N A.E. library.

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

An. Electronic Analyser for Linear Differential Equations

By

J. J. Gait, M.A. and
D. W. Allen

Crown Copyright Reserved

Report No. G.W. 1.

December, 1947.

ROYAL AIRCRAFT ESTABLISHMENT

An Electronic Analyser for Linear Differential Equations

by
J.J. Gayt, Mis. and
D.W. Allen

Abstract

SUMMARY * This report describes preliminary work undertaken to investigate the possibility of constructing an electronic differential analyser. The basic operations required are addition, subtraction, integration and differentiation. Section II describes briefly how these operations may be performed using feedback networks associated with high gain D.C. amplifiers and the Appendices to the report give a more detanled discussion of the accuracy and limitations of these methods. Section III describes the technlque of combining a series of such units into a flexible differential analyser and shows, for example, how a linear fifth order differential equation with specified inztial condztions would be set up and how appropriate time scales of operation and scale factors would be determined. As an indication of the performance of such an electronic differential analyser the solutions obtaned for a fourth order linear dafferential equation are given in Section IV and compared with the theoretical solutions. An analyser of this type will solve linear differential equations or simultancous linear differential equations. Its extension to more complex forms of differential equations awaits the development of satisfactory methods of electronic multiplication of two variables.

LIST OF CONTENTS

I Introduction	$\frac{\text { Page }}{3}$	
II The Component Computing Devices	3	
	(1) Goneral Method	3
	(a) Addation and Subtraction	3
	(b) Integration	
	The effect of amplifier gain on the	
	accuracy uf computation	

* Since the original publication of this report in 1947 techniques and accuracy have been improved, methods of muitiplying etc. have been developed and a large general purpose electronic dafferential analyser has been constructed at the Royal Aircraft Establushment.
LIST OF CONTENTS (contd.)
Page

(d) The limits to the speed of electronic	
compution	5
(e) Practicol lmplifiers	5

(11) Cathcde Followers . 6
(11i) Step Circuits 7
III The Complete Analyser - the technique of setting up a
differential equation and the calculation of the
circuit constants
IV Test Problem 11
V Conclusions 12

LIST OF APPENDICES

Abstract

Appendix A Detarled Study of the Adding Units I A Detailed Study of the Integratang Units II Calculation of the limats to the speed of electronic compution amposed by stray feedback components

IIST OF ILIUSTRATIONS

	F2g.
Basic Dlagram of a Feedback Fdding Unit	1
Baslc Diagram of a Feedback Integrating Unit	2
Simplified Circuit Diagram of Hzgh Gain D.C. Amplifizer as used in the fmerican Mk.IX A.A. Predictor	3
Basic Diagram of a Simple Stabilusing Unit	4
Circuit Diagram of T.R.E. Miniaturısed D.C. Amplıfıer	5
Cathode follower	6
Step Circuzt	7
Block Diagram of the Complete Analyser as used for solving a fifth order linear dafferential equation with constant coefficients	8
The Solutions to the Test Problem	$\begin{aligned} & 9,10,11 \\ & 12,13 \end{aligned}$
A single stage "sign-reversing" feedback amplifier	14
Overall characteristics of "sign-reversing" feedback amplifier showing dependence on the setting-up voltage X	15
Experimental characteristics of "sigr-reversing" amplifier	16
Experımental characteristics of Hıgh Gain Sumang Amplifiner	17
Thecretical curves showing type of errcr nbtained on integration of a D.C. voltage	18
Theoretical curves showing percentage error on integration of a D.C. voltage	19
Theoretical curves showang leading angle error on integration of a sinusoldal wave	20
The complete analysor	21

Electronic analogy circults have been used for some years now, mainly for simulation purposes, but the possibility of combining the different types into a flexable computing device of the differential analyser type does not seem to have been fully explored. Existing mechanical analysers are very accurate (better than 1 part in a thousand) but it is believed that an electronic analyser, while not achleving the same degree of accuracy, can offer considerable advantages over its mechanical counterpart. The parameters in an electronic device can be readıly varied over very wide ranges and the rate at which the machine produces its solutions can also be varied greatly. In the field of high speed samulation, where very high rates of solution are required, electronic analogy circuits have already found wade spplications. An electronic machine constructed mainly from readily obtainable radio components should have tho advantage in cost of inctial construction and of replacement of parts. It will also be comparatively smaller and more mobile.

To construct an analysor we require units whach will perform the following mathematical operations:-
(a) addition and subtraction
(b) multiplication and division
(c) integration and differentiation.

Addition and subtraction can readily be achreved electronically. Integration and differentiation can be performed wath respect to time as a variable. Multiplication and division of two variables whth rogard to the appropricte sign of the rosult is the most difficult problem. Once thas has been satisfactorily achzeved the processes of integration and differentiation can readily be extended to operations with respect to varlables other than time by using a multiplication process to change the variable into time.

II. The Component Computing Devices

(1) General Method

The baslc unit in all the computing devices is a high gain (greater than $30,000: 1$) D.C. voltage amplificer containing an odd number of stages so that the sign of the output is opposite to that of the input. The linearity of amplification is not important but the higher the gain the more accurate is the wholo computing dovice. In the appendices the accuracy of the computations is derived in terms of the gain of the amplifier and the types of error introduced are discussed. In the immediatcly followng discussion the gain of the amplifiers are assumed to be infinite.

(a) Addition and subtraction

The baslc diagram of a feedback adding unit is gaven in $F 1 g .1$.
The amplifier input terminal is directly connected to the grid of the first valve and as this has no grid leak once the stray capacitances of the valve and the waring have been charged the amplafier draws no input current even if $\mathrm{E}_{\mathrm{g}} \neq 0$. Hence $\mathrm{I}_{1}=\mathrm{I}_{2}$.

$$
\text { ı.e. } \quad \frac{E_{g}-E_{o}}{R_{f}}=\frac{E_{1}-E_{g}}{R_{1}}+\frac{E_{2}-E_{g}}{R_{2}}+\frac{E_{3}-E_{g}}{R_{3}}
$$

but $E_{g}=-\frac{E_{0}}{\mu}=0$ if μ is assumed to be infinate, therefore

Quantities can be subtracted readily by reversing the sign of the appropriate input voltage.

If we have only one input and $R_{1}=R_{f}$ then $E_{0}=-E_{1}$.
When so used we shall call the unit a "reversing amplıfier".
(b) Integration

The basic diagram of a feedback integrating circuit is given in Fig. 2.

As before $I_{1}=I_{2}$ and $\mathrm{E}_{\mathrm{g}}=0$ therefore
or

$$
\begin{gathered}
\frac{E_{1}}{R_{1}}=-C \frac{\partial E_{0}}{\partial t} \\
E_{0}=-\frac{1}{R_{1} C} \int E_{1} d t .
\end{gathered}
$$

(c) The effect of amplifier gain on the accuracy of computation

It is obvious that the above approxamate calculations will only be valud if the gain of the amplifiers is so hagh that E_{g} is negligible in comparison with E_{0} and E_{1}. In the appendices to this report the calculations are carried out for the ease of finite gain and the form of the errors introduced when μ is not infinite are discussed. The results obtained may be sumarised as follows:-

In an addang unit of the above type the percentage error as given by

$$
\left(1+\frac{R_{f}}{R_{1}}+\frac{R_{f}}{R_{2}}+\frac{R_{f}}{R_{3}}+\cdots\right) \frac{100}{\mu}
$$

e.g. If the maximum value of $R_{f} 2 s 10$ megohms and the minnmum values of R_{1}, R_{2}, R_{3} etc. are 0.1 megohm then to achieve 1% accuracy over this range of parameters an ampiffier of gain at least equal to $n \times 10,000$ is required where n is the number of inputs.

For a "reversing amplificer" $R_{1}=R_{f} . \quad R_{2}=R_{3}=0$. Therefore for 1% accuracy we require an amplifier of gain at least equal to 200.

In an antegratang unat of the above type the total error as given by

$$
\overline{C R_{1}} \frac{1}{(1+\mu)} \int E_{0} d t
$$

Thus if the polarity of E_{0} is constant the error will increase with time. It is shown that the percentage error will be less than 1% provided $t / C R$ is not allowed to become of order comparable with that of the gain, where t is the time in seconds during which the integration is performed.

If the polarity of E_{0} Is cycluc than the total error itself is cyclic. It is show that the percentage error in this case wall be less than 1% provaded the ratio T / CR is not allowed to becone comparable with the gain, where T as the period of the applied waveform.
(d) The limits to the speed of electromic compution

One of the main advantages of electromic analogue computors is their hich speed of operation in comparison with mechanzcal or electromechanicil computors. There is an upper limat to the speed of operation imosec however by the effects of stray leakages across cratical components. These, in general, will introduce errors which will vary as the frequency of the onalogue voltages varies.

The : lost critical point at which these "strays" may occur is across the injut and output terminals of the high gann mplufiers. In an ading unit there iilli always be a certain amount of capacitive feedback due to stray capacities and in an integrating unit there will alvays be a certan anount of resistave feedback due to the condenser leakage rosistancc. 'ítray inductances should be of very small orders and are unlikely to introduce serious errors.

The effects of stray capacitıve and resıstave feedback currents in summing and integrating carcuits respectively arc calculated in Appondix III on the assumption that the gain of the amplifier used is infinite.

In the casc or a summing amplifier where the feedback resistance is R_{f} ($=5 \mathrm{~min}$ say) and the stray capacity is assumed to be C ($=10 \mathrm{OF}$ say) the effect of the stray capacity as to (1) delay the development of the solution by an cxponential of time constant $R_{f} C$ secs ($=50 \mu$ secs) and. (2) to introduce an amplitude and phase error in the case of an applied sinusoidal vaveform. The ampliture and phase erroxs both increase with the frequency of the a.pplied waveform. For the component values of R_{f} and C quoted above a 1% error in amplitude wall be developed when the frequency is $450 \mathrm{cyclos} / \mathrm{sec}$ and at thas frequency the phase error is 8°. If R_{f} had been $0.1 \mathrm{in} \Omega$ then the upper frcquency limit would have been $22.5 \mathrm{Kc} / \mathrm{sec}$ and the phase error ${ }^{\prime}$ '.

In intogratincs units it is shown that equavalent performances can bc obtainod by using (1) an amplifier of infinite gain, an input ressistor R_{1} and a feedback condenser C with leakage resistance R_{f} or (2) an ampinficor or finite gain $=R_{f / R_{1}}$, an input rcsistor R_{1} and a foedback condenser C with an infinite loakage resistance.

The conclusions reached in Appendix II therefore still apply if we replace μ by $R_{f / R_{1}}$ when R_{f} / R_{1} is less than μ.

(e) Practical Amplifzers

Single, stacte minlifiers inth galns of the order of 70 or 80 have been tried but have proved very inaccurate as would be expected on the above theory. Three stage amplafiers inth gains of the order of 30,000 or 100,000 are now being used. Because of the feedback circuits used in the computing ocrcuits these amplifiers are extremely stable.

In the analyser described later in this report the D.C. amplifiers used had gezns of 30,000 or more. To reverse the sign of certan quantities love gain (70 or 80) amplifiers are used but it is proposed to replace these by hagh gain amplifiers. The low gain amplifiers used are described in Appendix I mainly to show up the limitations of such amplifiers.

Fig. 3 is a sumplified circuit dageam of the high gain D.C. amplifier as used for computing in the μ mericar ink. 9 Predictor. The integratins units of the analyser employ amplifiers of this type. Important points about this amplufier are:-
(a) To counteract random voltage effects due to variations of electron emission from the cathode of the first stage of the ampinfier a special carcuat employing a twin-triode is used. If the resistance $R=1 / G_{m}$, where G_{m} is the transconductance of the valve, any random voltages due to variations in emission have no effect in producing a voltage drop across the cathode load and hence the grid-cathode potential is unaffected by these random voltages.
(b) The output stage is so designed that the amplifier can be set so that it gives zero output for zero input.

A British equivalent of this amplafier is being produced. It has a similar performance to the American amplifier but employs a different method of stabilisation and 13 somewhat easier to set up for the input network of the American amplifier acts as a load across the input and hence the setting is dependent on the input circuit.

Both of these amplifiers will onerate over wide ranges of voltages (+100 to -100 volts output). Therr mann disadvantage is that they require five different D.C. supply voltages which have to be stabilised and moreover as the output stages are power valves they consume a lot of power. The analyser described requires about 1 kilowatt of power for operation.

Fig. 4 gives the basic diagram of a simple stabilising unit which effectively deals with the stabilised voltage supply problem. When fed from a smoothed conventional power unit of some 500V. D.C. it gives an output voltage V_{0} where $K V_{0}=E_{0}$. An upper voltage limit of 400 V . is imposed on V_{0} due to the need for some 100 V . across the series valves and a lower limit of E_{0} since $K \leqslant 1$. EO is normally equal to 120 V . there is little point in using a lower value as the amplafier valve would then have to operate with a very low anode voltage. Effectively therefore we can obtain output voltages wathin the range 120-400V. An inverted unit will cover -400 to -120 V . and a combination of a positive and negative unit will cover the range $-120 \mathrm{~V}-0-+120 \mathrm{~V}$. The degrec to which stabilisation is effective is better than 1% per 100 mA of output current over the complcte range of operation.

A maniature D.C. amplifier for similar computing circuits used in simulator problems has been designed at T.R.E. and is now in production (Fig.5). This amplifier which requires only two stabilised D. C. voltages at low power levels, has a gain of the order of 100,000 . The range of voltage operation is smalier but for most purposes this is not important. When these amplifiers are avazlable the construstion of computing devices will be much easler. The sumaing circuit of the analyser uses one of these amplufiers.

(ii) Cathode Followers

Some form of impedance transforming device is essential as an anterlink between the coriputing devices. A sumple cathode follower which has the properties of high imput impedance and low output terminal impedance is ideal for this device. Being a degenerative amplifier it is capable of handing wade ranges of input voltages without overloading. The only question which requires careful consideration is that of the effective overall gain of the device and its variations over the range of operation.

Fig. 6 shows a typical cathode follower as used as an interinnk. It is designed so that it may be adjusted to give zero output for zero input. The mean amplafication factor determined for several different cathode followers all with the some nominal values of components was found to be 0.966 ± 0.016. The value of 0.966 has been taken for the

The necessity for having cathode follower interlanks in the analyser would be greatly simplified if each stage were constructed with a cathode follower output and any feedback loops connected from the output of the cathode follower back to the input of the stage. This would simplify setting up procedure and avold the repeated appearance of the 0.966 constant in the calculations for the analyser equation.

(111) Step Circuats

In order to inject into the analyser required initial condations we requare a unit which will add to any voltago passing through it a constant positive or negative predetermined D.C. voltage.

A simple circuit which will achieve this objective is given in Fig. 7.

Wath the switch S closed R_{1} is adjusted until $V_{1}=V_{0}=0$. When S is opened V_{0} is stepped above or below V_{1} by an amount depending on the setting of R_{2} say \pm E. Thus

$$
V_{0}=\beta V_{1} \pm E .
$$

Over the range of voltages used β is substantially constant, e.g. If

$$
\begin{aligned}
& E=2 \mathrm{~V}, \beta=0.884 \\
& E=5 \mathrm{~V}, \beta=0.880 \\
& E=10 \mathrm{~V}, \beta=0.870 .
\end{aligned}
$$

The mean value of $\beta=0.878$ is used throughout the analyser calculations.
III. The Complete Analyser

It has veen shown that wo can add, subtract and integrate and differentiate with respect to tame by electronic methods with an average error of at most 1\%. Lacking units which will effectively multiply D.C. volcages to the same order or accuracy we are far short of having a conplete dufferertial analysor but nevertholess certan types of dafferertial equations can be solved uning these circuats. In particular we can solve linear differential equations with constant ooefficients taking the independent variable as time. As chis is a type of equation occurring frequently in physical problems the apparatus should prove a useful toul fior investigating such problems when a high degree of accuracy 13 not requared.

The present apparatus consists of:-
(a) five integrators employing amplifiers of gain 30,000: 1
(b) one summing carcuit employing an amplifier of gain 100,000:1
(c) three "reversing amplifizers" employing simple single stage amplufaers of goun 70:1
(d) six cathode followers for use as buffer stages
(e) five "step circuits" for introducang anatial condations into the dafferential equation
(f) a bank of fiftecn relays controlled by a master switoh
(g) ten cathode followers with muters in their outputs for observing the variables is they are developed in the analyser
(h) two recording meters for the recording of the results -- for the recording of rapldly varying quantities a cathode ray tube and camera or high speed optical oscilloscope may be used.

All the above units are provided whth plugs and sockets so that they may be interconnected in any desired fashion somewhat like a telephone switchboard (Sce Fig.21).

Callbration dials enable the time constants of the integrators to be sct to any value within the range 0.1 to 10 secs and the resistance ams of the summing circuit to any value wichin the range 0.1 to 10 megohms.

To illustrate the technique of interconnecting the unzts and setting up a desired equation consider the followng example. It is desured to set up and solve the equation

$$
\begin{equation*}
\ddot{x}+a \cdots \ddot{x}+b \ddot{x}+c \ddot{x}+d \dot{x}+e x=0 \tag{1}
\end{equation*}
$$

for the initial condztions

$$
x=\text { constant }, \dot{x}=\ddot{x}=\ddot{x}=\ddot{x}=0
$$

Fig. 8 is a block schematic diagram showng how the analyser is connected up to solve this problem.

Assumang the voltage V_{1} to, be proportional to ${ }^{\prime} \mathrm{X}^{\prime}$ " then successive integrations along the main chain will glve $V_{2}, V_{3}, V_{4}, V_{5}, V_{6}$, proportional to $\ddot{-x}, \ddot{x}, \ddot{x}, \dot{x},-x$. These voltages are all fed back to the input of the summing circult and when added together in the proper proportions they will dofine the voltage V_{1} which is proportional to " X ". The whole systom 25 thus a closed loop and at all times x and its time derivatives must satisfy the equation defined by the system. In Fig. 8 It has been assumed that all the coefficients a, b, c, d, e, are positive and hence any derivatives which are opposite $1 n$ sign to $V 1$ are reversed in sign before beang fed back to the summing amplifier. In the present apparatus it is not necessary to have cathode follower interlinks in the main chain as cach of the units in this chain elther have powor outpui stages or have cathode followers bualt anto the uncts.

In closing the loops random initial conditions will be set up and from the inscant the last link is closed x and 1 cs cime derivatives satisfy the equation whth these random initial conditions. What happens consequently depends on the nature of the solutions. If they are say damped oscillations the analocy voltages wall eventually all settle down to zero. If they are increasing quantitics mioh tume when eventually one of the stagos will reach its lunit of operation and the equation breaks dowm. Now in order to inject specific inicial conditions we close all the loops simultaneously under predicted conditions with x and its tame-dernvatives all at predetemined values. This is achieved by having relays in all the interconnecting leads (not showm in the diagram) and arranged so that the input to everj stage is zero and its output (adjusted on the stage controls) also at zero. In the appropriate connecting leads we insert "step circuits" when initial conditions other than zero are required. Then a master switch is thrown all the relays operate and the initzal conditions are then those defined by the "stepcarcuits". In this way solutions to equations may be obtained whecher or not the vamables increase or dccrease \because oth inme. When they are increasing whth time the solution of course breaks down whenever a particular stage reaches ats lumyt of operation.

If the function (1) is not equal to zero but equal to a function $f(t)$ of tume this function may be inserted at the point A of the summing network.

Calculation of the Carcuit Constants:-

$$
\text { Let } \begin{aligned}
V_{1} & =a_{1} \cdots \ddot{x}^{\prime} \\
v_{2} & =-a_{2} \cdot x^{\prime} \\
v_{3} & =a_{3} \cdot \ddot{x}^{\prime} \\
v_{4} & =-a_{4} \cdot \dot{x} \\
V_{5} & =a_{5} \dot{x} \\
v_{6} & =-a_{6} x
\end{aligned}
$$

For the integrators:-
Input voItage $=-\left(\right.$ time constant of integration) $\frac{\alpha \text { (output voltage) }}{d t}$
e.g. $V_{1}=-R_{1} C_{1} \frac{d V_{2}}{d t}$
1.e. $a_{1}=R_{1} C_{1} \cdot a_{2}$
or $a_{1} / \varepsilon_{2}=R_{1} C_{1}$.
Simılarly

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=R_{1} C_{1}=T_{1} \text { say } \\
& \frac{a_{2}}{a_{3}}=R_{2} C_{2}=T_{2} \\
& \frac{a_{3}}{a_{4}}=R_{3} C_{3}=T_{3} \\
& \frac{a_{4}}{a_{5}}=R_{4} C_{4}=T_{4} \\
& \frac{a_{5}}{a_{6}}=R_{5} C_{5}=T_{5}
\end{aligned}
$$

At the sumang armplafier-grid: -

$$
-\frac{\alpha \beta V_{6}}{R_{1}}+\frac{\alpha V_{5}}{R_{2}}-\frac{\alpha V_{4}}{R_{3}}+\frac{\alpha V_{3}}{R_{4}}-\frac{\alpha V_{2}}{R_{5}}=-\frac{V_{1}}{R_{f}}
$$

1.e. $\quad \frac{\alpha \beta^{3} 6}{R_{1}} x+\frac{\alpha a_{5}}{R_{2}} \dot{x}+\frac{\alpha a_{4}}{R_{3}} \ddot{x}+\frac{\alpha a_{3}}{R_{4}} \ddot{x}+\frac{\alpha a_{2}}{R_{5}} \cdots{ }_{x}+\frac{a_{1}}{R_{f}} \cdots \ddot{x}=0$

Hence-the givenequation hivencolved providung

$$
\begin{aligned}
& a=\alpha \cdot \frac{a_{2}}{a_{1}} \cdot \frac{R_{f}}{R_{5}} \\
& c=\alpha \cdot \frac{a_{4}}{a_{1}} \frac{R_{f}}{R_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& d=\alpha \cdot \frac{a_{5}}{a_{1}} \cdot \frac{R_{f}}{R_{2}} \\
& e=\alpha \beta \cdot \frac{a_{6}}{a_{1}} \cdot \frac{R_{f}}{R_{1}} \\
& a=\alpha \cdot \frac{1}{T_{1}} \cdot \frac{R_{f}}{R_{5}} \\
& b=\alpha \cdot \frac{1}{T_{1} T_{2}} \cdot \frac{R_{f}}{R_{4}} \\
& c=\alpha \cdot \frac{1}{T_{1} T_{2} T_{3}} \cdot \frac{R_{f}}{R_{3}} \\
& d=\alpha \cdot \frac{1}{T_{1} T_{2} T_{3} T_{4}} \cdot \frac{R_{f}}{R_{2}} \\
& e=\alpha \beta \cdot \frac{1}{T_{1} T_{2} T_{3} T_{4} T_{5}} \cdot \frac{R_{f}}{R_{1}}
\end{aligned}
$$

$$
\text { i.e. If } \quad a=\alpha \cdot \frac{1}{\mathrm{~T}_{1}} \cdot \frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{5}}
$$

Now α, the cathode follower constant $=0.966$ β, the step circuit constant $=0.878$
and the T's and R's can be set over wide ranges on the calibrated dials, hence the equation may be set up for a very wade range of coefficuents.

The arrangement above will produce a solution which will vary in true relationship to the tame in seconds. For some solutions this may be inconvenient as the solution may vary too rapidly or too slowly for easy recording. By a suatable change of the independent variable however the "time scale" of the solution may be extended or contracted at will. If the time scale is defined by the constant λ where

$$
\text { (true tame) }=\frac{\text { (time scalc of analyser) }}{\lambda}
$$

then the above formulae become:-

$$
\begin{aligned}
& a=\alpha \cdot \frac{\lambda}{T_{1}} \cdot \frac{R_{f}}{R_{5}} \\
& b=\alpha \cdot \frac{\lambda^{2}}{T_{1} T_{2}} \cdot \frac{R_{f}}{-R_{4}} \\
& c=\alpha \cdot \frac{\lambda^{3}}{T_{1} T_{2} T_{3}} \cdot \frac{R_{f}}{R_{3}} \\
& d=\alpha \cdot \frac{\lambda^{4}}{T_{1} T_{2} T_{3} T_{4}} \cdot \frac{R_{f}}{R_{2}} \\
& e=\alpha \cdot \frac{\lambda^{5}}{T_{1} T_{2} T_{3} T_{4} T_{5}} \cdot \frac{R_{f}}{R_{1}^{\prime}}
\end{aligned}
$$

e.g.if $\lambda=1 / 10$ the solution whil vary with time at 10° times the true rate.

Alteration of the "rate of solutzon" of the analyser is therefore merely a case of multiplying or dividing all the tame constants by a fixed amount.

In using tho analyser thercfore a convonient method would seom to be the following:- set all the time constants to say 5 secs and set up the a, b, c, d, c, coefficionts morely by adjusting the arms of the summing network. A trial run wall show whether or not a convenient rate of solution has been achieved. If not rosot the time constants to 10 socs or 1 sec according to whether a slower or more rapid solution is requirod. To cnable this variation of rote of solution to be controllcd when the minimum of effort the "tame-constont cealibrated dials" have been specially marked at the 1, 5 and 10 second levels.

The only things now to be detormined are the amplitude scale factors of the recorded results. The range of variation of x can be set arbitrarily as it is purcily a function of tho initial conditions for x. Suppose we make $a_{6}=1$ then x wall be rocordod on a scalc of 1 volt per unit of x. The scales for the timo-dernvatives are then seen to be

$$
a_{5}=\frac{T_{5}}{\lambda} \quad \text { volts per unat of } \dot{x}
$$

$$
a_{4}=\frac{T_{5} T_{4}}{\lambda^{2}} \quad\|\quad\| \quad \| \quad \ddot{x}
$$

$$
a_{3}=\frac{T_{5} T_{1} T_{3}}{\lambda^{3}} \quad " \quad " \quad " \quad " \dot{x}
$$

$$
a_{2}=\frac{\mathrm{T}_{5} \mathrm{P}_{4} \mathrm{~T}_{3} \mathrm{~T}_{2}}{\lambda^{4}} \quad\|\quad\| \quad\|\quad\| \cdots \cdots
$$

$$
a_{4}=\frac{T_{5} 4^{T} 3^{T} 2_{2} T_{2}}{\lambda^{5}} \quad " \quad " \quad " \cdot \ldots \times
$$

The reoording meters provided are centre zero instruments wath full scalc doflcetions adjustablo in twelve stops between $2 / 3$ volt and 125 volts and this may be oxtendod upwards if nocossary.

IV. Test Problem

The following tost problem has boen solved with a viow to determ moning the overallaccuraoy of the anolyscr.

Solve the oquation

$$
\ddot{x}+(0.1671) \ddot{x}+(0.0460) \ddot{x}+(0.00474) \dot{x}+(0.000330) x=0
$$

for the anctial condations $x=$ constant, $\ddot{x} \cdot \ddot{x}=\dot{x}=0$.
The analyser was sot up exactily as in the previous discussion axoopt that only four integrators were used.

We have therefure

$$
\begin{aligned}
& u=0.1671=\alpha \cdot \frac{\lambda}{T_{1}} \cdot \frac{R_{f}}{R^{\prime}}{ }_{4} \\
& b=0.0460=\alpha \cdot \frac{\lambda^{2}}{T_{1} T_{2}} \cdot \frac{R_{f}}{R_{3}^{\top}} \\
& u=0.00474-\alpha \cdot \frac{\lambda^{3}}{T_{1} T_{2} 2^{\prime} 3} \cdot \frac{R_{f}}{R_{2}^{r}} \\
& \alpha=0.000330=\alpha \beta \cdot \frac{\lambda^{4}}{T_{1} T_{2}^{T} 3^{T}} \cdot \frac{R_{f}}{R_{1}^{1}}
\end{aligned}
$$

The pattern for rapidiy determinng appropriate $T^{\prime} s$ and $\lambda^{\prime} s$ had not been thought out at the time of applying the test solution and the actual values used were:-

$$
\begin{aligned}
& \lambda=1 \\
& T_{1}=T_{2}=T_{3}=T_{4}=10 \mathrm{secs} \\
& R_{f}=4.578 \text { megohms } \\
& R_{4}^{\prime}=2.864 \quad " \\
& R_{3}^{\prime}=0.975 \quad " \\
& R_{2}^{\prime}=0.947 \quad \quad \prime \\
& R_{1}^{\prime}=1.194 \quad \quad \prime
\end{aligned}
$$

With an anstaal condition of $x=12.6$ units the following scale factors were used

| $a_{5}=1$ | $=$ | 1 | volts per unnt of x | | |
| :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| $a_{4}=T_{4}$ | $=10$ | $"$ | $"$ | $"$ | $" \dot{x}$ |
| $a_{3}=T_{4} T_{3}$ | $=100$ | $"$ | $"$ | $"$ | $" \dddot{x}$ |
| $a_{2}=T_{4} T_{3} T_{2}$ | $=1,000$ | $"$ | $"$ | $"$ | $" \dddot{x}$ |
| $a_{1}=T_{4} T_{3} T_{2} T_{1}$ | $=10,000$ | $"$ | $"$ | $"$ | $" \dddot{x}$ |

Flgs. 9, 10, 11, 12, 13, show the solutions obtained. The dots along the curves are the theoretical values calculated by the Assessment Division of Gulded weapons Dept.

V. Conclusions

Theoretically using very high gain amplifiers and good quality components high degrees of accuracy can be achzeved. The practical limats in achleving these high accuracy figures would seem to be in the components and a very careful engineering design of the calibrating system etc.

The results obtained wath the present analyser although poor in accuracy show considerable promise especially as two of the reversing amplifiers used were of the low gain type. It is considered that considerable improvement could be madc by replacement of these units by hagh-gain reversing amplifiers and by a more careful calibration of the integrators and summing amplifiers. At present only normal radio components have been used and it is suspected that temperature drafts in values etc. are having a detrimental effect. As the present accuracy is considered sufficient for the inmediate problems to be gaven to the analyser and as any considerable improvement would require the analyser to be rebuilt using high grade components little further work will be done until at least a satisfactory method of multiplyang has been developeá.

APPENDIX I

A Detanled Study of the Adding Units

In the basic diagram of Flg. $1, I_{1}=I_{2}$

$$
\frac{E_{g}-E_{0}}{R_{f}}=\frac{E_{1}-E_{g}}{R_{1}}+\frac{E_{2}-E_{g}}{R_{2}}+\frac{E_{3}-E_{g}}{R_{3}}
$$

Now $\quad E_{g}=-\frac{E_{0}}{\mu}$
therefore

$$
\frac{E_{1}}{R_{1}}+\frac{E_{2}}{R_{2}}+\frac{E_{3}}{R_{3}}=-\frac{E_{0}}{R_{f}}-\frac{E_{0}}{\mu}\left[\frac{1}{R_{f}}+\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]
$$

The last term on the right hand side of this equation is the "error term" and it shows that the error is inversely proportional to the gain of the amplafier. In fact the percentage error is gaven by

$$
\left(1+\frac{R_{f}}{R_{1}}+\frac{R_{f}}{R_{2}}+\ldots+\frac{R_{f}}{R_{n}}\right) \frac{100}{\mu}
$$

when there are n inputs. Thus in general the more inputs there are and the greater the ratio of feedback to input resistors the greater is the percentage error for a given amplification.

In the summing circuit of the analyser we have five inputs the resistors of which may be adjusted over the range 0.1 to 10 megohms and the feedback resistor may be adjusted over the range 0.1 to 10 megohms also thus under the least favourable conditions the percentage error is given by

$$
\left[1+5\left(\frac{10}{0.1}\right)\right] \frac{100}{\mu} \fallingdotseq \frac{50,000}{\mu}
$$

Therefore to maintain an error of loss than 1% under such conditions we require an amplifler whose gain is at least 50,000. The amplifier used has a gain of 100,000 .

For a "reversing amplifier" we have one input wath $R_{1}=R_{f}$, the percentage accuracy in this case is therefore given by

$$
\frac{200}{\mu}
$$

The amplifiers used for this purpose in the analyser are single stage amplufiers and the gain will not exceed 100 so that the orror is at least 2%. This it would seem is one of the mann sources of error in the present analyser.

To investigate this point more fully consider the actual circuat used, Fig. 14.

Let the input resistor be R and the feedback resistor $a R$ where
 potential must increase by $\frac{01 a}{g}$ volts. The auto-grid-bias increases by $\frac{1}{2} \delta_{a}$ volts. Therefore the grid-earth potentual must inorease by δI_{a} $\left(\frac{1}{2}+\frac{1}{g}\right)$ volts $=\delta V_{g}$ volts. The anode volts fall by $70 \delta_{I_{a}}$ volts therefore the output fails by $+\frac{22}{50} \times 70 \mathrm{Si}_{a}=+31 \delta I_{a}=-\delta \mathrm{V}_{0}$ volts.

Now $V_{g}=\frac{a V_{1}+V_{0}}{a+1}$ volts but $a \fallingdotseq 1$ and $V_{1} \fallingdotseq-V_{0}$
hence

$$
v_{g} \fallingdotseq \frac{a V_{1}+V_{0}}{2}
$$

or

$$
\begin{aligned}
& 2 \delta i_{a}\left(\frac{1}{2}+\frac{1}{g}\right)=a \delta V_{1}-31 \delta i_{a} \\
\therefore \quad & a \delta V_{1}=\delta 1_{a}\left(32+\frac{2}{g}\right) \\
\therefore \quad & \frac{\delta V_{0}}{\delta V_{1}}=\frac{-31}{32+\frac{2}{g}} \cdot \frac{1}{a} \\
\therefore \quad & V_{0}=\frac{-31}{32+\frac{2}{g}} \cdot \frac{1}{a} \cdot V_{1}+\text { Constant (Assuming } g \text { be constant.) }
\end{aligned}
$$

The unit is set up by adjusting the screen voltage until when $V_{1}=0, V_{0}$ Is also zero. Under these conditions the above constant $=0$ and we have

$$
V_{0}=\frac{-31}{32+\frac{2}{g}} \cdot \frac{1}{2} \cdot V_{1}
$$

The overall gain of the unit is therefore not $-1 / a$ but is always somewhat smaller and as g ls not constant the gain will vary as g varıes.

One method of setting up the unit is as follows. Put $V_{1}=-X$ volts say, and adjust the feedback resistor until $V_{0}=+X$ volts, 2.e. we choose a so that $\frac{-31}{32+\frac{2}{8}} \cdot \frac{1}{a}=-1$ for one particular input voltage. Depending on the size of X we get variations in the form of the overall characteristic of the unit. (See Fig.15.) The curves diverge rapidly from the ideal when g falls off rapidly in one direction and when the anode voltage falls below the screen voltage in the other. Thus in addition to the limited accuracy we also have a limited range of operation. Fig. 16 shows experimental curves of the type shown in Fig. 15. Fig. 17 shows curves obtanned using a high gain amplifier - the range of operation and linearity are obviously muoh hagher.

APPENDIX II

A Detalied Study of the Integrating Units

In the basic diagram of Fag. 2, $\quad I_{1}=I_{2}$
Now

$$
\begin{equation*}
I_{1}=\frac{E_{1}-F_{g}}{R} \tag{1}
\end{equation*}
$$

and

$$
E_{g}-E_{o}=\frac{1}{c} \int I_{2} d t
$$

therefore integrating (1) and inserting the values of I_{1} and I_{2} given by (2) and (3) we see that

$$
\int \frac{E_{1}-E_{G}}{R} \cdot d t=C\left(E_{g}-E_{0}\right)
$$

but

$$
\mathrm{E}_{0}=-\mathrm{E}_{\mathrm{g}}
$$

therefore $\quad \int \frac{E_{1}+\frac{E_{0}}{\mu}}{R} \cdot d t=-C E_{0}\left(1+\frac{1}{\mu}\right)$
or

$$
\begin{equation*}
E_{0}=\frac{-\mu}{\operatorname{CR}(1+\mu)} \int E_{1} d t-\frac{1}{\operatorname{CR}(1+\mu)} \int E_{0} d t \tag{4}
\end{equation*}
$$

The farst term on the raght hand side of thas equation is the required solution. The second term is the error term. As $\mu \rightarrow \infty$ (4) becomes

$$
E_{0}=-\frac{1}{C R} \int E_{1} d t
$$

and thas is the relationship normaly assumed for such integrating units.

Since the error is proportional to $\int E_{O} d t$ if the polarity of E_{O} is constant the error will increase wath tame. In thas case hagher accuracy is achleved by integrating over a shorter period of time. If the polarity of E_{0} ls cyclic then the error itself is cyclic. Consider now two special cases in which the error term may be readily evaluated:furstiy when E_{1} is a constant voltage and secondly when it is sinusoidal.

Case (1). If $\mathrm{E}_{1}=$ constant $=\mathrm{V}$ then

$$
\mathrm{E}_{\mathrm{O}}=\frac{-\mu \mathrm{Vt}}{\mathrm{CR}(1+\mu)}-\frac{1}{\mathrm{CR}(1+\mu)} \int \mathrm{E}_{\mathrm{O}} \mathrm{dt}
$$

A solution of thas equation 1 s given by

$$
E_{0}=A e^{\frac{-t}{C R(1+\mu)}}-\mu V \text { where } A \text { is arbitrary. }
$$

If for $t=0, E_{0}=0$ then $A=\mu V$ and

$$
E_{O}=\mu N\left[1-e^{\overline{\operatorname{CR}(1+\mu)}}\right]
$$

The desired solution is

$$
\mathrm{E}_{0}=-\frac{\mathrm{Vt}}{\mathrm{CR}}
$$

The form of the error between these for various values of μ is shown in Fig. 18.

Expressed as a perventage the error is given by

$$
100\left[1-\frac{\mu C R}{t}\left(1-e^{\frac{-t}{C R(1+\mu)}}\right)\right]
$$

and this peroentage error as a function of μ for various ${ }^{t} / \mathrm{CR}$ ratios is shown in Fig. 19.

It is seen from these curves that wh a hzgh gain amplifier $[\mu \geqslant 30,000]$ that the percentage error is very small unless one has very high ratios of ${ }^{t} / \mathrm{CR}$.

Case (2). If $E_{1}=\lambda \sin w t$ then

$$
E_{O}=\frac{\mu}{\operatorname{CR}(1+\mu)} \int \lambda \sin w t . d t-\frac{1}{\operatorname{CR}(1+\mu)} \int E_{0} d t
$$

A solution of thas equation is

$$
\begin{aligned}
E_{0}=B e^{-\frac{t}{a}}+\frac{\mu \lambda}{a} \cdot & \frac{1}{\sqrt{w^{2}+\frac{1^{2}}{2}}} \cdot \cos (w t+\phi) \\
\text { where } a & =C R(1+\mu) \\
\phi & =\tan ^{-1} \frac{1}{a w} \\
B & =\text { arbıtrary constant }
\end{aligned}
$$

If unitialiy at $t=0, E_{0}=0$ then

$$
B=-\frac{\mu \mathrm{Aw}}{a\left(w^{2}+\frac{12}{a}\right)}
$$

and $\quad E_{0}=\frac{-\mu \lambda w}{a\left(w^{2}+\frac{1^{2}}{a}\right)} e^{-\frac{t}{a}}+\frac{\mu \lambda}{a} \cdot \frac{1}{\sqrt{w^{2}+\frac{12}{a}}} \cdot \cos (w t+\phi)$
or $\quad E_{0}=\frac{\mu \lambda}{a \sqrt{w^{2}+\frac{1^{2}}{2}}}\left[\cos (w t+\phi)-\frac{w}{\sqrt{w}^{w^{2}+\frac{1}{2}^{2}}} e^{-\frac{t}{a}}\right]$

The desired solution $2 s$

$$
E_{O}=\frac{\mu \lambda}{a w}[\cos w t-1]
$$

The solution as given by the integrator is seen therefore to be erroneous in three aspects.
(1) The overall amplitude is too small by a factor of $\frac{w}{\sqrt{w^{2}+\frac{1^{2}}{a}}}$.
(2) The cosine term 2 s leading the true solution by an angle ϕ where $\phi=\tan ^{-1} \frac{1}{a w}$.
(3) There is an exponential draft in the solution given by

$$
\left(1-\frac{w}{\sqrt{w^{2}+\frac{1^{2}}{a}}} \cdot e^{-\frac{t}{a}}\right)
$$

As is to be expected cach of these errors tends to zero as $\mu \rightarrow \infty$.
Considerang these errors in turn:-
(1) The overall amplitude error 1 s less than 1% if

$$
\frac{w}{\sqrt{w}{ }^{2}+\frac{1}{2}^{2}}>0.99
$$

and as $a=\operatorname{CR}(1+\mu)$
$\mathrm{w}=2 \pi / T$ where T is the period of the input, we see that this error is less than 1% if

$$
1+\mu>(1.1) \frac{T}{C R}
$$

(2) The constant angie of load of the cosine term is shown in Fig, 20 for several $T / C R$ ratios, as a function of μ.
(3) If the exponential drif't amounts to 1% then

$$
\frac{w}{\sqrt{w^{2}+\frac{1}{2}^{2}}} \cdot e^{-\frac{t}{a}}=0.99
$$

Now if $1+\mu \geqslant(1.1) \frac{T}{C R}$ we have seen that
i.e. for a drift error of less than $1 \%, E \leqslant 100 a=100 \mathrm{CR}(1+\mu)$

$$
\text { ı.e. } 1+\mu>100 \frac{\mathrm{t}}{\mathrm{CR}}
$$

In conclusion it may be said that using an amplufier of high gain ($\mu \geqslant 30,000$) the accuracy of integration is good and in all cases wall be better than 1% provided the ratios $\frac{T}{C R}$ and $\frac{100 t}{C R}$ are not allowed to become of comparable order to that of the gain.

APPENDIX III

The effects of stray feedback currents round a high gazn amplifier. computor can be readily evaluated on the assumption that the gain is infinite. The effects of finlte gain will introduce further errors sumalar to those discussed under Appendices I and II.

If in Fig. 2 we replace C by C and R_{f} in parallel, and make $\mu=\infty$ we see that

$$
\begin{equation*}
E_{O}=-\frac{R_{f}}{R_{1}} E_{1}-R_{f} C \frac{d E_{o}}{d t} \tag{1}
\end{equation*}
$$

As before consider the two typzoal cases
(1) $E_{1}=$ constant $=V$
(2) $E_{1}=\lambda \sin w t$

Case (1). $\quad E_{\mathcal{1}}=V$
A solution of equation (1) is given by

$$
E_{O}=-\frac{R_{f}}{R_{1}} V+A e^{-\frac{t}{R_{f} C}} \text { where } A \text { is arbitrary. }
$$

If for $t=0, E_{0}=0$ then $A=\frac{R_{f}}{R_{1}} V$ and

$$
E_{0}=-\frac{R_{f}}{R_{1}}\left[V-V e^{-\frac{t}{R_{f} C}}\right]
$$

(a) In an ldeal adding computor R_{f} is a large resistor (say 5 MD) and $C=0$, gaving

$$
E_{0}=-\frac{R_{f}^{\prime}}{R_{f}} V
$$

The effect of a small stray capacity C (say 10 pF) is therefore to introduce a tame-lag in the development of the true solution. The time constant of this lag is $R_{f} C\left(=50 \mu\right.$ secs for the values of R_{f} and C given above).
(b) In an ideal integrating computor C is a large capacitor (say $1 \mu \mathrm{~F}$) and $R_{f} \rightarrow \infty$ giving (on expansion of the exponential term)

$$
\mathrm{E}_{0} \rightarrow \frac{\mathrm{Vt}}{\mathrm{OR}_{1}}
$$

The effect of a leakage resistance across the integrating capacity is seen to produce an effect simalar to that produced by a perfect capacity across an amplifier of finitc gain. In Appendix II, Case (1), It was shown that when $R_{f}=\infty$, gain $=\mu$, that

$$
E_{0}=-\mu \mathrm{V}\left[1-e^{-\frac{t}{C R(1+\mu)}}\right]
$$

Therefore if $\mu+1 \fallingdotseq \mu$ the effect of the leakage resistance is equivalent to a reduction in gain of the amplifier from ∞ to R_{f} / R_{1}. Normal condensers have a scheduled time constant of at least 2000 megohmmicrofarads - i.e. for a $1 \mu \mathrm{~F}$ condenser the leakage resistance is at least 2000 megohms. High quailty condensers with higher leakage resistances are therefore to be strongly recomended for integrating purposes.

Case (2). $\quad E_{1}=\lambda \sin w t$.
A solution to equation (1) as given by

$$
E_{0}=-\frac{R_{f}}{R_{1}} \cdot \frac{\lambda}{1+w^{2} R_{f}^{2} c^{2}}\left(\sin w t-w R_{f} C \cos w t\right)+A e^{-\frac{t}{R_{f} C}}
$$

where A is arbitrary.
If for $t=0, E_{0}=0$ then $A=-\frac{R_{f}}{R_{1}} \cdot \frac{\lambda}{1+w^{2} R_{f}^{2} C^{2}} \cdot w R_{f} C$ and

$$
E_{0}=-\frac{R_{f}}{R_{1}} \cdot \frac{\lambda}{1+w^{2} R_{f}^{2} c^{2}}\left[w R_{f} C e^{-\frac{t}{R_{t} C}}+\sin w t-w R_{f} C \cos w t\right]
$$

(a) In an ideal adding computor R_{f} is a large resistor (say $5 \mathrm{M} \Omega$) and $\mathrm{C}=0$, giving

$$
\mathrm{E}_{0}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}} \cdot \lambda \sin w t
$$

The effect of a small stray capacity C (say 10 pF) is therefore to introduce an initial transltory period of time constant $R_{f} C=50, \mu s e c$ after which the output is given by

$$
\begin{aligned}
E_{0} & =-\frac{R_{f}}{R_{1}} \cdot \frac{\lambda}{1+w^{2} R_{f}^{2} c^{2}}\left[\sin w t-w R_{f} C \cos w t\right] \\
\text { i.e. } E_{o} & =-\frac{R_{f}}{R_{1}} \cdot \frac{\lambda}{\sqrt{1+w^{2} R_{f}^{2} C^{2}}} \cdot \sin \left(w t-\tan ^{-1} w R_{f} C\right)
\end{aligned}
$$

The output sine-wave has therefore an error in amplitude and an error in phase.

The amplatude error ancreases with frequency and will amount to 1% of the true amplitude when

$$
\sqrt{1+w^{2} R_{f}^{2} C^{2}}=\frac{100}{99}
$$

The error therefore exceeds 1% if the frequency rises above

$$
\left.\begin{array}{l}
f=\frac{1}{R_{f} C} \cdot \frac{1}{\pi} \cdot \frac{1}{\sqrt{200}} \quad \text { for } R_{f}=5 \text { megohms } \\
f=450 \text { cycles } / \mathrm{sec}
\end{array} \quad \begin{array}{l}
C=10 \mathrm{pF}
\end{array}\right\}
$$

The phase error also increases wh frequency and at 450 oycles/sec It is 8°.
(b) In an ideal integrating computor C is a large capacitor (say $1 \mu \mathrm{~F}$) and $\mathrm{K}_{\mathrm{f}} \longrightarrow \infty$ glving

$$
E_{0}=+\frac{\lambda}{w R_{1} c}(\cos w t-1)
$$

When the leakage resistance is taken anto account the solution may

$$
\mathrm{E}_{0}=\frac{\mathrm{R}_{f}}{\mathrm{R}_{1}} \cdot \frac{\lambda}{\sqrt{1+w^{2} R_{f}^{2} C^{2}}}\left[\cos \left(\mathrm{wt}+\tan ^{-1} \frac{1}{w R_{f} C}\right)-\frac{w R_{f}^{C}}{\sqrt{1+w^{2} R_{f}^{2} C^{2}}} e^{-\frac{t}{R_{f} C}}\right]
$$

Again it is seen by comparison with the results obtanned in

$$
\text { Appendix II, Case (2), viz. } \quad E_{0}=\frac{\mu \lambda}{a \sqrt{w^{2}+\frac{1^{2}}{a}}}\left[\cos \left(w t+\tan ^{-1} \frac{1}{a w}\right)-\frac{w}{\sqrt{w^{2}+\frac{1}{2}^{2}}} e^{-\frac{t}{a}}\right]
$$

where $a=\operatorname{CR}(1+\mu) \quad R_{f}=\infty$, gain $=\mu$,
that if $\mu+1=\mu$ then the effect of the leakage resistance is equavalent to a reduction in gain of the amplafier from ∞ to \hat{R}_{f} / R_{1}.

Thus, for a given accuracy of compution, the effect of stray capacity in an adding unit is to impose an upper frequency lamıt, and the effect of leakage resistance in an integrating unit is sumilar to the effect of finate amplifier gain in that it imposes a lumit to the time over which a D.C. voltage may be integrated.

FIG.I
BASIC DIAGRAM OF A FEEDBACK ADDING UNIT.

FIG. 2
BASIC DIAGRAM OF A FEEDBACK INTEGRATING UNIT.

FIG. 3
SIMPLIFIED CIRCUIT DIAGRAM OF HIGH - GAIN D.C. AMPLIFIER AS USED IN AMERICAN MK.IX A-A-PREDICTOR.

FIG. 4 BASIC DIAGRAM OF SIMPLE STABILISING UNIT.

FIG. 5 CIRCUIT DIAGRAM OF T.R.E. MINIATURISED D.C. AMPLIFIER.

FIGS: $6 \& 7$

FIG. 6 CATHODE FOLLOWER.

FIG. 7 STEP CIRCUIT.

-CF- CATHODE FOLLOWERS.

- z - sTEP CIRCUIT.

$\times\left\{\begin{array}{l}\text { SCALE } 1 \cdot 35 \text { DVIVIIONS PERUNIT of } x \\ \text { TIME SCALE:- } 10 \text { IVIIBION/SEC. }\end{array}\right.$

FIG. 9 SOLUTION OF TEST PROBLEM. [THE DOTS REPRESENT THE CORRECT SOLUTION.]

$$
\frac{d x}{d t}\left\{\begin{array}{l}
\text { SCALE } 13 \cdot 5 \text { DIVISIONS PER UNIT OF } \frac{d X}{d t} \\
\text { TIME SCALE:- I IIVISION/SEC. }
\end{array}\right.
$$

FIG.IO SOLUTION OF TEST PROBLEM. [THE DOTS REPRESENT THE CORRECT SOLUTION.]

$\frac{d^{2} x}{d t^{2}}\left\{\begin{array}{l}\text { SCALE } 165 \text { DIVISIONS PER UNIT OF } \frac{d^{2} x}{d t^{2}} \\ \text { TIME SCALE:- I DIVISION } / \text { SEC. }\end{array}\right.$

FIG.II SOLUTION OF TEST PROBLEM. [THE DOTS REPRESENT THE CORRECT SOLUTION.]

$\frac{d^{3} x}{d t^{3}}\left\{\begin{array}{l}\text { SCALE } 776 \text { DIVISIONS PER UNIT OF } \frac{d^{3} x}{d t^{3}} \\ \text { TIME SCALE:- IDIVISION/SEC }\end{array}\right.$

FIG.IL SOLUTION OF TEST PROBLEM. [THE DOTS REPRESENT THE CORRECT SOLUTION]

$\frac{d^{4} x}{d t^{4}}\left\{\begin{array}{l}\text { SCALE } 4949 \text { DIVISIONS PER UNIT OF } \frac{d^{4} x}{d t^{4}} \\ \text { TIME SCALE:- IDIVISION } / \text { SEC. }\end{array}\right.$
FIG:I3.
SOLUTION OF TEST PROBLEM. [THE DOTS REPRESENT THE CORRECT SOLUTION]

FIGS: $14 \& 15$
 FEEDBACK AMPLIFIER.

FIG. 15
OVERALL CHARACTERISTICS OF "SIGN - REVERSING" AMPLIFIER SHOWING DEPENDENCE ON THE SETTING - UP VOLTAGE \times.

FIG: 16

FIG:I6.

- EXPERIMENTAL CHARACTERISTIGS OF "SIGN REVERSING" AMPLIFIER.

$$
\geqslant
$$

FIG: 17

$F \mid G .17$
' EXPERIMENTAL CHARACTERISTICS OFHIGHGAIN SUMMING AMPLIFIER. (GAIN-30,000)

THEORETICAL CURVES SHOWING TYPE OF ERROR OBTAINED ON INTEGRATION OF A D.C. VOLTAGE.

FIG.I9 THEORETICAL CURVES SHOWING \% ERROR ON INTEGRATION OF A D.C. VOLTAGE

FIG. 20^{\prime}
THEORETICAL CURVES SHOWING LEADING ANGLE ERROR ON INTEGRATION OF A SINUSOIDAL WAVE.

FIG. 21.

PUBLISHED BY HIS MAIESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, london, w c 2, 429 Oxford Street, London, w 1, P.O. Box 569, LoNDON, SE1,

13a Castle Street, edinburgh, 2 1 1 St Andrew's Crescent, Cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1.
2 Edmund Street, birmingham, 3. 80 Chichester Streef, belfast,
or from any Bookseller
1950
Price 3s. Od. net

