E.P. No. 344
A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS
LIBRARY
ROYAL GCRAFT ESTAE' 'HMENT
BEDFRRD.
An Experimental Introduction to the Jet Flap

By

N. A.' Dimmock

ADDETNDUM

For Reference 2, reforc $10 e$ may be made to:
(a) B. S. Stratford
Early thoughts on the jet flap. The Aeronautical §uartcrly, Vo1. VII. February, 1956.
(b) I. in. Daviáson
The Jet Flap. The Joumal of the R. Ae. Soc. Jenuary, 1956.

See also:

B. S. Stratford Mixing and the jet ilap. The Aeronautical Quarterly, Vol. VII. May, 1956.
B. S. Stratford A further discussion on mixing and the jet flap. The Aeronautical Quarterly, ToI. VII. sugust, 1956.

\therefore exferimental introduction to the jet flap
N. Dirmock

SUU HiN

Thas paper recoros the expemmental results obtained with two troaimensional aeroiols, each having a 12.5 per cent thick elliptucal cross suction with a narrov full span jet slot at the trailing edge, the jet doflections being respectively 90° and 31.4°. It is shown that the values of the force and moment coofficlents and derivetives outained experinertally agree satisfactoryly with those suggested by the theoxy of Reference 2 . Suport is civen to the ihrust hypothusas in that the masureü thrust was grester, under appromato coniltuns, then ile raction comonent from the deflected jut. The losses in the sjeta neve been considered and some of thon Investigatod, trose due to iegnolds number and jot entrainment offeots being includec. inso, the influonce of ground proximity on the laft and ceritre of lift of the 31.4° model was measurea at zero moidence anci found now to be prohbative. is tentatave empimal expression is surgesteu ior the pitching moment coefficuent.
1.0 Introduction $\frac{\text { Page }}{6}$
2.0 The equipment 6
2.1 The model 6
2.2 The wand tunnel etc. 6
3.0 The jet calibration 8
3.1 Efflux engle 8
3.2 Thrust 8
4.0 Behaviour at zero incldence 9
4.1 The jet shace 9
4.2 Laft 10
4. 3 Some Reynolds number effects 11
4.4 The centre of lift 13
5.0 Evidence on the thrust hypothesis 14
5.1 Experiments using the 30° and 90° models 14
5.2 Jet drag expercments whth an undeflected jet 17
6.0 The Inft at Incidence 18
7.0 Iongıtudinal stability 18
3.0 Ground Interforence effects 20
9.0 Conclusions 21
References 22
TLBLFS
I Test results for 90° model at zero incidence. ($\theta=30.0^{\circ}$) 23
II Test results for 90° model at incidence. $\left(\theta=90.0^{\circ}\right)$ 24
III Test results for 30° model at zero uncidence. ($\theta=31.4^{\circ}$) 24
IV Test results for 30° model at ancadence.($\theta=31.40$)25

APPENTIX

No.	Iitle
I	Notation
	ISIUSTRATIONS
Big. No.	TitIe
1(a)	The moniel - external
$1(\mathrm{~b})$	View showing the construction of the model
2	Section of model and static hole positions
3	Arrangement of wind turne?
4	Working seation whth model
5	Variation of jet slot-300 model
6	Thrust calibration curves - 90° model
7	Thrust calibration curves for model with jet deflected 31.4°
8	Tot path and profile at $\mathrm{C}_{\mathcal{J}}=0.30-30^{\circ} \mathrm{model}$
9	The penetration of the jet stream anto the nainstrean flow - 30° model
10	The jet path - 30° model
11	Laft at zero incadence - 90° model
12	Laft at zero Incidence - $30^{\circ} \mathrm{model}$
13	Varistiun of $/_{0}$ wath $\mathrm{C}_{J}-90^{\circ}$ model
14	Variation of V_{0} wate $C_{J}-30^{\circ} 100 \mathrm{del}$
15	The experimental value of k
16	The experimental value of $k-30^{\circ}$ model
17	Fressure distribution at zerc incidence 90° model
18	Fressure distribution at zero incidence 90° model
19	Pressure distribution at zero incıdence 90° model.
20	Pressure distributzon at zaro incidence 90° model

Page 26

IUIUSTRATIONS (cont'd.)

Fig. No.
$2_{4} \quad$ Pressure distribution at zero incidence - 300 model
Prumary Reynolds number effects - 30° model
Effect of transition wires on $/ \mathscr{V}_{0}-30^{\circ}$ model
Pressure distribution at zero incidence - 30°
model
model
Pressure distributıon at zero incidence - 30°
model
Pressure distrabution at zero incidence - 30°
model
Aerodynamic centre and centre of lift - 90° model
Aerodynamic centre and centre of luft - 30° model
Pressure thrust - 90° model
Measured thrust - 30° model
Measured thrust - 0° model
The sank drag effect - 0° model
Variation of $C_{D J}$ with C_{J}
Lift at incadence - 90° model
Lift at incidence - 30° model
Lift at incidence - 900 model. Variation of lift
curve slope wath C_{J}
Lift at incidence - 30° model. Variation of Inft
curve slope wath C_{J}
Centre of lift - variation whth incidence - 90°
model
Centre of laft - varıation wath incidence - 30°
model
Centre of luft movement with ancidence - 90° model
Centre of Inft movement whth incidence - 30° model
Lift and pitching moment relationshzp - 90° model
Inft and pitching momont relationship - 30° model
-5-

ILUSTRRATIONS (cont'd.)
Fig. No.
Tutie
44 Ground interference effect on Iif't coofficient at zero incidence - 30° model

45 Ground interference effect on certre of laft position at zero incidence - 300 model

46 Notation - See also Appendux I

It has been known for some tome that if a moving aerofoul is provaded with a high velocity jet sheet in its trailing edge region, having a momentum more than sufflcient for boundary layer control, its lift whl be greater then could be predicted using orly classical theory'. Late in 1952 it was suggested at the M.G.T.E. that a worthwhile increase in lift might result, if, instead of an auxiliary jet, most or all of the propulsive jet or an aurcraft were discharged downvards through a narrow full span nozzle forming the trailing edge of the wing. After some purely qualıtative, unreported, prelimunary experments, work was begun on a theoretical and an cxperimental invostigation of a system comprising an uncubered aerofoll of faxed geometry wath a full span "propulsive" jet issuang from its trazling edge - see Figure 2.

The aims of the experimental work were the provision of such basic anformation as would assist in an understanding of the jet flap mechanism, and of a chock on the theory which was being developed in parallel with the experiments - see Reference 2. Thus a comparison with that theory is made wherever appropriate.

2.0 The equapment

2.1 The modol

For practzcal reasons and sunce any theoretical work involving transformations would thus be simplified, an uncambercd aerofoll of elliptical section was chosen for the experiments, it being thought, moreover, that an orthodox aerofoll section might be no more suitable for use in convunction with the jet flap than would the ellipse. For ease of manufacture the modiel was made in brass and as large as the wand tunnel facilities would permit, but even so the slze w.s insufficient for the avoidance of considerable Reynolas number effects. The basic model comprised an aeroiozl body with an accurately machined register to which could be attached alternatuve trailung edge assemblies.

The structural and geometric detalls are broady illustrated by Higures 1 and 2, two trailing edge uncts being used, each conforming to the elliptical section and havirg a full span jet slot of which the centre line passed through tie centre of the trajling edge radius. The jet efolux angies were 90.00 and 31.4° (nommally 90° anc 30°) and the average slot waths were both 0.018 in ., the varıation being less than ± 0.001 in. , for the 90° model and as illustrated in Figure 5 for the $3 \overline{0^{\circ}}$ model. Care was teken to onsure a uniform spanwise jet total pressure distrabution (see Figure f(b)) and to rad the model of leaks which might well upset its boundary layors. The let total pressure was measured within the body of the ucruioil wheru the flow area was more than forty times that of the jet slot, whalst the external static pressure holes (1-26 in Figure 2), which of necessity vore staggered near the leading and trailing edges, whe all wathin $\frac{1}{8}$ in. of the mid-span station.

2.2 The wind tunnel stc.

In view of tac largo vertical dusplacement to be expected of the mainstream, the tunnel working section was made 12 in. wide by $56 \frac{1}{2}$ in. deep and 6 ft long, and it was connected by a two dimensional contraction to the $56 \frac{1}{2}$ in. square settling chamber of ar existing low speed. cascade tunnel as shown in Figure 3. The sides of the working section
could be adjustec by screw jacks to clamp the model when pressure plotting and to provide a small clearance, about 0.05 In . on each side, to permat the thrust balance to be used. finc speeds up to $115 \mathrm{ft} / \mathrm{s}$ could be attanned in the working section where the velocity profile was four, although the boundary layer was about 0.75 In . thzok on the side walls in the region of the aerofoil leading eage due to a bulge near the exit of the contraction.

The maxumun jet flow was about $0.17 \mathrm{lb} / \mathrm{s}$ of air and thas was provided b_{j}^{-r} a mobile cumpressor feeding the model via the nomal laboratory rinc majn axd reserveir, a stop valve, a high efficioncy filter, two reducing valves in series, a cortrifugal water separator and a throtting volve. Whth this xrrangement the long period fluctuations of the jet total pressure, due to the compressor governing mechanism, were reduced to abcut 0.02 in. mexcury wathin the nomal working range of the regulator valves. With large airflows, hovever, variation could be considerably larger anr, when necessary, the manual control of a blow-off valve ensured that the porctitage fluctuation of the jet total pressure was reduced to a negligible value at all tames. It was found essential to remove the condensed water from the air sance if any passed through the jet slot at gave rase to a large, erratic reduction in thrust and could ever affect tie static pressure distribution. All drain valves were, therefor, lef't "cracked" during test runs to gave a continuous blow dow of condensate and oil which on occasions amounted to more than two gallons per hour.

The vertical lengths of rubber tubing connecting the model inlets to the supply points (see Figure 4) were kept strazght and taut, whatever the attzule of the aerofoil, to avold any Bourdon tube effect when under pressure during tie thrust measurements.

The thrust balance consisted of a parallelogran linkage on ezther sade of the worknge section, the lower links being clamped to the aur supply tubc so as to prevent rotation of the model (see Figure 4). The two forward arms were fixea to a torsion tubo which carmed the balance arms centrolly, while the rear pair were freely pivotted. The need for haste an the construction of the balance led to the use of ball races for the oivuts and these, when lubricated with lught machine oil after beang thoroughly washed in a grease solvent, proved remarkably rellable in spite of the very small angular movements made. The use of a sensituve pneumatic relay valve and pressure gauge as a null point indicator made it possible to measure thrust and drag forces reliably to 0.002 IE , whale 0.0005 lb could be detected. A full scale deflection of the pressure gauge ($0-20$ p.s.3.) corresponded to an angular movement of the balnnce ams of about 1.5 minutes of arc when the coupling link was positioned to gave the maximum practicable sensitivaty. Thus, with a heavy model and suspension system and large anverted lift forces, the pendulum effect was neglagible providing thet the initial precaution was taken of settang the balance point to correspond with a vertical alugnment of the four parallel arms.

Zero geonetric ancadence was obtained by setting the chord line scribed on the fodel parallel to the wind tunnel centre line marked on one of the transparent valls. A pointer clamped to the anr supply tube was then zeroed on a protrector fixed to one of the sude links (see Figure 4) and a preliminary test vithout "blow" confurmed that no lift force resulted when the model was set at zero incidence in this way.

3.1 Fiffux angle

The neasurement of the jet angle for the 900 model - the first to be tested - proved farrly sirple, tor the parallel portion of the slot was twice its wadth and accurate machinung had lef't the external corners sharp. Long fine strands of wool attached to the trailing edge close to and on either side of the slot indjcated a mean jet direction perpendicular to the chord when sighted against a reference line scribed on the tunnel wall. Also, with the model set at zero inoldence, the balance registered zero thrust until the strength of the jet was sufficient to produce unstable secondery effects. These were caused by the jot ampinging on the top tunncl wall and tuming towards elther the anlet or the outlet of the working section, the choice apparently beang determined by draughts in the building sunce an unitiation or a reversal of the erfect could be obtuined by blocking tho tumnel exit. The ejector action of the jet stream anduced a flow of air through the wand tunnel which gave rise to an apparent drag or thrust on the acrofoil. Fowever, the direct measurement of angle using wool tufts, supported by the null point thrust measurement with small jet flows, was considered sufficlently conclusive for the je's defiection angle to be taken as 90.0°.

With the 30° model a different technique was attempted in order to obtain the high degree of accuracy necessary. lfter a preliminary trial with wool tuf'ts had indicated that the jet deflection was nearly 31°, the model wos set at -31.0° so that the jet issued very nearly horizontally. A thrust calioration was then performed, as described in Section 3.2, a sinall error in jet angle making little dafference to the results. The aerofoil was then turmed to $+59.0^{\circ}$ incidence, to give a nearly vertical jet, and the thrust balance plus pressure plotting used to determine the smail thrust or drag which would permit a correction to be made to the nominal jet angle. However, becuuse of the large orea of the model at 590 incidence - presented to the induced turnel flow, the effects doscribed above relating to the 90° model were pronounced even at the low values of jet total pressure and the method had to be abandoned. As for the 90° model, darect observation of the angle was then resosted to, but this time three pairs of very fine cotton threads were speced along the span, the tests covering a range of tuft lengths and jet total pressures. The jet angle was determined as 31.4° and a number of discreet measurements using the same method gave this value consistently over several days. is $n n$ addutional check the model was set to zero incidence and the thrust measured for a number of aet total pressure settings. To this thrust was added the pressure force acting parallel to the chord line and, when the total was divided by the cosine of the estimated angle of 31.4°, the quotient agreed well with the measured values of corrected thruist as shown on the curve in Figure 7.

3.2 The thrust

With the 00° model set at -90° ancidence, the thrust was measured over the complete range of jet total pressure that could safely be used. The balance was not fully operative until after the tests on this model, but the thrust wes "weighed" using the completed suspension arms and links together with cord, pulleys, a yoke and a scale pan. The manometer connected to the static holes in the model showed that a considerable pressure force was "induced" by the jet stream and it amounted to a "drag" of about nanc per cent of the measured thmust. With this correction added
the total thiust, J, was found to agree reasonahly wath the estimated value. Firure 6 illustratos the resuit whts the direet measurement, the induced cifect and the corrected curve show separately.

The same procedure wos adopted for the $30^{\circ} \mathrm{model}$, the ancidence for callbration belng -31.4° and the pressure forces both nomal and parallel to the cherdline being resolved parallel to the thrust line and added. Figure 7 shows the result.

4.0 Behaviour at zero Incidence

4.1 The Jet shape

As an and to an understanding of the jet flap mechanism and to test the valudity of some of the assumptions ${ }^{2}$ conceming the jet sheet, experiments wero made using the 30° and 0° models (see Section 5.2 for 0° fodel) to discover the path of the jet, the extent of ats penetration into the mainstrean and its rate of dafrusion. Two pitot combs were used to measure the distrabution of total pressure in the vicanity of the jet stream, one consasting of 31 tubes each 1 mm . outside diameter and evenly spuced in 2.00 inches for use at stations B and C (see Figure 8) and the other havang 20 tubes of 0.5 mill diometer fitched closcly together for use at atation A where the "wake" was narrow and the gradients of total pressure were steep. At thesc stations the pitot combs, which projected through the tunnol wall, were fixed in such a manner that the peak of exch"wake" was recorded fox all values of the jet coefficient, CJ , between 0 and 1.0 (see Section 4.2 for tile definition of $C J$) the centre line of the wake for $\mathrm{CJ}_{\mathrm{J}}=0$ providung a datum from which the jet penetration could be weasured. it station is the narrow comb was aligned approximately with the jet centre line but it was not wade enough to record the peak of the "no blow" wake. 4t station D, the remotest plane possible within the limat of the transperent panels, the wadth of the larger patot comb also was insufflcient to incluae the centres of both the jet stream and the wake with $\mathrm{C}_{4}=0$. Whus, since there was no means of moving the instrument stem a measurcd vertical distance, a simple total head tube 1.5 mm . outs de duameter was traverscd manually to obtann the necessary information, the entry being positioned visually between scales marked on both trensparent side walls of the working section. Examples of the "wake" shapes at $\mathrm{CJ}=0.30$ are shown for the four stations in Figure 8 , together with the jet path derived from these explorations, whist the penetration of the jet into the mainstream at stations B, C and D is shown in Figure 9.

For the purpose of plotting the jet cath, the measurcment of the penetration at only three plancs proved inadequate, and obstructions prevented the mounting of the patot combs in intermediate positzons. The sinnle pitot tube was, therefore, used to explore and find the position of maximum total pressure in any one plane and a distant, carefully aligned, spotlught then andicated the position of the pitot entry on tracing paper affixed to the tunnel wall. Figure 10 is a faur copy of the result wath the check points obtianed irom pitot conb measurements adaed as corroborative evidence.

Those brief, somewhat unrefined experments formed the background for a part of the argument for the valuaity of the theoretical jet flap model in Reference 2.
4.2 Iift

The Integrated pressure force in the y direction, (see Figure 46) which is the pressure lift, I_{p}, since $\alpha=0$, was added to the vertical component of the jet thrust to give the total lift Lo. Or, in coefficient form,

$$
\begin{equation*}
C_{L_{0}}=C_{L_{p}}+C_{J} \sin \theta \tag{1}
\end{equation*}
$$

where C_{J}, the jet coefficient, is given by

$$
\begin{equation*}
\mathrm{G}_{\mathcal{J}}=\frac{\text { Gross thrust per unit } \operatorname{span}(J)}{\frac{1}{2} \mathrm{PU}{ }_{0}{ }^{2} \mathrm{c}} \quad . . \quad . \quad . \tag{2}
\end{equation*}
$$

(For nomenclature see Appendix I and Figure 46).
Figures 11 and 12 show both the total and the pressure lif't coefficients, $C_{I_{0}}$ and $C_{I_{p}}$, plotted against the jet coeffrcient, C_{J}, for the 90° and 30° models.

In Reference 2 it is shown that:-

$$
\begin{equation*}
C_{I_{0}}=2 x \sin \theta \sqrt{2 \pi} C_{J}^{\frac{1}{2}}\left[1+\frac{\pi}{48} \cdot \frac{C_{J}}{k^{2}}+0\left(C_{J}^{2}\right)\right] \tag{3}
\end{equation*}
$$

and the magnification factor - a useful practical concept - by:-

$$
\begin{aligned}
& A_{0}=\frac{\operatorname{Total} \operatorname{lirt}}{J \in t} \ln \mathrm{I}^{2} t \\
& J \sin \theta \\
&=2 \mathrm{~L}\left(\frac{I_{0}}{C_{J}}\right)^{\frac{1}{2}}\left[1+\frac{\pi}{48} \cdot \frac{C_{J}}{k^{2}}+O\left(C_{J}\right)^{2}\right] \quad \ldots \quad(4)
\end{aligned}
$$

The experimental values of \mathscr{M}_{0} are plotted against $C J$ in Figures 13 and 14.

The above equations for $C_{I_{0}}$ and \mathcal{A}_{0} are derived from the parametric relationships:-
anā

$$
\left.\begin{array}{rl}
L_{0} & =\frac{\pi}{\psi}\left(1+\frac{\sin \psi}{\psi}\right) \tag{5}\\
\sigma_{J} & =\frac{2 \psi^{2}}{\pi} \cdot k^{2} \cdot \frac{2}{1+\cos \psi}
\end{array}\right\} \quad \ldots \quad \ldots \quad \ldots \quad \ldots
$$

where ψ defines the size of the simple analogous flap.
The factor k, ior the purposes of this Report, may be considered as a practical jet shape factor that is given by

$$
k^{2}=\frac{\pi}{\sin \theta}
$$

where η is the angle of deflection of an analogous hinged flap on the equavalent thin serofoil. With a thin aerofoll the value of k would be such as to account for the difference between the pressure distribution on the curred jet fiap surface and that on the sumple stralght flap with the same total lift. In practice, however, it is affected also by the shape of the aerofoil section in the traslung edge region, by the Reynolds number, and by the jet coefficiont and efflux angle. So for no theoretjcal value has becn suggested for k altnough it is expected to be in the region of 1.0 , $1 . e$. for small jet angles $\eta \mp \theta$.

The expermmental values of k obtaned through equations (5) include all the effects of boundary layer separation from the model. Curves of k plotted against $C J$ are showm in Figures 15 and 16 .

A comprehensive selection of pressure distribution curves is given for general infomation in Figures 17 to 20 for the 90° model, and in Figures 23 to 26 for the 300 mouel, whilst in Section 4.3 the evidence provided by a number of these distributions is used to interpret certain of the observod phonomena.

4.3 Some Reynolds number effects

For all the tests on both moiels with a jet coefficient of 0.5 or less the chordal Reynoids number was 4.25×10^{5} (mainstream speed $=$ $100 \mathrm{ft} / \mathrm{s}$) but, with the pressure anside the model aerofonl limated to about 15 p.s.1. gauge, values of C_{J} above $0.5-30^{\circ}$ model oniy - could ondy be obtainer by reducing the air speed in the tunnel with a consequent reduction in Reynolds number. The value of $\frac{U_{0} c}{v}$ has been included in the relevant illustrations.

The following roints were noted from the results of the 90° model tests:-
(1) A disconturuity in the $C_{L_{0}}-C_{J}$ curve at a value of $\mathrm{Cr}_{3}=0.04$ (Figure 11). Mins is more obvious in the Co $-\mathrm{O}_{J}$ curve (Figure 13) and stall more so in the $k-C_{J}$ curve (Figure 15).
(1i) The lack of a suction peak near the tranling edge until a C_{J} of 0.039 is reached (pressure distribution curves (a), (b) and (c) an Figure 17).
(1ii) The suaden reduction of pressure after a partial recovery on the upper surface at the trallung edge at all values of CJ_{J} (pressure distribution curves (a) to (k) an Figures 17 to 20).

These observations prompted some experiments with transition wires fitted to the aerofozl which, by then, had been rebuilt wath its 30° trailing edge. Figures 21 and 22 show C_{∞} and H_{0}, respectively, plotted against C_{y} for the aerofoil with and wathout trip wares, the results for varlous arrangements of the wares being added from a separate
test, whilst the pressure dustributions obtained from that test are shown in curves (a) to (e) of Figure 23 in order of increasing lift. It should be noted that the remainder of the testing on the 30° model was done with both transition wires in tne position shown at (e) in Figure 23.

A study of the pressure distributions, reanforced by the evidence from lift measurements and by explorations with wool turts and a smoke probe, surgests the followng interpretation.

In general the monentum deficiency in the boundary layer at the trailing edge of the aerofoil, which would be sned as a wake in the absence of a jet, couses a diminution in the effective jet strength issuing from the slot. Reference 3 considers how tins interaction affects thrust and drag, but since it is a net loss to the jet system the lift also can be modjfied, and the rapid increase of k - the flap shape factor and the most sensitive indicator to the functioning of the jet flap system - whth C_{J} at small values of the latter is to be expected as the ratio of the acrofoil drag coefficient to the jet coefficient becomes mall. (See Figures 15 and 16 and Sectior 5.1).

Consider the conditions where the peak leading edge static pressure coefficient, C_{p}, is less than about -1.2 , the value corresponding to a C_{J} of 0.039 for the 90° model - Fagure 17 (d) - and between 0.15 and 0.20 for the 30° model - Figure $23(\mathrm{~g})$ and (h) - and where discontinuities in the curves of $\mathrm{C}_{L_{0}}$, H_{0}, and k occur - Fig gres 11 to 16 . An arbitrary but relevant local Royrolds number is $\frac{U_{\max } s}{\nu}$, where $U_{\text {max }}$ is the local poak velocity and s the surfaco d-stence from the front starnation point to the point of inflection of the pressure curve, which was considerably less than that at which laminar separation or transition occurred in classical work on flows around circular colinders - as for example in References 4 and 5 - and so it appeared that the Idminar boundary layer must have persisted to near the tralling edge when no trip wires were fitted. (Note here observations (11) and (1i1) above concerning the 90° model, also the shape of the pressure distribution for tho 30° model wathout a trip wire on the upper surface, Figure 23 (a) and (b)). This laminar separation near the trailing edge might be cxpected to cause a greatur loss to the jet lifting system than would the delayed separation of a turbulent boundary layer.

It follows that the increase in lift at low values of C_{J}, found when trip wires were placcd aft on the 30° model, were due probably to the benefits bestowed by a laminar boundary layer over the majority of the acrofoil surface and a dclayed, or evon non-existent, soparation at the trailing eage brought about by transition to turbulent flow at the wires. (Note also the lover measured drag on the model with trip wires added Section 5.1).

Above the cratical value of C_{J} requared to give a C_{p} of about -1.2 the suction peak and adverse pressure gradient near the leading edge were sufficiently large, apparently, to cause transition there, possibly following a small bubble of laminar separation although this could not be detected. For the 90° model this transition might have delayed the separation at the trailing edge to some extent, but the resulting thick boundary layer offset this and thus accounted for the abrupt check in the rate of increase of k with C_{J} (Figure 15). Separation at the trailing edge of the 90° model was present at all times during the tests in spite
of several attempts to mprove the flow an that region by the addition of "plasticine" fairings and, behand the model above the jet sheet, reversed flow whth considerable turkulence was observed using wol tufts.

The convergence, at the cartical value of $0.15<C_{J}<0.20$, of the curves of Cl_{0}, b_{0} and k for the 30° nodel with and without trip wires
(Figures 21, 22 and 15 and 16) suppor ts the ajove Interpretation since it shows that, above this value of CJ_{J}, the trip wres had no further erfect. In both instances the onset of transution near the leading edge must have resulted an a thicker bcunazy layer rhzch would diminish the atrength of the jet and so explann the reduced incresse of II_{L} and k win O_{J} (Figures 12 and 16).

Additional evidence from the pressure distimbutions is the notzceable kink an some of the curves where the pressure rises after the forward suction peak and this normally anoicates a transition from laminar to turbulent flov in the boundary layert. The lack of sufficiently closely spaced static holes in the regzon, howevor, prevents the consistency needed for a definite conclusion. It 1 a signiticant also that the shape of the curve of k plotted aganst $C y$ (Figure 16), with $\}$ calculated from pressure measurements, is similar to the curve of $\frac{\mathrm{Cr}_{\mathrm{O}}}{\mathrm{CJ}}$ against C_{J} (Figure 30) although
To was obtalned from balanco measuroments in a separate tost. Other points of discontiruity in both curves of k and $\frac{C_{T_{0}}}{C_{J}}$ occur at a σ_{J} of about $0.5,0.75$ and 1.0 and no explanation of these is offered, but it should be remombered that the Reynoles number does not remain constant above a value for O_{J} of 0. Except for the three pounts: $C_{J}=1.0,1.5$ and 2.0.

Leading edge separation occirred whth both modcls after a pressure coefficient of about -6.7 had been roached, this value corresponding to $C J=0.38$ for the 90° moacl and $C_{J}=1.50$ for the 30° model - Ingures 18 (h) and 25 (m). The pressuxe dintrabutions aftor the onset of leading edge separation are shown in itsures 19 and 20 ror the 90° model and an Figures $25(n)$ and 26 for the 300 model, and it vLIl be seen from Figures 11 to 16 that tre lurt continues to increase smoothly in spite of tinis separation, as does the suction peak near the trailarg edge of the 30° model where, it was tnought, no seraration oczurred.

4. The centre of Inrt

The farst moment of area of the pressurc distribution curves about the mid-chord point was obtanned by graphical integration, and the addution of the moment due to the jet reaction gave the total pitohing moment on the aerofozl and hence the position of the centre of lift. With the 90° mocicl the moment due to pressures acting parollel to the chordine wis included, altnough orounting only to about two por cent of the other induced moment and less then one per cent of that due to the jet reaction. Therefore, when computing the results for the 300 model only a row sample pressure distrabutions were plottod aganst y and, when found to contribute less tham 0.5 per cent to the total patching moment, this correction was acrored to save tame.

The position of the centre of laft is shown ploted against C_{j} in Figures 27 and 28, together with the theoretical curvo given by ${ }^{2}$

$$
\begin{equation*}
\frac{d_{0}}{c}=\frac{\pi}{48} \cdot \frac{C_{J}}{k^{2}}\left[1-\frac{1}{\sqrt{2 \pi}} \cdot \frac{C_{J}^{\frac{1}{2}}}{k}-\frac{\pi}{120} \cdot \frac{C_{J}}{k^{2}} \cdots\right] \tag{6}
\end{equation*}
$$

where d_{0} is measured aft the mid-chord point of the aerofoil at zero incidence. The vilue taken for k was that obtuned experimentaliy as described in Section 4.2.

5.0 Frodence on the thrust hypothesis

5.1 Experments using the 30° and 90° models

The "thrust" hypothesis states2 that "In an Idealızed jet flap system, the gross thrust expermenced by the structur will equal the total jet reaction whatever the angle of deflection of the jet" since, with potential flow in the mainstream, a than non-muxung jet sheet must experience a pressure drag torce of $J(1-\cos \theta)$ as well as the linting force of $J \sin \theta$ in order that the pressure difference across it becomes zero at infinity. Thus, wath no net drag exerted on the combined system of the aerofonl plus ats jet, the aerofoil must recelve a thrust equal to $J(1-\cos \theta)$ an aridition to the direct component of the jet reaction, $J \cos \theta$. In practice the amount by which the horizontal force acting on the aerofoil exceeds $J \cos \theta$, and which is termed the pressure thrust, may be more or less than $J(1-\cos 0)$. The 'augmented' induced thrust is considered in Reference 3, as as the first of the two main factors tending to reduce the pressure thrust, namely, the process of maxing between the jet and the manstream air. The second factor is the onset of a separation bubble at the leading edge.

It was wath these problems in mind that the farst build of the model aerofoll was fltted with a tralling edge having its jet slot at 90° to the chordine so that, wath the aerofoll at zero incidence, any thrusu measured could only be pressure thrust and its determination would not depend upon the accuracy of measurement of the difference of two large forces. With the thrust balance not completed, the forces of thrust and drag were initially computed from the pressure distribution. Later the temporary balance described in Section 3.2 was used as a check and the results obtained from both methods are plotied in Figure 29 an the form $\frac{\mathrm{C}_{\mathrm{T}_{0}}}{\mathrm{C}_{J}}$ against C_{J} (where $C_{T_{0}}=\frac{\text { measured thrust }}{\frac{1}{2} \rho J_{0}^{2} e}$) where it will be seen that the pressure thrust reached a maximum of only 37 per cent of the jet reaction. An exploration of the alrflow with wool tufts and a smoke probe revealed that the manstream air below the aerofoll was entoring the jet stroan perpendicularly over a distance of the order of an Inch from the slot and, close to the jet exit, was even being turned to nucet the jet before entrainment. If, for example, a proportion of the ultimate loss to the system is assumed to bear some relationship to the momentum flux of the entraned anr, which enters the jet at right angles, then, taking a local volocaty of $84 \mathrm{ft} / \mathrm{s}$ and a flow area 1 in. $\times 12$ in., this quant $2 t y$ is of the order of 1.4 Ib or nearly half the loss actually experienoed. in addition there was a large region above the jet shert whene reversci flow and considerable turbulence were present ind thas mint har been an even greater source of
loss than the racid entrainuent of mainstream air. The exact mechanism of the thrust loss is not yct resolved but the qualitatave assessment of the large volume of 'spoilt' flow indicates that, wath the modol uscd, the measurement of any piessure thrust is encouragang. As cxpected, the onset of leading edge separation at $C J \div 0.4$ caused a sudden reduction in measured thrust.

At thas pount in the programe a sinole model with an unceflected jet was made and used to investigate the effect termed "jet drag", but for convenience the results are collected together in Section 5.2, q.v.

The thoust balance was comploted in time for the 30° model tests so that only a few sample pressure distributions were plotted against y, these being necessary meinly to check thet thear contribution to the pitchung moment was, as assumed, Insignifzcont (see Section L.4). The thrust, measured by buth methoda, is plotted as $\frac{C_{T}}{T_{J}}$ agannst C_{J} in Figure 30 , where it wall bs seen that only a small proportion (a maxumum of about 15 per cent) of the possible prussure thrust was realised. However the measured thrust included all the drag on the model which was composed of the following atems:-
(1) Pressure or form drag (other than jet drag) - coefficient $C_{D_{p}}-$ included in both mothods of thrust measurement.
(2) Skir friction - coefficient C_{f} - insluded only in the balance measurements.
(3) Induced drag (threemimensional drag) due to the thack boundary layer on the sade walls of the working section - included to sore extent in pressure distribution and
(4) greater tnree-dimonsional drag when there was clearance between the aerofoil and the tunnel walls - thrust balance only.
(5) Jet drag - affects pressure dirtribution and therefore ancluded in both methods of measuremint.

The following table sumnarises the result of some measurements and estmates concerming \lrcorner tems (1) and (2) with "nombiow" conditions.

Table of measured and estimated drag
coefficzents for $C_{J}=0$

$\begin{aligned} & C_{p} \\ & \text { from } \\ & \text { pressure } \\ & \text { distri- } \\ & \text { bution } \end{aligned}$	$G_{D_{\mathrm{I}}}$ Estımated	$C_{D_{p}}+C_{D_{f}}$	$O_{D_{0}}$ from medsured values $=C_{D}+C_{D_{i}}+?$	$\begin{aligned} & \text { Details of } \\ & \text { model } \end{aligned}$
0.0103	$\begin{gathered} 0.0039 \\ (\mathrm{a}) \\ 0.011 \\ (\mathrm{~b}) \end{gathered}$	$\begin{aligned} & 0.0140 \\ & 0.0211 \end{aligned}$	0.0236 (? = separation near T.E. + tzp clearance effect)	90° model no trip wares
not measured	-	-	$\begin{aligned} & 0.0214 \text { (? sepa- } \\ & \text { ration rear T. } \mathrm{F} \text {. } \\ & \text { + tip clearance } \\ & \text { effect }) \end{aligned}$	30° model no trip wires
0.0081	$\begin{array}{r} 0.0049 \\ (\mathrm{c}) \end{array}$	0.013	$0.0173(?=$ tip clearance effect only)	30° model wath trip wares

(a) Assuming laminar boundary loyer to T.E.
(b) Assumang fully turbulent boundary layer fromE.
(c) Assuming transition the wires.

No measurement of the three-ainensional arag - Items (3) and (4) above - cculd bo made, but it was established that. by 1 noreasing the gap between the aerofoils and the tunnel walls wh the thrust balance in use, the measured thrust decreased and, with "no blow", the drao increased. The "jet" drag, again, could not be measured for a model with a deflected jet but, for an aerofoll with a more orthodox trazling edge and an undeflected jet of cold air, it is shown in Section 5.2, that thrs amounts to some six per cent of the jet reaction at small values of CJ_{J}. It is to be expected that, for an elliptical section trailing edge, the jet drag would be increased3.

For the 30° model there appeared to be an increase in the thrust measured by balance and a slight decrease in that computed from the pressure distributions when leading edge separation occurred, but since only the pressure tnrust could be affceted to a farst ordor, and little of this was present, no noticeable loss could be expocted and tuc apparent increase in thrust by balance may have been in reality a. decrease in the relevant drag atems - see (2) and (4) abovo - duc to tre roducea suction peak.

5.2 Jet drag experments with an undeflected jet

The observation of the very large entraznment angle of the mainstream enterang the get sheet from below the 90° model, which suggested a "loss" in the mixing process, prompted the construction of a simple aerofoil having an undeflected jet slot situated in a comparatuvely thin trailing edge; the section is shown in Figure 31. At first, with only the temporary balance available, no "jet drag" could be detected but, with the sensitavity of the completed balance, a reduction in the measured thrust, greater than the "no blow" drag on the aorofoll, was found. With the simply constructed model the trazling edge was not aisolutely ragid and, as the relationship between thrust and jet total pressure was not constant from day to day, each test was preceded by a thrust calibration, there being a continuous trend of decreasing thrust for a given jet total pressure anounting to just less than five per cent of the anitial jet reaction from start to finish of the tests in spite of frequent, careful cleaning of the jet slot. No drag correction was made to the thrust calabration since it was thought that, with the model at zero incadence to the small flow of air induced through the wind tunel by the jet (see Section 3.1), it would be negligible. Iater, when the same model was required for some rurther tests, the trailing edge was modified to prevent the variation of the thmust calibration and the 'induced' drag correction was computed and found to 3 l about 0.6 per cent of the measured thmust. The result of these tests and another made after the modification to the trailing odge is presonted in the same form as that for the 90° and 30° models so that an overall comparison may be made (Figure 31) while in Figure 32 the effectave drag coeffaczent, given by $C_{J}-T_{0}$, is plotted against the jet coefficient for values of the latter up to 0.10 , over which range the ancrease in $C_{D_{0 f f}}$ with C_{J} is linear. When $C_{D_{0}}$ was artificially increased by adding a strip of metal to the
leading edge there was no significant difference in the rate of increase of $C_{D_{e f f}}$ with C_{J}, and the same result was found when C_{D} was decreased by adding a "plasticunc" fauring to mprove the leading edge profile; both these offects are shown in Figure 32. The fanal reduction of all this data to a common basis for comparison was made by subtracting the "no blow" arag coefficient, C_{D}, from the effective drag coefficient, $C_{D_{\text {eff }}}$, to get the jet drag coefficient, $C_{D_{J}}$, and this is shown, plotted against C_{J}, in Figure 33. The average value of $C_{D_{J}}$ appears to be about $0.06 C_{J}$ until $C_{\mathcal{T}}=0.10$ and thereafter it ancreases at the reduced rate of 0.017 per unct merement of C_{J}. When the model, fitted with nose fazring, was tested at $50 \mathrm{f} . \mathrm{p} . \mathrm{s}$. tunnel speed $\left(\frac{U_{0} \mathrm{C}}{v}=2.13 \times 10^{5}\right)$ the higher rate of increase of $\mathrm{CDJ}_{\mathrm{J}}$ was maintained to a value of C_{J} of about 0.25 and then dropped so that $\frac{{ }^{3} C D J}{\partial \mathrm{CJ}}=0.0104$.

It should be noted that the jet drag measured in these experiments is for a cold alr jet with a density roughly equal to that of the mainstream. In practice, the propulsive jet wall be hot and it is to be expected theoretically, that in cruising flight, when $\frac{\rho U}{P_{J} U_{J}} \div 1.0$, there
will be little or no jet drag3. (p and $p J$ are the densities of the undisturbed mainstream air and the jet fluld respectively; $U_{J}=$ the jet velocity at mainstream pressure before maxing). This conclusion is supported by the results of some tests on the some model with hydrogen as the jet fluid - see Reference 3.

6.0 The Iaft at incidence

The total lift coefficient for the aerofoil at incidence was computed from the integration of the pressure distributions parailel and normal to the chordline and from a knowledge of the jet reaction and its line of action. For the 30° model tho pressure forces acting parallel to the chordine were neglected apart from sample checks which showed that the error produced by this approximation was less than 0.40 per cent.

The experimental values of the total luft coefficient, C_{L}, are plotted against incidence in Figures 34 and 35, the broken lines being given by

$$
\begin{equation*}
C_{L}=C_{L_{0}}+a\left[\frac{\partial C_{L}}{\partial a}\right]_{a=0} \quad \cdots \quad \cdots \quad . \quad \cdots \quad \cdots \tag{7}
\end{equation*}
$$

where ${ }^{2}$

$$
\begin{equation*}
\left[\frac{\partial C_{I}}{\partial a}\right]_{\alpha=0}=2 \pi\left\{1+\frac{k}{\sqrt{2 \pi}} \cdot C_{J}^{\frac{1}{2}}+\frac{\pi}{24} \cdot \frac{C_{J}}{k^{2}}+\frac{1}{24 \pi k}\left(\frac{\pi C_{J}}{2}\right)^{\frac{3}{2}}-\cdots\right\} \tag{8}
\end{equation*}
$$

and k is given the value found experimentally from the tests at zero incidence. It can be seen that the stalling point $\left(\frac{\partial C_{L}}{\partial \alpha}=0\right)$ occurs at an incidence which decreases with increasing C_{J}, but that the decrease itself diminishes at the higher values of C_{J} and, for the 30° model, this staliing incidence tends to a lumiting value of about $+5^{\circ}$ (Figure 35). As the 90° model was not tested at a jet coefficient higher than 0.50 , at which value the stall occurred at $+2^{\circ}$ incidence, it is difficult to estimate the limiting value, but the trend andicates that this aerofoll might stall at small negative angles of incidence with large jet coefficients. The theoretical curves and experimental points for

$$
\left[\frac{\partial C_{L}}{\partial a}\right]_{a=0}
$$

are plotted in Figures 36 and 37, whore it can be seen that there is good agreement.

7.0 Longıtuajnal stability

The pitching moment on the acrofoil at ancidence was found by the method described in Section 4.4, again neglecting the pressure distribution plottcd against thickness for the 30° model except for sample checks which, in general, showed the resultant error to be less than 0.40 per cent of the uncorrected moment. Where the latter itself was small
and of the same order as the correction, the error in the value of d was only 0.12 per cent of the chord.

From a knowledge of the lint and pitching moment coerificients the distance of the aerodynamic centre aft the quarter-chord point was found and is plotted against $C J$ in Figures 27 and 28. Theoretical curves have been added, and are given by ${ }^{2}$

$$
\frac{a}{c}=\frac{k}{4} \cdot \frac{C_{J}^{\frac{1}{2}}}{\sqrt{2 \pi}}
$$

again using values of k obtained experumentally in the tests at zero uncidence.

Knowing the induced force normal to the chord Inne, as well as the direct thrust and its line of action, the centre of lift position was found and d/c is plotted against a in Figures 38 and 39. From plots on a larger scale

$$
\left[\frac{\partial\left(\frac{a}{c}\right)}{\partial \alpha}\right]_{\alpha=0}
$$

$$
\text { - } 9 \text {) }
$$

was determined and the result is shown in Figures 40 and 41 together with the theoretical curves from keference 2:-

$$
\begin{equation*}
\left[\frac{\partial\left(\frac{d}{C}\right)^{\frac{d}{c}}}{\partial a}\right]_{\alpha_{=0}}=-\frac{\sqrt{\pi / 2}}{4 k \sin \theta} \cdot \frac{1}{C_{J}^{\frac{1}{2}}}\left\{1+0.6 C_{J}-0.4 C_{J}^{\frac{3}{2}}-m-\infty\right\} \tag{10}
\end{equation*}
$$

which is applicable only for small angles of incidence as various terms of the ordcr $(\alpha / \theta)^{2}$ were omitted in the simplification of the expression.

Funally, figures 42 and 43 show the variation of the pitchang moment coefficient, C_{m}, with lift coefficient, it being noted that the straight lines dram through the experimental points for both models at C_{J} values of 1.0 or less converged very near the point $C_{T}=-2 \pi, C_{m}=-\pi / 2$, whilst even at the high valucs of $\mathrm{C}_{J}=3.0$ and 4.0 the tangent to the curve at $\alpha=0^{\circ}$ passed fairly close to the same point. These observam tions suggest the empirical relationship.

$$
C_{m}=m C_{I}+2 \pi m-\frac{\pi}{2}
$$

where m is the slope which by inspection appears to be

$$
m=\frac{1}{4}-Z \mathrm{O}^{\frac{1}{2}}
$$

The value for Z scems to be reasonably constant, but different for the two model acrofoils, and it could be of the form,

$$
z=\frac{k \sin 0}{\text { constant }}
$$

The following table shows the experimental value of Z, and the numerical value of $\frac{k \sin \theta}{2 \sqrt{2 \pi}}$ is added for both models.

Comparison of experimental and emparical constants relating C_{m} to C_{I}

	90° model		30° model	
	C_{J}	$\frac{\mathrm{ksin} \theta}{2 \sqrt{2 \pi}}$	Z	$\frac{\mathrm{ksin} \theta}{2 \sqrt{2 \pi}}$
0.0095	0.129	0.0985		
0.024	0.142	0.138		
0.194	0.141	0.157		0.0902
0.20			0.0906	
0.466	0.142	0.154		0.0948
0.500			0.0963	0.0903
1.00				

It seems very likely, from the experimental evidence, that for values of $\mathrm{C}_{J} \leqslant 1.0$,

$$
\begin{equation*}
C_{m}=\frac{C_{L}}{4}-Z C_{J}^{\frac{1}{2}}\left[C_{J}+2 \pi\right] \tag{11}
\end{equation*}
$$

where Z is a constant for one aerofoll geometry and jet angle. It also seems probable that Z is proportional to $k \sin \theta$, and the two experiments so far completed suggest that,

$$
\begin{equation*}
z=\frac{k \sin \theta}{2 \sqrt{2 \pi}} \quad \cdots \quad \cdots \quad \cdots \quad . \quad . \quad . \tag{12}
\end{equation*}
$$

However, this last empiriolsm should be accepted only with considerable reserve.

8.0 Ground interference effects

The 30° model was used to investigate the effect of proximnty to a "ground" made of 0.25 mn . thick "Duralumin" plate stiffened at its edges whth angle section members and extending the full length and breadth of the wand tunnel working section, its leading edge beang two chords upstrean from model leading edge. Care was taken in fitting the "ground" in any of its alternatıve positions to ensure that the surface was flat and parallel to the top and bottom walls of the tunnel, the undisturbed airflow through the working section beang parallel to these in normal circumstances. Only tests at zero ancidence were performed
and no thrust balance messurements were made whilst, as before, the anduced lift and pltchin moment were obtained from the pressure forces normal to the chordline and the contrikutzon of the thicknesswase distrabution to the monent ciscegaried apart from the usual sample plots.

A range of OJ from 0.10 to 4.17 and of ground clearance from the cheriline from 0.188 e (1.5 in.) to 1.0 c (8.0 in.) was covered by the tests, the results being 1llustrated in Firures 44 and 45 , where $C_{L_{0}}$ and do/c respectively arc plotted aganst ground clearance for the dufferent valves of CJ_{J}. It can be seen from theso curves thrt, for values of $\mathrm{C}_{\mathcal{J}}$ up to 2.0 and of ground clearance down to 0.30 x chord Iencth, the effect is far from intolerable.

9.0 Conclusions

The expermontal rcsults from an elliptical acrofoll having a two dimensional jet ceflected 90° Irom the chordine and from another with a jet dealcotion of 31.40 (nomnally the 300 model) substantially support tree theory proposed in Ruference 2 for a supple yet filap aerofoil both with and whthout incidence. Thoy also afford evidence which is favourable to the thrust hypothesis in tnat, in woth instances, the measured thrusts were greatcr than the reaction component from the deflocted jet (which, in the case of the 90° model, was zero). The lossos in the syotem have been considered and, to sonc extent, investigated. For instance, the effect of roynolds number was tno subject of one experment and transition wares added to the 300 mode 1 near tho trallug edge were found to incrase the lift at low values of the jet coefrichent. Also measured was the "smk" (1.e. jot entramment) drag acting on a model wath an undeflected jet of cold air, althougk Refernce 3 supgests that these results would be dafferent for a practical jet flap scheme with a hot jet. A tentative, emparicel rulationshap between patohang moment, laft and jet coeffacients has been derived from the expormental results. frnally, the reduction of lift and the movement aft of the centre of luft position due to ground interfercace has keen measured on the $30^{\circ} \mathrm{model}$ and found not to be prohiustive.

110.	Euthor(s)	Ittle, etc.
1	Ih. Eoissonnuinton	Recherches theoretiques et expermentales sui le controle de la couche linite. Iroc. Seventil Intermat. Congress of Applied lilechanics. Vol. «, Part II, 1943.
2*		
3	B. S. Stratford 1. in. Slmuock	I 2xang and the jet flap. N.G.T. Nemorandua No. 1. 250 , A.R.C. 18,422. 1,ctober, 1955.
4	A. Fage	Tre airflow around a cincular cylnoder in the region whore the boundary layer separates fran the surtace. R. \& M. 1179. August, 1928.
5	A. Bage V. in Falkner	Further experments on the flow around a circular cylinder. R. © Li. 1369. Fibruary, 1931.

Th3iEI
Test resulte for 90° noral at zero incidence. $\left(\theta=30,0^{\circ}\right)$

C_{J}	$\begin{gathered} \mathrm{Uo} \\ \text { pi/s } \\ \text { (corrected } \\ \text { value) } \end{gathered}$	$\frac{P_{4 i}}{10^{5}}$	$c_{\text {L }}$	$\because A_{0}$	$\mathrm{c}_{\mathrm{m}_{0}}$	$\begin{gathered} \mathrm{d}_{0 / \mathrm{e}} \\ \text { aft of } \\ \text { mid-cherd } \\ \text { doint } \\ \% \end{gathered}$	C_{T} from pressure distn.	$\begin{gathered} \mathrm{C}_{\mathrm{T}_{0}} \\ \text { trom } \\ \text { balance } \\ \text { measurements } \end{gathered}$
0.0095	100	4.65	0.21	25.37	-0.0032	3.40	-0.0066	
0.0143	100	4.25	0.340	24.03	-0.003	2.44	-0.0069	
0.0150	100	4.25	C. 451	23.75	-0.0061	1.35	-0.0059	
0.0239	101	4.29	13.332	22.27	-0.0087	1.63	-0.0029	
0.0236	101	4.29	0.629	22.07	-0.0036	0.57	-0.0037	
0.0387	101	4.29	0.303	20.67	-0.0112	1.39	+0.0060	
0.0484	101	4.29	0.391	10.45	-0.0160	1.80	0.0073	
0.0719	101	4.29	1.106	15.00)	-0.019'4	1.75	0.0154	
0.0955	102	4.34	1.257	13.03	-0.0344	2.74	0.0168	
0.1468	102	1.34	1.555	10.73	-0.0480	3.09	0.01,04	
0.1946	103	4.37	1.751	9.02	-0.064	3.68	0.0530	
0.256	105	'+. 2.5	2.126	7.46	-0.0953	4.48	0.0358	
0.378	106	4.50	2.456	6.52	-0.0958	4.02	0.1391	
c. 401	$10 ?$	4.55	2.61,	6.10	-0.0977	3.77	0.0962	
0.451	107	4.55	2.591	5.88	-0. 1079	4.01	0.0386	
0.0457	108	4.59	2.778	5.96	-9.1062	3.82	0.1007	
-							-0.0103	
0								-0.0236
c. 003								-0.0177
0.0105								-0.0167
0.0150								-0.0147
0.0216								-0.0118
0.0334								-0.0039
0.0459								0
0.118								$+0.0236$
0.232								0.0568
0.337								0.0920
0.436								0.1157
0.521								0.1058

SABLE II
Test results ior 90° model at incidence. $\left(\theta=90,0^{\circ}\right)$

c_{J}	$\underset{\text { degrees }}{a}$	c_{L}	C_{n}	$\begin{aligned} & d / \mathrm{c} \\ & \text { ait of midm } \\ & \text { chord point } \\ & \quad \bar{j} \end{aligned}$	C_{J}	degrees	$\mathrm{C}_{\text {L }}$	$\mathrm{Cm}_{\text {m }}$	$\begin{aligned} & d / c \\ & \text { aft of mid } \\ & \text { chord point } \\ & \mathbb{K} \end{aligned}$
0.0095	-5.0	-0.182	-0.1288	-70.8		-5.0	0.063	-0.1287	206.5
	-2.5	+0.048	-0.0697	+147.5		-2.5	0.287	-0.0691	24.1
	-1. 25	0.143	-0.0146	+31.2		-1.25	0.411	-0.0426	10.3
	0	0.241	-0.0082	+3.40	0.024	-	0.532	-0.0087	1.6
	+1.25	0.539	+0.0220	-4.09		+1.25	0.749	+0.0319	-4.3
	2.5	0.582	0.0547	-9.41		25	0.843	0.0570	-6.8
	5.0	0.797	0.1122	-14.15		5.0	1.094	C. 1111	-10.2
0.194	-10.0	0.572	-0.2765	48.1		+10.0	1.558	-0.3675	23.4
	-5.0	1.091	-0.1656	15.2		-5.0	2.190	-0.2588	11.7
	-2.5	1.522	-0.1224	8.0		-2.5	2.558	-0.2106	8.2
	0	1.751	-0.0644	3.7	0.467		2.778	-0. 1062	3.8
	+2.5	2.078	+0.0119	-0.6		+2.5	2.839	-0.0762	2.7
	5.0	2.148	$+0.0803$	-3.7		5.0	2.578	-0. 1656	6.4
	10.0	1.756	-0.0786	$+4.4$		10.0	2.085	-0.2241	10.6
	15.0	1.613	-0.0852	+5.1		15.0	2.237	-0. 2336	10.1

T13LEII
Test result for 30° nodel at zero incidence. $\left(\theta=31.4^{\circ}\right)$

c_{J}	$\begin{aligned} & \mathrm{U}_{0} \\ & \mathrm{f} / \mathrm{s} \end{aligned}$	$\frac{R_{M}}{10^{5}}$	$\mathrm{C}_{\mathrm{L}_{0}}$	M_{0}	C_{m}	$\mathrm{d}_{0 / \mathrm{C}}$ ait of mid chord potnt $\%$	C_{T} from press. distn.	$\begin{gathered} \mathrm{C}_{\mathrm{T}_{0}} \\ \text { from } \\ \text { balance } \\ \text { measurements } \end{gathered}$	
0								-0.0214	
0.02	100	4.25	0.030	7.73	-0.0014	1.74		-0.0082	
0.03	100	4.25	0.143	8.95	-0.0015	1.05		-0.0006	These tests
0.04	100	4.25	0.189	9.07	-0.0035	1.90		$+0.0088$	nith no
0.05	100	4.35	0.248	9.52	-0.0073	2. 94		0.0138	trip wires
0.07	100	4.25	0.396	10.87	-0.0073	1.34		0.0365	fitted.
0.10	100	4.25	0.614	11.78	-0.0203	3.31		0.0016	
0.15	100	4.25	0.840	10.86	-0.0353	4.16		0.1032	
0								-0.0173	
0.02	100	4.25	0.196	19.77	-0.00.5	1.27		-0.0013	
0.03	100	1.25	0.255	16.32	-0.0073	2.35		$+0.0057$	
0.04	100	4.25	0.349	15.73	-0.0055	1.58		0.0125	
0.05	100	4.25	0.398	15.28	-0.0114	2.86		0.0176	
0.07	100	4.25	0.328	14.40	-0.0155	2.37		0.0253	
0.10	100	4.25	0.652	12.70	-0.0200	3.32		0.0579	Trip wires
0.15	100	4.25	0.833	10.72	-0.0306	3.66		0.0990	fitted on both
0.20	100	4.25	1.029	9.85	-0.0401	3.90		0.1398	upper and
0.30	100	4.25	1.256	3.04	-0.0648	5.16	0.2525	0.2210	lower surfaces
0.40	100	4.25	1.438	7.18	-0.00:7	5.52		C. 3082	$7 / 16$ in. from
0.50	100	4.25	1.749	6.71	-0.1153	0.69	0.133	0.1015	T.E. Trip
0.75	81.6	3.46	2.14	5.49	-0.1676	7.81	0.656	0.625	wire didmeter
1.00	50	2.12	2.141	4.69	-0.2256	9.23	0.371	0.807	0.0345 in .
1.50	50	2.12	3.144	4.02	-0.35,5	11.24		1.230	
2.00	50	2.12	3.747	3.59	-0.4172	11.14_{4}	1.720	1.689	
2.50	44.8	1.30	4.322	3.32	-0.510	11.79		2120	
3.00	40.7	1.73	4.944	3.16	-0.646	13.08	2.581	2.580	
3.50	38.0	1.62	5.468	3.00	-0.768	13.27		2.970	
4.00	35.4	1.50	5.982	2.87	-0.867	14.51		3.416	
4.17	34.7	1.47	6.072	2.80	-0. 0.365	15.90	3.596	3.50	

TABEE IV
Test resuits for 30° model at incidence. $\left(\theta=31.4^{\circ}\right)$

c_{J}	$\begin{gathered} \mathrm{u}_{0} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$	$\frac{\mathrm{P}_{\mathrm{N}}}{10^{5}}$	$\begin{gathered} a \\ \text { degrees } \end{gathered}$	c_{L}	c_{n}	d / c aft of mid chord point $\%$
			- $\begin{aligned} & -10 \\ & -5 \\ & -2\end{aligned}$	-0.075 +0.420 0.803	-0.2747 -0.1590 -0.0898	$\begin{gathered} -602 \\ +35.9 \\ 11.10 \end{gathered}$
0.20	100	4.25	0	1.029	-0.0401	3.90
			2	1.261	+0.0211	-1.68
			4	1.266	0.0652	-4.43
			6	1.634	0.6995	-6.12
			6	1.542	0.1410	-9.20
			10	1.498	0.1056	-7.08
			[-10	0.335	-0.3575	86.0
			- 5	1.013	-0.2330	22.1
			- 2	1.417	-0.1567	10.9
0.50	100	4.25	- 0	1.750	-0.1155	6.60
			2	1.924	-0.0625	3.27
			4	2.459	-0.0045	0.21
			6	2.408	+0.0118	-0.50
			(10	2.360	-0.0762	+3.28
				0.842	-0.4805	47.90
			- 5	1.620	-0.3434	20.19
			-2	2.126	-0. 2714	12.60
1.00	50	2.12	0125	2.441	-0.2256	9.23
				2.618	-0.1950	7.49
				2.652	-0.1342	5.12
				2.926	-0.0796	2.79
	50	2.12	$\left\{\begin{array}{r}-10 \\ -5 \\ -2 \\ 0 \\ 2 \\ 4 \\ 3\end{array}\right.$	1.714	-0.7425	36.35
				2.735	-0.6126	21.18
				3.361	-0.5297	15.47
2.00				3.747	-0.4172	11.14
				4.073	-0.3407	8.68
				4.546	-0.3540	7.39
				4.379	-0.4317	11.53
	40.7	1.73	$\left\{\begin{array}{r}-10 \\ -5 \\ -2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8\end{array}\right.$			
				3.739	-0.0305	20.90
				4.391	-0.7080	15.80
3.00				4.944	-0.6460	13.08
				5.655	-0.5788	11.90
				6.317	-0.6264	10.18
				6.491	-0.7161	11.43
				5.727	-0.7570	13.96
	35.4	1.50	$\left(\begin{array}{l}-10\end{array}\right.$	3.252	-1.2676	32.36
			-5	4.503	-1.1035	22.96
			-2	5.402	-0.943	17.06
4.00			0	5.982	-0.667	14.51
			2	6.869	-0.350	12.57
			4	7.659	-0.897	12.06
			6 8	7.820 8.199	-0.967 -1.008	12.89 12.92

APDENDIXI

Notation

Fluzd properties

Symbol	Quantity	Where defined or first used
U		Local mainstrean velocity relative
to the aerofoll.		

Forces ana moments

Symbol	Quartity	Where defined or first used
J	Total jet reaction or momentum flux at the nozzle.	Soction 3.2 and Pagure 46
L	Total lift.	Conventional and Figure 46.
Lo	Total lift at zero incricnce.	Section 4.2 and Figure 46
L_{p}	Pressure Inet.	Section 4.2 and Figure 46
M	Tetel fitching moment.	Figure 46 (only used in coefficient horm - Section 7.0)
T_{0}	sitasured thrust it zero incidence.	Figure 46 (only used in coefficient form - Section 5.1)

Force and monent coefficients

Symhol	Quantity	Where deruned or first used
CD_{0}	"1o blow" drag coofficiont i.e. when $\mathrm{I}_{J}=0$.	Section 5.1
$\mathrm{C}_{\mathrm{D}_{\mathrm{S}}}$	Skin friction drag coeffacient.	Conventional and Section 5.1
C_{D}	Pressure drog coefficzent.	Section 5.1
Coff	tifoct ave drag cocfficacnt = $\mathrm{O}_{J}-\mathrm{O}_{\mathrm{T}}$ 。	Section 5.2 and tigure 32
$\mathrm{CDJ}_{\mathrm{J}}$	Jet drag coefficient.	Section 5.2
C_{5}	Jet coofizaclert.	Section 4.2
C_{T}	Total lafl coefficient.	Section 6.0
$\mathrm{C}_{\mathrm{L}_{0}}$	Total lyet coetficient, aerofoil at zero uncidence.	Section 4.2
CL_{p}	Pressure lift coeff'icient.	3ection 4.2
C_{p}	Prossur coefficient.	Section 4.3 and Figure 8 and Figures 17 to 20 and 23 to 26
C_{m}	Patchins moment coefficient.	Section 7.0
Cr_{0}	Thrust coeficicient, atrofoll at zero incidence.	Section 5.1

Mascellaneous

Symbol	Quantzty	There defined or first used
k.	The practical jet shape factor.	Section 4.2
H_{0}	Nagnification factor, aerofozl at zero incıdence.	Section 4.2
m	Slone of C_{m} varsus C_{L} curve.	Section 7.0
2	Ar empircesl constant.	Section 7.0
π	3.14159	Conventional

FIG. 1

(a) THE MODEL-EXTERNAL.

(b) VIEW SHOWING THE CONSTRUCTION OF THE MODEL.

ARRANGEMENT OF WIND-TUNNEL.

FIG. 4

WORKING SECTION WITH MODEL.

AVERAGE WIDTH OF JET SLOT $=0.018 \mathrm{IN}$.

VARIATION OF JET SLOT - 30° MODEL.

FIG. 6

THRUST CALIBRATION CURVES - 90° MODEL.

THRUST CALIBRATION CURVES FOR MODEL WITH JET DEFLECTED $31 \cdot 4^{\circ}$

FIG. 8

FIG. 9

THE PENETRATION OF THE JET STREAM INTO THE MAINSTREAM. - $30^{\circ} \mathrm{MODEL}$.
$\left.\begin{aligned} & \underline{O} \\ & \dot{\dot{v}}\end{aligned} \right\rvert\,$

THE JET PATH - 30° MODEL.

MAGNIFICATION FACTOR－μ_{0}

PRESSURE DISTRIBUTION AT ZERO INCIDENCE - 90° MODEL.

FIG. 18

FIG. 19

PRESSURE DISTRIBUTION AT ZERO INCIDENCE 90° MODEL.

FIG. 20

O AEROFOIL UPPER SURFACE
\times AEROFOIL LOWER SURFACE

PRESSURE DISTRIBUTION AT ZERO INCIDENCE 90° MODEL.

FIG. 21

PRIMARY REYNOLDS NUMBER EFFECTS-30 MODEL.

FIG. 22.

EFFECT OF TRANSITION WIRES ON $\mathcal{M}_{0}-30^{\circ}$ MODEL.

FIG. 24

PRESSURE DISTRIBUTION AT ZERO INCIDENCE - 30° MODEL.

PRESSURE DISTRIBUTION AT ZERO INCIDENCE.- 30° MODEL.

FIG. 28
 AERODYNAMIC CENTRE \& CENTRE OF LIFT
LZ जाड

n
0
0
0
0

FIG. 31

FIG. 33.

FIG. 34

LIFT AT INCIDENCE - 90° MODEL

FIG. 35

LIFT AT INCIDENCE-30MODEL.

LIFT AT INCIDENCE - 90° MODEL. VARIATION OF LIFT CURVE SLOPE WITH CJ.

FIG. 37

LIFT AT INCIDENCE - 30° MODEL. VARIATION OF LIFT CURVE SLOPE WITH C ${ }^{\text {J }}$.

CENTRE OF LIFT - VARIATION WITH INCIDENCE 90° MODEL

FIG. 39

CENTRE OF LIFT - VARIATION WITH INCIDENCE. 30° MODEL.

jet Coefficient - C_{J}

CENTRE OF LIFT MOVEMENT WITH INCIDENCE - 30° MODEL.

FIG. 42

(INIOd

FIG. 43

LIFT AND PITCHING MOMENT RELATIONSHIP. - 30° MODEL.
FIG. 45

A.R C. Technical Report

Crown copyright reserved
Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London W.I
$\mathbf{r}^{\text {A }}$ Castle Street, Edinburgh 2
109 St Mary Street, Cardff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller
Printed in Great Brtain

