1 .6  

13.5.1.7 

B.5.1.8 

B.5.1.9 

B.5.1.9 

B.5.1.9 

P~ F ( B K  + CJL) 
74m K ~  

P, F a~ -2 
n,, - -  / ~  ~ j = const .  

P __P~} Pn 

1 
n,~ - -  DK,~ K 

<o_ __ 1 (BK + CJL) 
%,~ DKnal  

'Io __ f f  - -  const.  
n,= ,SDK~ 

Jn= a)L 

'14~ = 1¢ -q- ,~ 

q 1 
_ ~ (2JL + aK) 

.n~ 2tDK~ " 

C=. bx 1 ( B K  + CJL) 
"ldm - -  6l 1 

C~, b~ j2  
-- -- const .  

nm ~ DK= 

Ct, _ _  Ch~ _+ C~m 
~m ¢4m qCm 

- ]  
t an  J r  -- B /C -- R 

j r  = ~, ( l s t  max. )  

j z  = a, ( l s t  max . )  

--  J ( 4 R  -- a) 
t a n  J r  = 2 ( j~  _ R~ ) + aR  

- J(4R -- ~) 
t a n  J z  = 2 ( j2  _ R2 ) _ a(~ - -  R) 

2J 
t a n J z  = 2 R  - -  a 

- ]  
t a n  J z  - B /C --  R 

* See also t h e  r e m a r k  a t  t he  end  of th is  sect ion.  
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The complete response in any of the quanti t ies P, n, q, etc., is obtained thus : 

(i) calculate the numerical values of the coefficients required (see section B.3) and find the 
appropriate value of K= (section B.3 or Fig. 11) 

(ii) find numerical values of as many of the functions H, L and K as are required, for several 
values of J r  from section B.4 or Figs. 5 to 8, and for each J r  calculate the value of the 
quant i ty  considered from the formula in the above table 

(iii) plot the quant i ty  considered against J r ,  or r, or t in seconds as required, remembering 
that  if J r  is in radians, 

. d r seconds. t=j 
The first or second maximum of the quant i ty  considered may be found without calculating the 

complete response thus" 

(i) find the first root Jr1, or, where applicable, the second root J*2 of the condition given in 
the table 

(ii) find numerical values of H, L and K as required for J,1, or Jr2 from section B.4 or Figs. 
5, 6 and 8 

(iii) by substituting these values of H, L and K into the formula for the quant i ty  considered 
obtain the first or second maximum of this quantity.  

The value of any other response quant i ty  at the time of the maxima considered can be calculated 
from the appropriate formula using the same values of H, L and K. 

In addition to the above maxima both P/n,,. and Ch/n,, assume extreme values at the beginning 
of the manoeuvre, namely 

P0 _ P~, and Ch0 _ Ch, 
n m n . ~  n m n m 

B.8.2. Steady Circling at n,,g.--The formulae of section B.5.2 remain unchanged. 

B.8.3. Response and Maxima During the Second Stage.--As in section B.5.3 the values of the 
various quantifies are found by adding the values for the first stage with signs changed to the 
values of the steady circling condition. Time is reckoned anew from zero at the beginning of 
the second stage. 

B.8.4. Response Quantities when J is Imaginary.--The general provisions of section B.7 should 
be applied. 

B.9. Application of the Method to All-moving Tailplanes.--The method given in the preceding 
sections in a form suitable for its direct application to aeroplanes with conventional tailplane 
arrangements can also be applied to aeroplanes with all-moving tailplanes provided the following 
points are observed: 

(i) The derivative a2 becomes numerically equal to a~ 

(ii) The hinge-moment derivative b2 becomes numerically equal to b~i and b~ itself should 
be evaluated as the pitching-moment derivative of the tailplane with respect to tile 
hinge axis of the tailplane 

(iii) The symbol ~ stands for the variable tailplane setting as affected by control stick 
movements 

(iv) The sum (~'o~ + ~) gives the total  incremental angle of incidence at the tailplane. 

Thus iri order to modify the expressions in sections 13.3 and B.5 for use with aeroplanes with 
all-moving tailplanes, it is only necessary to replace a~ and b~ by a~ and bl respectively. 

The hinge-moment coefficient and the tailplane load now vary in the same way, each being 
proportional to (cd~ + ~). 
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APPENDIX C 

Inclusion of the Tailplane Pitching Moment  due to v 

Both the analysis presented in Appendix A and the computational method of Appendix B are 
based among others on the assumption that  the tailplane pitching moment due to the elevator 
motion can be neglected. In a case of an unusually, short tail arm and large tailplane chord it 
may, however, be required to take this effect into account. This can be done in the following 
manner. 

The additional term representing the tailplane pitching moment due to ~ is to be included in 
the second equation of motion, equation (2) of Appendix A so that  the right-hand side of tha t  
equation becomes 

1 T;-~,-,,, OC'L ~C',,, 

and in terms of the non-dimensional notation of equation (4) 

- - @ - - d ' V  o r  - -  G V  

where the total  elevator effectiveness G = d q- d', 

Wc S ' l  
2gpSkB 2 Sc 

a2 (as before), and 

~, = _ Wc S '  c' ~C',, 
2gpSkd  Sc ~ 

Let 2~ be the distance from the tailplane quarter-chord point to the c.p. position of the tailplane 
lift due to ~, then 

C ! 
. . . .  ~ a2 • 3~ c 

Now the quant i ty  '~' may be written thus : 

and therefore 

_ W c  S ' 2 ,  
(~' 2gpSkB 2 ~ .a2 

a~ = a -4- a' - -  W c  S ' ( l  + 2~) a~. 
2gpSkB ~ Sc 

Thus in order to include the effect of the tailplane pitching moment due to the elevator movement 
one needs only to increase the tail arm 1 appearing in the formula for 3 by the length 2~, 
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A P P E N D I X  D 

Inclusion of the Tailfllane Lift due to 

The effect of the tailplane lift due to the elevator deflection in a pull-out manoeuvre has been 
neglected in the preceding appendices. In cases where this effect is estimated to be significant 
and is to be included the following procedure may be adopted. 

The first equation of motion, that  of the equilibrium of normal forces, equation (1) of Appendix 
A must now comprise the term representing the lift due to ~ which will appear on the right-hand 
side of tha t  equation as 

_ ½p V~S , _a Q '  *; . 
aT 

The corresponding term in the non-dimensional form of equation (3) is z~ where 

I OCL __ I S' 
z~ = 2 ~ 2 - ~  a2 . 

Thus disturbance terms due to the variable elevator angle ~ appear now in both equations of 
motion, the second remaining unaltered. 

Wi th  the initial conditions ~ = ~ = ~ = 0, and the same disturbance as in section A.3 (b), i.e., 

= '10(1 -- e-t~0 

the complete solution may be written in terms of the auxiliary functions of section A.3 thus" 

1 dzO 
~10 dT 

~---o d -d - -  ~ + (R + k -- v)z~ L + kz~H + f i  ~ + (k -- v)z, E~K~. 

Now with these solutions any derived response quant i ty  can be obtained, and then its time 
history computed. However, the general formulae of section A.4 do not apply here. Instead 
the following should be used. 

(i) Angle of incidence at the wing 

(ii) Angle of incidence at the tail 

(iii) Coefficient of normal acceleration at c.g. 

S'a2 "]  
n =  D(z~ + Sa J 

46 



(iv) Coefficient of total normal acceleration at the tail 

n, -= D z~ + - ~ f  ~ # \a  d~ 2 - [ - 5  + Sa 

(v) Tailplane load 

p =  A:[Bff~ + c dff' ( al ) ]  
# 

(vi) Angular velocity in pitch 

l(d~ 
q = ~ \ d ,  + ½a~  - -  

(vii) Angular acceleration in pitch 

dq l[d2z~ 1 &~ d~ 

(viii) E}evator hinge-moment coefficient 

• c ~ - b ~ +  ~ r +  (b~- ~3,~ • # ." 

; i 

In order to  obtain the significant maxima of these response quantities it is best to calculate 
their time histories over periods covering the maxima rather than to search for mathematical 
maxima, a procedure which might be here too cumbersome. 

t ~ 
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