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Swnmary.--This report, which is presented in two parts, develops an approximate method of estimating the effect 
of structural deformability on the manoeuvre point of an aircraft. The introduction outlines the scope of the complete 
work in relation to  the work of Lyon and Ripley (R. & M. 2331 and 2415). 

Part I opens with a detailed discussion of the structural deformability of wings, unswept and swept, and proceeds 
on the basis of certain aerodynamic and structural approximations to derive relatively simple formulae for the 
calculation of the shift of manoeuvre point due to elastic camber, elastic wash-out (wing torsion and bending, and the 
effect of fuselage interference) and the direct effect of wing bending (which changes moment arms) on pitching moment. 
A summary and discussion of some comparative calculations of the effect of elastic wash-out, using the present method 
and that proposed by Lyon (R. & M. 2331) are included. They demonstrate the dangerously large shifts of manoeuvre 
point which may arise from elastic wash-out with swept wings and show that while the present method is somewhat 
less accurate than that of Lyon, it has the important advantage of being far less laborious in application. 

Part I1 examines the effects of fuselage and tailplane deformability, and at  the same time investigates the effect of 
wing deformability (including root-region deformability) on the fuselage and tailplane contributions to manoeuvring 
stability. Bending of the fuselage, torsion of the (unswept) tailplane and deformability of the tailplane attachment 
are the main fuselage and tailplane effects considered, and among the subsidiary effects examined is that of engine 
nacelles situated in the wing. 

A simple procedure for numerical calculation of the fuselage and tailplane contributions to manoeuvre-point shift 
is set out and illustrated by a worked example, which demonstrates how elastic attachments of wing and tailplane 
may be used to augment the effect of the tailplane in counteracting the destabilizing effect of wing and fuselage. 

A simple description of the method of analysis used in Part 11, together with typical resuIts obtained from it, is 
given in section 12. 

~nt~od~ction.-Following the publication in 1946 of R. & M. 23311, theoretical investigation at 
the Royal Aircraft Establishment into the effects of aero-elastic distortion on the stability and 
control of aircraft was temporarily suspended. R. & M. 23311 had outlined 'a possible method of 
estimating the effect of aero-elastic distortion of swept-back wings on stability and control 
derivatives, so that in conjunction with R. & M. 24152, it provided a basis for investigating within 
the general framework of R. & M. 20273, the overall effect on stability and control, of the aero- 
elastic distortion of the complete aircraft structure. 

In Germany, Fingado had written a paper4 on the effect of aero-elastic distortion on manoeuvre 
point, and on coming to England he expanded and extended the work to incorporate new ideas 

* R.A.E. Report Aero. 2320, received 3rd August, 1949. R.A.E. Report Aero. 2362. 



and subsequent experience gained while working with Deutsche Versuchsanstalt fur Luftfahrt 
and at  the R.A.E. in co-operation with German and British aircraft firms. Much of the later 
work was carried out in collaboration with Taylor. 

Fingado’s approach to the subject differs considerably from that developed by Lyon and 
Ripley’ and implied, though not developed, by Lyon1. The British method investigates effects 
of deformability on stability characteristics such as manoeuvre margin by considering the effects 
of such deformability on the values of the generalised stability derivatives A,  AI, etc., while 
Fingado considers directly the effect of deformability on the pitching moment of the aircraft. 
Furthermore, while Lyon and Ripley leave their results in terms of general stiffnesses of the 
various aircraft components involved, Fingado substitutes representative values for the stiffnesses, 
arrived at  from considerations of strength and stiffness requirements*. This enables him to 
reduce the final result for the shift of manoeuvre point to a summation of terms involving only 
the non-dimensional dynamic pressure number Q and certain construction figures ’ which are 
functions of aircraft geometry, wing structural layout and limiting design conditions (ultimate 
load factor and maximum permissible dynamic pressure). In this form, the result is very con- 
venient for the rapid computation of the effects of varying such purely geometrical parameters 
as wing aspect ratio and sweep angle and such structural parameters as the position of the wing 
flexural axis. 

In order to avoid undue complication, it has been necessary to restrict the investigation to 
wings of constant chord and to make the assumption of a uniform basic lift distribution. The 
method cannot therefore be expected to yield results of great accuracy for highly tapered wings 
or for heavily swept wings of small aspect ratio, for which the basic lift distribution is far from 
uniform. It has been used as the basis of an ab initio investigation into the optimum layout 
(from the point of view of aero-elastic distortion) of a fast subsonic long-range aircraft and it 
would appear to be for this type of investigation where general qualitative, rather than quantita- 
tively accurate, results are required, that the method is most useful. Where more accurate 
results are required for some specific design, it would seem desirable to revert to the methods of 
Lyon and Ripley. Allowance may then be made for the effects of wing taper, and the correct 
basic lift distribution may be determined from lifting-plane methods. 

When the various sections of the work had been completed by the respective authors, it became 
evident that considerable modifications to the lay-out of the report as originally planned, were 
desirable in order to improve the exposition and to render possible more effective comparison 
of the method with that of Lyon and Ripley. The work of rearrangement and general editing 
was undertaken by Taylor. 

The report is presented in two parts, the first of which deals with the effect on manoeuvre point 
of wing deformability, including the effects of sweep. The second deals, in the main, with the 
effects of deformability of the fuselage and of an unswept tail unit, but at  the same time applies 
some results of Part 1 to determine the effect of wing deformability on the fuselage and tailplane 
contributions to stability?. 

Although the derivation of the formulae is somewhat long and complicated, the method is 
quite simple and rapid in application. For the numerical calculation of the various effects, 
routine procedures are suggested in sections 9 and 17 of the report, and the reader who is interested 
in the numerical application of the method, rather than in its theoretical background, need do 
little more than study these sections in conjunction with Tables 1 and 2. 

* These and other structural assumptions throughout the report have been fully discussed with Structures 
Department, R.A.E. 

t Footnote (1956) : Originally the authors intended to devote a third part of the report to a consideration of the 
effects of swept tail-units and t o  a detailed analysis of the effect of an elastic attachment of tailplane to fuselage, but 
circumstances conspired to prevent the completion of this part of the work. However, the first two parts, here 
presented, are self-contained and together constitute a complete method for estimating the effect of elastic deformability 
on the manoeuvre point of an aircraft with swept wings and unswept tailplane. 
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PART I 
The EfSect of Wing Deformability 

1. The Elastic Deformability of the Aircraft Structure with Respect to Symmetrical Loads.-To 
investigate the effects of elastic deformability of the aircraft structure, it is first necessary to 
examine the character and range of this deformability. As the aircraft is assumed to be 
symmetrical and it is intended to consider only a symmetrical flight condition (the pull-out), it 
will be necessary only to consider the deformability with respect to symmetrical loads. The 
most important deformations affecting the manoeuvre point are bending of the fuselage, bending 
and torsion of the tailplane, angular deflections of the tailplane due to deformability of its attach- 
ment to the fuselage, and twisting and bending of the wing. The fuselage and tailplane effects are 
considered in Part I1 of the report, attention being concentrated in the present part on the wing 
effects. 

1.1. The Deformability of the Wing Structure.-For simplicity we consider only constant-chord 
wings, assumed in the first instance to be unswept. The deformability of a wing can, with . sufficient accuracy in most cases, be divided into two parts, viz., bending of the ‘ elastic axis ’* 
and twist about that axis. We consider first the twist. Here we shall assume the wing to be 
so constructed that the flanges take only a very small part of the strain energy due to torque, 
as is the case with most wings, but not, for instance, with shell? wings. 

Then a torque T about the elastic axis causes an angle of twist (or negative wash-out) per 
unit length. 

A- 

d0 T 
dlyl=GJ, 

-- 

where G denotes the shear modulus and GJ the torsional rigidity. At, and in the neighbourhood 
of, places where the twist is disturbed (for instance by cut-outs in the skin or by prevention of 
warping of cross-section planes) it is generally possible to specify an equivalent GJ which does not 
exactly equal the real GJ, but gives-for all loading of practical interest-a sufficiently accurate 
ratio between torque and twist per unit length. To derive a representative value for the torsional 
rigidity GJ, we start from the ‘ aileron rolling effectiveness reduction factor at  maximum permis- 
sible dynamic pressure ’ which we shall denote by FE*. With well-designed wings this reduction 
factor usually defines the minimum required torsional rigidity. It is given by 

where q* is the maximum permissible dynamic pressure and ql: is the ‘ critical ’ dynamic pressure 
at which the factor becomes zero (see, for instance, Ref. 6). For an unswept wing of constant 
chord and constant torsional rigidity (which, from the viewpoint of the weight of the torsion box 
required for a given qcE, approximates to the best distribution for a constant-chord wing) and 
average aileron/span ratio, the critical dynamic pressure is approximately 

* Any slender prismatic beam encased perpendicular to its generators has an elastic axis ’, characterised as follows : 
any system of arbitrarily distributed forces perpendicular to, and acting on that axis, causes a pure bending deformation 
(a parallel displacement of all sections lying perpendicular to  the generators), and any system of arbitrarily distributed 
couples about that axis causes a pure twist about the axis. If the beam is not exactly prismatic, or is otherwise 
encased, there generally exists no elastic axis in the sense of that strict definition, but in many cases it is sufficiently 
accurate to calculate the deformations by assuming the existence of such an axis. (For details, see for instance Ref. 5.) 

7 The term ‘ shell wing ’ signifies a wing with no concentrated spar flanges, for which both bending’and torsional 
stiffness are provided by skin and stiffeners. 
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where ct/c denotes the mean aileron/chord ratio. (This equation is a somewhat extended form of 
an equation given by Roxbee Cox'.) Using this formula in the above equation for FE* and 
introducing a ' dynamic pressure number ' Q defined as the ratio of dynamic pressure q = +pV2 
to wing loading, we get 

2 

(1 -;) 
. .  - *  (1) GJ = Q* ws. .. .. 4.30 1 - Fl" 

The two equations from which we have deduced equation (1) are correct only on the assumption 
that air-compressibility effects are negligible up to the critical dynamic pressure, which for many. 
aircraft types is not true. Equation (1) itself, however, assumes only that these effects are 
negligible up to the maximum dynamic pressure, which even today* is still true for many aero- 
plane types. Since, for some aircraft, the necessary torsional rigidity is determined not by 
aileron effectiveness, but for instance by flutter considerations, we shall introduce a ' torsional 
rigidity factor ' F, so that (1) becomes 

( 1  - :)2 

'* WSF,. 4.30 Fp GJ = 

It is easily established that if the elastic axis is swept back by an angle 4 ,  the wash-out? per 
unit spans due to torsion is still given by T/GJ where T is the true torque about the elastic axis 
and GJ is the torsional rigidity of sections perpendicular to that axis. Comparing swept-back 
and unswept wings of the same chord$ and span, it is clear that for the same lift distribution, 

T+ = T+=, COS 4 , 
and hence to obtain the same wash-out per unit span due to torsion with a given lift distribution, 
we must have 

For a wing of infinite bending stiffness, neglecting the effect of sweep on the values of the 
aerodynamic coefficients, this would lead to the equation 

(GJ), (GJ)+=o COS 4 - 
I 

(1 -$) 2 

GJ = Q* ws cos4 4-30 (1 - FE") 

as defining the torsional rigidity required from aileron-reversal considerations. 
again a torsional rigidity factor F,, we adopt the equation 

Introducing 

for the general case of a swept wing of finite bending stiffness, leaving discussion of its accuracy 
to section 4. When the wing is subject to aerodynamic or inertia loads, its torsional flexibility 
will give rise to elastic wash-out, the magnitude and sign of which will be investigated in section 3. 

Bending of the elastic axis can be split up into two components respectively in the directions 
of the two principal axes of inertia of the wing structure resisting bending. For an unswept wing 
with conventional structural lay-out, the longitudinal principal axis of inertia practically coincides 

* Footnote (1956) : It should be borne in mind that this was written in 1949. 
t i.e., the spanwise change in angle of attack of chordwise sections. 
1 Throughout this report, the chord of a swept wing is measured parallel to the plane of symmetry, and the ' chord- 

wise ' direction is defined accordingly. Span is measured perpendicular to  the plane of symmetry. 
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with the zero lift direction. We shall first investigate the deflection curve which results from 
bending about this axis. Ultimately, we require the derivative of the deformation with respect 
to load factor, and here we may calculate this directly without first considering the deformability 
(in this case the bending rigidity E I )  because, in the case of the spars, as opposed to the torsion 
box, the manoeuvring loads are critical. At the dynamic pressure for which we are investigating 
the deflections, we shall assume the spar flanges to behave as follows : they remain unstrained 
throughout their length a t  zero load factor, and at the proof load factor the stresses are every- 
where equal to the proof stress. (The first assumption is often not fulfilled, because it requires 
among other things, a wing shape without wash-out and with a profile having zero moment at  
zero lift. The second assumption similarly does not always hold, but since they simplify the 
investigation considerably, both assumptions will, at  this stage, be considered to hold true.) 

With the foregoing assumptions, the difference between the strains of upper and lower flanges 
is proportional to load factor, and at the proof load factor, is equal to the difference between the 
proof tensile strain apt and the proof compressive strain up,. The proof strain for tension is equal 
to the proof tensile stress 9, divided by the elasticity modulus E ; for all materials used in practice 
this ratio is approximately ($t/ft)(1/150), where f t  is the ultimate tensile stress. The proof 
compressive strain of centrally loaded, initially uncurved structural members equals (p , / f t )  (1/150). 
Here p , /  f t  depends fundamentally on instabilities arising at the higher compressive stresses, 
which depend on the materials and type of construction. In the case of metal-covered wings 
with spars (as distinct from shell wings, for instance), these instabilities are, in general, relatively 
unimportant because of the large mutual effects of the structural members in supporting one 
another. Therefore, for the compression flanges of a metal wing we can, in most cases, assume 
the proof compressive strain upc to be approximately equal and opposite to the proof tensile 
strain apt of the same material, that is to say, equal to - ($t/jt)(l/150). The proof curvature 

b .  If, for simplicity, the wing thickness is assumed 2 1 is therefore equal to ~ 150 wing thickness f, 
constant in spanwise direct&, the curiature will also be constant. Furthermore, its sign will 
be the same over the whole span. Thus for constant-chord wings the curvature, expressed 
non-dimensionally in terms of semi-span s, will be 

___ A - , for an arbitrary load factor, where A 
150 n,$ z 

denotes aspect ratio, z the thickness/chord ratio of the wing profile, and n, the ultimate or 
breaking load factor. Later, we shall need the derivative of the curvature with respect t o  load 
factor ; it is given by 
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By introducing a ' bending rigidity factor ' Fb, similar to the ' torsional rigidity factor ' above, 
we get 

When we come to consider swept wings, it will be more convenient to consider this result in the 
form : 

curvature 01 e 

(independent of sweep angle). 
\--/ 

It should be observed that, because the mutual interactions of deformations and load distribu- 
tion vary with dynamic pressure, equations (2) and (2a) will hold exactly only for one selected 
dynamic pressure. It will subsequently appear (see section 3.1) that in the cases for which it is 
legitimate to use these equations, the chosen dynamic pressure should be the maximum per- 
missible for the aircraft under consideration. For lower dynamic pressures, the equations will 
be only approximately true. 

The stiffness in bending about the other principal axis of inertia must be large enough to 
prevent excessive strains in the leading- or trailing-edge members of .the wing. The maximum 
bending moment about this axis occurs when the highest load factor is combined with the highest 
lift coefficient: it can be shown to be about one-quarter as large as the largest bending moment 
about the longitudinal principal axis. Hence the ratio between the section bending moduli 
must be at  least one-quarter, and the ratio between the moments of inertia a t  least 1/4t, the 
moment of inertia about the vertical principal axis being at  least 1/4r times as large as that 
about the longitudinal one. In practice it is larger, being for tubular-spar wings about twice, 
and for single-spar wings of conventional construction about three times as large* as the value 
calculated here as a minimum. The authors cannot yet quote a corresponding figure for a two- 
spar wing but it would certainly be larger than three. 

When a wing is subject to aerodynamic or inertia loads it is apparent that its bending deforma- 
bility will have no effect on elastic wash-out as long as the elastic axis is unswept. When, however, 
that axis is swept, bending deformability will contribute to the elastic wash-out as discussed in 
section 3. A further deformability which is important because it gives rise to an elastic camber 
of the wing (see section 3) is the bending deformability of the wing ribs. The derivative of the 
curvature of the ribs with respect t o  load factor, depends very much on the general structural 
lay-out and in particular on the number and position of the spar webs, the distance between 
the ribs which have bending stiffness, and the lay-out of the regions between them. With two 
or more spars, the deflection curve of a rib will generally have two or more points of inflection 
and therefore the effects will be smaller then with single-spar wings. For single-spar wings 
with narrow rib spacing, a rough estimate-similar to that for the spar above-gives for ribs 
with no excessive strength : 

- 1  

it being assumed that the ultimate compressive stress is half the ultimate tensile stress, due to 
column failure and to the neighbouring skin being effective only in tension. Most aircraft have 
much stiffer ribs, the ' rib-stiffness factor ' Fr.b. being usually in the region of 5. Introducing 
this factor we get 

. .  

j.. 

* These figures were supplied by the firms Blohm and Voss, and Messerschmitt, respectively. 
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In addition to  rib bending, variation in load factor may give rise to changes in aileron hinge 
moments which result in an automatic deflection of the ailerons working against their flexible 
control circuits. Similar effects do not, in general, arise with flaps, since they are usually very 
rigidly mounted with a self-locking device. Before proceeding to estimate the elastic wash-out 
and the overall elastic camber of a wing under the loads arising from a pull-out, we shall consider 
in some detail the deformability of swept wings. 

. 1.2. The Defovmability of Swept Wings.-The deformability of swept wings depends to a large 
extent on the details of their structural lay-out. Since wide variations of detail design are 
possible, especially near the root, it is possible, by suitable or unsuitable choice of lay-out, to 
improve or worsen the effect considerably. At the same time, it is clearly impossible to derive 
a formula of general validity, and accordingly we shall deal with the deformability of swept 
wings by investigating a number of typical structural lay-outs, restricting the investigation to 
the most usual and convenient case where the sweep angle is constant along the semi-span. 

The investigation is most simple for those types for which the chord of the load-carrying 
structure-apart from the ribs and perhaps from a negligibly thin skin-near the wing root is 
so small compared with the other linear dimensions of the wing, that the effects of the oblique 
encasement are negligible (Fig. 1). Structure (a.1) differs from (a.2), and (b.1) from (b.2) only 
by a small locally concentrated disturbance at the root. Structures (a.2) and (b.2) are easily 
dealt with. The former has an elastic axis in the strict definition of the second footnote in 
section 1.1 and does not offer any difficulties. With structure (b.2), sections perpendicular to the 
direction in which an elastic axis could lie, change their shape with deformation of the spar; 
therefore wing (b.2) has no elastic axis in the strict sense of the above-mentioned footnote. 
Since, however, the elastic behaviour of sections lying in the direction offlight is the most important 
feature from the aerodynamic point of view, wing (b.2) is very convenient for our later con- 
siderations and we can consider its spar to be a kind of elastic axis in a somewhat looser sense. 

The next structural lay-out to be dealt with is the single-spar lay-out with a torsion box of 
appreciable chord ratio. We consider wing (a.1) of Fig. I, but with a skin, which may contribute 
to torsional but not to bending stiffness, in front of the spar. The skin is assumed to extend 
only from the wing tip to rib c, which is itself assumed to be completely rigid. Then for any 
arbitrary load, the deformation can be compounded of two contributions, each of which can be 
simply calculated. These are the deformation of the beam in the root region of the wing, and 
the deformation of the outer region incorporating the torsion box. For each of these contributions 
there exists an elastic axis in the exact sense, but for the combined effect there is no such axis. 

At a given effective wing lift coefficient, the contribution of the root region has a far greater 
influence on the effect of deformation on angle of attack of fuselage and tail unit than it has on 
the aerodynamic pitching moment of the wing. If it is not required to investigate the effect of 
root region deformability on wing pitching moment at  all, we can substitute for the deformability 
of the root region, a ball-joint with springs at a kind of elastic point of the root region. Such an 
equivalent system promises to be very helpful in the consideration of aero-elastic problems of 
swept wings. 

Structural lay-outs having a larger chord ratio for the load-carrying structure, including 
lay-outs with more than one spar can similarly be treated by using such an equivalent system. 
This can be chosen so as to give the correct effects of the deformation upon the angles of attack 
of fuselage and tail unit at a given effective wing lift coefficient. On the other hand, it completely 
neglects the effect of root-region deformation on aerodynamic wing pitching moment at  that 
lift coefficient. This effect is negligible in comparison with the effect of deformation of the outer 
region on wing pitching moment, if the span of the root region is negligible in comparison with 
wing span, that is to say, if the chord ratio of the load-carrying structure near the root, multiplied 
by the sweep angle,’ is sufficiently small compared with the half aspect ratio. This condition is 
satisfied for most swept wing lay-outs except possibly for delta wings and it is therefore reasonable 
t o  use the equivalent system here where it has the important advantage of decreasing the number 

.. 
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of variables. .Accordingly, we neglect the effect of root-region deformability on wing pitching 
moment and consider such deformability to influence the aircraft manoeuvre point only by virtue 
of its effect on the angles of attack of the fuselage and tail unit. The magnitude of this effect 
will be investigated in Part I1 of the report. 

Having examined in some detail the character and range of the wing deformability, we are 
now in a position to proceed with the development of the formula giving the effect of this 
deformability on manoeuvre point. At the outset, however, we shall, in order to simplify the 
investigation and to present the results more clearly, make some restrictive assumptions. The' 
importance of some of these will be examined in section 7. 

2. Initial Assumptions and Approximations.-The wing is assumed to be a cantilever one with 
no engine nacelles and to have constant chord and constant sweep angle 4. Dihedral effects are 
neglected since they are small. Furthermore, the wing is assumed to have no wash-out for zero 
external load. The deformability assumptions are taken from section 1.1, the elastic axis being 
assumed to lie at  a constant percentage of the chord and hence to have the constant sweep angle 4. 
Flap and aileron angles are assumed equal at all spanwise locations, to those of the unloaded, 
and therefore undeformed, aircraft, and to be constant along the span. All deflections caused 
by shear, and minor effects on load distribution such as are caused by non-linearity of the 
stress/strain relationship, are neglected. 

The wing outside the root region is assumed to have an aerodynamic axis in the exact sense, 
the axis lying at a constant chordwise position and hence having, like the elastic axis, a constant 
sweep angle 4.  (It should be noted that with tapered wings, the sweep angles of elastic and 
aerodynamic axes are not, in general, equal and it is important to distinguish between them. 
The analysis of the present report is, however, restricted to untapered wings.) 

In most 
cases, however, allowance can be made for these effects by adopting suitable values for the 
aerodynamic coefficients, and no further discussion of this point is called for here. 

The spanwise distribution of lift corresponding to a uniform angle of attack distribution is 
assumed rectangular, and the rotary damping of the wing is neglected (see section 7). The 
weight outside the fuselage is assumed to be distributed with constant weight per unit span 
along an inertia axis at  a constant chordwise position. 

The tail load is assumed to be negligible in comparison with the lift on the wing which is 
therefore equated to the factored weight of the aircraft. 

3. The Calculation of Elastic Camber and Elastic Wash-out.-In general, wing deformability 
gives rise to camber of chordwise wing profiles. With unswept wings, this elastic camber is due 
entirely to rib bending. The radius of curvature of the rib camber-line is given by equation (3) : 

In general it will not be legitimate to neglect aerodynamic compressibility effects. 

- 1  
I 

a 1  
dut ( Z ) r i b  = 150n,zcF,,, ' 

From simple geometrical considerations (see Fig. Za), the camber ratio y is equal to ( ~ / 8 ) ( 1 / R ) ~ ~ ~  
and so equation (3) gives for unswept wings: 

.. . .  .. . .  (4) 

The elastic camber of swept wings depends on the direction of the ribs. If they lie in the direction 
of flight (c f .  Fig. 1, structure b) we may assume chordwise sections of the wing to suffer no 
deformation due to wing-spar bending and then, as with unswept wings, the elastic camber of 
chordwise wing profiles is due solely to rib bending and is given by equation (4). 

If the ribs lie perpendicular to the spar of a single-spar wing (cf. Fig. 1, structure a), contribu- 
tions to elastic camber arise both from rib bending and from wing-spar bending which in. this 
case, changes the shape of chordwise sections. 
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The radius of curvature of the rib camber-line is again given by equation (3) but the 
corresponding contribution to the camber of a chordwise section is now given (see Fig. 2b) by : 

The additional curvature of chordwise camber-lines due to spar bending can be shown by the 
geometrical considerations illustrated in Fig. 3 to  be sin2 # times the curvature of the elastic 
axis whose value at load factor n, given by equation (2a) is : 

- n  
75n,,zcF, * 

The additional curvature is thus 
- n sin2 # 
7512,,zcFb ’ 

and the corresponding increment in camber ratio is 
- n sin2 # c -nsin2 # --x -=  
75n,zcF, 8 600F,n,z 

The combined effect on camber ratio, of rib and spar bending, in the case of swept wings with 
ribs perpendicular t o  the spar, is thus given by: 

. .  - * (5) . .  . .  dY 1 -- 

For unswept wings and swept wings with ribs in the direction of flight : 

. .. . .  .. .. .. .. * - (4) 
1 -- dy  - - 

dn 1200n,z Fy,,. - We now calculate the additional wash-out due to torsion caused by a pull-out. 

A pull-out causes in the wing, at a distance I y I from the plane of symmetry a torque T about 
the elastic axis (positive if it reduces the wash-out) whose value, estimated without regard to 
the effect of deformation on lift distribution, is given by: 

(Throughout this report the symbol is used t o  denote partial differentiation with V ,  

etc., held constant.) In the above equation : 
eF denotes the chordwise distance of the elastic axis behind the line of aerodynamic centres 

of the undeformed wing profiles, 
de, the forward displacement of the aeradynamic centre of the wing profile due to elastic 

camber (the value of this displacement will be derived later in equation (26)), 
Y the chordwise distance of the inertia axis of the wing behind the elastic axis, and 
Ww the weight of the wing. 

k 

In conjunction with equation (la) this gives as the effect of load factor on negative wash-out 
per unit span : 
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Suffix denotes an effect due solely to torsion, with bending stiffness assumed infinite. Integrating 
with respect to [ y I Is, we obtain the, derivative with respect to load factor n, at constant speed, 
of the local geometric angle of attack arising from wing torsion : 

The integration constant K,  is determined by the condition that 2 I must equal I/Q. 

If = K ,  + K3$! + K4($)' ,  
an v 

we have for a wing of constant chord and aspect ratio about 7, 

which may be verified by calculating two lift distributions. Small changes of aspect ratio have 
a negligible effect on these figures. In our case we have, from equation (6) : 

1 To satisfy the condition the integration constant of equation (6) must be : 

where the suffix means ' completely rigid '. Using this integration constant in equation (6) we 
have : 

where the second term is due to the twist. 
In the case of swept wings, the bending deformability gives rise to a second contribution to 

elastic wash-out. In estimating this contribution we shall first use the bending deformability 
assumptions of section 1.1. It should be noted that in general, because of the variation with 
speed, of the relative effect of deformation on lift distribution, the assumption of constant 
curvature for the flexural axis at  a given load factor can only hold true for one speed-say the 
limiting diving speed. It will appear later (see section 3.1) that it is legitimate to assume constant 
curvature for the flexural axis at the limiting diving speed, only in the case of swept-forward 
wings and of wings with a small amount of sweepback. For such wings the formula for elastic 
wash-out due to bending, which we now develop, will be exact at the limiting speed, but will 
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become somewhat inaccurate at  lower speeds. For wings with sweepback so large that the 
bending effect appreciably exceeds the torsion effect, the formula is basically unsound and must 
be abandoned ; a more accurate solution for such wings, based on the revised bending deforma- 
bility assumptions of section 4 will be given in section 4.1. 

In considering bending, we must assume the wing to be loaded on the elastic axis and we 
further assume the wing to have a rigid root region and attachment. Then, in accordance with 
the definition of elastic axis, sections of the wing perpendicular t o  that axis are deflected parallel 
to themselves (without rotation). From geometrical considerations illustrated in Fig. 3 it will 
be seen that this deflection causes an elastic wash-out per unit span of : 

- tan 4 x (curvature of elastic axis) . 
- h%l,= 

By introducing equation (2a) into this formula, integrating with respect to I y [ and determining 
the integration constant as for equation (6) we get : 

The deformability of root region and wing attachment as derived above, has no appreciable 
effect on the elastic wash-out. Equations (7) and (8) together give the following relation for the 
elastic wash-out where the effect of the deformation on lift distribution is still neglected : 

where I 
:. (9) I * *  

and 
A tan 4 

I - 150n,,z Fb 
D 

represent composite construction figures. 

. deformability on fuselage angle of attack, equation (9) gives : 
In  the special case of y = 0, which will be needed in Part I1 when considering the effect of 

d ( 2 2 1 )  = - 0.31250, + 0.4550,. . .  

To illustrate the order of magnitude of the elastic was1 
a u  

A (2 1 at the wing tip as a fraction of the value of - an 

Fig.- 4 shows the curves of - / a u  

. .  .. . .  . .  . . (10) 

-out as given by equation (9) we express 

for a completely rigid aircraft : 
V 

I against 4 calculated from this formula for a typical fighter 

V r  
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with relevant data as given in the figure. The ratio is observed to be positive (corresponding to 
wash-in at  the tip) and of fairly small.magnitude, for unswept wings. It varies considerably with 
angle of sweep, decreasing rapidly with increasing sweep angle and becoming negative at a fairly 
small positive angle. Further, at the maximum permissible dynamic pressure, its absolute value 
is, in general, considerably larger than at the highest dynamic pressure possible in steady 
horizontal flight. At the maximum permissible dynamic pressure, the geometrical angle of 
attack at the wing tip decreases at 45 deg sweepback by about one half, and at 25 deg sweep- 
forward increases by a half-that is to say to one and a half times-its original value. These 
values of the ratio are quite important since they imply a very considerable effect of elastic 
wash-out on the absolute magnitude of the angle of attack of the wing tip. Under the maximum 
normal acceleration (n = 8) for all dynamic pressures, there is a reduction of nearly 4 deg for 
45 deg sweepback, while for 25 deg sweepforward, there is an increase of about 3 deg. 

If the relative elastic wash-out occurring in a pull-out is not small compared with unity it has 
a considerable effect on manoeuvring stability, as well as on the maximum lift coefficient attain- 
able in the pull-out and on the stresses in the pull-out. Here we shall be concerned only with 
the effect on manoeuvring stability. Before proceeding, however, we consider the circumstances 
in which, as suggested earlier, the formula just developed (equation (9)) breaks down. 

3.1. The Validity of the Bending Assum$tions as Applied to Swept-back Wings.-In developing 
equation (2) it was assumed that at  the dynamic pressure for which the deflections were being 
investigated (normally a high value), the spar flanges would, over their complete span, be unloaded 
at  zero load factor and would have the proof stress at the proof load factor. This implied that 
at the proof load factor, the curvature was at  all points of the span equal to the proof curvature, 
and that in the special case considered, of a wing of constant chord and thickness, the curvature 
was constant (in magnitude and sign). 

For swept wings, bending deformation produces positive or negative wash-out according as 
the wing is swept-back or swept-forward ; in both cases, the corresponding torsional deformations 
usually produce a negative wash-out. From Fig. 4, it is evident that the net wash-out due to 
bending and torsion is likely to be zero at  a quite small value of sweepback ; for larger angles of 
sweepback, the net wash-out will be positive, while for smaller angles of sweepback and for all 
angles of sweepforward, the net wash-out will be negative. 

When the net wash-out is negative (sweepforward and small sweepback) there will be an 
increase in lift coefficient from root to tip and it will follow that for a given load factor,, the 
bending moments on the wing increase as the dynamic pressure increases, so that the critical 
bending moments occur at  the maximum permissible dynamic pressure. In such cases, the 
assumptions leading to equations (2) and (2a) are valid if they are associated with the maximum 
permissible dynamic pressure. The equations are then exact for that dynamic pressure, but 
hold only approximately at  lower dynamic pressures. 

When the net wash-out is positive (at the larger angles of sweepback) there is a reduction in 
lift coefficient from root to tip and it will follow that for a given load factor, the bending moments 
on the wing increase as the dynamic pressure decreases. Accordingly, if the spars are assumed 
to have the proof curvature a t  a high dynamic pressure, they will have excessive curvature at  
lower dynamic pressures. If, on the other hand, the proof curvature were to be associated with 
a low dynamic pressure, then at  high dynamic pressure the reduction due to elastic deformation 
in angle of attack towards the tip would, in relation to the mean angle of attack, be relatively 
greater than at  low dynamic pressure. Then in some cases, the values of the wash-out calculated 
from equation (9) might be such as to indicate negative angles of attack (and hence negative 
loading) towards the tip, at high dynamic pressure. Thus, far from having the constant curvature 
assumed in equations (2) and (Za), the spars would actually appear, from the calculations, to 
have a reversal of curvature towards the tip. 

It is apparent from these considerations of extreme cases, that in the general case of swept-back 
wings for which the effects of bending are large in relation to those of torsion, equation (9) is 
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likely to lead to very inaccurate results. For the bending deformability of such wings we now 
make new assumptions which, while still of an arbitrary nature, are nevertheless more logical 
than the earlier ones. At the same time we shall take full account of the interaction of deformation 
and lift hstribution, and thus obtain formulae of equal validity at  all points of the speed range. 

4. Revised Bending Deformability Assumptions for  Swept-back Wiags with Bending EJSect Large 
in-Relation to Torsion EJSect.-From the preceding section it is clear that for swept-back wings, 
with bending effect large compared with torsion effect, the assumed bending strength should be 
related to the bending moments occurring during a pull-out at  low, rather than at  high dynamic 
pressure. At  the lowest dynamic pressures, deformability effects are negligible and we may 
assume a distribution of bending stiffness appropriate to the bending moments of an absolutely 
rigid wing. 

The general mode of elastic wash-out is unknown; it depends on load distribution and vice 
veysa. The exact solution of the problem would involve a complicated differential equation but 
we shall simplify the solution* by assuming the wash-out, or more conveniently, the spanwise 
increment of the lift coefficient, to result from the superposition of two terms of arbitrarily 
'chosen form with unknown coefficients D and H ,  Two expressions can then be obtained for the 
incidence of the deformed wing, at  a general spanwise location specified by a parameter 5 .  By 
equating the two expressions for two arbitrarily chosen values of 5 ,  a pair of equations in D and 
H is obtained from which the values of these unknown coefficients may be determined. 

Closer approximations would necessitate the assumption of more then two modes of wash-out 
with correspondingly more equations in the unknown coefficients, arising from the fulfilment of 
conditions at  additional points of the span. In the limit, fulfilment of the conditions at all points 
of the span would result in an infinite number of equations. 

Choice of the two arbitrary modes of wash-out will be guided by the consideration that the 
modes should be sufficiently dissimilar and that the corresponding deflection curve should have 
zero slope at  the plane of symmetry. Linear and quadratic modes wiU in fact be assumed. 

We consider as before, an aircraft of weight W with a wing of constant chord c,  semi-span s, 
aspect ratio A = ZS/C and constant thickness zc, swept back by an angle +. The wing weight W ,  
is assumed to be distributed uniformly in the spanwise direction. 

If the wing is regarded as an absolutely rigid beam we have, for bending about an axis 
perpendicular to the elastic axis, under load factor n : 

* 

B, = n . .  . .  4 cos 4 . .  . . (XI) 

where B, is the bending moment (positive for upward load) about the specified axis at a per- 
pendicular distance I y I from the plane of symmetry. We now assume a distribution of bending 
stiffness such that, under the ultimate bending moments appropriate to the absolutely rigid 
wing, the curvature of the elastic axis is everywhere equal to the ultimate curvature. We thus 
have : 

E l  = B,,,R, . . . .  . .  . .  . .  . .  . .  . .  . . (12) 

where I is the moment of inertia of a cross-section of the equivalent beam taken perpendicular 
to the elastic axis, and R, is the ultimate radius of curvature. From section 1.1 we have 

* For full details refer to Appendix 11. 
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Hence, from equations ( I l ) ,  (12) and (13) : 

%,,(W - W,)S x 75zc (1 - & ) 2  

4 ( E I )  cos 4 = 

where I ,  is the moment of inertia of the section corresponding to y = 0. Introducing a bending 
stiffness factor F ,  as before, we have : 

2 

(I+) . . .  (14) 
F,%,,(W - W,)s x 75zc 

4 ( E I )  COS 4 = (ET,) COS 4 

For torsional rigidity we retain the previous expression : 

.. . .  . .  . . (la) 

It should be pointed out at this stage, that when the angle of sweep is large, the value of the 
torsional rigidity required for adequate aileron effectiveness, given by equation (la) with F, = 1, 
is very inaccurate*. 

Since sweep reduces the aerodynamic coefficients (by some fractional power of cos 4 ,  we may 
assume), the equation in question somewhat overestimates the required torsional rigidity in the 
case of infinite bending stiffness, but it is correct in representing it as a symmetrical function of 
sweep angle with its maximum corresponding to the unswept wing. At a given sweep angle, 
the required torsional rigidity varies considerably with bending stiffness. It increases with 
decreasing bending stiffness in the case of swept-back wings and decreases with decreasing 
bending stiffness for swept-forward wings. With a reasonable bending stiffness, the combined 
effect gives a relatively small dependence on sweep for sweepback, and a much larger dependence 
for sweepforward. The torsional rigidity required with large sweepback will usually be somewhat 
greater than for the unswept wing while with large sweepforward, it will be much smaller than 
in the unswept case. For any particular aircraft type these effects can be considered by calculating 
the GJ required for aileron effectiveness on the lines of Ref. 7 and introducing a corresponding 
value for F ,  in the formula of the present report. In some cases it may be more economical from 
the weight viewpoint, or even necessary for the prevention of aileron reversal, to increase the 
bending stiffness above that required for strength. 

It will be useful to translate the rigidity assumptions of equations (la) and (14) in terms of 
the non-dimensional stiffness parameters MO and L, of Ref. 7, which are defined by the equations : 

where mo is the wing torsional stiffness (applied moment per unit twist about the flexural axis) 
measured at  a convenient reference section, and 1, is the wing stiffness in bending about an axis 
perpendicular to the flexural axis, defined by 

PI I,= 7 

where 6 is the deflection produced by a load P acting at  a reference station at  distance I from the 
wing root measured along the flexural axis. 

. _.., 

* For details, see Ref. 7. 
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For the illustrative examples of Ref. 7, the reference sections for both wz, and I ,  are taken at 
0 - 8s (the mid-aileron section for. the wings considered). For considerations of flutter, the reference 
section for I, is generally taken. at 0-7s. 

We now derive expressions for M ,  and L, corresponding to the rigidity assumptions given by 
equations (la) and (14) and appropriate to the critical dynamic pressure for aileron reversal, 
z.e., 

4" 4 = 4 c e  = (1 - Fe") - 
If distance along the flexural axis from the root is denoted by y ' = y/cos 4, and if the reference 

section is taken at y' = Y,' = Y,/COS 4 we have : 

.4 

or putting y = 0 . 8 ~ ,  

GJ cos 4 
0.8s m, = 

Substituting for GJ from equation (la) we obtain: 

To obtain the corresponding 'expression for L,, we first find the deflection 6, produced by a 
load P applied at a point of the flexural axis at distance CRs' from the root, wlth a stiffness 
distribution EI' given by equations (12) and (14). It is A 

8Ps'3s 
6, = 

where 

Then by definition, 

If cR = 0.8, we have 3 = 0.3162 and then 

It may be noted that if the reference section for bending stiffness is taken at 0.7s, the numerical 
coefficient in the last equation becomes 196. These expressions for M ,  and L, may be used in 
conjunction with the curves of Ref. 7 to check whether the assumed stiffnesses are, in any 
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particular case, satisfactory from the point of view of aileron reversal. Furthermore, they enable 
us to calculate appropriate values of Fb and F, in the case of a specific design fdr which stiffnesses 
have been measured by the standard British method. 

4.1. T h e  Calculation of Elastic Wash-oat f o y  Such Wings.-It is shown in Appendix I1 that with 
the rigidity assumptions of section 4 (equations (14) and (la)), the elastic wash-out is given by: 

d H  
- A ( & l  ) = - Ig (C - 0.455) + dn (5' - 0.285) v d n  . .  . . (17) .,... 

where 5 is written for I y I /S .  The change in angle of attack of the fuselage, with rigid root region 
and attachment is given by: 

. .  . .  . .  . . (18) A ( -  aa,=, 1 ) = - (0*455z d D  + 0.285$) (%) 
an v a C L  Ajat 

and the relative elastic wash-out at  the tip by : 

The value of the latter expression at Q = Q* has been calculated for the typical fighter of Fig. 4 
with 4 = 45 deg, and is indicated on the figure. It it seen t o  be considerably less than the value 
calculated with the earlier formula. 

The quantities dD/dn and d H / d n  in equations (17) and (18) are very complicated and their 
calculation is dealt with fully in the appendix. It is shown there that : 

- .. .. . .  . . (19) dD - %-FT. 
dn L Y ,  d n  9 

d H  - -T++% - - _  

where A 

. .  . .  . . (20) 

and 9, 3, B and 2 are functions of the two variables 

a 
tan 4 Q+ 

/ A / m  and tan 4 QB, = -. 

which directly involve the dynamic pressure number Q and the geometrical and structural 
features of the wing. The quantities (B,  + B,) and (tan 4 (B,  - B4)) on which % and w" 
depend are given by : 

. .  . .  .. . . (22) A1m=20,(x) a C, , . .  
75n,Z Fb A/W% 

tan 4 (B ,  - B4) = 

16 



and apart from the secondary effect of Q on (B,  + B,) through the factor eF' = eF + de,, depend 
solely on the geometrical and structural features of the wing. 

Some graphical aids to the calculation of dD/dn and dH/dn are discussed in section 2 of 
Appendix 11. 

Comparison between equations (17) and (9) shows that irrespective of the angle of sweep, we 
'may express the wash-out in the form : 

. . (23) d(gl,i = D7(5. - 0.455) + D8(Cz - 0.285) . . . .  . .  . .  

where. for wings of large* sweepback 

and for other* wings: 

D7 z= D, - D,; 8 -  . .  . .  . .  .. . . (24b) Df3 D - - - .  2 

5 .  The Efect of Deformability on the Pitching Moment of the Wing.-The position of the aircraft 

manoeuvre point depends directly on the quantity 5 ' , i.e., the derivative with respect to 

lift coefficient, at  constant speed, of the pitching-moment coefficient about a given centre of 
gravity. 

aCL Iv 

We now consider the increment in due to wing deformability. The pitching-moment co- 

efficient C, of the complete aircraft miy  'be expressed as : 

where suffixes w, and , denote respectively contributions from the wing, fuselage and tail unit. 
In virtue of its effect on the angle of attack of the fuselage, wing deformability affects'C, , and 
C, , as well as C, is used to  denote an increment due to wing deformability we 
shall have : 

CM = C M W  + C M ,  + c,, , 

so that if d 

The last two terms are most conveniently dealt with in conjunction with the effects of fuselage 
and tail-unit deformability and are therefore considered in Part I1 of the report. We now 

consider A ,  Sw which will be due partly to a change in the pitching moment of the inertia 

forces acting on the wing and partly to a change in the aerodynamic pitching moment. 

5.1. The Efect on the Pitching Moment of the Inertia Forces.-If we relate the pitching moment 
to a point of the fuselage near the wing root, all bending deformations of the wing result in a 
change in the contribution of the inertia forces of the wing to the pitching moment, because the 
moment arms of these forces are affected by bending, An approximate estimate of the effect 
can be made without much difficulty when the bending deformability assumptions are the rela- 
tively simple ones of section 1.1. For then, since we have assumed the wing weight to be 
uniformly distributed along the span, it will follow that its centre of gravity is displaced by 
one-third of the displacement of the wing tip. The displacement of the centre of gravity will 
have two components corresponding respectively to bending about the two principal axes of 

,-I ( ac, IJ 

* The precise ranges of validity of the two sets of formulae are investigated in section 7. 
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inertia. The longitudinal principal axis may be assumed to lie in the no-lift plane* of the half-wing 
and at  right-angles to the elastic axis. The downward displacement of the wing tip due to bending 
about this axis is readily derived from equation (Za) as : 

where D, is given by equation (9). The forward inertia force, whose moment arm is changed by 
one-third of this amount is equal to the product of the wing weight W ,  and the load factor in 
the direction of the longitudinal principal axis which (see Fig. 5) is’approximately 

Q [ c D  o - Gz(aa/ac , )J  3 

where CD is the drag coefficient for the complete aircraft at zero lift. 

The vertical principal axis is normal to the longitudinal axis and therefore, with our previous 
assumption, normal to the wing no-lift plane, and the ratio of the moment about this axis to 
that about the longitudinal axis is (see Fig. 5) : 

where C D p  is the wing profile drag coefficient. If the bending rigidities about the vertical and 
longitudinal principal axes are denoted by ( E I ) ,  and ( E I ) ,  respectively, the ratio of the curvatures 
and of the normal deflections is : 

It follows (see Fig. 5) that the ratio of the rearward deflection of the wing weight c.g. parallel 
to flight direction (seen from above) to the downward deflection is given by: 

The downward inertia force whose arm is changed is approximately ytWw. The change in 
pitching-moment coefficient due to the change of moment arms of the inertia forces is now 
readily established as : 

*We are considering a constant-chord wing of constant section, and if the effects of twist on moment arms are 
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5.2. The EfSect on the Pitching Moment of the Aerody.Yzamic Forces.-Elastic camber and 
wash-out affect the aerodynamic forces acting on the wing and hence also the pitching moment 
of those forces. Furthermore, the pitching moment is directly affected by a change, due to 
bending, in the arms of $he aerodynamic forces. We deal fint with the effect of camber. 

For a conventional wing section with a camber-line of constant curvature, the pitching-moment 
coefficient relative to the aerodynamic centre is about - (2*5y /P)  where y denotes the camber 
ratio and ,8 the reciprocal of the Prandtl-Glauert factor for the normal component of velocity. 
From equations (6) and (7), it follows that the change due to elastic camber, in the section 
pitching-moment coefficient about the aerodynamic centre is, for unswept wings and swept wings 
with ribs in flight direction, 

and for swept wings with ribs perpendicular to the elastic axis, 

2 -5  f i  1 cos2+ 
AZCMw = - - - [ +%J * P n,r 1200F,.b. 

Making the substitution n = c,Q and differentiating with respect to cL at constant Q (and hence 
constant V )  we obtain: 

where, for unswept wings and swept wings with ribs in flight direction : i 
1 

. . (26) I *  ' .  
and for swept wings with ribs. perpendicular to the elastic axis : I 

I 
J 

The quantity A ,  (aFrld is a measure of the forward displacement, expressed as a fraction 

of the chord, of the section aerodynamic centre, due to deformability. Elastic camber is thus 
responsible for a forward displacement de, of the section aerodynamic centre given by: *= D4Q. . .  . .  .. . .  . .  . .  . .  . .  . . (26a) 

C 

This affects the pitching moment of the wing not only directly, but also indirectly, by influencing 
the torque. This indirect effect is taken account of by the term de,/c introduced into equations 
(7) and (9). 

To calculate the effect of elastic wash-out on pitching moment and manoeuvre point we employ 
a modified strip method, the theoretical basis of which is discussed in Appendix I. Using the 
approximate result given by equation (14) of that appendix we assume the contribution (ABMW) 
to wing pitching moment, due to elastic wash-out to be given by:  

where, for the time being, we assume m fi 3 + tan +. Hence 
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and since 

+ DBf (C' - 0.285)(5 - 0.5) d 5 /  
0 

from equation (23) 

Froin equations (24a) and (24b), we have for,wings of large sweepback 
4 

and for other wings, 

- Dl 0 6  D, + D, =- 2 
so that for wings of large sweepback, 

.. 1 .  . .  . .  . . (27a) dH 
A 3  (51 = - 0.04165AQ tan # +, li;z/ ac, 

and for other wings, ,J- 

A 3  (""1 ) = DzQ(- 0-020830, + 0.041650,) ac, 
where . .  . .  . . (27b) . .  . .  . .  "L t a n +  .' . .  Dz = A (CC),,?,' 

In addition to the effect arising from elastic wash-out, bending exerts a direct effect on the 
pitching moment of the aerodynamic forces, comparable with that investigated in section 5. I 
for the inertia forces. As derived there for the case governed by the bending deformability 
assumptions of section 1.1, the mean bending deflections of the wing,'expressed as fractions of 
the chord are : 

upward : ~- DIAQcL (where D, is given by equation (9)) 
6 sin 24 

The coefficients of the aerodynamic forces whose moment arms are changed by these deflections 
are respectively : 

rearward : 

-upward : 
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The contribution to the pitching-moment coefficient of the wing is given by : 

Combining this result with equation (25) and differentiating with respect to CL at constant V 
(and hence constant Q), we obtain” : 

5.2.1. The direct efect of bezding on the pitching moment of the aerodynamic and inertia forces foy 
wings of large sweepback.-Substitution of typical values in equations (28) indicates that this 
effect is relatively small. It has therefore not been thought worth while working out a formula 
for the more complicated case governed by the assumptions of section 4. The absolute magnitudes 
of A , ( C ,  w) and d,(C, ,v) in this case will certainly be less than the values given by the formulae 
of sections 5.1 and 5.2 so that it is possible to set an upper limit to the contribution A,, . ,  - 
This should suffice for all practical considerations. 

5.3. The Pitching Moweat of the Wing in the Presence of a Fuselage.-When the middle portion 
of a plain wing is replaced by part of a fuselage, the whole shape of the lift distribution is altered, 
and for a given lift coefficient the wing bending moment is changed without any considerable 
effect on angle of attack. The increase in bending moment is approximately proportional to 

( a 2 J w  I .)* 
1 

(cL)j,=O cbpEEl,2q J 

with no fuselage 

where bFmax denotes the maximum width of the fuselage. The factor of proportionality C, is of the 
order of magnitude 0.1, being positive for low-wing and negative for mid-wing lay-outst. This 
should be sufficiently accurate since the effect in question is comparatively small. The effect of 
deformability on the increase in bending moment is given by : 

Multiplying the bending moment by - 2 tan 4 to get the pitching moment (see Appendix I) we 
obtain the effect on pitching-moment coefficient as : 

* C, 
?See Ref. 11. 

is assumed independent of c,. 
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5.4. The Resultant Pitching Moment of the Wing.-The overall effect of elastic deformability 
on the derivative of the wing pitching-moment coefficient, with respect to lift coefficient at 
constant speed and constant elevator angle is given by : 

For easv reference, the details of the various contributions are summarized in Table 1. The 
d D  dH expressions involve several intermediate expressions, viz., D1, D,, . . .  

which are set out in full in Table 2. They depend either directly or indirectly on {he geometry 
and structural details of the wing and partly also on the condition of flight. D1, D,, D, and D, 
are pure ' construction figures ' in that they are independent of flight conditions if we neglect 
Mach number and Reynolds number effects. The other quantities depend directly on flight 

conditions. The primary effect of flight condition on d, is given by the direct factor 

Q occurring in each of the quantities A,, A , ,  A,+ ,  and A , .  

6. The Effect 0.n the Manoezwe Point.-The value of A ,  is independent of the choice 

of reference point for pitching moments, which may therefore be taken at the centre of gravity 
of the complete aircraft. 

the ' manoeuvre margin, elevator fixed ', that is, the distance of the c.g. ahead of the ' manoeuvre 
point, elevator fixed ' expressed as a fraction of the wing mean chord (see Ref. 3). If the c.g. 
is at the manoeuvre point of the datum (absolutely rigid) aircraft we have : 

Now if C, is referred to the aircraft c.g. the quantity - - 2: I v,v is 

.. . .  . .  .. . .  .. . .  . .  . . (31) ac, 
( a c  1 v,Jy = 0 * 

Then for the aircraft with deformable wing, but otherwise rigid, we have : 

in virtue of equation (31). The manoeuvre margin is thus - com- 

pared with the zero margin for the datum aircraft. It follows that there is a forward displacement 
of manoeuvre point, elevator fixed, due to wing deformability given by:  

. .  .. . . (32) . .  . .  .. . .  A,(%) = A ,  (Elv,) a CM * 

7. The Respective Ranges of Validity of the Two Fovmulae foy Elastic Wash-out. (Equations 
(9) and (17).)-Equation (17) was developed using the bending deformability assumptions of 
section 4, which were introduced to cover the case where, at the maximum permissible dynamic 
pressure number Q:k, the combined effects of bending and torsion produce a positive wash-out. 
It will be valid, therefore, only if, for any given positive load factor n, at the dynamic pressure 
number Q*, the angle of attack at the tip (specified by t = 1) is greater for the rigid wing than 
for the flexible wing. Under subsonic conditions*, the effect of torsion is, in all practical cases, to 
increase the incidence from root to tip, while bending 'increases or decreases the incidence 

, -  

* In this report, the term ' subsonic conditions ' is applied to all flight conditions up to which the major portion of 
In  the case of swept wings, the flight speed may already be supersonic. the wing has remained free from shock waves. 

22 



according as the wing is swept-forward or swept-back. We may therefore, at  once conclude that 
equation (17) is not applicable to a swept-forward wing. Further, unless the torsional stiffness 
of the wing is infinite, there will be a range of angles of sweepback for which the effect of torsion 
on the incidence at the tip is greater than the effect of bending ; over this range equation (17) 
wlll not apply. 

Confining our attentions now to swept-back wings we may develop a criterion for testing the 
validity of equation (17) in any particular case. 

7.1. The Validity Criterion.-Throughout this paragraph, suffices and I are used to denote 
the rigid and flexible wings respectively while asterisked quantities are appropriate to Q = Q*. 

For the rigid wing atcdynamic pressure Q* we have, from equations (5) and (6) of Appendix I1 : 

= E = - n ( a u )  -- J 

Q* aCL A 

and for the flexible wing, using equations (7) and (8) 
< 

' . From equations (6) and (10) 

ao* = E (*) - (-0.4550* + 0*285H*) (2) Q* aC, A a C, A / m  

and hence 

, 

Thus 

. . (33) aa (sr - af)t=l* = - (0.5450" + 0-715H*) (-=) .. . .  . .  ac, A!nt 

and equation (17) will be valid only if : 

(a ,  - q ) c = 1 *  > 0 ,  

i.e., if 

Now 0* and H* are linear functions of n. which vanish for n = 0, so that dD*/dn and dH*/dn 
will be of the same sign as D* and H* respectively for positive n. The inequality may therefore 
be written in the form : 

0.5450" + 0*715H* < 0 .  
* 

d D* dH* 0.545.- + 0.715- < 0 . dn an 

This is shown in the appendix to lead to the condition : 

%* - KT* < 0 ,  . .  . .  1 .  . .  . . (34) 

where K =  .. . . (35) 0-2378 - 0-0239Q*Bl + 0.0225Q*B3 tan 4 
0.3094 - 0-0169Q*BI + 0-0143Q*B3 tan + ' 
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For fixed values of the construction figures B1, B,, B3 and B, and of the maximum dynamic 
pressure number Q'k, the minimum value of 4 for which equation (17) is valid will correspond to 
the positive root of the equation : 

a" KT* 

which is a quadratic in tan 4.  Substituting for %* and T* from equations (20) and for K from 
equation (35), and simplifying we arrive at the equation : 

to determine the critical value of 6. 

. . (36) 

It may be noted that B1*, B,, BS, B, are actually functions of 4 in virtue of their dependence 
on the factor (aCL/aa),,,, which varies with $. The critical value of 4 will, however, usually be 
quite small, and since (acL/aa),,,& varies very little for small values of 4 ,  it will be sufficiently 
accurate to use the value corresponding to 4 = 0 in calculating B1*, etc., for equation (36). 

For values of + less than the critical, including negative values (sweepforward) the bending 
assumptions of section 1.1 are valid, and equation (9) gives the elastic wash-out with an 
accuracy which, at  the limiting speed, depends only on the effect (usually small) of neglecting 
the interaction between deformation and lift distribution in calculating the torsion effect. At 
other speeds, the accuracy of the estimated bending contribution is also dependent on this 
neglected interaction (see section 8 (c)). As 4 decreases to zero and thence to negative values, the 
relative elastic wash-in at the tip increases (see section 3 and Fig. 4), and accordingly, the effect of 
deformation on lift distribution increases. Thus, while the error in equation (9) should be small 
at the limiting speed, for all angles of sweep less than the critical, it may become large for large 
angles of sweepforward at low speed. 

8. A Review of the Assumptions and Approximations.-(a) The assumption that the basic lift 
distribution is uniform is very inaccurate for wings of small aspect ratio and large sweep angle. 
It will be shown in section 11.1, however, that the bending-stiffness assumptions are such as to 
compensate for this inaccuracy as regards the bending term, thus considerably reducing the 
overall error. Although recent advances in lifting-plane theory make possible an accurate 
determination of the lift distribution in any particular case, it is clearly impossible to derive 
generalised fonnulae of the. type developed in this report, which would take account of the 
variation of lift distribution with wing plan-form. 

(b )  The variation of the rotary damping coefficient mq of the wing due to distortion has been 
neglected and we now consider to what extent this is justifiable. 

For a rigid aircraft, the rotary damping of the wing gives a rearward (stabilizing) shift of 
manoeuvre point of magnitude - mq/p, where mq = ( l / p S c V ) ( a M / a e )  and ,u = W/gpSc, 0 being 
the angular velocity in pitch. Approximate calculations for constant-chord wings indicate 
that - mq is of the order + 0.2 for unswept wings and that it increases with both aspect ratio 
and sweep angle so that for aspect ratio 6 and sweep angle 45 deg, it is of the order 1.0. 

In practice, ,u is never likely to be much less than 10 so that the effect of the basic mg on the 
manoeuvre point of unswept wings is unlikely to exceed 2 per cent of the chord, and the change 
in mq due to distortion will cause a shift of manoeuvre point of less than this amount With a wing 
of aspect ratio 6 and sweepback angle of 45 deg, the basic mq gives a rearward shift of manoeuvre 
point of the order (l/p) x c. For a small heavily loaded fighter giving a minimum ,u (at sea-level) 
of the order 100, the shift would be of the order 0 . 0 1 ~  while for a very large aircraft for which 
,u might be as low as 10, the shift would be of the order 0 -  10c. 
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Approximate calculations indicate that at high dynamic pressures, distortion will considerably 
reduce the value of - mq and may, in extreme cases where the bending stiffness is low (corre- 
sponding to a low value of the ultimate load factor) largely eliminate the stabilizing effect of 
wing damping. Thus the forward shift of manoeuvre point due to the effect of distortion on wzq 
for the wing plan-form considered may be expected to vary from less than 0 . 0 1 ~  for ,u = 100 to 
about 0.07~-0.08~ for p = 10. It should be noted that, in general, this contribution to the total 
shift is relatively small in comparison with the shift due to the elastic wash-out arising from the 
basic lift distribution. 

It may be concluded from the foregoing that, having regard to the general degree of accuracy 
which it is expected to achieve with the methods of this report, it is justifiable to neglect the 
variation of wing m, due to distortion except for large aircraft with wings of high aspect ratio, 
large sweep angle and a low ultimate load factor. For such aircraft operating at high speed, it 
may be anticipated that distortion will, to a considerable extent, eliminate the appreciable 
stabilizing effect of wing damping which is obtained at low speed. If the effect of elastic wash-out 
is estimated by a method more exact than the present, then the effect of distortion on mq should 

' be included. 
t. 

(c) Allowance is made for the effect of deformation on lift distribution in developing the 
expression for elastic wash-out applicable to wings of large sweepback. In deriving the other 
expression for elastic wash-out, the contribution due to torsion has been calculated without 
regard to the effect of deformation on lift distribution, while the formula for the bending contribu- 
tion is exact for the limiting speed but becomes progressively less accurate at lower speeds, due to 
the variation with speed of the relative effect of deformation on lift distribution. The net error 
in the calculated wash-out should be small at  the limiting speed, but at low speed might become 
large for wings with large sweepforward (bending contribution large). 

( d )  In  accordance with the procedure usually adopted in stability theory, the tail load has been 
neglected in comparison with the lift on the wing. On modern aircraft, for which the ratio of 
tail area to wing area is relatively large, this assumption may lead to errors of just appreciable 
magnitude (see section 3 of Ref. 3). 

(e) Only wings of constant chord have been considered because of the excessive degree of 
complication involved in attempting to include the effects of taper in general formulae of the 
type here developed. With tapered wings, it is necessary to distinguish between the sweep angle 
of the elastic axis and that of the axis of aerodynamic centres ; the difference is especially im- 
portant for wings of small aspect ratio. 

(f) It has been assumed that no engine nacelles are installed in the wing. An approximate 
estimate of the effect of an engine nacelle, given in Part I1 of the report, shows that the effect 
is favourable and may be appreciable in magnitude. 

(g) Of the remaining assumptions, those of constant sweep angle and of constant torsional 
rigidity are the most important, but detailed discussion of them lies outside the scope of this 
report. 

9. Suggested Procedure to be Adopted in Numerical Calculations.-(a) If the wing is swept-back, 
calculate the construction figures B1*, B2, B, and B, set out in Table 2 and also the quantities : 

(i) @* = 0*5[(B1* +-B,) - tan +(B3 - B,)] 

(ii) 2)"" = 0-375(B1* + B,) - 0.25 tan + ( B 3  - B,) 

(iii) Q*Bl* and tan + Q*B3. 
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From Fig. 12, read off the value of K appropriate to (iii). Calculate the quantity (%* - KY*). 

(b )  If %* - Kw”* i s  negative : 

(i) Calculate the quantities QB,, tan 4 QB3, @ and w” appropriate to the dynamic pressure Q 

(ii) Obtain values of F, 3, 9 and 9 by interpolation in the graphs of Figs. 6 to 9 

(iii) Obtain values of dD/dn = (% - gw”)/9 and dH/dn = (- T + 3%)/2! from the charts 

under consideration 

of Figs. 10 and 11 or by direct calculation 

(iv) Calculate the construction figures D1, D,, D, and D, set out in Table 2. 

(c) If %* - KT* is $ositive : 

(d) Calculate from the formulae set out in Table 1, the values of the separate contributions to 

Calculate the construction figures D,, . . . D, set out in Table 2. 

‘’1 ) and‘hence determine the forward shift of manoeuvre point’ due to the effect of 
v,q 

wing deformability on wing pitching moment from .the equation : 

(e) For the estimation of the effects of fuselage and tail unit, the change in angle of attack of the 
fuselage due to wing deformability is required. This can be calculated from the equations : 

- 0.31250, + 0*455D,, if %* - Kw”* > 0 .  

10. Consideration of Some Limiting Cases f o r  Swe$t-back Wings.-10.1. The Swept-back Wing 
of In$nite Torsional Rigidity.-This case is interesting in that we are able to express the quantities 
A ,  ( ac, w 1 j and A (% 1 as functions of the single parameter (QB, tan 4 )  and to present the 

results in a pair of curves. 
tends to zero, we are able to obtain an indication of the probable accuracy of the method. 

Further, by considering what happens when the bending stiffness 

For the wing of infinite torsional rigidity B, = B, = 0, equations (20) reduce to : 

.+ 

c. 

-, 

% = - 0.5 tan 4(B3  - B,) = - 0.5B3 tan 4 

w” = - O.25 tan 4(B3 - B,) = - 0.25B3 tan 
. . (37) 

and equations (22) of Appendix I1 to 

. .  . .  I -  Y i i  = 1 + 0. 1891QB3 tan $ 

3 = 0-5  + 0.0738QB3 tan+ 

= 1 + 0-2186QB3 tan+ 

9 = 0.25 + 0-0781QB3tan+ 
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Writing x = QB, tan 4 and substituting for @, P ,  W-, g, W ,  3 from (37) and (38) in equations 
(23) and (24) of Appendix I1 we obtain, after some algebraic simplification : 

dD - - __ . (1->) 
d n  Q I + 0 .2309~  + 0 . 0 0 5 4 6 ~ ~  

( I  - 3) ~ ( 0 . 0 2 0 8 8 ~  + 0-500) 

0 * 0 4 1 5 2 ~ ~  

d D  dH z+-&=- Q 1 + 0 .2309~  + 0 . 0 0 5 4 6 ~ ~  

d D  dH (l - ?) ~ ( 0 . 0 1 6 5 6 ~  + 0.2275) 
Q 1 + 0.2309~ $- 0.00546~" 

0.455 - + 0.285- = - 
h dn dn 

Hence, from equations (27a) and (18) : 

) 
. .  aCL v x (0 * 0008697~ + 0 * 020825) 

1 + 0.2309~ + 0 . 0 0 5 4 6 ~ ~  . .  . . (39) 

-4 

.. .. . . (40) ~ ( 0 . 0 1 6 5 6 ~  + 0.2275) 
1 + 0 .2309~  + 0 -  00546~' ' 

Q 

These quantities are plotted against x = QB, tan 4 in Figs. 13 (curve (a)) and 14 (curve (a)) 
respectively . 

10.2. The Swe$t-back Wing of Zero Bending Stiffness.-This case has no practical significance 
but is of interest in providing some check on the accuracy of the results obtained by using the 
formulae developed for wings of large sweepback. 

As the bending stiffness tends to  zero, B, and hence x tends to infinity, in which case the 
expressions on the right-hand side of equations (39) and (40) tend respectively to 0.1593 and 
3-033. Thus, for the case of a swept-back wing of infinite torsional rigidity and zero bending 
stiffness, the formulae give : 

e 

LI,(%~ ) = 0-1593A tan 4 .. . . (41) ac, v 

3.033( 1 - 5) (2) 
. .  . .  . . (42) W aCL A/in 

Q 
Provided that QB, remains finite, the limiting values of dD/dn and dH/dn as given by equations 
(19) when B3 tends to infinity, are respectively 

7-61 (1 - 2) 
Q 

__ 
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The corresponding values of A ,  derived from equations (27a) and (18) 

are then identical with those given by equations (41) and (42) which are thus applicable for 
swept-back wings of zero bending stiffness with any positive degree of torsional rigidity. 

A near approximation to 'the correct value of A ,  in this special case can be arrived 
at as follows. 

For an absolutely rigid wing, the lift distribution would, depending on aspect ratio, lie between 
a rectangular distribution corresponding to infinite aspect ratio and an elliptic distribution 
corresponding to small" aspect ratio. The manoeuvre point for wing done would accordingly be 
located in the plane of symmetry at a fore-and-aft location corresponding to the quarter-chord 
point of a chord situated somewhere between 0-5s and 0 -  424s from the plane of symmetry. 

In the non-rigid case with zero bending stiffness, only that portion of the lift which balances 
the wing weight can be supported by the portions of the wing outboard of the root, and the 
remaining lift must be assumed concentrated on a narrow strip, symmetrically disposed about the 
centre-line. The bending line of the wing must deflect so as to counteract the torsional deflections 
and maintain the uniform distribution of lift which is necessary to balance the uniform distribution 
of weight and ensure that the bending moment is zero at all points of the wing span. If the 
torsional rigidity is infinite, there are no torsional deflections and the bending line must remain 
straight, except in the immediate vicinity of the root, where large curvature is necessary to 
provide an abrupt change in angle of attack between the outer portions of the wing and the 
narrow central strip. 

The manoeuvre point corresponding to the first part of the lift is unaffected by deformability. 
For the remaining part of the lift, the manoeuvre point may be assumed to coincide with the 
quarter-chord-1 point of the centre-line chord so that, in relation to its position for the absolutely 
rigid wing, there is a forward shift of an amount lying between 

0.5s tan 4 = 0.25Ac tan 6 
and 0.424s tan + = 0.212Ac tan 6 . 

Combining the two lift distributions we get : I 

the actual value of [ A ,  ( 1 )I depending on aspect ratio. Thu; from equation (41) and 
aCL. v trnp ~- 

the inequalities (43) we see that for the limiting case of zero bending stiffness, the formula for 
the wing of infinite torsional rigidity gives7 : 

0-637 < < 0.7'51. . .  . .  . . (44) 

* The actual value depends on the sweep angle ; for example, for a constant-chord wing of sweepback 45 deg it is 
about 2. 

7 With swept-back wings, the local aerodynamic centre at the root lies aft of the quarter-chord point, and the forward 
shifts of manoeuvre point are less than those quoted, so that the accuracy of the formula is somewhat greater than the 
inequalities (44) would indicate. 
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To assess the accuracy of the formula when the bending stiffness is large, we consider the slope 
at  x = 0 ,of the curve (a) in Fig. 13. This is readily deduced from equation (39) to be 0.020825. 
With the original bending assumptions of section 1.1 the shift of manoeuvre point due to elastic 
twist in the case of infinite torsional rigidity (D, = 0) can be derived from equation (27b) and 
Table 2 in the form : 

This linear function of x = QB, tan 6 is plotted as curve (b) of Fig. 13 and it will be observed 
that curves (a) and (b) have the same slope, viz., 0.020825 at  x = 0. Now in the neighbourhood 
of x = 0, where the bending stiffness is very high, elastic deformations will be so small as to 
have negligible effect on the lift distribution and accordingly the assumptions used in deriving 
equation (27b) are valid in this region. Curves (a) and (b) therefore both have the correct slope 
at  x = 0. 

It is thus established that the correct curve in Fig. 13 should be tangential to curve (b) at  x = 0, 
and at  lOO/x  = 0 should have an ordinate lying between 0.25 and 0.212, according to aspect 
ratio. Furthermore, it is reasonable to assume the general shape of the curve to be that of 
curve (a). Curves (c) and (d) of Fig. 13 have been drawn to satisfy the above conditions, and 
are considered to give a good approximation to the true shift of manoeuvre point for wings of 
infinite and small aspect ratio respectively. 

From equation (40), the slope at  x = 0 of the curve (a)  in Fig. 14 is seen to be 0.2275. With 
the original bending assumptions we have from equation (10) and Table 2, putting D, = 0 : 

. .  . .  

This linear function of x = QB, tan 4 is plotted as curve (b) of Fig. 14 and it will be observed 
that curves (a) and (b) have the same (correct) slope, viz., 0.2275, at x = 0. 

If we approach the limiting condition of the wing of zero bending stiffness by considering a 
narrow central strip of wing of area dS supporting a load n(W - W J ,  with the factored wing 
weight nW, supported by the remaining area S(1 - (dS/S)) ,  it is evident that as dS tends to 
zero (corresponding to zero bending stiffness) the limiting value of A (aa,=,/an) derived from 
consideration of the outer wing area (which tends to S) will be finite, while the limiting value of 
A (ap(,/an) corresponding to the central strip whose area tends to zero, will be infinite. In the 
limiting condition there would thus be an infinite discontinuity in angle of attack on either side 
fo the wing centre-line for any non-zero value of the load factor n. 

The foregoing does not appear to provide a basis for mo'difying curve (a) of Fig. 14. It seems 
reasonable to assume, however, that over the practical range of values of x (up to x = 25 say) 
the order of accuracy of curve (a) of Fig. 14 should be about the same as that of curve (a) in * 

Fig. 13. 

11. Comfiarative Calculations of the Efect of Elastic Wash-o.ut by the Methods of Ref .  1 and of the 
Present Report.-Of the various contributions to the shift of manoeuvre point of the wing alone, 
only that due to elastic wash-out is likely ever to become dangerously large and to necessitate 
special counteracting measures. It has therefore been considered desirable to obtain an indica- 
tion of the probable accuracy of the present method of estimating elastic wash-out and its effect 
on manoeuvre point, by carrying out comparative calculations for a particular example, employing 
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in turn the methods of Ref. 1 and of the present report. In applying the latter method, the 
theoretical value (acL/acc)Al, for unswept wings was first used for the effective 1ocal.lift slope 
corresponding to a wash-out. After comparison with the results obtained by the method of 
Ref. 1, this was modified to (acL/acc)A14 for the particular wing under consideration and to (acL/acc)A,,ii, (m 5 3 + tan 4)  for the general case. (For details, see section 11.1 and Appendix I.) 

The data assumed and a summary of the calculations are set out in Appendix 11. It was thought 
desirable to consider a wing of fairly high aspect ratio-and large sweepback angle in order that 
the effect in question should be large; the combination of A = 6 ;  4 = 45 deg, was selected 
because for this plan-form, the basic lift distribution, calculated by a lifting-plane method, was 
available in Ref. 9, while the incremental lift distribution due to wash-out could be readily 
estimated by the method of Ref. 10. 

Bending and torsional stiffnesses were assumed in accordance with equations (14) and (la).  
putting F,  = F, = 1. It was realised that in the case of a particular aeroplane, the stiffness 
distributions would almost certainly differ from those assumed, so that for the application of the 
method o€ this report, it would be necessary to estimate approximately the values of F ,  and F,  
which would make the distributions given by equations (14) and (la) equivalent to the actual 
distributions; which could themselves be used when applying the method of Ref. 1. There 
seemed no point, however, in introducing artificial discrepancies between the distributions 
assumed for the two methods in this example, which thus serves purely to indicate the extent 
to which the inaccuracies of the aerodynamic assumptions affect the estimations of the shift of 
manoeuvre point due to elastic wash-out by the method of this report. 

The principal results for the maximum diving speed of the aeroplane ( q  = 1070 lb/ft2, 
Q = 21 -4) are summarized in the following table and in Figs. 15 to 20. 

. .  .. .. .. .. . .  

TABLE 3 

0.743 0.700 0.723 

Forward shift of manoeuvre point due to elastic wash-out 
A &  

C 

0.133 0.172 0.155 

. Increase in fuselage angle of attack I 0.0048 I 0.00597 I 0.00533 .(%I,> 
Act,,,, for ?z = 8 . . .. .. .. .. . .  .. 2-20 deg .2.74 deg 2.44 deg 

11.1. Discussion of Results.-The method of the present report as originally applied appears 
to overestimate the shift of manoeuvre point by approximately 30 per cent and the increase in 
fuselage angle of attack by nearly 25 per cent. This can be accounted for by two facts : 
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( a )  Due to the assumption of uniform basic lift distribution right out to the tip, the elastic 
wash-out is overestimated by about 12 per cent over the inboard 70 per cent of the semi-span 
and by an increasing amount over the remaining part of the span (see Fig. 19). 

[It should be observed, however, that if the bending-stiffness distribution of the wing considered 
were to correspond, not to a uniform basic lift distribution, but to the actual lift distribution 
(as it would, presumably, in practice) then the elastic wash-out as calculated by the method of 
Ref. 1 would be greater than that indicated in Fig. 19. It should, in fact, be more nearly equal 
to that calculated by the present method, which would remain unaltered since the bending- 
stiffness distribution to be used in this case is implicit in the method and is, in fact, that originally 
assumed. 

This result is to be expected since the combination of lift and bending-stiffness distributions 
used in the present method is such as to give a uniform spanwise stress distribution at low speed 
(the stress being equal to the proof stress at  proof load factor). The bending deflection curve at  
low speed is accordingly independent of the individual  lift and stiffness distributions and should 
be identical with that derived using Ref. 1. At high speed the result is affected by the interaction 
of the deformations and lift distribution and thus depends on the assumed lift distributions for 
' wash-out without lift ' which are different in the two cases. 

Calculations show that in these circumstances, the present method underestimates the wash-out 
at  maximum speed by amounts which vary from less than 6 per cent over the inboard 70 per cent 
of the span to a maximum of 12 per cent at  the tip.] 

(b )  The approximate strip-method which is used to estimate the aerodynamic effects of elastic 
wash-out, and which in the first instance, assumes a mean effective local lift slope equal to 
(i3cL/aa)A,3, leads to a gross overestimate of the lift increment due to wash-out over the outer 
20 per cent of the semi-span, where the lift increment should actually decrease rapidly to zero at  
the tip itself (see Fig. 20). In order to assess the magnitude of this effect, an estimate has been 
made of the mean effective lift slope which, used in conjunction with the mode of wash-out 
calculated by the method of Ref. 1, gives the correct value for the shift of manoeuvre point as 
calculated by that method. This was found to be 1.97 as compared with the value of 2.30 of 

The calculations using the method of this report have been repeated employing this reduced 
value in place of ( a C J a c ~ ) ~ / ~ .  The resulting change in the incremental lift distribution due to 
distortion is shown in Fig. 20 and the revised values of [(a~L/aa,)/(a~,/aap)y], A ( X , ~ ~ ~ J C )  and 
A ~ L ~ = ~  are given in Table 3. It will be noted that the initial differences from the values obtained 
by the other method have been approximately halved; the residual differences are due to (a)  
above. 

The reduced value of 1-97 for the mean effective life slope is found, by interpolation in the 
results of Ref. 9, to correspond to an aspect ratio of approximately A/4. This result is used in 
Appendix I as the basis for a proposal that, in general, the mean effective lift slope corresponding 
to a wash-out should be taken to be ( ~ C J ~ E ) ~ , ~ ~ ,  with "r"uz given approximately by "r"rz = 3 + tan +. 
This should reduce very considerably the errors arising from the aerodynamic approximations 
involved in the calculation of the effect of elastic wash-out on manoeuvre point by the present 
method. Although the method, as applied to wings of constant chord, may remain somewhat 
less accurate than that of Ref. 1, it has the important compensating advantage (apparent from 
the summary of calculations set out in Appendix 111) of affording a great saving in time, by 
eliminating most of the laborious computational work involved in the latter method. If the 
present method is applied to wings with taper, or to wings having stiffness distributions other 
then those assumed, there will of course, be some further loss of accuracy. 

The present method is, therefore, particularly to be recommended for investigations in which 
great accuracy is not the first essential, but which require a rapid assessment of the effect of 
varying selected design parameters. 
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- TABLE 1 

The Contributions to A, ,  

Given by- 
2quation number 

Formula 
Due to : Increment 

(a)  Criterion a* - K T *  < 0 (b)  Criterion a* - K T *  > 0 

Elastic camber arising from rib 
bending and spar bending 

D4Q d,( ac,m ar, .> 
Elastic wash-out due to wing torsion 

and bending .> - 0.04165A tan 4 

D3Q(- 0.020830, + 0.04165DJ 

Direct effect of bending on the pitch- 
ing moment of the inertia and 
aerodynamic forces acting on the 

. wing 

see section 4.2.1 

Fuselage interference in connection 
with wash-out 

(a) (29) and (18) 

(b)  (29) and (10) D3Q(0.3125D, - 0.4550,) 

Note : Expressions for the construction figures D,, . . . D, are given in Table 2 .  
The derivation of the quantities dDldn, dHjdn is given in Appendix I1 ; 
the construction figures involved, B,, . . . B,, are given in Table 2 .  



TABLE 2 

T h e  Co?.zstruction Figures D1, . . . D, and B1, . . . B, Required in the Calculation of A,+, 

- 

Fig. Form u 1 a Equation in text 

A tan 4 
1 50nuzF, (9) , 

D3 

1 

(wings with ribs in  flight direction) . 

(wings with ribs perpendicular to elastic axis) 

A eF where - = D4Q 
C 

(15) 
Appendix I1 

Bl 

(16) 
Appendix I1 

(17) 
Appendix I1 

Note : (1) B,* is the value of B, when Ae,lc = D,Q*. 
(2) m c= 3 + tan 6. 
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PART I1 
T h e  Effect  of Deformabili ty of the Fuselage and of an Unswept  Tai lp lane  

12. A General Survey  of the E f e c t s  to be Coxsidered.-To investigate the effect on manoeuvre 
point of deformability in any part of the aircraft structure, we have to compare the pitching 
moment of the actual (deformable) aircraft with that of the corresponding completely rigid 
aircraft, at the same speed and load factor, which-implies the same wing lift coefficient*, and 
hence the same angle of attack of the wing mean no-lift line. The most important effect of 
fuselage and tailplane deformability will be to change the angle of attack (and hence the pitching 
moment about the aircraft cg.)  of the tailplane. This angle of attack will also be influenced by 
deformability of the wing and of the wing-fuselage attachment. Since the geometrical relation- 
ships between the angles of attack of the tailplane, fuselage and wing of a deformable aircraft are 
somewhat complicated, we shall, at  the outset, need to define them precisely. 

12.1. The Geometry of a Deformable Fuselage and Tai lp laxe  in Relat ion to a Deformable Wing.- 
First we consider a side elevation of the hypothetical, completely rigid aircraft (see Fig. 21a). 
It will clarify the argument, without fundamentally affecting it, if we make certain simplifying 
assumptions. We will assume the undeformed wing to be of constant chord and constant 
symmetrical section, and to have no wash-out. Then the camber-line of the undeformed root 
section will coincide with its chord line RR’ which will also be the no-lift line of the section and 
will be parallel to the wing mean no-lift direction. 

Let C be the three-quarter chord point of the section; then since the zero-lift direction of a 
section coincides approximately with the tangent to the camber-line at the three-quarter chord 
point, C may be taken as a wing-root reference point and CR, the no-lift direction, as a wing-root 
datum line. We will now suppose the wing elastic axis to intersect RR’ in a point E, and assume 
for bending considerations that the fuselage is encastr6 at a section through E, which may be 
adopted as a convenient fuselage reference point. Then if F is the point of the fuselage coinciding 
with C, EF (regarded as the tangent to the camber-line at E) may be taken as a fuselage datum 
line, coincident with the wing root datum line. The inclination of EF = CR to the wind direction 
will give both the mean angle of attack E, of the rigid wing, and the angle of attack x F r  of the 
rigid fuselage, corresponding to flight at  a given speed V and load factor n. The root section of 
the fuselage may be assumed to lie in the plane through E to which EF is normal, and if this plane 
is represented in side elevation by N’EN, then (EF, EN) represents a pair of rectangular axes 
to which deflections of the fuselage and tailplane may conveniently be referred. In  particular, 
the angular setting q T L  of an arbitrary chordwise section of the tailplane will be measured relative 
to EF. 

A- 

+- 

Fig. 21b presents the corresponding picture for the actual deformable aircraft at  the same 
speed V and load factor n. The wing mean no-lift line must still lie at  an angle of attack ti, to 
the wind direction, but owing to the effect of elastic camber the wing-root section will have 
changed its shape-the camber-line having become curved-while due to elastic wash-out, the 

have changed its direction relative to the mean no-lift line by an angle d,a,. If the wing-fuselage 
attachment is completely rigid, the fuselage datum will lie along EF,, the tangent to the camber- 
line at  E, and will be inclined at  an angle A to the wing-root datum ; the fuselage-root section 
will be represented by EN, normal to EF,. In the more general case of a deformable attachment 
(see section 14.3) the frame of reference (EF,, EN,) will have moved through a further angle 
d,aF into the position (EF, EN). The angle of attack of the fuselage datum to the free stream 
will now be given by:  

Deformability of the fuselage, the tailplane, and the tailplane-fuselage attachment will have 
changed the setting (relative to the fuselage datum EF) of the arbitrary chordwise section of the 
tailplane by an amount Ay,, . 

wing-root datum (no-lift direction) as given by the tangent to the new camber-line at  C, will ,* 

aF = a F r  f dlaF $- + d 3 a F  - 

* Here we are ignoring the tail lift in comparison with the wing lift. 
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Effect of wing deformability on manoeuvre point of wing alone . . 

Effect of wing deformability on fuselage angle of attack . . .. 

With the fuselage datum and its relation to the wing-root datum and wing no-lift direction 
thus clearly defined, we may proceed to discuss in general qualitative terms the effects on 
manoeuvre point of wing, fuselage and tailplane deformability (including fuselage-wing and 
tailplane-fuselage attachment deformabilities) , before developing in detail a method of deter- 
mining quantitatively the effects in question. 

12.2. Qualitative Survey.-To focus ideas clearly, we may consider an aircraft with wings 
having a sufficient degree of sweepback to ensure that the effect of bending deformability on 
local angle of attack exceeds that of torsional deformability. Then, as may be deduced from 
Part I, there will be a forward shift of the manoeuvre point of the wing alone, due to wing 
deformability. At the same time, for a given speed and positive increment of load factor, the 
wing-root section will acquire an additional negative camber, and an increased angle of attack, 
as compared with the corresponding rigid wing. Then, as explained in section 12.1 and Fig. 21, 
if we assume for the moment that the wing-fuselage attachment is completely rigid, the angle of 
attack of the fuselage datum will be increased by an amount ( A  l ~ F  + d 201F), and consequently the 
(generally) destabilizing pitching moment of the forces acting on the fuselage will be increased, 
thus giving a forward shift of manoeuvre point. 

If the fuselage, tailplane, and tailplane-fuselage attachment were completely rigid, the setting 
of the tailplane relative to the wing mean no-lift direction would also increase by the amount 
(d laF  + d,a,), and its angle of attack would increase by some fraction of this amount, depending 
on the additional downwash at the tail due to the I wash-out without lift ' distribution of wing 
angle of attack. Accordingly, the stabilizing effect of the tailplane would be increased, and the 
manoeuvre point shifted rearward, thus offsetting, at least partially, the destabilizing effect 
of the wing alone. 

In the practical case, where the fuselage and tailplane (unswept) are not completely rigid, the 
bending of the fuselage, and the torsion of the tailplane, will give rise respectively to negative 
and positive* increments of mean tailplane setting, with corresponding negative and positive 
increments of stability. 

For a high-speed aircraft with highly swept wings of moderately large aspect ratio ( A  * 6 ) ,  
the net increase in stabilizing tailplane effect, due to wing, fuselage and tailplane deformability 
will probably not be sufficient to offset the combined destabilizing effects of wing and fuselage. 
Thus in an illustrative example worked out in section 17.2 for an aircraft of the plan-form 
illustrated in Fig. 23c, the various shifts of manoeuvre point at  the maximum permissible dynamic 
pressure were as given in the following table : 

- 

- i , O .  15% 

0.050~ 

I I I Rearward shift I shift 
Shift due to 

c- 

Effect of wing, fuselage, and tailplane deformability on tailplane 
contribution .. .. . .  . .  .. .. .. . .  '0 * 0 9 5 ~  

I 

The net forward shift of manoeuvre point was thus 0. l l c .  

12.2.1. T h e  effect of elastic attachments of the wing and the tailplane to the fuselage.-Any inherent 
deformability in the attachments of the wing and the tailplane to the fuselage may have 
important effects on the manoeuvre point. At the same time, by appropriate design of the 
attachments in question, deformability may deliberately be introduced as a means of adjusting 
the stability of the aircraft. 

* Assuming the aerodynamic axis of the tailplane to lie ahead of its elastic axis. 
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In analysing the effect of an elastic attachment, it is convenient (see 14.3) to substitute for the 
actual deformability, a ball-joint, located at a point of the wing (or tailplane) root region, which 
may be regarded as the elastic axis of the attachment, together with a torsional spring restraining 
the relative angular deflection of the wing (or tailplane) and the fuselage. The direction of the 
relative deflection will depend on whether the axis of the attachment is located ahead of, or 
behind the point of application of the resultant aerodynamic and inertia force acting on the 
surface due to change of load factor. 

In the case of an elastic wing attachment, the deformability will give rise to a third increment 
A3aF in the fuselage angle of attack. If the increment d,a, corresponding to a positive increment 
of load factor is positive, both the stabilizing fuselage effect and the stabilizing tailplane effect 
will be increased, so that the resultant effect may be either stabilizing or destabilizing. Opposite 
effects will, of course, result from arranging the attachment t o  give a negative d , a F .  

In section 14.3, rough limits for the quantity d,a, are determined from considerations of 
, flutter and of the additional weight of the elastic attachment. For the example of section 17.2, 
the maximum effects on manoeuvre point were estimated to be given in the following table : 

Sign of d,a, for positive 
increment of load factor 

Positive . . .. . .  . .  

Maximum increment in rearward (stabilizing) shift of manoeuvre point due to : 

The fuselage I The tailplane I Fuselage and tailplane. 

I I 0.091c -0.16% 0 .256~ 

Negative . . . .  .. 0.165~ -0.256~ 1 - -0~091c I 
It will be observed that the net forward shift of manoeuvre point (0. I lc )  due to deformability 

of the wing, fuselage and tailplane at the maximum permissible dynamic pressure, could be 
practically eliminated by a suitable elastic attachment of the wing. 

The effect of an elastic tailplane attachment will be considered in detail only for the special 
case where the axis of the attachment is located at  the elevator neutral point, so that the effect 
of the attachment deformability is to increase the angle of attack, and hence the stabilizing 
moment, of the tailplane, when the aircraft is subjected to a positive increment of load factor. 
Limits are set to what may be achieved in this way, by considerations of tail unit flutter, and of 
elevator effectiveness. Only the latter aspect has been considered in the present work (see 
section 13.3), and on the assumption that the minimum permissible elevator effectiveness factor 
at the maximum dynamic pressure is 0.2, the maximum stabilizing effect of elastically mounting 
the tailplane of the aircraft considered in the example of section 17.2 was estimated as 0 . 4 0 ~  if 
the wing attachment was rigid, or 0 . 6 8 ~  if it had the maximum permissible deformability. In 
either case, the overall effect of aircraft structural deformability at  the maximum dynamic 

It is hoped that this survey of the effects to be considered, will help the reader to perceive the 
ends to which the inevitably tedious algebra of the succeeding pages is directed. The results of 
the analysis provide the basis of the routine procedure, described in section 17.1, and illustrated 
by a worked example in section 17.2, which may be adopted in numerical calculations. 

13. The Deformability of the Fuselage and Tailplane Structures.-The three main effects arising 
in a consideration of fuselage and tailplane deformability, as affecting manoeuvre point, are : 

i- 

pressure, would be a large rearward (stabilizing) shift of manoeuvre point. 9 

(a) bending of the fuselage aft of the wing 
(b)  torsion of the tailplane* 
(c) the angular deflection of the tailplane arising from the deformability of its attachment 

to the fuselage. 
* With swept tailplanes, bending of the tailplane would also have to be considered. 
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These three deformations together produce a change Ay,, in the setting y,, of each chordwise 
section of the tailplane, relative to the fuselage datum defined in section 12, and illustrated in 
Fig. 21. In general, A y T L . w i l l  vary across the span, but aerodynamically, the effect may be 
assumed equivalent to a rigid-body rotation of the tailplane through an angle Ay, which may be 
assumed, with sufficient accuracy for our purpose, to be equal to the mean value of A y , ,  defined 
by:  

1 ' T  
sT -1 0 

where s, is the semi-span of the tailplane which will be assumed (see section 13.2) to be of constant 
chord. 

Ay, depends on the flight conditions, as specified by the non-dimensional dynamic pressure 
dynamic pressure (4) number Q = ( wlngloadlng ) and the load factor n. We may write (see Ref. 12) : 

A y ,  = - w,GQ - w,VQ + wPfin , .. .. .. . . (47) 

where the first two terms are due to the aerodynamic forces arising respectively from a mean 
tailplane angle of attack ET and mean elevator deflection q ,  while the last term is due to the 
inertia forces acting downward at  the tail-end of the aircraft. The coefficients w,, w, and w?,,, 
may be referred to as ' deformability coefficients ' ; w, and w, are each due partly to the deform- 
ability of the fuselage, and partly to that of the tailplane and its attachment, while w , ~  is due 
almost entirely to deformability of the fuselage and of the fuselage-tailplane attachment , since 
the elastic and inertia axes of the tailplane will be nearly coincident. 

13.1. The Bending Deformability of tlze Fuselage.-The contributions to the deformability 
coefficients arising from fuselage deformability are due to vertical bending of the rear fuselage. 
It should be noted that the bending deflections may be accompanied by a bodily rotation of the 
rear fuselage in the vertical plane, due to shear in the neighbourhood of the wing attachment 
(see Fig. 22). This rotation which, as observed in Ref. 2, section 3.30, may increase the change in 
tailplane angle by as much as 50 per cent, does not, however, affect the deformability coefficients 
as defined above. It may be regarded as a contribution to the deformability of the wing-fuselage 
attachment which is discussed in section 14.3. 

To derive an expression for the vertical bending stiffness of the fuselage, we shall first assume 
the structure to be just strong enough to withstand the ultimate design loads arrived at from 
strength considerations. It should, however, be borne in mind that a minimum value €or fuselage 
stiffness is set by the stiffness criterion of Ref. 13 (a), paragraph 7". In many cases, the criterion 
will be automatically satisfied if the fuselage has adequate strength, but in other cases, particularly 
where the aircraft has a very slender fuselage, combined with a large maximum dynamic pressure 
number Q*, and a high Mach number, it may be necessary to provide a reserve of strength in 
order to satisfy the stiffness criterion (see section 13.1.1). 

For an approximate numerical calculation, we consider the fuselage to be replaced by a beam 
of constant depth h, encased at the section through the elastic centre of the wing-root section, 
normal to the fuselage datum (see section 12). We suppose the beam to be loaded with a force 
P, acting at a point to which we shall refer as the ' elevator neutral point 't. P, is assumed to 
be sufficiently small to avoid straining the beam beyond the elastic limit. We suppose the 

* Footnote (1956) : Certain Ministry of Supply Design Requirements were built in ' to the method of this report. 
These requirements were those currently appearing in A.P. 970 when the report was written (1949-50). In the 
meantime, various amendments have been introduced into A.P. 970, but it has not been thought worthwhile to revise 
the test to take account of this. Accordingly the details given against item 13 in the list of references are those 
appropriate to the year 1950. However, a footnote has been added to the list to indicate where the corresponding, 
but not necessarily identical, requirements are now set out in A.P. 970. 

t i.e., the centre of pressure of the additional aerodynamic loading on the tailplane resulting from a change of elevator 
angle at constant tailplane angle of attack. 
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elevator neutral point to be at  a distance I ,  from the aircraft centre of gravity, and the latter 
point to be a distance I ,  aft of the section at  which the beam is assumed to be encased. Write 

Let f. P T ,  denote the design tail loads corresponding to proof load factor (equal down- and 
up-loads being assumed for simplicity). Now suppose the flanges of the beam were designed 
so that when the load P, acting at the elevator neutral point was equal to P,,, the stresses 
in the compression flange were everywhere equal to the proof stress. Then if B, denoted the, 
bending moment at  any section, we should have : 

2,’ = 1, f 1,. 

and 
.. .. . .  . .  . .  . . (48) 

B, 

where p c  is the proof compressive stress for the material of the flanges (< pl ,  the proof tensile 
stress), . , 

I, is the moment of inertia of a cross-section of the beam, 
d2x/dx2 is the curvature of the beam, 

and E is Young’s Modulus. 
It would follow that the change in tailplane setting due to a downward tail load P T p  was : 

and for a tail load P,, measured positively downwards : 

or since 

where fc is the ultimate compressive stress and PTu the ultimate tail load, 

If now, we introduce a fuselage rigidity factor FF(> 1) to cover cases where there is a reserve 
of bending strength, we have : 

or 

1 fc 21,’ 1 

(*T) =KF-- 21,’ 1 I 
. .  .. . .  . .  .. . . (49) ap, 2i‘ IPTaI  

K --- 1 f c  
F - F F E  where 

If the depth k ,  of the fuselage structure taking bending, is not constant along its length, we 
may replace k in the above formula by a mean value & defined by : 

1 
= 1: &) (1:) ’ 

where x is the distance along the fuselage datum measured from the wing attachment. 
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The distribution of bending rigidity (EI,) is given by equation (48), with the rigidity factor FF 
incorporated, as : 

E P T ~ ( ~ , ‘  - X ) h  
2 = FF- E BFh E.?, = FF- - 

P c  2 P C  

E PT,’(I?,,’ - X)h - . .  .. . . , , . (50) 2 = FF- 
f c  

We now consider the beam of depth h, with stiffness distribution corresponding to (50), under a 
load P, < P,, (measured positively downwards) acting at  the tailplane neutral point, whose 
distance from the aircraft centre of gravity is denoted by I,. Writing 

I,’ = 1, f 1, , 
we readily derive the curvature of the beam in the form : 

d2Z 

d X 2  - EIF 
P,(l,’ - x)  - P, I,’ - X 2 fc 1 -- 

PT,, I,’ - x h E F F  ’ 

and integrating with respect to x between 0 and I,’, and then differentiating with respect to P,, 
we obtain the result : 

where [ = x/l,’ and a = lq’/lu’. Evaluation of the integral leads to the equation : 

where 

and S l  = I,’ - I,’ 

. .  . .  . .  .. . .  . . (51) 

The centre of ,gravity of the rear end of the fuselage, including the complete tail unit, will 
usually lie somewhere between the.points of application of the forces P, and P,. Hence if P,,, 
denotes the inertia force acting at  the tail, (aqT/aP,fi)F will lie between (aqT/aP,), and (aqTpp,,),, 
and as a reasonable approximation, we may assume : 

. . (52) .. . .  .. . .  .. . .  21,’ 1 ( %)F = K F  - - 
P T ~ ’  

13.1.1. The fuselage rigidity factor FF.-The factor F ,  must clearly not be less than unity; in 
addition it must be sufficiently large to ensure that the stiffness criterion of Ref. 13(a), paragraph 
7 is satisfied. With the parabolic bending mode assumed in section 13.1, the fuselage vertical 
stiffness F,, of Ref. 13(a) is given approximately by:  

using equations (49), and the minimum value which will satisfy the criterion is given approxi- 
mately by the equation : 
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where Qd is the dynamic pressure number and l /P ,  = l/d{l - (Mach number)2) is the 
corresponding value of the Prandtl-Glauert factor appropriate to the design diving speed at a 
height of 10,000 feet, 

S ,  S ,  are respectively wing and tailplane areas, 
and W is the all-up weight of the aircraft. 

It follows that F ,  must not be ‘less than : 

. .  . .  . .  * , (53) 

and hence we must have : 
F ,  3 1.0 and F ,  2 F,, . .. .. . .  . . (54) 

13.2. The Deformability of the TaiZ$ane.-Deformation of the tailplane comprises bending and 
twist. Bending of the tailplane affects its lift, and in consequence the aircraft pitching moment, 
only if the tailplane is swept. It is proposed to consider in this part of the report, only unswept 
tailplanes, and accordingly, we shall be concerned here, only with torsional deformability. In 
the interests of simplicity, we shall assume* that bending and torsion are taken by different 
structural parts, and in particular that torsional stiffness derives entirely from a torsion box in 
the rear part of the tailplane formed by the skin and a vertical web. We further assume that the 
tailplane is cylindrical (so that tailplane chord, elevator chord and aerofoil section are all constant 
across the span), and that it has only one spar, lying at  a distance f?T behind the aerodynamic 
axis. The elastic axis is assumed to coincide with the spar. 

J 

We shall base our torsional rigidity assumptions on the stiffness criterion of Ref. 13(a), 
paragraph 2. In addition to satisfying this criterion, the distribution of skin thickness must be 
such as to ensure that when the tailplane is subjected to the ultimate design torque TTu,  the skin 
shear stresses nowhere exceed the permissible design value. At the same time, considerations of 

limit to skin thickness. However a general numerical investigation, supported by current 
statistical evidence suggests that the stiffness criterion will be the critical factor in the case of 
most aircraft for which the manoeuvre point is seriously affected by structural deformability 
(that is to say in the case of very fast aircraft of all sizes, and in the case of very large aircraft 
of moderately high speed)f. Accordingly, we now consider what torsional rigidity is required to 
satisfy the above-mentioned criterion. We shall assume the skin thickness and hence the section 
torsional rigidity to be constant across the span, since, with such a distribution, the criterion 
can be met with a minimum weight of torsion box. 

The minimum torsional stiffness T,  measured at 0.8s,, which is required to satisfy the criterion 
is readily shown to be given non-dimensionally by : 

the minimum gauge which is practicable from the manufacturing point of view, will set a lower t * 

where 
0.545 for tailplanes without end-fins 
0 * 852 for tailplanes with end-fins 

and the minimum value of the section torsional rigidity GJT which is related to T,  by the equation : 
1 0 . 8 ~ ~  1 0 . 8 S T  

T,= 0 GJT T- - -  GJT - - d y -  

* The assumption is not strictly valid in the case of tailplanes of shell design, or in the case of tailplanes with two 

t In particular this is likely to apply to all tailed designs with highly swept wings (for which the overall effects of 
spars, for which some torsional stiffness is supplied by differential bending. 

deformability are most serious) since the design speeds of such aircraft may be assumed to be very high. 
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is then given by : 

where 
0 -  218 for tailplanes without end-fins 
0.341 for tailplanes with end-fins 

. .  .. . . (55) 

In the above equations, 
cT, sT, S ,  denote respectively the chord, semi-span and area of the tailplane, 
W is the aircraft weight in the flight condition under consideration, 
S is the wing area, 
Qd is the dynamic pressure number, and 
l/p,  = l/d{l - (Mach number)') the corresponding value of the Prandtl-Glauert factor, 

appropriate to the design diving speed at a height of 10,000 feet. 
a 

We now consider the tailplane under an arbitrary tail load P,. If, for simplicity, we assume 
that the basic spanwise distribution of load is rectangular, with a constant chordwise position 
for the local centre of pressure, and if we neglect the effect of deformability on the distribution, 
the torque at a section distant yT from the plane of symmetry will be given by TT{1 - (yT/sT)} 

where T T  denotes the root torque. The twist 8 ,  at this section will be given by: 

if GJT is constant. 
setting ( L I ~ ~ ) ~  due to  tailplane twist is equal t o  the mean value of 

We shall assume that the change in zero-lift direction, or mean tailplane 
given by : 1 

Thus we have 

. . (56) .. . .  . .  . .  .. . .  . .  . .  ST 

where for tailplanes just satisfying the stiffness criterion, GJT is equal to (GJT)mi,, as given by 
equation (55). * More generally, introducing a torsional rigidity factor Fr'( 1) to cover cases 
with a reserve of stiffness, we have : 

.. . .  .. . .  .. . .  1 ST 
($)T ~ ( G J T ) , ~ ,  ' 

. . (57) 

Now, denoting by w, ,,, w, and wm the values of the deformability coefficients for an unswept 
tailplane with the structural lay-out described above, and with a completely rigid attachment 
to the fuselage, we have (from equation (47)) : 
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where all the derivatives of qT with respect to forces and torques have been derived above, but 
the ,derivatives of the forces and torques with respect to aTJ q and n remain to be considered. 
The derivatives of the forces are readily deduced to be: 

. .  .. . .  (59) 

where the suffix denotes ' completely rigid ' and W ,  denotes the weight of the rear end of the 
fuselage, including the complete tail unit. The torques T T ,  and T,, are obtained from the 
corresponding forces P, and P, by multiplying - P,/2 and - P,/2 by their appropriate moment 
arms about the elastic axis of the tailplane; these are respectively eT and - ( S l  - eT). Hence 

We shall neglect the torque TTst corresponding to P, since in most cases the moment arm 
about the elastic axis will be very small. Thus 

. .  . .  . .  . .  . .  . .  . .  . .  . . (61) aTTm - ---0. 
an 

Using equations (49) to (52), (55) and (57) to (61), we obtain the following approximate equations' 
for the deformability coefficients of the rigidly mounted tailplane : 

. . (62) 

where 

13.3. The Deformability of the Tai@lane-Fuselage Attachment.-The deformability of the 
tailplane-fuselage attachment gives rise to additional terms Aw,, etc., in the formulae for the 
deformability coefficients. The attachment may be considered to be replaced by a hinge, repre- 
senting the elastic axis of the attachment, about which the complete tailplane is assumed to 
rotate relative to the fuselage, under the constraint of a torsional spring of stiffness 1. Let eA 
denote the distance of the elastic axis of the attachment behind the axis of aerodynamic centres 
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of the tailplane (considered here as completely rigid) and assume the inertia and elastic axes of 
the tailplane to coincide at a distance behind'the aerodynamic axis, to be denoted by e T .  Then 
we have : 

where WT denotes the weight of the tailplane, including end-plate fins and rudders, if any. 

now given by : 
The overall deformability coefficients of an unswept tailplane with elastic attachment are 

. . .  . .  . .  . .  . . (64) 
w u  = w u Q  f A w u  

w, = w,o + Aw,, 
wwz = wm 0 + Awwc 

The effect of the elastic attachment is seen to depend on two parameters, namely eA/CT and 
WcT/A, defining respectively the position of the elastic axis of the attachment, and the flexibility 
of the hypothetical torsional spring. The latter can, in general, be varied by the designer within 
wide limits, the upper limit being set by considerations of elevator effectiveness and of tail unit 
flutter. For the present we consider only the problem of elevator effectiveness. 

We may define an elevator effectiveness factor F,, (a function of dynamic pressure q, comparable 
with the rolling effectiveness factor FE of Part I) by the equation : 

F = l - -  4 
7 II 

q c a  
where qc , denotes the critical dynamic pressure with respect to elevator reversal. It is, of course, 
essential to avoid elevator reversal within the flight speed range, so that F,,* = (F,,),=,+ must be 
positive ; in fact, general strength considerations for the tail unit will impose a minimum positive 
value for F,*, say 0.2. We now derive a formula connecting the effectiveness factor F;" at 
q = q* with the deformability coefficients wu and w,,. 

The condition for zero elevator effectiveness on pitching moment about the aircraft c.g. is 
clearly : 

.. . .  . .  . .  . .  . .  . . (65) 

Now, if the elevator effectiveness is zero, the angle of attack of the wing a is unaffected by i j ,  
and the change in tailplane angle of attack ET due to a change in i j  will be equal to the change in 
tailplane setting qT,  so that we must have : 

.. . .  .. . .  .. . .  . .  . .  . . (66) -- aaT a q T  -_ - a7 aij  

and then, from equation (47) : 

. .  .. .. . .  .. . .  .. . . (67) a E T  - w,, 
aq 1 
- -~ 

g + w a  

43 



Now at Q = Qc , = Q*/( 1 - F,*), equations (65) and (67) are both valid, and it therefore follows 
that : 

The elevator effectiveness factor F, o* corresponding to a rigid tailplane-fuselage attachment is 
given by : 

where w, and w, are given by equations (62). From equations (68), (69), (64) and (63) we now 
obtain the relationship between the elevator effectiveness factor F,* at  the maximum permissible 
dynamic pressure, and the flexibility of the tailplane-fuselage attachment, in the form : 

A 

. . (70) 

The maximum permissible value of Wc,/;l (corresponding to the minimum permissible torsional 
stiffness of the attachment) associated with a given value of e,/cT is obtained from equation (70) 
by substituting for F,* its minimum permissible value. The corresponding w, is the minimum 
(or maximum negative) permissible from the point of view of elevator effectiveness, and its value 
depends to a large extent on the position of the elastic axis of the attachment. In the special 
case; where the axis coincides with the elevator neutral axis (e, =.l, - Z,), the deformability of 
the attachment does not affect w,, so that w, = wq0 and the minimum permissible w, can be 
calculated from equation (68). 

If we write 
ET = + J 

where x denotes the angle of attack which the tailplane would have if the aerodynamic and 
inertia forces acting on it had no effect on its incidence, then equation (47) gives : 

- waxQ - wqqQ i- wmn 
1 + waQ 

AY, = 

From this it will be seen that tailplane divergence will occur if w, < - 1/Q, so that the minimum 
permissible value of w, from the point of view of tailplane divergence is - 1/Q*. From equation 
(68) it is clear that the minimum permissible value of w, from considerations of elevator 
effectiveness is certainly greater than - 1/Q* if  wq 3 0 so that tailplane divergence sets the limit 
to w, only if w, is negative which, in practice, can be so only if the tailplane is swept forward. 

13.4. Calculation of the Deformability Coefficients : Some Numerical Approximations.-Calcula- 
tion of the basic coefficients waO,  etc., from equations (62) involves an estimation of the quantity 
K ,  = ( l/FF)(fc/E) (equation (49)) and of the ultimate design tail load PTu (including the inertia 
forces on the rear end of the fuselage). 

t 

t The general case was to have been considered in more detail in the proposed Part I11 of this report which was, 
however, never completed. 
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For an existing design it will normally be possible to calculate KF by substituting in equation 
(49), values of the various parameters appropriate to the specific design, while the ultimate tail 
load PTIr will be known from routine strength calculations. For rough estimates in the early 
stages of a design, or for general investigations involving a qualitative assessment of the effects 
of varying specified design parameters, we may derive approximations for the quantities in 
question. 

13.4.1. The quantity KF.- 

' For materials likely to be used in practice, f , / E  is approximately equal to 1/150, whilef, depends 
on the instabilities (such as column failure and plate buckling) occurring in the compression 
members of the structure at  the higher compressive stresses. For the plating and stringers of a 
shell fuselage, and similarly for the struts of a framework fuselage, all of which are supported 
only weakly (if at  all) against such instabilities, f c / f t  5 0.5. Hence for a rough approximation, 
we may take 

4 

9 

.. .. . .  .. 

and we thus have, from equation '(49) : 

Similarly equations (51) and (52) give respectively : 

and 

. .  .. (71). 

. .  .. .. . .  . . (51a) 

. .  . .  

where FF 2 1.0 and FF 2 FFo; . .  .. . .  . .  .. . . (54) 

and from ,.equation (53) : 

. .  . .  (534 

13.4.2. The ultimate design tail load P,  u.-For aircraft stressing purposes, the ultimate tail 
load for a specific design must be determined from a consideration of the various flight conditions 
detailed in Ref. 13 (b ) ,  and since it is impossible to generalise as to which condition will be critical, 
it is not possible to  give an approximating formula applicable to all designs. The reader who is 
familiar with the requirements of Ref. 13 (b) ,  and experienced in their application, will readily 
derive for himself an approximate value, appropriate to any design, actual or hypothetical, 
which is under consideration. For the non-specialist in such matters, approximate formulae are 
developed in Appendix IV which should be applicable in a good proportion of cases. 

. 13.5. The Efect of Wing Sweep on the Deformability Coejj'icients.-The expressions for w,, and 
w,, established in equations (62) hold independently of the angle of sweep of the wing. It is, 
however, interesting to consider how the values of these coefficients will be affected.when, for a 
given design, the sweep of the wing is varied, while maintaining unchanged all the other main 
characteristics. The only factors in the equations for w,, and w,, that will be affected are 
I,' = 1, + I ,  and 1,' = I ,  + I,. It may be assumed that the distance between the tail unit and 
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the aircraft centre of gravity is not appreciably altered, and further that the wing aerodynamic 
centre remains fixed relative to the centre of gravity. Then 2, and I ,  remain unchanged and we 
are concerned only with the change in I, (i.e., the distance of the centre of gravity aft of the 
encastrk section of the fuselage). If we assume the aerodynamic centre of a half-wing of constant 
chord to lie at the quarter-chord point of the section 0 . 4 5 ~ ~  from the root, it will follow that 
for a constant-chord wing of sweep angle +, the value of I ,  will be about 0-45s tan + greater 
than with the unswept wing, and the values of w, and w,, ,, will be increased or decreased according 
as + is positive (sweepback) or negative (sweepforward). 

The third deformability coefficient wn2 will be similarly affected, but in this case an additional 
effect of sweep arises when the sweep angle is positive ; for then the inertia forces of the middle 
part of the fuselage, including those of all equipment, useful load and, in some cases, power 
plant contained therein, bend the rear fuselage and therefore affect the angle of attack of the tail 
unit. We now make a rough estimate of this effect. Denote'the weight in question by W ,  and 
consider it concentrated at a fixed fuselage location, which may reasonably be defined as lying 
in the encastrk section of the fuselage when the wing is unswept. When the wing is swept back 
at an angle +, the weight W ,  will lie at a distance of approximately 0.45s tan + aft of the encastri: 
section, and under load factor n there will be an inertia force nW, producing, over a length of 
fuselage 0.45s tan +, a bending moment decreasing linearly from 0-45s nW, tan + at the encastri: 
section to zero at  the assumed location of W,. For our present purpose, it will be good enough 
to assume the bending rigidity ( E I F ) o  of the relevant portion of fuselage to be constant and equal 
to its value at  the encastri: section. Then from equation (50), (putting x = 0), we have: 

E 
( E 1  ) O - - 2fc - PT,,I,'hFF 

+ 150PT,,l,'hFF, 
using the approximation of section 13.4.1. 

The effect in question thus gives an additional fuselage curvature which, with our assumptions, 
to zero. This n W s t a n +  decreases linearly over the length 0.45s tan + from the value C- 0.9 

FFpT&"q' 

gives an additional A y T  equal to : 

= 0.2025 (5) ns' tan2+ __- W ,  1 
iq'h P T u  F F  

1 ns2 tan' + W ,  1 ---- __ -- 
- 1500 I,'h PT, F, 

corresponding to an increase in w , ~  of amount 

\ 

With negative (forward) sweep, there is no such effect on wn,, because the additional fuselage 
bending now occurs outside the region between wing and tail unit. To cover both swept-back 
and swept-forward wings in a single formula, we may write 

where the numerical factor must be regarded as very approximate. 

d 

F 
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It may be noted that the bending relief provided by the additional inertia forces considered 
above, should make it possible to reduce the bending rigidity E I F  of the fuselage and still maintain 
adequate strength. 

14. The Effect of. Wing Defomability and Wing-Fuselage Attachment Deformability on the Angles 
of Attack of the Fuselage and Tail4lane.-In section 13 we were concerned only with the effect of 
fuselage and tailplane deformability on the setting of the tailplane relative to the fuselage datum 
defined in section 12. The contributions of fuselage and tailplane to the aircraft pitching moment 
at  a given speed and load factor depend, however, on their respective angles of attack which, 
as already pointed out in section 12, are influenced by deformability of the wing, and of the 
wing-fuselage attachment. The change in the angles of attack, arising from this source, is 
measured by the angular deflection of the fuselage datum relative to the wing mean no-lift-line. 
There are, in general, three contributions to this relative deflection, arising respectively from : 

(a) elastic wash-out of the wing 
(b)  elastic camber of the wing 
(c) deformability of the wing-fuselage attachment. 

The first of these produces an angular deflection of the wing-root datum relative to the mean 
no-lift line, while (b )  and ( c )  together produce an angular deflection of the fuselage datum relative 
to the wing-root datum (see Fig. 21b). Vie now consider the three contributions in turn. 

14.1. The Efect of Elastic Wash-out of the Wing.-The change in angle of attack,of the wing-root 
section due to elastic wash-out has been investigated in Part I, where the result is given by 
equation (23), putting C = OJr, in the form: 

(*I) = - 0.4550, - 0-285D8.  . . .. .. . .  .. . . (73) 

Now if aF denotes the angle of attack of the fuselage relative to the free stream, then the change 
(d laF)  in aF due to elastic wash-out will be equal to the change in ay,o, so that we have : 

14.2. The Efect of Elastic Camber of the Wing.-The elastic camber of the wing, arising from 
rib-bending and spar-bending has been investigated in Part I, from equations (4), (5) and (26) 
of which we may deduce that the camber ratio y is given by:  

where, for constant-chord wings with ribs perpendicular to the spar, 

. Equation (26) 

D -  1 [cos'$ + 2 s;b' $1 
- 48;OPn~ Fr.b. 

and for constant chord wings with ribs in the flight direction, 

t This neglects the effect of fuselage width, assuming, in effect, that the wing root coincides with the centre-line of 
the fuselage. 
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The curvature of a wing chord was shown in Fig. 2(a) to be given by : 
_ -  1 BY 
R - 7 '  

positive radius of curvature R corresponding to positive camber, which -2 induced by negative 
lift. 

In accordance with the assumptions of section 12, illustrated by Fig. 21b, the deflection of the 
fuselage datum relative to the wing-root datum is equal to the angle between the tangents to 
the camber-line at E (elastic centre) and C (three-quarter chord point). Hence the contribution 

to A (2 I due to elastic camber is given by : 

where eF denotes the chordwise distance of the wing elastic axis aft of its axis of aerodynamic 
centres ; or substituting for dy/dn : 

A 2 ( s l  ) =3.2PD4 . .  . .  .. . .  . . (74) 
an lv 

14.3. The Efect , of Deformability in the Region of the Wing-Fuselage Attachment.-Some 
reference was made to this effect in section 1.2 of Part I when discussing the general question of the 
deformability of the root region of the wing. Numerical assessment of the effect was, however, 
deferred to the present part of the report. As suggested in Part I the effect of wing root-region 
deformability on the angle of attack of the fuselage can most conveniently be estimated by 
assuming that for the actual deformability is,substituted a ball-joint, located at a point of the 
root region which can be regarded as the elastic axis of the attachment, together with a torsional 

we do not need complete data for this equivalent system ; all that is required is the corresponding 
increment A ,  - in the rate of change of angle of attack of the fuselage, with'.load factor. 

The approximate limits within which this quantity must lie can readily be estimated, in the case 
of an unswept wing, by consideration of this purely torsional elastic attachment of the wing 
to the fuselage. 

If it is stipulated that deformability of the attachment shall not reduce the critical dynamic 
pressure for wing flutter by more than 20 per cent (an arbitrarily chosen, but reasonable figure?) 
the maximum torsional, deformability due to the attachment is given roughly by : 

spring restraining the relative angular deflection of wing and fuselage. For our present purpose, F 

(2lJ 

* * (75):: .--. 
. .  .. . .  . .  .. . .  . .  0-2  0.7s IS1 =O.sGJ, 

where y is the angular deflection of the wing-root section relative to the fuselage, due to an applied 
torque A, 

and 
s is the wing semi-span, 

GJ is the section torsional rigidity of the wing (assumed constant). 

7 We are considering here the maximum amount of flexibility that may deliberately be introduced into the attachment 
as a device for adjusting the aircraft stability. The inherent flexibility of a nominally rigid attachment would 
normally be much less than this. Bn all cases, the flexibility .of the attachment should be taken into account when 
assessing the flutter speed which should still exceed the design diving speed by the currently accepted margin. 

Equation (75) is derived from the assumption that (flutter speed)2 is proportional to the wing torsional stiffness 
(applied moment per unit twist), measured at an appropriate reference section, here taken to be 0.7s (cf. wing torsional 
stiffness criterion of Ref:13 (c)). The rehtionship is applied in turn to the case with, and the case without, an elastic 
attachment . 

. 
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Now d y l d n  = ( d y / d d ) ( d A / d n )  is, like dd/d.Yz, proportional to the distance between the axis 
of the attachment and the point of application of the resultant aerodynamic and inertia force 
due to change of load factor. This &stance may be varied by changing the position of the 
attachment axis, but an upper limit is imposed by the fact that the weight of the attachment 
structure will also increase in some manner with increasing distance. For, under proof load factor, 
the elastic energy to be stored in the attachment structure is : 

while the energy which can be stored per unit attachment weight, with proof stresses in the 
attachment structure is? p2/2Eo, where o denotes the weight per unit volume of the material, 
f i  its proof stress, and E Young's Modulus. The weight penalty is therefore : 

or since 
2 2 %-n, 

P 2  - f 2 '  

For materials of practical importance 

- fZ - - ( E )  f 2 E n  - ( -)2: 1 380 ft. Ea 150 

Using this value in the last equation, eliminating dd/d.Yz by means of the relation 
-t 

d y l d n  = ( d y / d d ) ( d d / d n )  , 
and substituting for I d y / d d  1 from equation (75) with GJ as given by equation (1) of Part I,  
we obtain : 

C n2Q*FT( 1 - :)' nW- - 
W 1mt (1 - FE*) 

where c is measured in feet. 

AW If -- = 0.01 is taken as a reasonable maximum value, we obtain: 
A W 

1.43ft 1 (1 - FEZ) 
n,2Q*Fz ( 

- ;)' ' 

The deformability of the wing attachment is thus estimated to lie between two values of opposite 
sign but equal magnitude, i.e., 

1 1-43ft  1 - F,* 
f n,(l - :) J(c- FTQ* 

7 See, for instance, ' An Introdwtion to the Theory of Elasticity ' by R. V. Southwell (Oxford, 1936), p. 34. 
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