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Summary.--Real flow patterns are produced by formally placing a pair of conjugate complex sources at conjugate 
complex points on the axis of symmetry. These complex singularities are shown to be equivalent to a non-uniform 
distribution of real doublets on a real disc. Reciprocal relationships are formulated between these new singularities and 
the well-known simple source ring and vortex ring. While the latter are simpler physically, the new type of singularity 
is easier to handle in mathematical analysis, involving only square roots instead of elliptic integrals. 

Sufficient conditions are determined under which an axisymmetric body may be generated by a real distribution of 
sources and sinks along the axis of symmetry, and the formula for the source intensity xs given when these conditions are 
satisfied. An example deals with the flow about all oblate spheroid. 

1. Introduction.--Rankine's source-sink m e t h o d  (Ref. 1) consists of disposing a distr ibution of 
sources and sinks along a line and superimposing a uniform s t ream parallel to this line. Provided  
tha t  the  algebraic sum of the  strengths of the  sources and sinks is zero, then  a closed s t ream 
surface is generated,  and the  interior of this surface m a y  be replaced by  a rigid body. The 
result ing flow pa t te rn  exterior to the  surface is easily calculated and represents the  f low pat tern  
produced when a uniform s t ream of infinite extent  flows past  the rigid body. 

A serious drawback of Rankine ' s  m e t h o d  is tha t  only a certain class of bodies Call be generated 
in this manner .  For  example,  a l though any prolate spheroid can be so generated,  no oblate 
spheroid can. Moreover, it is clear tha t  the  surface of a rigid body  generated by  such a me thod  
can never  have a discont inui ty  of any type (for example, an abrupt  change of curvature  or slope) 
at any  point  which is not  located on the axis of symmetry .  

i 

To meet  this objection, the me thod  has recent ly been ex tended  by  Weinstein (Ref. 2) and  
van Tuyl  (Ref. 3) to employ sources or doublets dis t r ibuted uniformly round a circle, or uniformly 
over a disc, whose plane is normal  to the  direction of the  stream. The formulae for the  potent ia l  
and s t ream functions of such simple source or doublet  rings or discs, involve complete elliptic 
integrals, and have been recorded in convenient  form by Sadowsky and Sternberg (Ref. 4). 
In  comput ing  flow pat terns  regarded as generated by  the  superposition of a uniform s t ream on a 
continuous distr ibution of these axisymmetr ic  singularities, however,  the  occurrence of elliptic 
integrals in the  very  kernel  function, as i t  were, of the  computat ion,  is an inconvenience. 

The singularities which form the  subject  of the  present  paper  are regarded from a mathemat ica l  
point  of view as complex sources located at  complex points on the  axis of symmetry .  The 
analytical  formulae for the  resulting potent ia l  and  s t ream functions are accordingly no more 
complicated than  those of Rankine ' s  original method,  except  in tha t  they  contain complex 
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numbers. In terms of practical computing, this means merely tha t  the operation of taking square 
roots has to be performed more frequently. Moreover, integration over simple surface shapes 
can be performed analytically. 

From a hydrodynamical point of view, the new singularities will be shown to consist essentially 
of a circle of branch points introduced into the flow. This implies the existence of a shell of 
doublets, the shell being of arbitrary shape provided tha t  its rim coincides with the circle of 
branch points. 

The fundamental notion of the equivalence of continuous distributions of singularities at 
imaginary points on the axis of symmetry, and continuous distributions of singularities at real 
points with axial symmetry about this axis, was first put forward by Bateman (Ref. 5), although 
the work reported in the present paper was performed in ignorance of this earlier work. Bateman 
studied the equivalence in a rather more sophisticated way, from the standpoint of mathematical  
potential theory. He apparently did not study the physical nature of the individual point 
complex sources which are the main concern of this paper. Bateman's work was, in one respect, 
more general, as it considered similar equivalences for sets of Singularities not possessing axial 
symmetry. 

The method will here be used to consider the question whether the flow past a given 
axisymmetric body can or cannot be regarded as generated by a set of real sources and sinks 
distributed along the axis of symmetry. Particular examples considered include certain spindles, 
and spheroids (the latter having been also treated by Bateman). 

2. Complex  Source -S ink  Pa i r s  Generating Real  F low  P a t t e r n s . - - L e t  (x, y) be rectangular co- 
ordinates in a meridian plane of an axisymmetric field, the x-axis being the axis of symmetry. 
Let us consider the flow pattern generated by a complex source of strength p - / i q  located at 
(iv, 0), together with a complex source of strength p - -  iq located at (-- iv, 0), (p, q, v are all real). 
Deriving the potential function ¢~q of this source pair formally by the standard method, we obtain" 

_ p + i q  . p - -  iq 
4z~6pq -- {y~ -t- (x -- iv)2} ~-/2 + { 9  + (x + iv)2}w ~ ' . . . . . .  (2.1) 

the convention being that  the velocity is the negative gradient of the potential function. 

Let 

R , = (y2 + x 2 _ ~2)2 + 4 x ~  . . . . . .  

and tan 2~ = 2x~ / (y  2 + x ~ - -  ~2) , ) 
s i n 2 ~ = 2 x ~ / R  ~, c o s 2 ~ = ( 9 + x ~ - - ~ 2 ) / R ~ t l  

so that  (2.1)becomes" 

P + i q  p - i q  
= R e _ ~  + R e ~  

(2.2) 

(2.3) 

= 2 R - l ( p  cos ~ -- q sin ~o) . . . . . . . . . . .  (2.4) 

This potential function is real since all the symbols contained in it represent real quantities. 

In order to deduce the stream function ~,~ and velocity components (upq, Vpq) of the flow pattern, 
we notice first that" 

+ ( x  - - + ( x  - 

= - -  ~-~R-8(½R~ sin 2~o -- i~ ~) (cos 3co + i sin 3o~) , 



and 

0y {y'~ -~- ('~ - -  i~)2}--1/2 {y2 _{_ (X y 

: - -  R-~y(cos 3~o + i sin 3~) . 

Now, 

so tha t  

and  

so tha t  

and 

u ~  ----- - -  ~ 4 ~  - -  y ~ y  ~'~q , 

(p + i q ) (x -  iv) (p - @(x + i~) 
4zcu, q = {~y~ + ( x -  iv)~}~/~ + { 9  + (x + iv)~}~/~ " " 

= v-~R-3{p(2~ ~ sin 3co + R ~ sin 2o~ cos 3~) 

+ q(2v ~ cos 3~ --  R ~ sin 2~o sin 3~)}; 

vpq --  ~y ¢Pq --  y ~x ~pq ' 

• (p + iq)y (p --  iq)y 
4=vpq = { 9  + ( x -  iv)~} ~l~ + {y~ + (x + iv)~}~/~ " " 

: 2yR-~(p  cos 3o~ --  q sin 3~} ; 

. .  (2.5) 

. .  (2.6) 

(~ - y ) / x  + (7 + y)/x (2.9) 
t an  2~o = 1 -- (~ --  y ) / x .  (7 + y ) /x  . . . . . . . . . . .  

Thus, R is the  geometric mean  of the  lengths of the  lines joining the  field-point (x, y) to the points 
(0, ~ ~), whilst  2o~ is the  angle between these lines, measured in a counter-clockwise sense (see 

Fig. 1). 

If the  field-point (x, y) follows a closed contour  in a clockwise sense encircling the  point  (0, n), 
but  not  the point  (0,. --  ~), i t  is clear tha t  the  angle 2~o increases by  2=, so tha t  all the  functions 
¢~, U~q, vpq, and ~q s~mply change sign. • An addit ional  circuit of the  contour  causes the  functions 
to resume their  original values. The four flow functions are, in fact, two-Tcalued, wi th  branch- 
points at  (0, n) and  (0, ,cu~t); In  order to render  the functions single-valued it is sufficient to join 
these two points by  a of arbi t rary  shape, s t ipulat ing tha t  the  field-point mus t  never  cross 

this cut. 

I n  three-dimensional  space the  cut represents a surface having  a circular rim. The four flow 
functions all have  discontinuities at this surface equal in magni tude  to twice the  magni tude  of 
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and  

(p + iq)(x - -  in) (p --  iq)(x + in) (2.7) 
4 = ~  = { 9  + ( x -  ¢n)~}1,~ + { y ~  + (x + i7)~} 1/~ . . . . . . . .  

= 2~-1R-l{p sin ~o(~ ~ + R ~ cos ~ ~) + q cos ~ ( ~  --  R ~ sin ~ co)}. 

The physical significance of the  quanti t ies  R and co may  be deduced by  observing tha t  the  
definitions (2.2) and (2.3) are equivalent  to the  following relations" 

R~ = {(~ _ y)~ + x ~} ((~ + y/~ + x~},  . . . . . . . . . .  (2.8) 



the function on either side. I t  is convenient to regard the cut as a surface distribution of 
singularities, whose nature and density are determined by the discontinuities across it. 

I t  is convenient in the present instance to consider the cut surface as forming a disc x = 0, 
[Y l ~< ~. The angle 2~o may then be defined to lie between the values ± ~. On the two sides of 

this disc, according to whether x = ± 0, we find that  (see Figs. 2 and 3)" 

R 2 = ~ 2 _ y ~  c o = ±  1 

and hence 

2q 
4~¢~ = T ( ~ _  y~)~/2 

- 2p~ 
4~u~ = T ( v ~  y~)~/~ 

• 2qy 

2t)~ 4~p~ = ± (~  _ y~)~/~ 

(x = ± 0) 

(0 < y < ~) 
(2.10) 

From the above examination of the discontinuities we shall next determine the precise nature 
of the real singularities on the disc which produce the same flow pattern as that  due to the complex 
source-pair on the x-axis. There are two equivalent ways of carrying out this analysis. First, 
a discontinuity in potential function or stream function may be regarded as indicating the 
strength of a doublet distribution orientated perpendicular to or parallel to the disc, respectively. 
Second, a discontinuity in normal or tangential velocity components may be regarded as indicating 
the strength of a source or vortex distribution, respectively. 

The discontinuity in the potential function Cp¢indicates a doublet layer perpendicular to the 
disc (x = 0, [y]~< ~) of density - -q(~2 _y2)-l/2/z~. But this is known to be equivalent to a 
vortex distribution with a strength equal t o  the negative space rate of change of the normal 
doublet distribution, namely, qy(~2 _ y2)-3/,/=. The latter is, of course, in agreement with the 
vortex strength deduced from the discontinuity in the tangential velocity vpq. By integration 
over the disc, the total doublet strength is found to be" 

- ( e  - y )--2y d y  = - . . . . . . . . . . .  ( 2 . 1 1 )  

For the ~b-component of the flow it is simpler to start  from the discontinuity in upg, which 
indicates a source strength of density - -pr l (~  2 --y~)-3/2/~. Thus, in any ring element of area 
2uy dy there is a total  source strength of -- 2p~y(~ 2 - -  y2)-3/~, dy. By simple integration with 
respect to y from 0 to v it then appears that  the total negative source strength would be infinite. 
This is at variance with the original complex source distribution, which obviously has a total 
strength of 2p. 

The source distribution, however, may be regarded as due to a doublet distribution orientated 
radially outwards, the total  doublet strength in any ring element 2uy dy being given by integration 
of the source strength as 2p~(~ ~ -- y~)-~/2 dy. This doublet disc is precisely equivalent to the 
Source disc except at its extremes, namely, at the edge (y = V) and at the centre (y -= 0). 

At the centre, the pure doublet distribution would imply a terminal point sink of strength 
-- 2f). Since, however, the expression for %q in equation (2.10) has a finite limit as y--+0,  it 
is clear that  this point sink does not exist. Hence, we have to add to our doublet disc a point 
source at the centre with strength + 2p. This is of exactly the right strength to agree with the 
original complex source-pair, the net source strength of the doublet disc itself being zero. 

4 



At the edge of the disc (y = v), the doublet distribution implies a peripheral source ring of 
infinite strength. This does in fact exist, and cancels the previously obtained infinite negative 
integral of the source disc. 

To sum up, the formal placing of purely imaginary sources ___ iq at the purely imaginary 
points ( ±  i~, 0), respectively, is equivalent t o  a surface doublet distribution of strength 
-- q(v 2 -- y~)-~/~/~ per unit  area, orientated parallel to the x-axis, over the disc x = 0, l y [ ~< v. 
The total  doublet strength, obtainable either by integration or directly from the moments of the 
complex sources about the origin, is -- 2qv, whilst the source strength is zero. Again, the formal 
placing of a real source 2 at each of the purely imaginary points ( ~  iv, 0) is equivalent to a 
point source 2 2 at the point (0, 0), together with a surface doublet distribution of strength 
2v(~ ~ -  y~)-~/~/(~y) per unit area, orientated radially outwards, over the disc x = 0, [Yl < V. 
(The doublet strength of this layer could, in fact, be directly deduced from the discontinuity in 
~opq.) The total source strength is 2p, whilst the total  doublet strength is zero. 

I t  is of interest to write down the nature of the flow pattern in certain other special parts of 
the field. For example, at a great distance from the origin" 

R 2 ~  x ~ + y~ , ~, ~ x v / ( x  ~ + y~) , 

so tha t  

2qvx 2py2)1/2 y~)3/~, (x2 + y2__+~) . (2,12) 4~¢~q ~ (x 2 + (x 2 + . . . .  

This formula is in agreement with a total source strength of 2 2 and a total doublet strength 
of -- 2qv. 

Again, along the x-axis ( x >  o r < 0 ,  y = 0 )  we find that  R 2 - - = - ~ + x  ~, t a n ~  = v / x ,  
sin co = 4- V/(~] 2 + x~) ~/~, cos co = .+ x/(~ 2 + x~)~/2, so that  

~ x - -  qv 
4z~¢~q = + 2 + x~ 

4~%~ = -t- 2 2(x~ - -  v~) - -  2qvx (v~ + x~)~ (x > or < O) 
. .  (2.1.3) 

2yp(X3 - -  3xv ~) -- qv(3x ~ --  v ~) 4~vpq + _ (V~ + x2) 3 (Y = 0) N 

4~7Jpq T 22 "~ 4 - Y  ~2(v2 - -  x~) + 2qvx 
X ~ ) 

Again, along the equatorial plane outside the branch points (x = 0, [Y l >  v), we find that  
R ~ = y ~ - ~ ,  c o = 0 ,  s o t h a t  

22 4 ~ ¢ ~  _ (y~ _ v~)~/~ 

2qv 
4~%q - -  ( 9  - -  v~) ~/~ (x = O) 

. . . . . . . . . .  (2.14) 
2 2 y  ( l y l >  v) 4~v,q  - -  (y~ _ n2)3/~ 

2qn 
4~w~, - ( 9  - v=) ~/~ 

I t  will be noticed that  the p-component of velocity is directed away  from the branch point, in 
accordance with the existence of a positive source ring at the rim of the negative source disc: 



Final ly ,  in the  neighbourhood of (0, v), we m a y  write (see Fig. 1), 
y = ~ + e cos 2c5, where e is small. Then  R 2 ~  2ev, co ~ c5, and hence 

4~pq 
47~U~q 
4zvpq 

4z~opq 

2 ( 2 ~ v ) - ~ ( p  cos  ~ - q s i n  ~ )  ] 

2v(2sv)-8/~(p sin 3~ + q cos 3 ~ ) l  

2v(2ev)-3/~(p cos 3~ --  q sin 3~)~ 

2v (2sv)-~/~(p sin 5~ + q cos ~) ] 

x =  s sin 2~,  

(e small) . . . . .  (2.15) 

For  the  sake of simplicity,  we have assumed in this  discussion t h a t  the  real par ts  of the  abscissae 
of the  complex sources are zero. If the  sources were to be moved from the points ( ~  i~, 0) to 
the  points  (~ -+- iv, 0) where ~ is real, then  the  only change necessary in all the formulae would 
be to replace x b y  (x --  ~). 

3. Reciprocal Relations between Complex Sources and Ring Singulari t ies . - -Let  us now examine 
the  real s ingular i ty  dis t r ibut ion which corresponds to a complex line source of s t r eng th  
2(pb + iq~) (b ~ --  V 2)-I/2 per uni t  of 7, placed along the  line x = iv, where --  b ~< V < b. 

F rom tile q-component we have  a surface dis t r ibut ion of doublets, or ienta ted parallel  to the  
x-axis, d is t r ibuted over the  disc 0 ~< n ~< b. The area dens i ty  of the  dis tr ibut ion is found to be 
Q, where:  

2~ dv 

qfb~ d(~ ~) 
- 7~ y~ E{½(b ~ - y~)}~ - {v ~ - ½(w + y ~ ) } ~ U  ~ 

Set t ing ~o. _ ½(b ~ + 9 )  = ½( b~ --  y2) sin t, this integral  reduces to" 

q f~/~ - -  d t  = - -  q . . . . .  
Q ~ On/2 

. . . . . . . .  (3.1)  

Since the double t  densi ty  of the  disc is uniform, it  m a y  be replaced by  a simple vor tex  r ing a t  
i ts edge. 

F rom the  p-component  we have  a surface dis tr ibut ion of doublets, or ienta ted radia l ly  outwards,  
d is t r ibuted over the  disc 0 ~< v ~< b. The s t rength  per uni t  area of the  distr ibut ion is found 
to be : 

p p b  (b 2v a~ _ pb  (3.2) 
- ~ y  J ,  (b ~ _ v~)l/~(v~ _ y~) l / ,  - ~ . . . . . . . .  

A ring element accordingly has an ou tward  s t rength  of radial  densi ty  2@b. Since this is a 
constant ,  the  only effect of the  doublet  disc is to produce a r ing source of s t rength  2~pb on the  
r ing (0, b), together  wi th  a point  sink of s t rength  2~pb at  the  origin. But  our complex dis tr ibut ion 
of sources also yields a point  source at the  origin of to ta l  s t rength  : 

4 p b  e ) - -  = 2 pb, . . . . . . . . . .  (3 .3)  

which just  cancels the  te rminal  sink due to the  radial  doublet  distr ibution.  

To sum up, the  dis t r ibut ion of complex sources and sinks is equivalent  to a simple source r ing 
of to ta l  s t rength  2z@b at (0, b), together  wi th  a simple vor tex  r ing at  (0, b) wi th  a to ta l  moment  
parallel  to the  x-axis of --  ~qbL 
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The relationship between the complex axial singularities and the real off-axis singularities may 
be expressed in a form having some degree of symmetry. For this purpose, a point source p at 
x = iv and a point source --/5 at x = 0 [the pair having a ' momen t '  about the origin of 
(p) × (iv) + (-- P) × (0) = ipvl may be replaced by a l ine distribution of doublets with uniform 
dens i ty /p  extending from x = 0 to x = iv. Similarly, a point source iq at x = iv and a point 
source -- iq at x = iv [the pair having a moment about the origin of (iq) × (i~) + (-- iq) × 
( - - iv)  = (--q) × (2v)l may be replaced by a line distribution, of doublets with uniform 
density -- 'q extending from x = -- iv to x = iv. I t  should be noticed tha t  the total strength 
of such a uniform line distribution of doublets is obtained simply by multiplying the line density 
by the length of the line, without regard to the direction of the line in the complex plane. 

Using the symbol j to denote a positive rotation of ½~ in the (x, y)-plane, the relation obtained 
in section 2 may then be expressed as follows: 

Complex x-plane 

Doublet distribution with line density 
+ ip -- q f rom x = Otox  = iv 
-- ip -- q from x = 0 t o x =  -- iv 

Real (x, y)-plane 

Doublet distribution with radial density~ 
_ 2(jp  - a t  (o, y )  l" 
= (V 2 - 2  ~)/ f r o m y = O t o y - - v  1 

(a.4) 

On the other hand, the relation which has just been obtained in the present section may be 
expressed in the following form: 

Complex x-plane 

Source distribution with line density 
2(pb + iqv) at x = i~ 
-(b" -- v") 1/~ from ~ = - - b  to v = b 

• Real (x, y)-plane 

Source ring at (0, b) with arc length) 
- density p q- vortex ring at (0, b)} . 

with circulation (-- q) ) 
(a.s) 

In the theory of the two-dimensional complex potential function, a line vortex with circulation 
-- q is precisely equivalent to a line source with strength jq per unit  length. If the vortex ring 
of equation (3.8) is interpreted in this light, it becomes apparent tha t  the relations (3.4) and (3.8) 
exhibit a certain degree of symmetry. 

Since it can very easily be shown tha i  the flow pattern past any axisymmetric body can be 
generated by a suitable vortex sheet covering its surface, it follows from equation (3.5) tha t  the 
flow pattern past any axisymmetric body whatever can be generated by a suitable distribution 
of complex sources at complex points on the axis of symmetry. This point will be elaborated in 
section 4. 

It  is easily verified from equation (3.5) tha t  the flow functions at a general field point (x, y) 
produced by a source ring or a vortex ring at (0, b) are given by complete elliptic integrals, as 
obtained by Sadowsky and Steinberg (Ref. 2). 

From the relation (a.4) it would be possible, using Sadowsky and Sternberg's basic formulae, 
to derive a number of academically interesting identities. On the left-hand side would appear 
the flow function for a complex conjugate source-pair, involving only square roots. On the 
right-hand side would appear a definite integral, the integrand of which would contain complete 
elliptic integrals. 

For the practical problem of generating a dosed stream surface of a specified shape it is usually 
necessary to distribute singularities with respect to the x-variable and then integrate to find the 
total  effect. If the elemental singularity is regarded as the source ring or vortex ring, the 
distribution is over an axially symmetric surface in the (x, y)-plane, and since the integrand 
contains complete elliptic integrals, analytic integration is very difficult, if not impossible. If, on 
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the other hand,  the elemental singularity is regarded as the complex source-pair, the distribution 
is over a curve in the complex plane of x. Since the integrand now involves only square roots, 
it is possible to effect the integration analytically for a number of simple density distributions. 
The shape of the path of integration is, under certain conditions, immaterial, only the terminal 
points being significant. 

In fairness it must, however, be admitted that ,  if the problem is to be solved by purely numerical 
iterative solution of an integral equation, then it may  be simpler to use the vortex ring as the 
elemental singularity, since this yields a very simple integral equation, albeit with a difficult 
kernel (Ref. 6). 

4. Determination of Sufficient Conditions under which a Body may be Generated by a Distribution 
of Real Sources and Sinks along the Axis . - -Let  us assume that  the potential flow past a certain 
axisymmetric rigid body is known. We shall further suppose that  the profile of the body is 
expressed by a single-valued differentiable function y =y*(x ) ,  (xl ~< x ~< xy) and that  the 
tangential velocity of the fluid along this profile i~ w(x), the velocity at infinity being taken as 
unity, directed parallel to the positive x-axis. The rigid body may now be replaced by an identical 
region of fluid at rest, and this will imply a discontinuity of tangential velocity, but not of normal 
velocity, across the interface. The only singularity in the resulting flow pattern, apart  from the 
uniform stream at infinity, is a vortex sheet with circulation w(x) per unit arc length of meridian 
along the surface of the original body. 

Let the stream function induced at a field point (x, y) by a vortex ring with unit circulation 
at (x*, 9 )  be denoted by the function T (x, y ;. x*, y*). Then the stream function of the flow 
pat tern about the body, for any external point (x, y), is given by : 

"~(x,y) = -- ½y2 + w(x*)T(x,y;x*,y*){1 + (dy*/dx*)2}i/Ydx* . . . . .  (4.1) 
x l  

But we have shown that,  so far as the effect at external points is concerned, a vortex ring with 
circulation w(x) may be replaced by a certain distribution of complex sources in the complex 
x-plane: Thus, according to equations (3.5) and (2.7), we may replace equation (4.1) by the 
formula : 

y) = _ F ,I w(x,){1 + × ~(x, 

_ , , ( y , f - - - ~ / ~ { y ~ + ( x _ x , _ i ~ ) 2 } l / ~ d ~  dx*. . . - ( 4 . 2 )  

Writing ~ for ~/y*, this last equation becomes : 

! + × 
(x,  y )  = - -  ½y2  + 4z~ J~,l  

- -  2 i ~  x - -  x *  - -  i ~ y *  , 
- ÷ - 

In order to understand clearly the meaning of this repeated integral it is convenient to 
construct a three-dimensional picture (Fig. 4) with co-ordinate axes (x*, ~, ~,). The repeated 
integral is then obviously equal to the double integral over a ruled surface whose equation is 
given by ~ = ~y*(x*). 

As expressed in equation (4.3), the double integral is calculated by first integrating along the 
generators of the surface, i.e., with respect to 7 (x* constant), and subsequently with respect 
to x*. It  is permissible, however, to calculate the double integral in the reverse way, namely, 
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by integrating first along horizontal curves, i.e., with respect to x* (y constant), and subsequently 
with respect to y, as follows" 

~(x ,  y )  = - ~y~ + ~ (1 - r2) 1/~ × 

LL,Fr'  w(x*){1 + (x -  ,ex,qj 
{ 9  + ( x -  x * - T r y ) ~ / ~  Y & " 

In the inside integral let us now make the substitution : 
x' = x* + i~y*(x*) 

dx' = dx* (1 + i~, dy*/dx*) . . . . . . . . . . . . . . .  (4.4) 

We assume tha t  the first of these relations, giving x '  as an analytic function of x*, can be 
inverted to give x* as an analytic function of x', and, by the second of these relations, dx'/dx* as 
an analy[ic function of x'. I t  then follows that"  

y*w(x*)(1 + (dy*/dx*)~}l/~= g(x', ~) . . . . . . . .  (4.5) 
1 + iv dy*/dx* 

g being a known analytic function of x', with y as a parameter. Thus ~(x, y) may be written as" 

~(x,  y )  = - ~y~ + 4~ J_~ (1 - r~) 1/~ {y~ + (x - x')~} ~/~ ' "" "" Xl 

using the fact that  y*(xl) = y*(x2) = 0. Now x' is a complex variable whose Argand diagram is 
depicted by horizontal planes in Fig. 4. The path  of integration in the horizontal plane is deter- 
mined by equation (4.4) for each separate value of y. This path  of integration, however, may be 
deformed without affecting the value of the integral, provided that  the integrand, regarded as 
a function of x', has no singularities between the original and the deformed path. In practice, 
since (x,y) is a field point either outside or on the contour of the body, the only possible singularities 
ill the integrand must arise from the function g(x', ~). 

Provided, then, that  g(x', y) has no singularities between the real axis of x' and the curved 
path  defined by equation (4.4), the paths of integration may all be deformed to lie along the real 
axis of x'. The path  of integration is then independent of ~, so tha t  the double integration may 
be performed first with respect to ~, (x' constant) and subsequently with respect to x', thus" 

1 ~ * ~  x - - x '  
~f(x, y) = -- ½ /  + 4z~ j ,~  {y~ + (x -- x,)~.p/J(x'  dx' , . . . . . . . .  (4.7) 

where 

f (x ' )  = ~2)l/2g(x t, ~2) d~ . . . . . . . . . . . . .  (4 .8 )  

The variable x' is now real, and the physical significance of equation (4.7) is clearly tha t  the 
body may be generated by superimposing a uniform stream on a real distribution of sources with 
density f(x) located on the x-axis. 

We conclude tha t  a sufficient condition tha t  an axisymmetric body should be capable of being 
generated by an axial distribution of sources and sinks is simply that  g(x', ~,) should have no 
singularities between the curve x ' =  x * +  iTy*(x*) and the real axis, for any value of the 
parameter ~, between _+ 1. 

In the case where singularities of g occur actually on the real axis of x', the paths of integration 
have to be indented by small semi-circles in the usual way. These semi-circles lie on the positive 
side of the real axis when ~ > 0, and on the negative side when r < 0, so tha t  the above inversion 
of the order of integration is no longer strictly valid. I t  might be possible, however, still to 
justify it in the case where integration along the indentations themselves makes a contribution 
which vanishes in the limit as the radius tends to zero, as in the case of the prolate spheroid in the 
example considered below. 
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In  practice, the  form of y * ( x )  is par t  of the  da ta  of the problem, whilst  w(x )  is not. According 
to equat ion (4.5), singularit ies of g ( x ' ,  7) might  arise from singularities either of y * ( x )  or of w ( x )  
when each is expressed as a funct ion of x ' .  From a knowledge of the  profile y*(x) only, i t  will 
sometimes be possible to s ta te  t ha t  our sufficient condit ion is ~ot  fulfilled. A knowledge of the 
veloci ty  dis t r ibut ion also, however, would be necessary ill order to be able to assert t ha t  our 
sufficien.t condit ion is  fulfilled. Al though the  condit ion has not  been shown to be necessary as 
well as sufficient, nevertheless I suspect t h a t  i t  is so, since failure to fulfill it, a t  least ill certain 
cases, coincides wi th  the  impossibi l i ty of generat ing the flow pa t t e rn  by  real axial  sources a n d  
sinks. 

For  example, in the case of an elliptic profile wi th  semi-axes 1, and I~ parallel  to the  x-axis 
and  y-axis  respectively, we have ( x*=/ l~ ! )+  (y*~/ly ~) = 1. Subst i tu t ing  this  relat ion in equat ion 
(4.4) and solving the result ing quadrat ic  equat ion for either x* or y*, we obtain expressions 
containing the surd h ( x ' ) ,  where 

h ( x ' )  = (x ' ~ -  l ,  ~ -q- 7%~) I/'~ . . . . . . . . . . . . .  (4.9) 

This surd clearly has a b ranch  point  given by  x '2 = 1,; ~ - -  721y ~ . F o r  a prolate spheroid (1, > ly) 
the  branch  points  all lie on the real axis, and the pa ths  of in tegra t ion m a y  be deformed to obtain 
equat ion (4.7). For  an oblate spheroid (1, < ly), on the other  hand,  there are branch  pohlts  
extending along the  imag ina ry  axis between the loci of the  elliptic profile, and deformation of the  
pa th  of in tegra t ion is not  permissible. I t  is known that ,  while a prolate spheroid can be generated 
b y  a real dis t r ibut ion of axial  sources and sinks, an oblate spheroid cannot.  

I t  is in terest ing to use the above theoretical  considerations to hazard  a prediction in a case 
which has not  ye t  been solved, namely  the  parabolic arc spindle. The profile of this spindle has 
the  equation : 

vx  .2 = 1 - -  y *  , . . . . . . . . . . . . . .  (4.10) 

so t h a t  x ' = x * q - i T ( 1 - -  ~x .2) and 2 ~ T x * = - - i q - { - -  1 + 4 ~ y ( r + i x ' ) }  1/~. The funct ion 
x * ( x ' ,  r )  accordingly has a s ingular i ty  at X ' =  x0'(r)_where x0' = i{7 --  1/(4~y)}. Singularit ies 
occur above the real axis if and only if v > ~, which leads us to formulate  the  following coniecture : 

The  spindle whose profile has the equation (4.10) m a y  be generated by  a doublet  dis±ribution 
extending along its entire axis of symmetry ,  provided t ha t  v < ~. On the  other hand;  if v > ~, 
the  spindle m a y  be generated by  a doublet  dis t r ibut ion extending along its entire axis of symmet ry ,  
together  wi th  a r ing doublet  dis t r ibut ion over the  disc [y]~< 1 --  1/(4v). 

5. E x a m p l e  : T h e  Oblate  S p h e r o i d . - - I t  is a well known fact t ha t  a closed s t ream surface having  
the shape of a prolate spheroid m a y  be generated in a uniform s t ream by  placing a source 
dis tr ibut ion of densi ty  4 ~ m x  ( m  being a real constant) along the x axis h 'om x = --  1 to x ----- 1. 

We shall now invest igate  the  effect of placing in a uniform s t ream a purely imaginary  source 
distr ibution,  of densi ty  --  4~im~, at  the imaginary  point  (i~, 0) on the x axis from ~ = --  1 to 

= 1. The s t ream function %, due to the  source distr ibut ion is then  obtained from equat ion (2.7) 
a s  : 

_ = - ir  _l + ( x  - . . . . . . . . .  
( s . 1 )  

Hence, wri t ing x - - / 7  = J sinh ~, we obtain 

where 

~v~ = - -  i m  y sinh ,9(x --  y sinh #) d~ 

: _ imlxy 

Y sinhel : x + i, 

_ ½Y2(½ sinh 2~ -- ~)~I ~ . . . . . .  (5.2) c o s h  
J 9 1 

y sinh ~ = x -- i . . . . . . . . .  (5.3) 
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Since ~1 and v% are obviously conjugate  complex imaginary  quantit ies,  i t  is convenient  to write" 

el  + ~,~ = 2Z, ~1 --  #~ = 2it , ,  . . . . . . . . . .  (5.4) 

where  ~ and/~ are real. Equa t ion  (5.2) m a y  then  be rewri t ten  as" 

~,~ = - -  i m [ 2 x y  sinh ~ s inh(- -  i/~) --  ½y2{cosh 2~ s inh(- -  2i/~) + 2i/~}] 

= - -  m y ~ ( i ,  - -  ½ sin 2/,), . . . . . . . .  • . . . . . .  (5.5) 

by vir tue of the  fact that ,  from (5.3), 

2x = 2y sinh ~ cosh(i#) . . . . . . . . . . . . . . . . .  (5.6) 

Accordingly, if this source distr ibution is superimposed on a uni form s t ream of uni t  velocity 
parallel to the  negat ive  x-axis, the  combined s t ream function ~ is given by :  

~0 = ½9{1 --  m(2~ --  sin 2/~)} . . . . . . . . . . . . . . . .  (5.7) 

The stream-surface ~0 = 0 consists of the  x-axis, together  wi th  the  closed surface/~ =/~0, where" 

2#o --  sin 2~0 --  1/m . . . . . . .  (5.8) 

The nature  of the  surfaces/z = constant  is deduced by  noticing that ,  from (5.3), 

2i = 2y cosh a sinh(i/ ,) ,  . . . . . . . . . . . . . . . .  (5.9) 

which, together  wi th  equat ion  (5.6), yields:  
1 x 2 

sinh*(i#) cosh2(i/~) --: y=. 
Hence 

x~ tan~l, + y= sin2/~ = 1,  . . . . . .  (5.10) 

which is the  equat ion of an ellipse wi th  foci at  (0, ~ 1), eccentrici ty sin**, and wi th  major  and 
minor  semi-axes equal  to cosec # and cot t* respectively. The surface/~ = constant  is therefore 
an oblate spheroid. 

The real distr ibution of singularities required to generate this closed surface is seen to be a 
surface distr ibution of doublets, or ienta ted  parallel to the  x-axis, over the  disc x = 0, [y]~< 1. 
The surface densi ty  is clearly given by" 

f 4=m ~ ( ~ 2  _ y,)-,/= d ~ / ~  = 4m(1 --  y=)~/'~, . . . . . . . .  (5.11) 
Y 

and the  tota l  s t rength  by" 

f* 8=m (1 - -  y = ) , / 2 y  d y  = 8 ~ m / 3  = M ,  say, . . . . . . . .  (5.12) 
o 

which is the  same result as would be obta ined directly by  taking moments  about  the  origin of 
the  complex source distribution, thus" 

4~m ~ & = 8 ~ / 3  . . . . . . . . . . .  (5.13) 

The corresponding analysis in the  case of a prolate spheroid is formally almost  identical  wi th  
tha t  given above, but  omit t ing the  factor i. In  tha t  case it m a y  be shown tha t  a closed s t ream 
surface is generated whose equat ion is fz =/~0, where" 

sinh 2/*0 --  2/~0 = 1 / m  . . . . . . . . . . .  (5.14) 
and 

x~ tanh~# q- y= sinh=/z = 1 . . . . . . . . . . .  (5.15) 

The  meridional  section of the  surface # = constant  is therefore an ellipse wi th  loci at  ( +  1, 0), 
eccentrici ty tanh/~, and major  and minor  semi-axes equal to coth/~ and cosech ~ respectively. 
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The singularity distribution in the case of the prolate spheroid may be regarded as a source 
distribution along the x-axis of density 4amx (--  1 <~ x <~ 1), or alternatively by the equivalent 
doublet distribution of 2~m(1 -- x~), from x = -- 1 to x = -t- 1. Once again, the total  doublet 
strength is given by :  (÷1 

2urn (1 --  x ~) dx = 8~m/3 = M . . . . . . . . .  (5.16) 
• 3 - - 1  

in close analogy with equation (5.12). 

If V is the volume of the spheroid, and V' the associated volume of liquid for translatory 
motion along the axis of symmetry,  then Lamb (Ref. 1) shows tha t  V' may be deduced from the 
total  doublet strength of the included singularity distribution. Thus V' + V = M, so tha t  

Now 
V ' / V  = M / V -  1 . . . . . . . . . . .  (5.17) 

4 ~  cosec 2 cot 
V = -~ eosech ~ ~ coth ~ . . . . . . . .  (5.18) 

in the case of the oblate and prolate spheroid respectively. Hence, replacing M = 8~m/3 by  the 
expressions given in equations (5.8 and 14) respectively, we obtain, after a little reduction, 

tan 
tanh ~ --/~ 

V ' / V =  sin . . . . . . . . . .  (5.19) 

-- } sinh (2~) 

These two formulae are in agreement with those given by Lamb (Ref. 1), apart from a printer 's 
error in Lamb (p. 701) in the case of the oblate spheroid. 

I t  is customary to define an associated volume coefficient (V'/Vs), where Vs is the volume of 
the sphere tangent to the spheroid at the equator. This ratio, which is obviously given by  
multiplying V ' / V  by cos ~ or cosh ¢, respectively, has the formula" 

sin cos 
sinh ~ -- ~ cosh ~ 

V'/Vs = . . . .  (5.20) 
# 1 sin . . . .  

2 sinh (2#) 

I t  has the advantage of remaining finite throughout the entire range of spheroids. The associated 
volume coefficients V ' / V  and V'/Vs are tabulated in Table 1 and plotted graphically in Fig. 5. 

6. Conclusion.--I t  has been shown in this paper tha t  Rankine's source-sink method may be 
generalized by  employing a pair of sources, the strength of each member being the complex 
conjugate of the other, si tuated at conjugate imaginary points on the axis of symmetry.  The 
flow function so generated is entirely real, and corresponds to a doublet disc of non-uniform 
density. Reciprocal relations have been formulated between this new type of singularity and 
the well-known simple source ring and vortex ring. 

For generating bodies by the inverse method, the new type of singularity is considerably easier 
to manipulate analytically and numerically than the source ring or vortex ring, since it involves 
only square roots, as opposed to complete elliptic integrals. On the other hand, for the solution 
of the direct problem of flow about a given body, using integral equation techniques, it is probably 
necessary to use the vortex ring as the basic singularity. 

Assuming the flow pat tern about a given body is known, a partial answer has been given to the 
question: Could this body be generated by a real axial source-sink distribution ? In cases when 
it can, the formula for the source distribution density has been given. 

The new type of singularity has been used to determine, in a particularly simple way, the 
flow past an oblate spheroid. 
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NOTATION 

Radius of ring singularity 
Eccentricity of an ellipse 
Source strength function, defined in equation (4.8) 
A function defined in equation (4.5) 
An auxiliary function defined in equation (4.9) 
Positive rotation of ½~ in the complex x-plane • 
Positive rotation of ½~ in the (x, y)-plane 
Semi-axis of an ellipse 
A parameter  defining a linear source distribution in section 5 
Total doublet strength inside an ellipsoid of revolution 
Source strength (real part) 
Radial doublet strength per unit area 
Source strength (imaginary part) 
Axial doublet strength per unit area 
Distance from the origin 
Geometric mean of the distances of (x, y) from (0, ± ~) 
An auxiliary variable in equation (3.1) 
x-component of fluid velocity 
y-component of fluid velocity 
Volume of ellipsoid of revolution 
Associated volume of ellipsoid of revolution 
Volume of sphere with same equatorial radius 
Tangential velocity of slip 
Co-ordinate parallel to the axis of symmetry  
Defined in equation (4.4) 
Distance from the axis of symmetry 
The ratio n/y, 
Distance from the branch point 
The imaginary part  of x, considered as a complex variable 
An auxiliary variable of integration in section 5 
Elliptic co-ordinates in section 5 
Parameter  defining a parabolic arc spindle 
Angular co-ordinate near the branch point 
The real part  of x, considered as a complex variaMe 
Velocity potential function 
Stokes's stream function 
Stream function of a vortex ring 
A co-ordinate angle defined in equation (2.3) 

Pertaining to the source distribution p + iq 
Pertaining to the profile of a body 
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TABLE 1 

Axis 
ratio 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Prolate spheroid 

v'/v v'/v, 

0 0 
0.021 0.207 
0.059 0.296 
0.105 0.351 
0-156 0.391 
0-210 0.420 
0.266 0.443 
0-323 0"461 
0"381 0-477 
0.440 0"489 
0.500 0-5 

Oblat e spheroid 

v'/v v'/v, 

0"637 
6.184 0"618 
3"008 0-602 
1"953 0"586 
1"428 0"571 
1"115 0"558 
0"908 0"545 
0"761 0"533 
0"651 0.521 
0"567 0"510 
0.500 0.500 
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