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Sz,wnmaiy.-The equations governing the laminar compressible boundary layer on a yawed body of infinite span are 
transformed to give three non-dimensional equations defining two velocity components and the enthalpy. 

Assuming that the Prandtl number is unity and that there is zero heat transfer, a relation is obtained between the 
stream Mach number and the angle of yaw for flows which give the same boundary-layer equations. 

The further assumption of viscosity proportional to the absolute temperature is made and ' similar ' solutions are 
found to be given by a family of surface Mach. number distributions normal to the leading edge. ' Similar ' solutions, 
obtained from a differential analyser, are presented for a range of two controlling parameters. 

I. Introduction.-The practice of sweeping back the wings of aircraft designed for high-speed 
flight has emphasised the need for investigation of the compressible boundary-layer flow over a 
three-dimensional wing. In the following work, the problem is approached by considering a 
yawed wing of infinite span. This idealisation is expected to give results applicable to wings of 
moderate aspect ratio. 

The analysis of the incompressible flow over a yawed infinite wing is simplified by the fact that 
the boundary-layer velocity in a direction normal to the leading edge is independent of the flow 
parallel to the leading edge and is, in fact, identical to the velocity distribution given by the 
unyawed wing case. The spanwise velocity distribution is then calculable from the chordwise 
distribution. A discussion of various solutions to this problem is given, with bibliography, by 
Rott and Crabtree'. 

Published work on the three-dimensional compressible boundary layer is scarce. Struminsky* 
treated the yawed wing of infinite span and solved the zero pressure gradient problem. He also 
found that the boundary-layer velocity profiles can be obtained separately (as in the incom- 
pressible case) provided the flow is isothermal. 

Moore3 derived the boundary-layer equations for compressible flow over a general three- 
dimensional body and gave a solution for the flat plate with arbitrary leading-edge contour and 
zero pressure gradient. He found that the flow was everywhere parallel to the free-stream flow, 
the velocity being given by the same equation as for the two-dimensional flat plate, except in a 
narrow region extending downstream of any point where the leading edge has discontinuous 
curvature. 

Schuh4 treated the yawed infinite-span wing considering several heat-transfer conditions at  
the surface. The drastic assumption was made that the heating did not affect the velocity 
distributions. The temperature distribution through the boundary layer was then calculated by 
using known incompressible-flow velocity solutions in the energy equation. 



Crabtrees has approached the problem of the yawed infinite wing in compressible flow. As- 
suming viscosity proportional to the absolute temperature, Prandtl number of unity, and zero 
heat transfer, he applied the Illingworth-Stewartson transformation and noted that the 
chordwise-momentum equation differs from the incompressible-flow equation by an additional 
factor in the pressure gradient term while the spanwise-momentum equation is completely reduced 
to incompressible-flow form. The additional factor is governed by a parameter equivalent to K 
(equation (18)) in the present paper. He investigated the case where the chordwise compressible 
flow corresponds to the incompressible flow near a stagnation point, proposing a solution as a 
power series of K and evaluating the first two terms of the chordwise and spanwise velocity 
profiles. From this solution he concluded that a good approximation is given by neglecting the 
new term appearing in the chordwise-momentum equation-the transformation (involving the 
temperature) eliminating most of the interdependence of the two velocity components. He also 
derived the compressible-flow equations when the chordwise velocity distribution is transformed 
from the general Falkner-Skan type velocity distribution, stating that the solution to these 
equations is expected to be given to good approximation if the additional pressure gradient term 
is neglected. 

The present paper represents an independent study of the problem treated by Crabtree. The 
two works are parallel, but the method here is somewhat different and some new features are 
revealed. The numerical solution given by Crabtree is found to be in error.* 

In the following work, the possibility of solving the compressible boundary-layer equations for 
a yawed body of infinite span is investigated. The boundary-layer equations are transformed, 
using an extension of the method devised by CaiieW, to  define the two velocity components and 
the enthalpy. By assuming unit Prandtl number and zero heat transfer at the surface, the 
energy equation becomes soluble and the problem is reduced to solving the two momentum 
equations. These are further simplified by assuming the viscosity proportional to the absolute 
temperature. The two equations defining the chordwise and spanwise velocity distributions 
require simultaneous solution (unlike the incompressible-flow problem) due t o  the interdependence 
of the velocities on a common temperature. 

Examination of the simplified momentum equations reveals a relation between the angle of 
yaw and the stream Mach number, for main stream flows which give the same boundary-layer 
equations. In addition, a family of chordwise Mach number distributions is found which gives 
' similar ' velocity profiles. Some ' similar ' solutions are presented for several values of the two 
controlling parameters. 

The theoretical work appearing in this paper formed part of the author's Ph.D. thesis (Queen 
Mary College, University of London, 1953). We wishes to acknowledge the use of the Massa- 
chusetts Institute of Technology Rockefeller Differential Analyzer for obtaining the numerical 
solutions. 

2. Bo.7Jtndavy-Layev Equatiouts and Transforwzatio.vz.-The equations governing the motion of a 
compressible viscous fluid over a yawed wing of infinite span, simplified by the Prandtl boundary- 
layer approximations and assuming constant Prandtl number, are : 

Equation of Continuity 

Equations of Momentum 
( P 4 z  + ( P 4 y  = 0 - - . .  . .  . .  . .  . .  . .  . .  . . (la) 

P.7Jtuzl., + PV'U, = - $ x  + (i.uy), . .  .. . .  . .  . .  . .  . . (lb) 

p y  = O[l] . . .. . .  .. . .  . .  . .  . .  . . ( lc )  
Paw, + PVWy = (Pwy)y - - . .  . .  .. . .  . .  . .  . .  . . (ld) 

:k This computational error has been acknowledged in ,a private communication to  the author. 1 
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Equation of Energy 

. .  . .  . .  . . (le) 1 '  
P U i x  + pvi, = U $ X  +.; (Piy) ,  + ru{(2'ty)2 I- (my)2} - - * 

The boundary conditions are : 

At y = 0 , U = v = w = 0 , and t$, = 0 for zero heat transfer 

A t y - t c o ,  u+u,, w-+w,,. i-+il. . .  . .  . .  . .  * *  I . . ( I f )  

The physical properties of the gas are given by : 

Equation of State 

. .  . .  . .  . .  , . .  . .  . .  Y - 1  P = ,  Pi 

Viscosity-Temperature Relation 

p'cc T m .  . .  . .  . .  . .  . .  . .  . .  . .  . . (lh) 

The pressure and velocity of the main stream just outside the boundary layer are related by 

d$ = - p I ( ~ 1 d ~ 1  + v1dvl + w,dw,) . . .  . .  . *  . .  . . (li) 

the Bernoulli equation 

In the present case this simplifies since dv, = dw, = 0 

By putting the equation of continuity in the form 

. .  . .  . .  . .  . "  pv = - ( P 4 L  dY . .  

the above system can be reduced to three equations defining the three dependent variables 
U ,  w and i. The equations are now transformed by an extension of Canetti's method. 

1 

New variables are introduced as defined by: 

X 

0 
x=[ F ( X )  d X  . .  . .  . .  . .  . .  . .  . .  . . (3a) 

Y 

0 
y = /  A ( X , Y ) d Y  . .  . .  , .  . .  . .  . .  * . .  

x=z . .  . .  . .  . I  . .  . .  .. . .  . . (3c) 

where f ( X )  is an arbitrary function of X and A(X,Y)  is an arbitrary function of X and Y. 

After transformation, the equations are made non-dimensional according to 

q = U/@,; s = w/wl; Y = p / p l ;  m = /Alp1; h = i/il . . .. . .  * - (4) 

. .  . * (5) 

and introducing 

G =,uoAlp . . . .  . .  .. . .  .. . .  
3 
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the boundary-layer equations can be written as: 

. .  . . (6b) 

By noting that 

( 4 x  = - %(Z.tl)X . .  . .  . .  . .  . , (7a) 

and that 

Y h  = 1. . .  . .  . .  . .  . .  . , (7b) 

within the boundary layer, it is seen that the first expression on the right-hand side of the energy 
equation (6c) vanishes. 

The boundary conditions for the problem are : 

At Y = 0 , q = s = 0 ,  hy = 0 for zero heat transfer 

. .  . .  * * (8) A t Y - t m ,  q - + - l ,  s - t l ,  h - t l .  . .  . .  . .  6 .  

The arbitrary functions F and G are chosen to put the equations in the most suitable form for 
solution. For the present purposes they are specified by 

Gy = 0 . .  . .  . .  . .  . .  . .  . .  . .  . . (9a) 

giving 

where A is an arbitrary constant with dimensions of viscosity squared. 

The relations between the two systems of co-ordinates are now completely determined. 

or 
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The three boundary-layer equations now take the forms : 

Y Y 

Xmrqqx - qy + qyy . . ( l l a )  

xmyqsx - SY mrq dY - x s y  J-, (mrq)x dY = syy . .  . .  . .  . . ( l lb)  

Xmrqhx - h~ J . . (Ilc) 

mrq dY - X q y  1 (mrq)x dY = mr (: : q2) 
U1 

Y 1: 
1 1 

0 CT $1 

Y 

dY - Xhy ,f (myqlx dY = - hyy + 7{(ulqy)2 + (w,sy)2}. 

In general these equations require simultaneous solution but under certain circumstances 
independent solutions are obtainable. 

(a) Incom$ressibZe$ow.-In this case the boundary layer is isothermal giving h = 1 and hence 
m = Y = 1. The first momentum equation (l la) then defines q with no dependence on s. This 
equation is identical with the equation for an unyawed wing provided (uJX/u1 is unchanged.. 
Knowing q from (Ila) allows (l lb) to be solved for s. 

(b) Prandtl number.unity and zero heat transfer.-In this case the energy equation has the' 

i + &u2 + 4w2 = constant . . . .  . .  . . (12a) 
particular solution 

or in the present notation 
2 Y - - I .  Wl 

2 tz = 1 + Y - - l  - (--) U1 (1 - q2) + (--) (1 - s2) . . . 2 
. .  . . (12b) 

The two momentum equations remain to be solved simultaneously. 

(c) Zero pressure gradient.-If s is put equal to q, the two momentum equations become identical 
and. the energy equation is reduced to  the extent that the resultant equations specify the two- 
dimensional compressible boundary-layer flow over a flat plate. The known solutions to the 
two-dimensional problem czn therefore be applied directly to the yawed flat plate. 

3. SimPZifed Equations.-The three equations (1 la), (1 lb), (1 lc) are too complex for solution 
by ordinary methods. It is therefore necessary to seek simplifications. As the first simplifying 
measure it is natural to  assume CT = 1 and zero heat transfer so that the direct solution (12b) to 
the energy equation can be exploited. Then guided by experience of the two-dimensional 
compressible boundary layer, the assumption of viscosity proportional to the absolute temperature 
( w  = 1) is made. This reduces the product my to unity. 

The boundary-layer equations are now 

. .  . .  1 Y Y 
Xqqx - qy I q dY - X q y  I qx dY = (- - q2) x(.u,), + qyy 

0 0 Y U1 

Y Y 

0 0 
x q s ,  - SY q dY - X s ,  qx dY = syy  . . . .  . . .  

and the enthalpy is given by (12b). 

It is seen that the first of these equations is independent of s except for its implicit appearance 
in the function l / r  which is part of the pressure gradient term. Equation (13a) is identical with 
the corresponding equation in two-dimensional flow so that, under the present simplified 
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conditions, the effect of yaw on the transformed boundary-layer equations is equivalent to a 
modification of the pressure gradient in the direction normal to the leading edge of the wing. 
It is useful t o  examine this pressure gradient term more fully. 

By using the isentropic relations for the flow just outside the boundary layer and also noting 
that within the layer l/r = h: 

The coefficient of (1 - s2) can be further reduced to the constant 

.(15) W: 

zi, - w?' 
. .  .. . .  . .  . .  . .  

It is clear that this constant depends entirely on the outer flow and hence on the free-stream 

The free-stream Mach number can be written as 

Mach number (M,) and the angle of yaw ( A ) .  

. 
. . .  . .  . . .  (16). ..... . .  

where Qm and w, are the velocity components normal and parallel to the leading edge respectively. 
Now, by using the isentropic relations in the main stream and noting that 

-- w1 - t a n n  . .  .. . .  .. . . (17) 
Qm 

the required expression is obtained : 

= K .  .. 

. . .  
'Equations (13a) and (13b)' are now rewritten . ' 

x@x . . (19a) 
Y Y 

0 0 
qYY + 4Y J- 4 d Y  + XqY J- qx d Y  - xqqx  = - ((1 - q2) + K(1 - s"} 

I 

ai 

. .  . .  8 .  . .  .. . .  . . (19b) 

Examination of these equations shows that the linkage between the two equations is confined 
t o  the single appearance of the parameter K in (19a). This is the only way in which yaw modifies 
the velocity profile in a plane at right-angles to the leading edge. It is clear that for K = 0 
(corresponding either to zero yaw or zero Mach number) the two equations become independent. 

Another feature of the equations is that for a given Mach number distribution normal to the 
leading edge (i.e., a specified ( ~ ~ / a ~ ) ~ / ( ~ , / a , ) )  the boundary-layer equations and their solutions 
are the same for a range of combinations of angle of yaw and free stream Mach number as 
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determined by K = constant. Fig. 2, where lines of K = 0.001, 0.010, 0.050, 0.100, 0.500 and 
1 - 000 are plotted with Mm and A as variables, shows that an increase of Mach number requires a 
decrease in the angle of yaw for the same boundary-layer equations to hold. 

It should be noted that the existence of the parameter K is independent of the assumption 
w = 1. 

4. Equations for Similar ’ Solutions.-The known existence of ‘ similar ’ solutions for two- 
dimensional incompressible and compressible flows, and for incompressible flow over a yawed 
infinite wing prompts an investigation into the possible existence of ‘ similar ’ solutions for 
compressible flow over a yawed infinite wing. 

For similar ’ velocity profiles, the boundary layer equations are required to become ordinary 
differential equations with Y as independent variable. On putting qx = s, = 0, the requirement 
for independence of X is fulfilled when 

Integration gives the velocity distribution as 

- = A,,X . . .  . .  . .  . .  . .  . .  . .  . . (20) 
a1 

This is the same relation that gives ‘ similar profiles in the unyawed compressible flow case6, 
and is distinctly related to the original Falkner and Skan family, 

241 = A,,x’L . 

The equations defining the similar ’ velocity distributions are 

Y 
q Y Y  + qr-1 d Y  = - %[(I - 4’) + K(1 - s2)] . .  . .  . .  

0 

Y 
s y y + s y I  qdY = O .  .. . .  . .  . .  . .  a .  . .  

0 

The second of these can be integrated directly to give 

. . (21a) 

. . (21b) 

. . (22) 

when the boundary conditions are applied. Whether this solution will be helpful when solving 
equations (Ha) and (21b) depends on the method of solution to be used. In general the two 
equations (21a) and (21b) require simultaneous solution for given values of the parameters n 
and K. 

5 .  Similar ’ Solutions.-For K = 0, equation (21a) defines the ‘ similar ’ velocity-profiles in 
the chordwise direction in incompressible flow for either yawed or unyawed wings. Solutions 
to this equation for a range of values of n have been given by Hartree7. Cookes usedHartree’s 
solutions to calculate the corresponding spanwise velocity profiles as defined by equation (21b). 

7 
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Compressible flow ! similar ' solutions have been obtained for K = 0-  01, 0.05 and 0.10 and 
n = 0.5 and 1.0 using the Rockefeller Differential Analyzer at  the Massachusetts Institute of 
Technology. These results are presented in Table I and Fig. 3. For completeness, the results of 
Hartree and Cooke for K = 0 are included for the same values of n where these were available. 

6. Discussion of Results.-It will be noticed from the tabulated values of q and s that the 
Differential Analyzer does not give the asymptotic values of unity. This appears to be due to 
cumulative errors in the integrators. As a check on the accuracy, the equations were solved 
for K = 0 and n = 1 * 0 and the results compared with the solutions given by Hartree and Cooke. 
The equations were solved assuming the true values of 

qy(0) = 1 * 2326 
~ ~ ( 0 )  = 0.5704 

and the asymptotic values 
q'0.9981 
s-+ 0.9994 

for large values of Y were obtained. On assuming the slightly different initial values of 

qy(Q) = 1.2327 
~ ~ ( 0 )  = 0.5704 

the asymptotic values of 
q-+ 1.0049 
s -+ 0.9990 

were given. 

These results indicate the sensitivity of the asymptotic values of q and s to small changes in 
the value of the initial slopes. It will be noted that the better asymptotic values occur with the 
first solution and are associated with the accurately known values of the initial slopes ; therefore 
it can be assumed that the Differential Analyzer gives the initial slopes of the velocity profiles 
with good accuracy whilst the accuracy of the velocity profile itself is not so good. 

The velocity profiles plotted in Fig. 3 show that the profiles become more convex as either YZ or 
K is increased. The chordwise profile is more affected than the spanwise profile by these changes. 
The increased convexity with increase of n and K is accompanied by an increase in the initial 
slopes of the velocity profiles. Curves of qy(0) and sy(0)  are plotted against K for different 
values of n in Fig. 4. These curves illustrate the comparatively small dependence on K. 
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NOTATION 
a 

c p  

F 
G 
h 
i 
K 

K 
rr, 

M 
n 

P 
4 

Qw 

Y 

S 

T 

'J 'w 

x>yJ ' 
x, y,z 

Y 
A 

Y 

P 

0 

cc) 

' I  

Sufixes 
1 

S 

0 

CO 

Velocity of sound 
Specific heat at constant pressure 
Function of X in transformation x = J$ F ( X )  dX 
Function defined by G = ,uojz/,u 

Enthalpy ratio, = i/il 
Enthalpy, = cfiT 
Coefficient of thermal conductivity 
Parameter relating M ,  and A (equation (18)) 
Viscosity ratio, = ,u/,ul 

Mach number 
Parameter defining the main stream velocity variation (equation (20)) 
Pressure 
Velocity ratio, = u/z,il 
Component of stream velocity normal to leading edge of wing 
Density ratio, = p/p1 

Velocity ratio, = w/wl 
Absolute temperature 
Velocity components in directions x ,  y ,  x 
Curvilinear co-ordinates (see Fig. 1) 
Transformed co-ordinates 
Ratio of specific heats at constant pressure and volume 
Function of X and Y in transformation y = JgA(X, Y )  d Y  
Coefficient of viscosity 
Density 
Prandtl number, = c9,u/K 

Index in viscosity-temperature relation, ,mT" 
Angle of Yaw 

Value .at edge of boundary layer 
Value at isentropic stagnation point 
Value at reference point 
Free-stream value 

Suffix notation is used to denote partial differentiation where convenient. 
Addition notation is defined as it is used. 
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K = O  K = 0.01 

0 
0.1 
0-2 
0.3 
0.4 

0.5 
0.6 
0-7 
0.8 
0.9 

1.0 
1-2  
1.4 
1-6  
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5.2 

0-0000 
0.0469 
0.0939 
0.1408 
0.1876 

0.2342 
0.2806 
0.3266 
0.3720 
0-4167 

0 * 4606 
0.5453 
0.6244 
0.6967 
0.7610 

0.8167 
0.8633 
0.9011 

. 0.9306 
0.9529 

0.9691 
0.. 9804 
0.9880 
0 * 9929 
0.9959 

0 .9978 
0 * 9988 
0 * 9994 
0 * 9997 
0 * 9999 

0.9999 
1 - 0000 

TABLE 1 

Similar ' Solutions 

II n=O 

K = 0.10 K = 0-05 

S l q  4 5 S 4 S 

0~0000 
0.0906 
0.1763 
0.2569 
0.3325 

0 4030 
0 * 4686 
0.5293 
0.5852 
0.6365 

0 6830 
0 7633 
0.8275 
0 .8775 
0.9154 

0.9431 
0.9629 
0.9765 
0.9855 
0.9914 

0 * 9950 
0 * 9972 
0.9985 
0.9990 
0.9994 

0.9995 
0 * 9995 
0 ' 9995 
0 a 9995 
0.9995 

0 * 9995 

0-0000 
0.0539 
0.1078 
0.1616 
0.2153 

0 * 2685 
0.3211 
0.3730 
0 * 4239 
0 * 4734 

0.5215 
0.6119 
0 * 6932 
0.7640 
0.8238 

0 * 8724 
0.9105 
0 * 9392 
0-9600 
0.9745 

0 * 9843 
0.9906 
0.9945 
0 * 9968 
0 * 9982 

0.9989 
0 a 9993 
0 * 9994 
0 * 9994 
0 * 9995 

0.9995 

0-0000 
0-0541 
0.1083 
0 * 1624 
0.2162 

0.2696 
0 * 3226 
0.3746 
0.4256 
0 a 4754 

0.5236 
0.6141 
0.6955 
0.7663 
0.8258 

0 * 8742 
0.9120 
0.9405 
0.9610 
0 9754 

0 * 9850 
0.9911 
0.9949 
0 * 9972. 
0 * 9986 

0 a 9993 
0 - 9996 
0 * 9997 
0 9998 
0 * 9998 

0 * 9998 

0~0000 
0.0941 
0-1827 
0.2660 
0 * 3436 

0.4159 
0 * 4828 
0.5444 
0 * 6009 
0 6524 

0 - 6989 

0.8409 
0 * 8889 
0 - 9246 

0 * 9503 
0 - 9683 
0 * 9804 
0.9883 
0 * 9932 

0.9962 
0 * 9979 
0 - 9989 
0 * 9994 
0 * 9998 

0 9998 
0 a 9999 
0.9999 
0 9999 

0.7783 

0 * 0000 
0 * 0545 
0.1089 
0.1634 
0.2174 

0.2712 
0.3244 
0.3767 
0 4279 
0 a 4779 

0 * 5262 
0.6170 
0 * 6985 
0 7693 
0 * 8286 

0.8768 
0.9143 
0.9424 
0-9627 
0 * 9768 

0 * 9863 
0.9923 
0 * 9960 
0 * 9983 
0 * 9996 

1 * 0003 
1 * 0006 
1 -0007 
1 0008 

0~0000 
0.0903 
0.1756 
0.2558 
0.3311 

0-4015 
0 * 4670 
0.5276 
0 - 5834 
0 * 6344 

0:6811 
0.7615 
0 * 8258 
0.8760 
0.9141 

0.9421 
0.9621 
0 * 9760 
0 * 9852 
0-9913 

0 .9952 
0.9974 
0.9986 
0 * 9993 
0.9997 

0.9999 
0 9999 
1 * 0000 

0~0000 
0 * 0539 
0.1078 
0.1615 
0.2151 

0 2683 
0 3209 
0 * 3727 
0.4235 
0.4731 

0.5211 
0.6115 
0 6928 
0 * 7638 
0 * 8236 

0.8723 
0.9104 
0 * 9392 
0.9601 
0.9748 

0.9846 
0.9909 
0.9948 
0.9972 
0 * 9985 

'0.9992 
0 9996 
0.9998 
0 * 9999 
1 * 0000 

0~0000 
0.0922 
0.1792 
0.2609 
0 * 3374 

0.4087 
0 * 4749 
0.5361 
0 * 5922 
0 * 6436 

0.6901 
0.7701 
0 8336 
0 * 8827 
0-9196 

0 * 9465 
0.9655 
0.9785 
0 * 9870 
0 9924 

0 * 9958 
0 * 9978 
0.9989 
0 * 9996 
0.9999 

1 * 0000 
1.0001 
1.0001 
1 0002 
1 * 0002 

1 .0002 

0.9277 0 * 9320 0 * 9489 0.9690 
0.4696 0.5390 0 a 5393 0 * 5423 0-5451 

Columns 2, 4, 12 from Ref. 7. 
Columns 3, 13 from Ref. 8. 
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TABLE l-continued 

1 

Y 

12 I 13 I 14 1 15 1 16 I 17 1 18 I 19 

n =  1.0 

- 

K=O I K =0.01  

0 
0.1 
0.2 
0 . 3  
0.4 

0.5 
0.6 
0.7 
0 - 8  
0.9 

s 

1.0 
1 - 2  
1.4 
1.6 
1-8 

4 
- -- 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

'4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5 -2  

0 * 0000 
0.1183 
0.2266 
0 3252 
0.4144 

0 * 4946 
0 5662 
0.6298 
0 * 6859 
0 * 7350 

0 * 7778 
0 * 8467 
0 * 8968 
0-9324 
0 * 9569 

0 * 9732 
0.9841 
0 * 9905 
0 * 9946 
0.9971 

0 * 9985 
0 - 9992 
0.9996 
0 9998 
0 * 9999 

1 * 0000 

0 a 0000 
0.0570 
0.1140 
0,1709 
0.2275 

0'. 2835 
0 - 3388 
0.3931 
0.4461 
0 * 4974 

0 * 5468 
0 * 6387 
0.7199 
0.7891 
0.8461 

0.8912 
0.9256 
0.9508 
0 * 9685 
0 * 9806 

0 * 9884 
0 * 9933 
0.9963 
0.9981 
0.9990 

0.9995 
0 * 9998 
0 * 9999 
1 *oooo 

0.5704 

0 * 0000 
0.1188 
0 * 2278 
0 - 3269 
0.4164 

0 * 4969 
0.5687 
0 * 6324 
0 * 6884 
0 * 7376 

0 * 7803 
0 * 8488. 
0.8987 
0.9338 
0 * 9579 

0 * 9740 
0 - 9843 
0.9908 
0 * 9947 
0.9971 

0 * 9983 
0.9991 
0 * 9993 
0.9996 
0.9996 

0.9997 
0 * 9997 
0 * 9997 

1.2405 

S 

o*oooo 
0.0572 
0-1143 
0.1713 
0 - 2280 

0.2843 
0 * 3397 
0.3942 
0.4473 
0.4987 

0 - 5482 
0 * 6402 
0-7214 
0-7907 
0.8475 

0.8926 
0.9269 
0-9520 
0 * 9697 
0.9817 

0 .9894 
0.9943 
0.9972 
0 * 9989 
0.9999 

1 -0004 
1 *0005 
1 -0006 
1 -0006 

0.5719 

K = 0.05 

4 

0~0000 
0.1213 
0.2324 
0.3332 
0.4241 

0 * 5055 
0 * 5779 
0 - 6420 
0 * 6982 
0 * 7472 

0.7897 
0.8573 
0.9058 
0 -9396 
0.9625 

0 ' 9773 
0.9866 
0 * 9924 
0 * 9957 
0.9976 

0.9986 
0.9991 
0.9993 
0 * 9993 
0.9993 

0 e.9993 
0 * 9993 
0 * 9992 

1 .2670 

S 

o*oooo 
0 * 0574 
0.1148 

0.2290 

0.2955 
0.3412 
0.3958 
0.4490 
0 * 5006 

0 * 5502 
0 * 6423 
0.7235 
0.7925 
0.8491 

0 * 8938 
0.9278 
0 * 9525 
0 9700 
0.9817 

0 * 9893 
0.9940 
0.9969 
0.9986 
0 * 9995 

1 a 0000 
1 0002 
1.0003 

0-17.20 

0.5742 

K = 0.10 

4 

0 - 0000 
0.1243 
0 2380 
0 * 3408 
0 * 4333 

0.5160 
0.5892 
0 * 6537 
0.7101 
0.7591 

0.8012 
0.8677 
0.9147 
0 * 9468 
0 * 9679 

0.9814 
0 * 9895 
0.9943 
0.9969 
0 * 9984 

0.9990 
0 9992 
0.9992 
0.9992 

.0*9992 

0.9991 
0 * 9990 
0 + 9989 

1 .3002 

5 

0~0000 
0 * 0577 
0.1155 
0.1732 
0 * 2306 

0 * 2873 
0 * 3433 
0 * 3983 
0.4518 
0 5036 

0 * 5535 
0.6457 
0.7269 
0.7958 
0.8521 

0.8964 
0.9300 
0.9544 
0.9715 
0 * 9829 

0.9903 
0 * 9949 
0.9977 
0.9994 
1 - 0002 

1.0006 
1 *0009 
1.0010 

0.5783 
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FIG. 1. Co-ordinate system. 
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FIG. 2 .  Relation between Mach number and angle of yaw for identical 
boundary-layer equations. 
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FIG. 3. ' Similar ' velocity profiles. 
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FIG. 4. Effect of K and ?z on the initial slope of the velocity profiles. 
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