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Summary.--Relationships have been derived for expressing the velocities on three-dimensional tapered wings at 
zero incidence in terms of the velocities on untapered infinite swept wings. The theoretical investigation of the effects 
of taper is confined to simple wings having aerofoil sections formed by cubic or parabolic arcs ; some experimental 
evidence is given to show that the results of this investigation can probably be applied quantitatively to wings having 
conventional aerofoil sections. 

The results given in this report show that plan-form and thickness taper have a marked effect on the velocities near 
the centre of a wing, but that these effects decrease with increase of sweepback. 

A calculation method is outlined in section 4.2.6 of the text for applying the results obtained for wings having 
parabolic-arc aerofoil sections, to wings having arbitrary section shapes. 

1. I~¢troduction.--For aerodynamic and structural reasons, thickness and plan-form taper 
have become important parameters in the design of wings for high-speed aircraft. It is known 
that in general, a combination of thickness and plan-form taper (such as occurs on a delta wing 
having constant thickness/chord ratio throughout the span), results in a decrease in the velocities 
over the inboard parts of the wing, and an Increase over the outboard parts, as compared with 
an untapered wing of the same thickness/chord ratio. Little is known, however, of the separate 
contributions of plan-form and thickness taper, and how these contributions are affected by 
sweepback. 

The present report, which is based upon an analysis of calculations made in 1949-50 for wings 
having simple plan-form and aerofoil-section shapes, provides a qualititative indication of the 
effects of plan-form taper, thickness taper, aspect ratio, and aerofoil-section shape on the flow 
past three-dimensional wings at zero incidence. Throughout this paper the terms 'plan-form 
taper '  and ' thickness taper '  have their true meaning, viz., 

Plan-form taper means that the wing chord varies across the span ; it does not imply a corres- 
ponding variation of wing thickness 

Thickness taper refers to the spanwise variation of the absolute thickness, and not to the 
spanwise variation of thickness/chord ratio. 

In general it is not possible to obtain an exact solution for the flow past a wing of arbitrary 
plan-form, spanwise thickness distribution and section shape; several .papers (e.g., Refs. 1, 2 
and 3) have dealt with the flow past untapered, swept and unswept wings, having thin sym- 
metrical parabolic-arc aerofoil sections, by tile use of linearised theory. These papers have 
shown that within the limitations of the linearised theory, it is possible to express the velocity 
at the centre-line of an infinite swept wing, and also the streamwise velocity on an infinite sheared 
wing by general equations applicable to any aerofoil-section shape, i.e., (using the notation of 
Ref. 4): 

*R.A.E. Report Aero. 2544, received 6th February, 1956. 
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V 0 =  1 + S(1)(x) - S(~)(x)f(9) c o s 9  

at the centre-line of an infinite swept wing, and : 

v~(x) 
V0 - 1 + S(~/(x) cos  9 . . . .  

on an infinite sheared wing, where 

V0 is the free-stream velocity, 

. . . .  (2) 

. . . .  (2) 

V~ is the chordwise velocity on the wing chord plane, 

Sill(x) is the chordwise supervelocity ratio as derived by linearised theory for 
t he  corresponding unswept two-dimensional wing (see Ref. 4), 

S(21(x) is the slope of the aerofoil section at position x, 

f (9) n -- sin 

9 is the angle of sweepback of the wing. 

Except for a region close to the centre-line of the wing (within about one half-chord length), 
the flow past an infinite swept wing is the same as that  past an infinite sheared wing; furthermore 
it is seen from equation (1) tha t  the expression for the velocity at the centre of an infinite swept 
wing contains the term 1 -/S(~l(x) cos 9, which represents the velocity on the infinite sheared wing 
of the same sweep (equation (2)). The remaining term in equation (1), viz., S(2l(x)f(9)cos g, 
is generally known as the ' kink ' term, since it expresses the effect of the discontinuity or kink 

• in the plan-form at the centre-line, on the velocities at the centre of the wing. 

It  has been suggested in Ref. 4 that  the velocities over the part of the wing which lies between 
the centre-line and the region where the flow is the same as that  over an infinite sheared wing, 
can also be expressed in terms of the infinite sheared wing supervelocity and the ' k i n k '  term, 
by introducing a ' k i n k  '-term reduction factor K~ into equation (2), i.e.: 

Vo - 1 + S~/(x) - K~ S(~(x) f (9 )  cos  9 . . . . . . . . .  (3) 

The factor K2, which is the ratio of the ' kink ' term at any spanwise position to the value at the 
centre-lille, decreases with spanwise distance from the centre-line; a curve for the spanwise 
variation of K~ is given in Ref. 4 (Fig. 12) for an infinite swept wing. 

Equation (3) does not give the complete answer for the flow past a n  infinite swept wing, 
however, since it implies tha t  the velocity at the maximum thickness position, where S(21(x) 
is zero, is independent of spanwise position. That  this is not so, is apparent from the results of 
Refs. 1 to 4. If at any spanwise position, the increase of the supervelocity at the maximum- 
thickness position, as a fraction of that  on the corresponding infinite sheared wing is denoted 
by K1, i.e., 

1 + K1 = ~"P . . . .  locity at  maximum-th ickness  position of infinite swept wing 
superveloci ty at  maximum-th ickness  position of infinite sheared wing ~ 

then it has been shown in Ref. 5 that  over a large portion of the chord : 

V 0 -  1 + (1 + K~)S(II(x) --K2S("l(x)f(9) cos9 . . . . . .  (4) 

gives almost exactly the velocity at any point of the infinite swept wing. 



One of the chief limitations of the linearised theory is that  it can only give the supervelocities 
in the chord plane, and not on the surface of the aerofoil. For small thickness/chord ratios, 
this does not constitute a serious limitation, provided the aerofoil section is not round-nosed. 
For moderate and large thickness/chord ratios, however, the results given by linearised theory 
differ considerably from the true values for the supervelocity at the surface. In the case of 
infinite unswept wings of elliptic aerofoil section, the true velocities at the surface can be obtained 
from those calculated using linearised theory by multiplying by the factor : 

1 "L 1/2 . . . . . . . .  

1 + (s~)(~))~J . . . . . . .  
(s) 

It  is shown in Ref. 6 that  the application of this correction factor to the velocities obtained 
from linearised theory for a symmetrical Joukowsky aerofoil section, gives results which are in 
close agreement with those obtained from tile exact solution. 

Ktichemann and Weber have applied this correction term to the case of the swept wing in 
Ref. 4, in order to bring the theoretical results into c!oser agreement with experiment for fairly 
thick, round-nosed aerofoil sections. The use of this correction term does, however, destroy 
the simple concept that  the velocity at the centre of an infinite swept wing is equal to that  on 
the corresponding infinite sheared wing, plus a ' k i n k '  term, since in Ref. 4, it is shown that  
at the centre-line, the pressure coefficient at the surface is : 

c,(~, ~) = 
- 2 cos ~ { s ( 1 ) ( x )  - s ( ' ) ( , ~ ) ] ( ~ ) }  - { s { ' ) ( ~ )  - ( s { ' > ( ~ ) ) y ( ~ ) } '  c o s ' {  + (s ( ' ) (~ ) )  ' (6) 

for an infinite swept Wing. 

1 + (S(~)(x)) ~ 

Simply removing the ' k i n k '  terms (S(=)(x))f(~o) from equation (6) gives for tile pressure 
coefficient at the surface of an infinite sheared wing : 

- 2 cos,  S ~ ) ( x )  - ( S ~ ' ) ( x ) )  " cos'~, + ( S ( ~ ) ( x ) y  " 
c p ( x ,  z) = 1 + (S(~)(x)) ~ ' (7) 

whereas in Ref. 4, it is shown ihat  for an infinite sheared wing, the correct expression for @ is : 

- 2 c o s  ~ Sell(x) _ (S~l~(x))~ + (S<2)(x)) ~ 
c,(~, ~) . . . . . . . .  (8) { (s~'(~)) ~ } 

1 + • cos~ 

Thus for thick wings it is no longer possible to apply an interpolation factor K2 for the spanwise 
variation of t h e '  kink ' term just outboard of the centre-line. For this reason, tile results obtained 
in this report using linearised theory have not been corrected to allow fo r the  difference between 
the supervelocity at the chord plane, and that  on the surface of the aerofoil. This should not, 
however, affect the validity of the results near the maximum-thickness position where the 
slope of the aerofoil section is small, since the correction terms 1 + (S(21(x)) 2 and 1 + {(SI21(x))2}/ 
cos29 approximate to uni ty when SI21(x) is small ; an approximation to the thickness correction 
could, if desired, be introduced when applying the results of this report to a specific case by 
increasing the calculated velocities by the appropriate factors : 

1 1 
1 + (Sc=/(x))~ or  1 + (S(21(x))~ 

C O S  2 
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No account has been taken in the present report of any spanwise component of the velocity, 
since in general it is expected to be small compared with the streamwise velocity, and at the 
centre-line, it is zero (by symmetry). 

For the present purpose, it is important to note that the two terms in equation (4) derived by  
linearised theory, relate only to untapered wings of infinite aspect ratio, and therefore take no 
account of the effects of finite aspect ratio, plan-form taper or thickness taper• The effects of 
finite aspect ratio on the ve!ocities at the centre of swept and unswept, untapered wings, have 
been considered in Ref. 3, where it is shown that an aspect-ratio correction term can be added 
to the expression for the velocity at the centre of an infinite swept wing, i . e . :  

(9) 
V o  4 A  2 ' ' " ' 

where 7` is the area coefficient of the aerofoil section, 

i.e., 7' = a r e a 0 f !o ro f i l e  
area of circumscribing rectangle 

As a basis for analysis in this report, it has been assumed that equations (4) and (9) can be 
applied to wings tapered in plan-form, by regarding ~0 as the local geometric angle of sweep, 
and hence the effects of thickness taper and plan-form taper on the various factors in these 
equations determined. 

The results obtained have been considered in three main parts • 

(a) the effects of thickness taper and aerofM1 section shape for rectangular wings 

(b) the effects of plan-form taper, thickness taper and aerof0il-section shape for wings having 
zero sweep on the maximum-thickness line 

(c) the effects of plan-form taper, thickness taper and aerofoil-section shape for swept wings. 

The only results at present available for tapered wings are given in Ref. 7. These are, however, 
restricted in scope and refer only to wings having constant thickness/chord ratio throughout 
the span ; hence they do not give any indication of the separate effects of plan-form and thickness 
taper, nor do they show the effects of sweepback. Equations are derived in Ref. 7 for the velocities 
on swept, tapered wings, having . constant thickness/chord ratio throughout the span, but the 
computational work involved in deriving numerical results is prohibitive without the aid of 
electronic computation methods. 

In the present report, consideration of the effects of taper is restricted to results obtained for 
a few simple wings. Since there is little hope of being able to solve the general problem (including 
higher order terms) for wings of any aerofoil-section shape, only linear-order terms are considered, 
and these only for a special class of aerofoil section. This, however, is eminently suitable for the 
present purpose, since the general trends of the effects of the various parameters can be found 
without getting involved in the usual exceedingly tedious numerical calculations. In particular 
it has been found that special functions for the spanwise variation of thickness can be devised 
which lead to a considerable Simplification of the analysis. 

The results obtained for these special cases, give qualititative answers for the general aerofoil 
shape, and have been expressed in terms of the supervelocities obtained by linearised theory for 
the infinite unswept wing and for the ' kink' term. Hence they can be applied as correction 
terms in the relationship discussed earlier for finite and infinite swept wings. The weakest point 
in this procedure is the applicability of the results to aerofoil sections of conventional round-nosed 
shape. Howevel% the order of the velocity changes, as well as the general trends of the effects 0f 



sweepback and taper, should be reasonabiy wet1 represented. In one simple case considered 
in this report, the quantitative agreement between the results predicted by these simple methods, 
and the experimental results, is very good. 

The main practical advantage of this procedure, is that  the additional computational work 
necessary to allow for the effects of taper in calculating the velocity distribution over a given 
wing is insignificant. A further advantage is that  by using sheared wing and ' kink ' terms as 
measuring units, it is possible to present the results in an orderly manner, considering each of the 
many parameters in turn ; this makes it possible to follow the general trends more easily. 

It  should be noted that  the results obtained in this report refer only to zero Mach number. 
They can, however, be applied at high Mach number, provided the aspectrat io of the analogous 
wing is not too small (i.e., A~ = AM=0~/(1 -- M2). The application of the results to wings at 
M ---= 1 has not been considered. 

A short programme of tests 8 has been planned to obtain experimental velocity distributions 
o n  a series of tapered wings. The results obtained will be compared with those predicted by 
linearised theory to check whether the velocity changes due to taper and sweepback are of the 
same order as those given in the present report. Knowing the general trends of these effects 
from the theoretical results, it should be possible from these few experimental results to make 
any quanti tat ive changes to the results given in this report, which might appear to be necessary 
to give closer agreement with experiment. 

2. Wings Considered.--All the wings considered in this report have been derived from four 
simple basic wings, by the method of superposition. Results have, however, been abstracted 
from Ref. 7 to check some of the results obtained and also for the spanwise variation of the 
supervelocity at the maximum thickness of a wing having constant thickness/chord r a t i o  
throughout the span. 

The first of the basic wings is rectangular in plan-form, and has a linear variation of thickness/ 
chord ratio from (to~Co) at the centre-line to #(to/Co) at the tips. The aerofoil section chosen for 
this wing is formed by arcs of cubits, to enable the maximum-thickness position (x = k) of the 
section to be readily al tered.  When the maximum thickness is at the mid-chord point (k = 0), 
this section reduces to a symmetrical parabolic-arc section, and thus gives a direct comparison 
with the results available for two-dimensional wings having this section shape. 

By changing the factor ~, this rectangular wing can be varied from a fully ' t apered  i n  
thickness ' wing to an untapered wing, of any aspect ratio. This property has been used to derive 
wings having various spanwise thickness distributions. For instance, wing (1) of this report 
(Fig. 1) has been formed by adding to this basic wing, two outer panels of constant thickness ; 
these panels were obtained by subtracting an untapered wing of span ~os and constant thickness/ 
chord ratio ¢(to/Co) from a similar wing of span s. The equation for the supervelocity at any 
point of this wing has been derived in the text. 

The second basic wing (wing 2, Fig. 1) has been chosen because of the simple manner in which 
it can be represented by sources and sinks in a uniform stream. As is well known, the infinite 
swept wing with parabolic-arc aerofoil section can be represented by a source distribution which 
is uniform iiI strength parallel to the maximum-thickness line, and which varies linearly in the 
streamwise direction. The second basic wing has been obtained by removing those sources and 
sinks representing an infinite swept-back wing, which lie outside the tapered plan-form of the 
required wing. The resulting wing has again a symmetrical parabolic-arc aerofoil section, the 
thickness/chord ratio of which decreases linearly from (to~Co) at the centre-line to zero at the tips. 

5 



Although it has  not been possible to vary the aerofoil section of this wing in the same way 
as for the rectangular wing discussed above (since this would destroy the essential simplicity 
of the wing), some indication of the effects of change of aerofoil-section shape has been obtained 
by forming wings having aerofoil sections of different parabolic arcs ahead of, and behind the 
maximum-thickness line• This has been achieved by superimposing the front half o f  a wing 
of aspect ratio Aco/(Co -- 2k) and centre-line thickness/chord ratio {Co/(Co --  2k)}(to/Co) on to the 
rear half of a similar wing of aspect ratio Aco/(Co + 2k) and centre-line thickness/chord ratio 
{c0/(co + 2k)}(to/C0), 

where Co is the root chord of the required wing 
A is the aspect ratio of the required wing 

~ d i s t a n c e  of maximum-thickness ahead of mid-chord p o i n t  

half centreqine chord 

(to~Co) is the centre-line thickness/chord ratio of the required wing, 
both parts of the wing having the same sweep on the maximum-thickness line. 

The third basic wing (wing 3, Fig. 1) is again swept, and tapered in plan-form. The aerofoil 
section is symmetrical parabolic arc, and the thickness/chord ratio varies inversely as the local 
chord across the span. Thus the absolute thickness on any percentage-chord line is constant 
across the span• This wing was chosen because, apart from the variable sweep of the constant- 
percentage-chord lines, it is directly comparable with an untapered swept wing of finite aspect 
ratio, and therefore provides an indication of the effects of plan-form taper. 

The fourth basic Wing (wing 4, Fig. 1) has again been chosen because of the simple way in which 
it can be represented by sources in a uniform stream, and because, by suitably superimposing 
a particular form of this wing (i.e., N --=-- 2 in equation (IV.I)) on to wing (3) to give wing (5), 
and then superimposing wing (5) on to wing (2), a wing (wing 6) is obtained which has almost 
constant thickness/chord ratio over the inboard 50 per cent of the semi-span. Thus it has been 
possible to extend, in a very simple manner, the results obtained by laborious calculation in 
Ref. 7 for the centre-line of a tapered wing having constant thickness/chord ratio throughout 
the span. 

Wing (4) is tapered in plan-form, and has zero sweep on the mid-chord line. The section shape 
is symmetrical parabolic arc throughout, and the thickness/chord rat io varies as (1 + N~)(1 -- ~) 
across the span, where • 

spanwise distance f r o m  cenf~re-line 

~ s e m i - s p a n  ' 

N is a factor, varying from -- 1 to + oo 
distribution for this type of wing.. 

, which defines the spanwise thickness 

3. Rectangular Wings Tapered in Thickness.--As pointed out in the introduction, the expres- 
sions for the velocities at the centre of an infinite swept wing and on an infinite sheared wing, 
as obtained by linearised theory, contain a term for the velocity on the corresponding unswept 
two-dimensional wing. The first section of this report is therefore restricted to the determination 
of the effects of aspect ratio and spanwise taper of absolute thickness on the velocities on rec- 
tangular wings• Thus the effects of plan-form taper and sweepback are eliminated from the 
problem. 

The supervelocity vx at a point (x, y) of a rectangular wing which is tapered in thickness from 
to at the centre-line to #t0 at the tips, is derived in Appendix I by replacing the wing by unswept 
source hnes of vat  in stren th alon the s an x 2V • Y" g g g P q( ,Y)  = -- 0[{ z(x, y)}/~x] and by obtaining 
the contribution of the source-line element from an integration across the span, and subsequently 
the total supervelocity from an integration along the chord. Such splitting up of the double 
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integral, into two single integrals is evidently permissible in the wesent case, and for the special 
thickness distribution z(x, y) chosen, the integrations yield explicit relations which have been 
derived in Appendix I. 

3.1. Equation for Wing with Parabolic-Arc Aerofoil Section, and Linear Spanwise Thickness Taper 
over the Central Part of the Span (Wing 1).--The simple case of the equation for the supervelocity 
v, at any point (x, y) of a rectangular wing which has a symmetrical parabolic-arc aerofoil section 
and a linear spanwise variation of thickness/chord ratio from (to~Co) at the centre-line to ~(to/C0) 
at a spanwise position ~0s (where s is the wing semi-span), and a constant thickness outboard of 
~os, is derived as an example. The equations for wings having more complex variations of 
thickness can be derived following the same procedure, though it will be shown later that many 
of the results for such wings can be obtained by superposition of results for this simple wing. 

Substituting ~s for y and ~s for s in equation (1.9) of Appendix I, where s is the semi-span 
of the complete wing, and ~0s is the semi-span of the tapered part of the wing, the contribution 
of the inboard tapered panels of the wing to the superVelocity v, at the point (x, ~) is given by : 

4Vo(to/Co) 
__ (1 - -  #) (1 -~ x)(K1 ~- K s -  2K3) 

8~s 

+ (1 - -  #) (1 - -  x)(K~ + K ~ -  2K6) 
8~s 

+ 4(~° - ~){ 1 

+ 4(~0 + ~)fl  

+ 4{1 -}- ~ (1 -- #)}ln {K~ 

~ ( 1  - ~ ) i n  
4~  

( ~ + ~ ) ( 1 - - / ~ ) \ l n K ~ + ( 1  + x )  
2~ ) K l - - ( 1 - - x )  

(~ - ~) (1  - ~)} in K5 + (1 + x) 
2~0 K~ -- (1 -- x) 

+ 

+ s(w + ~)}{Ko -- ~s} 
+ + - 

K 3 - -  ( 1 - -  x) - -  x l n  _ , .. (10) 

where K12= (1 -- x) 2 + s2(vJ -- 'rl) ~ 

K ?  = (1 - -  x) ~ + s"(~ + ~)~ 
K~ 2 = (1 - -  x) ~ + ~2s ~ 

K ?  = (1 + x) ~ + s~(~ - -  ~)~ 

K ?  = (1 + x) ~ + s~(~ + ~)~ 

K ?  = (1 + x) ~ + ~ s  ~. 

The contribution to v~ due to the outer untapered panels of the wing can be obtained as the 
difference between the contributions of two wings of constant thickness/chord ratio ~(t0/c0) and 
having semi-spans of s and ~s respectively. This can be derived from equation (I. 10) of Appendix 
I which gives the supervelocity distribution on a finite rectangular wing of thickness/chord 
ratio to~Co. 



Thus, using the same notation as for equation (10), the supervelocity v, induced at the point 
(x, ~) by the outer panels of the wing is • 

4Vo(to/~oi =4{ ( 

where 

1--~)lnK"+'(1 +x) K~0-/ 
K~ - -  (1 - -  x) + (1 + ~7)in K~ - -  

/~sf K~ + (1 + x) K~ 
- -4-_(~r - ~7) in K~ - -  (1 - -  x) + (v' + ~) in 

#x {K1-}-s(F--~)}{K2+s(yJ-[-~)}{K. 
+ ~ in ~ + s(~ - ~ + ~(~ + 

Ks ~ =  ( l - - x )  2+s"(1  +~)~ 

K," = (1 + x) ~ + s2(1 -- V)~ 

K~o ~ = (1 -t- x) ~ + s"(1 + v) ~. 

Combining equations ( 
wang as • 

(1 + x)} 
(1-;~ 
+ (1 + x)) 
- (1-;i 
+ s(1-- ~-))} fK~° + s (l + ~ }  (11) 
+ s(1 - [ K ,  + s (1 -- 

10) and (11) gives the supervelocity v~ at (x, ~) due to the whole of the 

4Vo(tdCo) 
(1-,){ } 

- S~ps (1 + x)(K~ + K~ -- 2K~) + (1 - -  x)(K4 + K, -- 2K6) 

+ 4 ( 1 _  ~ ) { ( w -  v)~lnK~ + (1 + x )  K~-¢-(1 + x ) }  
K~ (1 -- x) + (w + ~)2 in - . K~--(1--~ 

KT-- (1 --x) + 1 + ~ ) l n  Ks--  (1 

+ x(1 - z) { K~ + s(~ -- ~) 
4~0 (~ -- v) In K~ -¢- s(w -- V) + (~ + ~) lnK° + ~(~ + ~ ) } K ~  + ~(~ + 

x [ {  ~7 } g o + ~ s  I ~ ( l _ ~ ) } l n K ~ - - ~ s  l +~ 1 - ~ ( 1 - # )  lnK~+~ + i + ~  K~--~ 

+ ~ in ~:~- + s(1 - [K .  + s(1 + 

~ s ( 1  - ~! in K0 + (1 + x) 
4v K3 - -  (1 - -  x) 

l + x  
- x in 1 - - - ~  . . . . . . .  (12) 

3.2. The Shape of the Chordwise Supervelocity Distribution on Rectangular Wings.--A number 
of chordwise supervelocity (vx) distributions have been calculated at various spanwise positions 
on rectangular wings having symmetrical parabolic-arc aerofoil sections, both for wings of 
constant spanwise thickness, and for wings tapered in thickness over part, or the whole, of the 
sp.an. Some of these results are presented in Figs. 2a to 4a. Results for constant-thickness 
wangs are not given, since the v~ distributions for a wing of aspect ratio 2 can be found in Ref. 3. 
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All tile results calculated, show that  for rectangular wings of symmetrical parabolic-arc aerofoil 
section, the supervelocity distributions are similar in shape to the corresponding two-dimensional 
distribution (Figs. 2b to 4b), but with the supervelocities at all points of the chord reduced in 
approximately the same ratio (T). Hence if the two dimensional v, distribution and the super- 
velocity at one point on the chord are known, the complete chordwise v, distribution can be 
determined to a close degree of approximation by multiplication with a factor ,. Thus the 
problem reduces to determining the f a c t o r ,  as a function of the thickness taper. 

The supervelocity distribution at the centre-line of a rectangular wing tapered in thickness, and 
having a symmetrical aerofoil section formed by arcs of cubics (see Appendix I) with maximum- 
thickness position at one-third chord (Fig. 5), shows tha t  change of aerofoil-section shape (at 
least for these simple sections) does not affect the manner in which the velocities are reduced 
relative to the two-dimensional values. 

This does not necessarily mean that  wings having more conventional aerofoil sections will 
behave in the same way. Whether this is so, will be determined from the experimental programme 
of Ref. 8 for wings having RAE 101 aerofoil-section shape. 

3.9. Variation of the Supervdocit 2 at the Maximum-Thichmss Position of the Centre-line Chord, 
with Aspect Ratio and Spanwise Extent of Thickness Taper.--Since the supervelocity at one point 
of the chord is required to obtain the relationship between the actual and the two-dimensional 
v, distributions, it seems reasonable to consider the effects of aspect ratio, etc., on the super- 
velocity v,(k) at the maximum-thickness position of the centre-line chord. 

Fig. 6a shows the variation of v,(h) with aspect ratio for several values of k, and it is seen that  
reduction of aspect ratio causes a decrease of v,(k) for all values of k. Forward movement of the 
maximum-thickness position (i.e., increase of k) causes an increase of v~(k) for both the finite and 
the infinite aspect ratio wings (Fig. 6a). For a given aspect ratio, however, the reduction of v~.(k) 
relative to the correspollding two-dimensional value is almost independent of maximum-thickness 
position (Fig. 6b). This will not be true for very small aspect ratios, since according to the 
linearised theory, v,(k) = 0 for zero aspect ratio. Furthermore, it may be found that  for con- 
ventional round-nosed sections, the reduction of v~(k) due to aspect ratio and thickness taper 
may be different from that  obtained for these simple sections. Results given recently in Ref. 11 
for a rectangular wing tapered in thickness, and having a 10 per cent thick RAE 101 aerofoil 
section do, however, show tha t  in this case agreement with the results obtained for these simple 
sections is very good. 

I t  seems reasonable to restrict further discussion of the effects of thickness taper on the super- 
velocity at the maximum-thickness position of the centre-line chord, to the simple case of a 
wing with symmetrical parabolic-arc aerofoil section. 

Figs. 7, 8 and 9 show the effects of aspect ratio A, spanwise extent of thickness taper ~s, 
and spanwise rate of thickness taper on the supervelocity v,(o). In these figures, s' is the spanwise 
distance from the centre-line at which upper and lower surface generators for the inboard tapered 
part  of the wing, intersect the wing chord plane ; thus s' and to (the centre-line thickness) define 
the spanwise rate of thickness taper. 

The main conclusions to be drawn from these results are : 

(a) The supervelocity at  the centre of a rectangular wing decreases as the rate of spanwise 
thickness taper over the central part  of the span is increased. 

(b) For a given rate of spanwise thickness taper over the central part  of the wing, and a given 
thickness of the outer wing panels, aspect ratio has little effect on v,(o), except when 
both the  aspect ratio and the spanwise extent of taper are small (Fig. 7b). This is also 
shown by the similarity between the curves for s'/co = 2.0 of Figs. 8b and 9b. 
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(c) For all aspect ratios, the rate of decrease of v.,(o) with decrease of ~0, is greatest when 
~o is small. 

(d) For a given rate of spanwise thickness taper over the central part of the span, vx(o) decreases 
with increase in the spanwise extent of the taper. This is caused by the reduced effect 
of the outer panels of the wing. For wings having only a small amount of thickness 
taper over the central part of the span, little reduction of vx(o) occurs for ~o > 0.2 
(Figs. 8a and 9a;  s' > 2.0Co). 

3.4. Spanwise Variation of the Superveloc~ty at the Maximum-Thickness Position.--Fig. 10a 
shows the spanwise variation of v,(k), the supervelocity at the maximum-thickness position, 
for rectangular wings having a linear spanwise variation of thickness/chord ratio from to/Co at 
tile centre-line to zero at the tips. v~(k) does not decrease linearly across the span as would be 
the case if v~(k) was dependent only on the local thickness/chord ratio. At about 0.65 semi-span 
v~(k) is almost independent of aspect ratio, the supervelocity being the same as that  on an unswept 
two-dimensional wing of the local thickness/chord ratio. 

Inboard of ~ = 0.65, v,(k) is smaller than the corresponding two-dimensional value, and 
decreases with reduction of aspect ratio because of the larger effect of thickness taper. Outboard 
of ~ = 0.65, v,(k) is greater than the corresponding two-dimensional value, and increases with 
reduction of aspect ratio. 

The reduction of v~(k) below the corresponding two-dimensional value is plotted in Fig. 10b. 
As at the centre-line, the reduction of vx(k) due to thickness taper is, for a given plan-form and 
thickness distribution, almost independent of maximum-thickness position. The tests of Ref. 8 
are to be extended to provide (by means of ' creeper '  static tubes) results over the outer part  
of the span for wings of RAE 101 section shape, to determine whether the results of Fig. 10b 
can also be applied to conventional round-nosed aerofoil sections. 

Further investigation of the effects of spanwise thickness taper is restricted to the simple 
case of a wing with biconvex parabolic-arc aerofoil section. Figs. 11 and 12 illustrate the effects 
of spanwise extent of taper and the relative thickness of the outer panels on the spanwise variation 
of v,(o) for a wing of aspect ratio 4. 

In Fig. 11, the rate of thickness taper over the inboard panels is maintained constant and the 
spanwise extent of the taper (~o) varied, with a corresponding variation in the thickness/chord 
ratio of the outer panels. The effect of spanwise extent of taper on the supervelocities near the 
centre-line is negligible for ~ > 0.25, as shown earlier (Figs. 7 and 8). For smaller vMues of ~0 
the velocities near the centre of the wing are increased due to the proximity of the outer panels. 
At the thickness crank the supervelocities are increased, the effect fading out about 0. ls either 
side of the change in thickness taper. From Fig. 1 lb, which shows the reduction of vx(o) relative 
to the corresponding two-dimensional value, it is seen that  the increase of v~(o) at the thickness 
crank is almost independent of the spanwise position of the crank. 

Changing the spanwise rate of thickness taper over the inner part of the wing, while keeping 
the thickness of the outboard panels constant (Fig. 12), has a large effect on the supervelocities 
near the centre of the wing (inboard of about ~ = 0.1) because of the variation in the thickness 
taper of the central panels. The increase of supervelocity at the thickness crank relative to t he  
corresponding two-dimensional value is not independent of the spanwise position of the crank in 
this case, but is large for small values of ~o, becoming less marked with increase of ~o. Furthermore 
the spanwise extent of the wing influenced by the effects of the thickness crank increases 
with reduction of v~. 

From the results of Figs. 11 and 12, it is concluded that  the relative increase of v~(o) at the 
crank in the thickness distribution is chiefly a function of the change of rate of thickness taper 
across the crank. 
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It  should be noted that  this increase of v~(o) at the thickness crank is due only to the change 
in thickness taper. In many  practical cases, a change of thickness taper is associated with a 
change of plan-form taper or plan-form sweep, which will have a further effect on the super- 
velocities in the crank 9. 

As a further illustration of the effects of thickness distribution, the results of Fig. 13 have 
been obtained by superimposing the wings, results for which are given in Figs. 11 and 12. 

Comparison of curve A (Fig. 13) with the curve ~ = 0.25, # = 0.75 of Fig. 11, shows tha t  
decreasing the change of thickness taper at ~0 = 0.25 has caused a reduction in the supervelocity 
at both the centre-line and at the thickness crank;  at the crank, the supervelocity is almost 
equal to the corresponding two-dimensional value. At the outboard crank, the supervelocities 
are nearly the same as those shown in the curve ~0 = 0-75, ~ = 0-5 of Fig. 12, since these two 
wings are similar near the crank. 

Curve B of Fig. 13, shows that  for a given spanwise extent of taper, and a given tip thickness, 
a considerable gain can be obtained over the inboard part of the wing by tapering in two stages, 
as compared with the curve ~ = 0.5,/~ = 0.5 of Figs. 11 and 12. The supervelocities are reduced 
near the centre-line because of the larger rate of taper over the centre part of the wing, and over 
the intermediate part  of the wing because of the reduced thickness/chord ratio. At the inboard 
crank of wing B (Fig. 13), the supervelocity exceeds the corresponding two-dimensional value 
by about the same amount as the supervelocity at the crank of the wing of Fig. 12 (~o = 0.5, 

= 0.5) ; the changes in the rate of thickness taper across the two cranks are approximately 
the same. At the outer crank of wing B (Fig. 13), the excess supervelocity is considerably less 
than for the wing of Fig. 12, having only one thickness crank. 

Wing C of Fig. 13 does not compare directly with any of the other wings considered, but has 
been included to show the wide variety of wing thickness distributions which can be obtained 
by the method of superposition. On this wing the supervelocities at the maximum-thickness 
position are approximately equal to or less than the corresponding two-dimensional values. 

From the above discussion, it seems probable that  if t h e  thickness distribution across the 
cranks was faired to give a smooth variation across the span, some reduction of the supervelocity 
at the cranks could be obtained even though the thickness/chord ratio would have to be slightly 
increased locally; this fairing out would certainly give better flow conditions on actual wings. 

3.5. Brief Summary of Main Results for Rectangular Wings.--It has been shown that  for 
rectangular wings having the simple aerofoil sections considered, the chordwise supervelocity 
distribution at any part  of the span is related to the two-dimensional supervelocity distribution 
by a factor ~ which is approximately constant across the chord. Furthermore, the reduction 
of the supervelocity at the maximum-thickness position relative to the corresponding two- 
dimensional value is, within the limitations of linearised theory, independent of aerofoil-section 
shape for the range of section shapes considered. 

4. Wings Tapered in Plan-form and Thickness.--In tile previous section the effects of thickness 
taper on the velocities on unswept rectangular wings were considered. In the present section, 
the effects of thickness taper on the velocities on unswept and swept wings tapered in plan-form 
are dealt with, and, by  comparing wings having the same spanwise thickness taper, the effects 
of plan-form taper derived. 

All the wings considered in this section have symmetrical parabolic-arc aerofoil sections. 
They are : 

Wing (2) (Fig. 1).--A tapered wing having a linear spanwise variation of thickness/chord 
ratio from to/Co at  the centre-line to zero at the tips. 
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The superveiocity vx at a point (x, ~) of this wing is derived in Appendix II  by replacing the 
wing by swept source lines parallel to the maximum-thickness line, of constant strength across 
the span. In order to avoid singularities within the plan-form of the wing, use has been made 
of the fact that  the source distribution required to represent this wing is the same as that  for 
the portion of an infinite swept-back wing which lies within the wing (2) plan-form. Thus the 
velocity at any point of wing (2) has been derived as the difference between the velocity at that  
point due to a complete infinite swept-back wing, and the velocity due to that  part of the infinite 
wing which lies outside the plan-form of wing (2). 

Wing (3) (Fig. 1).--A tapered wing having a constant absolute thickness along constant per- 
centage chord-lines throughout the span, i.e., the thickness/chord ratio 
increases towards the tips in inverse proportion to the local chord. 

The supervelocity v~ at the centime-line of this wing is derived in Appendix I I I  by replacing 
the wing by swept source filaments along constant percentage chord-lines, the chordwise width 
of the filaments varying across the span in the same proportion as the chord, and the source 
strength increasing across the span inversely as the chord. In order to investigate the effects 
of plan-form taper the wing is cropped to give a non-zero taper ratio, and the velocity due to the 
fully tapered wing derived as the limit as the taper ratio (2) approaches zero (see Appendix III).  

Wings 4, 5 and 6 (Fig. l ) . - -Wing (4) is an unswept tapered wing, the thickness/chord ratio 
of which varies as (1 + N'~7)(1 -- ~)t across the span. 

This wing is represented b y  source filaments parallel to the maximum-thickness line, the 
strength of which vary linearly across the span, i.e., as (1 d- N~). For N = 0, this wing is the 
same as wing (2), 90 = 0 deg. 

The value of N of most interest in this report is 2, since superimposing this wing on to wing (3) 
gives a wing (wing (5) of Fig. 1) which, when in turn superimposed on wing (2), produces wing (6). 
Wing (6) has almost constant thickness/chord ratio over the inboard half of the semi-span, 
and can be used to determine in a simple manner the approximate centre-line supervelocities 
for the wing of Ref. 7. 

4.1. Unswept Wings.--4.1.1. The shape of the chordwise supervelocity distribution at any span- 
wise position.--Since unswept tapered wings are in fact swept along constant percentage chord 
lines at all but one chordwise position, it seems logical to consider them on the basis of known 
results for untapered swept wings. Some confirmation that  this approach to the problem is 
reasonable, is provided by the results obtained in Appendix III. These show that  the super- 
velocity at any point on the centre-line of a wing tapered in plan-form, but of constant thickness 
throughout the span, is exactly the same as that  at the corresponding point of an infinite swept 
wing, having the same sweep as the constant percentage chord-line passing through that  point. 

Three types of supervelocity distribution can therefore be defined for comparison with the 
results obtained for wings tapered in plan-form, viz.: 

(a) 'Pseudo-infinite sheared wing' distribution.--This is defined as the supervelocity distri- 
bution for an infinite unswept wing of the same section shape, multiplied by the cosine of the 
local geometric sweep angle (9) of the tapered wing (i.e., sweep of constant percentage chord-line). 

Therefore v,(x) V0 - -  S(1)(X) COS 9 ,  " . . . .  , . . . . . . . . . .  (13) 

where v,(x) is the chordwise supervelocity at chordwise position x, V0 is the free-stream velocity, 
and S(1)(x) is a known function of (x) depending only on the aerofoil section shape z(x) (see Ref. 4). 

spanwise distance from ccnl,re-line 
t ~ ~--~ semi-span 

N is an arbitrary coefficient varying between - -  1 and + co for wings having positive thickness ~hroughout the span° 
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(b) ' Pseudo- in f in i te  w ing  centre ' d i s t r i bu t ion . - -Th i s  is the same as for the centre of an infinite 
swept wing, with the constant sweep of the untapered wing replaced by the local geometric 
sweep (~) of the tapered wing, i.e.: 

v~ = .l.Sl*l(x) - -  Sl=l(x) f (~o) f cos q~ ). . . . . . . . . . .  (14) 
Vo 

where SC2/(x) is a known function of (x) depending on aerofoil section shape ~. 

(c) ' Pseudo- in f in i te  w ing  tip ' d i s t r i b u t i o n . ~ T h e  supervelocity distribution at the downstream 
tip of a semi-infinite wing is, according to linearised theory, the same as that  at the centre of an 
infinite swept-forWard wing having the same angle of sweep, but  with the supervelocities reduced 
by one half.. Thus substituting the local angle of sweep (q0) of the tapered wing, for the wing 
sweep of the untapered wing, the pseudo-infinite wing tip distribution is given by : 

v. (is) Vo- ½{s(1 ) (x )  . . . . . . . . . . .  

These pseudo-infinite wing distributions are shown for an unswept tapered wing of aspect 
ratio 3 in Fig. 14b, in the form v,(x)/v.dk ) (where v,(k) is the supervelocity at the maximum- 
thickness position). In this figure they are compared with calculated distributions of v,(x)/v~(k) 
for various spanwise positions of wing (2), the actual supervelocity distributions for this wing 
being given in Fig. 14a. 

For ~ ~---0.2, the shape of the vx distribution for wing (2) (Fig. 14b) is in close agreement 
with that  for the pseudo-infinite sheared wing. At the centre-line, and near the tip (7 = 0.8), 
the v~ distributions are similar in shape to the pseudo-infinite wing ' centre ' and ' tip ' distri- 
butions, though here the agreement is not so good. 

A similar comparison for the same type of wing of higher aspect ratio (Fig. 15a) shows much 
closer agreement between the shapes of the actual and pseudo-infinite wing distributions. In this 
case, the spanwise position at which the wing supervelocity distribution is similar in shape to 
that  of the pseudo-infinite sheared wing, is further outboard (i.e., ~ -~- 0.3 instead of ~ = 0.2 
as for the A = 3 wing). 

For both aspect ratios, the shape of the supervelocity distribution agrees with the pseudo- 
infinite sheared wing distribution at only one spanwise position, indicating that  the ' centre ' 
and ' tip ' effects spread over the whole wing surface. 

Results given in Ref. 7 for an aspect-ratio 6.67 wing having constant thickness/chord ratio 
throughout the span (reproducdd in Fig. 15b), show that  for this wing, the ' centre '  effect is 
negligible outboard of 0.2 semi-span, and that  at ~ = 0.7, the furthest outboard position for 
which results are given, the distortion of the supervelocity distribution due to the tip effect is 
quite small. 

The comparison shown in Fig. 15 between wing (2) and the wing of Ref. 7 (both of aspect 
ratio 6.67), is not necessarily the correct one, however, since presenting the results in the form 
v,(x)/v ,(k)  implies that  both the ' two-dimensional '  and the ' k i n k '  components of the v, distri- 
butions are related to the local thickness/chord ratio, and hence the spanwise thickness taper. 
Examination of the curves for ~ = 0 (Figs. 15a and 15b) shows that  though the two wings have 
different rates of spanwise thickness taper at their centres (the spanwise thickness taper at the 
centre of wing (2) is double that  at the centre of the wing of Ref. 7), the centre-line supervelocity 
,distributions are almost identical, 
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This is very important, since it shows that  (at least for A ~ 6 .67 ) the  ' kink ' term is inde- 
pendent of spanwise thickness taper. The expression for the supervelocity at the centre=line of 
a tapered wing having constant spanwise thickness, derived in Appendix III,  shows that  the 
' k i n k '  term is also independent of spanwise variation of thickness/chord ratio. From this i t  
follows that  for a wing having the same aerofoil-section shape throughout the span, changes 
in spanwise rate of thickness taper do not introduce local kink effects, provided there is no 
change in plan-form sweep. There is of course a general increase or decrease in the supervelocities 
at, and near, the thickness crank as shown in section 3.4. 

In Fig. 16, the results for wing (2), A = 6.67, have been replotted to show the shape of the 
local chordwise supervelocity distribution compared with the pseudo-infinite sheared wing 
distribution for the local thickness/chord ratio. The ' tip effect ' is now seen to be of the same 
order as for the wing of Ref. 7. 

The spanwise variation of the local ' kink ' effect, as a fraction (K~) of the full centre-line value, 
has been plotted in Fig. 17a for both wing (2), A = 6.67, and the wing of Ref. 7. These values 
of K, are not quite exact, since there is a small variation across the chord (within the accuracy 
of the computed results). This variation is due (in part) to ignoring the"small K1 Sill(x) cos 
term in equation (4). The results are sufficiently accurate, however, to show that  the spanwise 
variation of K, is independent of the spanwise distribution of thickness. 

Fig. 17b shows the effect of aspect ratio on the spanwise variation of K2 for wing (2). The 
two major factors apparent in this figure are : 

(a) the spanwise position at which K~ is zero moves inboard with reduction of aspect ratio 
(~ = 0 . 2 9 I o t A  = 6 . 6 7 ; ~  = 0 . 1 7 f o r A  = 3 )  

(b) the ' k i n k '  effect near the centre of the A = 3 wing, is considerably less than the 
theoretical value for the pseudo-infinite wing distribution. I t  will be shown later that  for a 
wing having a constant rate of spanwise thickness taper throughout the span, K, is unity at the 
centre-line ; if an allowance is made for the effects of finite aspect ratio on the pseudo-infinite 
centre distribution, the value of K, for wing (2) is also approximately uni ty even for aspect 
ratios as low as A = 1. 

Thus it appears reasonable to assume that  for A = 3, the spanwise variation of K2 is as shown 
in Fig. 17b, with K~ = 1 at the centre-line. 

In Fig. 17c, values of K~ for tapered wings of aspect ratio 3 a n d 6 . 6 7  are compared with the 
spanwise var ia t ion of K~ for an infinite swept wing given in Ref. 4 (see section 3.4 of Ref. 4). 
For A = 6.67, K2 decreases more gradually away from the centre-line than for the infinite swept 
wing, though K2 is zero at )'/Co = 0.5 for  both wings. Thus though thickness taper does not 
materially affect the spanwise variation of K~, plan-form taper does. Reducing the aspect ratio 
from 6.67 to 3, causes a considerable increase in the spanwise rate of decay of K~, and reduces 
the spanwise distance from the centre at which K~ is zero. 

From these results it, is clear that  the effects of plan-form taper and aspect ratio on the spanwise 
variation of the kink -term factor K~, need further investigation, particularly for small amounts 
of plan-form taper. I t  is proposed, when time permits, to determine these effects using wing (3) 
of this report, which is untapered in thickness. 

The results of Fig. 17 do, however, give a useful indication of the approximate spanwise 
variation of K2 for wings having moderate and large amounts of plan-form taper. 

Before discussing the centre-line supervelocity distribution in greater detail, one interesting 
result which applies only to unswept wings tapered in plan-form and thickness is worthy of 
mention. It  enables one to derive very quickly the approximate supervelocity distribution over 
the whole wing, provided the aspect ratio is not too small (A ~< 3). 
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The method is illustrated for wing (2) in Figs. 18 and 19a, where it is shown that  over a large 
portion of the chord, the actual reduction of the supervelocity (v,) relative to the corresponding 
infinite unswept wing value, is almost independent of the chordwise position. Thus it is only 
necessary to know the two-dimensional supervelocity distribution for the appropriate thickness/ 
chord ratio, and the actual supervelocity at one chordwise position in order to determine the 
approximate supervelocity over the whole wing. 

A similar process has been applied to the results for the wing of Ref. 7 (A = 6.67) in Fig. 19b. 
Again it is seen that  over most of the span, the same method can be used ; at the centre-line a 
better approximation to the shape of the v~ distribution would, as shown earlier, be obtained 
from the pseudo-infinite wing centre distribution in this case. 

4.1.2. The shape of the centre-lira supervdocity distributio~¢.--No results for very small aspect- 
ratio tapered wings have so far been considered. I t  was shown in Figs. 14b and 15a that  the 
agreement between the actual centre-line supervelocity distribution for wing (2) and the pseudo- 
infinite wing centre distribution, deteriorated with decrease of aspect ratio. Unfortunately, the 
centre-line v~ distribution for a tapered wing having constant thickness/chord ratio throughout 
tile span, is only given for A = 6.67 in Ref. 7, so that  it is not known whether this deterioration 
also applies to a wing of this type. Results have, however, been derived in this report, by suitably 
superimposing wings 2, 3 and 4 (N = 2), for the centre-line supervelocity distribution of a wing 
having approximately constant thickness/chord ratio over the inboard 50 per cent of the span. 
The variation of thickness/chord ratio over the outer parts of the wing should not have a material 
effect on the centre-line vx distribution, except perhaps for very small aspect ratios. 

The centre-line supervelocity distributions for wings 2, 3 and 6 are shown in Figs. 20 to 22 
for A = 1, 3 and 5. These results show the very marked effect of spanwise thickness taper 
near the centre-line on the centre-line supervelocities (wing (3) has constant thickness throughout 
the span;  wing (6) has effectively constant thickness/chord ratio throughout the span, and 
wing (2) has a linear spanwise decrease of thickness/chord ratio to zero at the tips). 

In addition to the actual supervelocity distributions, the shapes of the supervelocity distri- 
butions are presented in Figs. 20 to 22 in terms of vx(x)/vx(k), where v,(k) is the supervelocity 
at the maximum-thickness position. 

For all aspect ratios, the shape of the supervelocity distribution for wing (6) is almost identical 
witti that  for wing (3), which is the same as the pseudo-infinite wing centre distribution. The 
centre-line vx distribution for wing (2), is however, relatively flatter than those for wings (3) 
and (6), particularly for A ---= 1. A curve for the supervelocity at the corresponding point of a 
finite untapered wing having the same span/centre-line chord ratio, and the same sweep as the 
local geometric sweep of the tapered wing (in future called the pseudo-finite wing centre distri- 
bution), is included in Fig. 20 : it is seen that  the shape of this curve is similar to that  for tile v~ 
distribution at the centre-line of wing (21. This suggests that  the less peaky supervelocity 
distribution at the centre of wing (2), as compared with that  for wing (6), may be due to a more 
pronounced low-aspect-ratio effect, caused by the greater spanwise thickness taper. For larger 
aspect ratios (A > 3), the differences in shape between the centre-line vx distributions for wings 
(2), (3) and (6) are small. 

. 4.1.3. Effect of aerofoil-section shape on the supervdocity at the centre-li~ce maximum-thickmss 
positior~.--For wings tapered in plan-form and thickness/chord ratio (wing 2) it is not possible 
as in the case of rectangular wings, t o  change the aerofoil-section shape by substituting cubic-arc 
sections for parabolic-arc sections, without destroying the essential simplicity of the source 
distribution required to represent this wing. An aerofoil section which has its maximum thickness 
at a point other than tile mid-chord position can, however, be formed from parabolic arcs which 

a r e  different ahead of, and behind the maximum-thickness line. The portion of such a wing 
which lies ahe.ad Of t.he maxi,mum-thickness line (assuming the maximum-thickness line to 



remain unswept), is identical with the front half of wing (2) of the appropriate aspect ratio 
and centre-line thickness/chord ratio. Similarly the portion of this wing aft of the maximum- 
thickness line, is identical with the rear half of wing (2) of a different aspect ratio and thickness/ 
chord ratio. The appropriate effective aspect ratios and thickness/chord ratios of the front and 
rear parts of this wing are determined (see Introduction) from the conditions that  : 

(a) the spans of the front and rear parts of the wing must be equal 

(b) the maximum thicknesses of the front and rear parts of the wing must be equal 

(c) the maximum thickness must be appropriate to the required thickness/chord ratio. 

The contributions of both parts of the wing to the supervelocity at the maximum-thickness 
position can be readily determined for an unswept wing from the results for wing (2), since 
from considerations of symmetry the front and rear halves of wing (2) must contribute equally 
to v,(k) at the maximum-thickness position. 

The results given in Fig. 23 show that,  as for rectangular wings, the reduction of the super- 
velocity at the centre-line maximum-thickness position due to decrease of aspect ratio is almost 
independent of the position of the aerofoil-section maximum thickness. Results for other spanwise 
positions are discussed later (section 4.1.5.). 

4.1.4. Effect of aspect ratio, plan-form taper, and thickness taper on the supervelocity at the centre- 
line maximum-thickness position.--It  has been shown in section 4.1.1 t h a t  the supervelocity 
distribution at  the centre-line of an unswept wing tapered in plan-form and thickness is similar 
in shape to either the pseudo-infinite or pseudo-finite wing centre distribution depending on 
aspect ratio. Thus the actual centre-line distribution can be obtained by multiplying the 
supervelocities at all chordwise positions, as defined by these pseudo-centre distributions, by a 
constant factor ,. Since the reduction of the supervelocity at the centre-line maximum-thickness 
position due to decrease of aspect ratio is independent of the chordwise position of the maximum 
thickness, it seems eminently suitable to def ine ,  as the ratio : 

acgltal superveloci~y at centre-line maximum thickness 
l~seudo wing superveIoeity at centre-line maximnm ~hiekness 

as for the case of the rectangular wing. 

Having thus defined the centre-line supervelocity distribution, it  is necessary to consider 
the effects of plan-form and thickness taper on the actual supervelocity at the maximum-thickness 
position of the centre-line chord. Only the case of the symmetrical parabolic-arc aerofoil section 
is considered, since it has been shown that  for both rectangular and tapered plan-form wings, 
the reduction of v~(k) at the maximum-thickness position, due to aspect ratio, is independent 
of maximum-thickness position. 

The results are first presented in Fig. 24a with aspect ratio (A) as the independent variable, 
since this is the parameter having the greatest aerodynamic significance in plan-form design. 
For wings tapered in plan-form, four curves are given, i.e.: 

Wing (3)--constant absolute thickness throughout the span 

Wing (6)--constant thickness/chord ratio over the inboard 50 per cent of the span 

Wing of Ref. 7--constant  thickness/chord ratio throughout the span 

Wing (2)--linear spanwise decrease of thickness/chord ratio to zero at the tips. 

I t  is interesting to note the very close agreement between the results for wing (6), and those 
given in Ref. 7. This shows that  the assumption that  the small difference in tip thickness between 
these two wings is not sufficient to materially affect the centre-line supervelocities. 
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In addition to the curves for tapered wings, two curves are given for wings of rectangular 
plan-form • 

Wing (1), ~ .---- 1, ~ ---- 1--constant thickness throughout the span 

Wing (1), ~ = 1, ~ = 0--l inear spanwise decrease of thickness to zero at the tips. 

For a given aspect ratio and type of spanwise thickness distribution, it is immediately apparent 
that,  in general, plan-form taper has only a small effect on the supervelocity v,(k) at the maximum- 
thickness position of the centre-line chord (except in the case of wings having constant spanwise 
thickness and A < 2). As would be expected from the earlier discussion, increase of spanwise 
thickness taper near the centre-line causes a reduction in v,(k). 

For a given aspect ratio, however, rectangular and tapered wings have different spans, and 
Fig. 24a does not give a true indication of the effects of plan-form and thickness taper. Tile 
results of Fig. 24a have been replotted against the ratio • 

S semispan 
centre-linechord 

Co 

in Fig. 24b. Comparing the results for wing (6) and wing (1), ~ -- 1, # = 0, it is now seen that  
for s/co > 1.5, plan-form taper has little effect on the supervelocity v~(k), at the centre-line 
maximum-thickness position. For smaller values of s/co, plan-form taper causes an increase 
in the value of v~(k), thus counteracting the beneficial effects of thickness taper. When S/Co is 
very small (i.e., s/co -'- 0.25), tile value of v~(k) for wing (6) is almost as large as tha t  for wing (1), 

= 1, ~ = 1, and the value of v,(k) for wing (2) is approximately equal to tha t  for wing (1), 
= 1, ~.---- 0. Thus in these cases, the reduction in v,(k) due to the thickness taper has been 

almost completely balanced by the increase in v,(k) due to plan-form taper. 

Fig. 25a shows the increase in v(k,) caused by plan-form taper. Comparison of the results for 
wing (1), ~ = 1, ~ = 0 with those for wing (3), ~ = 0 (i.e., a fully tapered wing having constant 
spanwise thickness), gives the effect of plan-form taper for a wing untapered in thickness: 
A similar comparison between the results .for wing (1), ~ = 1, ~ ---- 0, and wing (6), gives the 
effect of plan-form taper for a wing having a linear spanwise variation of thickness. I t  is seen 
that  for S/Co > 0.5, spanwise thickness taper has Ollly a small effect on the increase of v~(k) 
due to plan-form taper, 

Hence, a further curve has been given in Fig. 25a to show the effect of tapering a wing so 
t h a t  the taper ratio I (tip chord/centre-line chord) is 0.5. This curve was obtained by comparing 
the supervelocities given by equation (III.10) of Appendix I n  for = 0.s ,  with those for wing 
(1), ~ = 1, # ---- 1. The increase of v,(k) due to plan-form taper does not increase quite linearly 
with decrease of taper ratio, but  these two curves are sufficient to enable a fairly accurate estimate 
of the effect of I to be made (intermediate values can be obtained quite easily from equations 
(IIi.10) and (III.11) of Appendix h i ) .  

A similar procedure has been adopted ill Fig. 25b to illustrate the effects of thickness taper. 
In this case, comparison of the results for ~ = 0 and t* -- 1 for wing (1), ~ -- 1, gives the reduction 
in v~(k) due to thickness taper for a rectangular wing, and comparison between wings (3) and 
(6), the corresponding value for wings tapered in plan-form. The close agreement between the 
two curves for Ave(k) so obtained, shows that  the effects of thickness taper are virtually inde- 
pendent of plan-form taper. I t  is concluded from the results of Figs. 25a and 25b that  tile effects 
of plan-form and thickness taper are almost independent of each other. 
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Since the results presented in Figs. 25a and 25b give the increase of v~(k) due to plan-form 
taper, and the reduction of v~(k) due to thickness taper, relative to the corresponding finite 
untapered wing, the reduction in v,(k) due to decrease of aspect ratio (A = 2S/Co for an untapered 
wing) is shown in Fig. 25c. Results for two values of (k) have been calculated (k = 0 and 
k = 0.33, representing maximum-thickness positions at 0- 5 and 0.33 chord). As for rectangular 
and tapered wings, tapered in thickness, maximum-thickness position has little effect on the 
reduction of v~(k) relative to the two-dimensional value. 

In Fig. 25d, the reduction of v~(k) relative to the unswept two-dimensional value has been 
plotted for wings (2) and (6), and for wing (1), -¢ = 1, # = 0, against tile ratio s'/Co (s' is the 
spanwise distance from the centre-line at  which a tangent to the maximum-thickness line, at 
the centre of the wing, cuts the wing chord plane). Thus for a given value of s'/Co all three wings 
have the same spanwise rate of thickness taper at the centre-line. They have, however, different 
amounts of plan-f0rm taper, i being 1, 0.5 and 0 for wings (1), (2) and (6) respectively. 

The main point of  interest in this figure, is the small difference in  Av.~(k) between wings (2) 
and (6). From Figs. 25a and 25b, the value of zlv~(k) for wing (2) would be expected to be 
approximately the mean of the values for wings (1) and (6), but the continual reduction in 
thickness taper away from the centre-line reduces the value of Avx(k) in the same way as shown 
earlier for rectangular wings, when ~o was small. This charadteristic of wing (2) has been used 
later in this report to determine the approximate supervelocity at the centre-line maximum- 
thickness position for a swept tapered wing having constant thickness/chord ratio throughout 
the span. 

4.1.5. Spanwise variation of the supervdocity at the maximum-thickness positio~.--The spanwise 
variation of the supervelocity at the maximum-thickness position is shown for wing (2) in Fig. 26a. 
I t  is seen that  reduction of aspect ratio results in a decrease in the supervelocities over the 
inboard part of the wing, and an increase in those over the outer part. At about mid-semi-span, 
aspect ratio has little effect on the supervelocities at the maximum-thickness position. 

One result has been calculated for a wing having an aerofoil section formed by parabolic arcs, 
but having its maximum-thickness position (x = k) at 0.38 of the half chord length ahead of 
the mid-chord point. As in the case of the rectangular wing, this forward movement of the 
maximum-thickness position results in an increase of the supervelocities across the whole span, 
but again does not significantly alter the reduction of the supervelocity relative to the two- 
dimensional value for the local thickness/chord ratio (Fig. 26b). It  is of interest to note that  from 
Fig. 26b, the point at which the supervelocity is the same as the local two-dimensional value, 
moves outboard with decrease of aspect ratio, whereas, as was seen earlier, the spanwise position 
at which the supervelocity distribution is similar in shape to the pseudo-infinite wing distribution, 
moves inboard. 

Results have also been derived from Ref. 7 to show the effect of moving the maximum-thickness 
position forward to 0.33 chord on the spanwise variation of the supervelocity at the maximum 
thickness of a constant thickness/chord ratio wing. These are presented in Fig. 27 for an aspect 
ratio of  3.33. Again, forward movement of the maximum-thickness position results in an 
increase in the supervelocities across the whole wing, but as shown in Fig. 27b, it does not alter 
significantly the reduction of the supervelocities relative to the tw0-dimensional value for the 
local thickness/chord ratio. Results for the spanwise variation of the supervelocity at the 
maximum thickness for tapered wings, having constant thickness/chord ratio throughout the 
span, can be found for other aspect ratios in Ref. 7. 

4.1.6. Effect of plan-form and thickness taper o~ the spanwise variatio~¢ of the supervelocity at 
the maximum thickness.--In Fig. 28, a comparison is made between the spanwise variations in 
the reduction of supervelocity due to taper for wings having different plan-form and thickness 
tapers. In each comparison, the rate of thickness taper at the centre,line has been kept constant 
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(i.e., s'/Co = constant), since it has been shown earlier that the ratio s'/Co is the chief parameter 
defining the reduction of v~ at the centre-line. 

Comparison of the results for wings having rectangular and tapered plan-forms and linear 
spanwise variation of absolute thickness (i.e., wing (1), ~ = 1, /, = 0, and the wing of Ref. 7) 
shows that the effect of plan-form taper, which was found to be present at the centre-line, rapidly 
diminishes, and outboard of ~ -~- 0.1, the reduction of v, at any spanwise position is virtually 
independent of plan-form. For values of s'/Co > 2.0, plan-form taper has little effect on the 
supervelocity at the maximum thickness even at the centre-line. Thus spanwise distribution 
of thickness/chord ratio is not an important parameter in determining the reduction of the 
supervelocity due to taper. 

Comparing the results for the two wings tapered in plan-form (i.e., wing (2) having linear 
spanwise variation of thickness/chord ratio, and the wing of Ref. 7 having linear spanwise 
variation of absolute thickness) shows that the reduction of v~ due to taper is in agreement only 
at the centre-line. The absolute spanwise distance from the centre-line at which the reduction 
of the supervelocity relative to the local two-dimensional value becomes zero, is however 
approximately the same for the two wings, since the span of wing (2) is twice that of tile wing of 
Ref. 7. Replotting the results against 7' = y/s '  to allow for the difference in span of the two 
wings does not however bring the results into very close agreement. 

Since the results for wings having linear spanwise variation of absolute thickness do not 
indicate any marked effect due to changes in thickness/chord ratio (wing (1) and wing of Ref. 7), 
it seems probable that the differences are due to the different surface slopes at a given spanwise 
distance from the centre-line. In Fig. 29, the results of Fig. 28 have been multiplied by a factor 
t0(1 -- ~)/t~ to allow for the difference in surface slopes, and then plotted against ~': the factor 
to(1 -- ~)/t~ does not affect the results for wings having a linear spanwise variation of absolute 
thickness, but brings the results for wing (2) into much closer agreement with those for wing 
(1) and for the wing of Ref. 7. It  is seen that tile results for all three types of wing are now in 
fairly close agreement, except near the centre-line, where the effects of plan-form taper are 
apparent. From these results, it is concluded that the effects of plan-form taper on the reductior~ 
of the supervelocity relative to the corresponding two-dimensional value due to thickness taper 
are small, except close to the centre-line of the wing. It  should be possible, therefore, from the 
results given in this report to determine the supervelocity reduction at any spanwise position 
relative to the local two-dimensional value, for a wing of any spanwise thickness distribution. 
The reduction of v~ at tile centre-lille can be determined from the separate effects of plan-form 
and thickness taper (Fig. 25) and the spanwise variation of zlv~ from results for a wing having 
the same spanwise variation of absolute thickness. For wings having sharp changes of thickness 
distribution, this equivalent wing should be derived as suggested in section 3.1 from the equations 
given in Appendix I, while for wings having non-linear but continuous spanwise thickness 
distributions, tile results for wing (2) (Appendix II) and the wing of Ref. 7 should be used. 

As a n  example of the way in which tile method of superposition can be used to derive wings 
having other than parabolic spanwise thickness distributions, results have been given in Fig. 30a 
for an aspect ratio 6- 67 wing, tapered in plan-form, and having different linear spanwise variations 
of thickness/chord ratio. These results were obtained by superimposing the results for wing (2) 
(A = 6.67) on those for the wing of Ref. 7 ; in Fig. 30, ~ is the ratio of the thickness/chord ratio 
a t t h e  tip, to that at the centre-line. The main effect of increasing tile thickness/chord ratio 
at the tip, is to increase the supervelocities over the outer part of tile wing. A smaller increase 
of v, also occurs at the centre of the wing due to the reduction in the rate of thickness taper at- 
the centre-line, even though the thickness/chord ratio is unchanged. 

Tile results of Fig. 30a have been replotted to show the reduction of the supervelocity relative 
to the two-dimensional value for the local thickness/chord ratio, in Fig. 30b. It  is apparent that 
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most of the change in v~ of the outer parts of the wing is due to the alteration in thickness/chord 
ratio, but over the inboard parts (i.e., for ~ < 0.1) a genuine change of v, due to change in 
thickness taper is apparent. 

4.1.7. Effect of spanwise thickness distribution on the isobar pattern for a tapered wing.--Fig. 31 
demonstrates the effect of spanwise thickness distribution on the isobar pat tern for an unswept 
tapered wing of aspect ratio 6.67. Fo r / ,  = 1 (i.e., constant thickness/chord ratio throughout 
the span), a band of high supervelocities, exceeding 90 per cent of the two-dimensional value 
for the aerofoil section, spreads over almost tile whole span. The isobars which form tile boundary 
of this high supervelocity region are almost unswept except in a region close to the centre-line. 
If it is assumed that  the critical Mach number at any spanwise section of a wing is dependent 
on tile component of the local Mach number normal to tile isobars (or isobaric surfaces), then 
tile flow over the whole span of this wing will be supercritical at a free-stream Mach number 
a little above the two-dimensional Motif. for the aerofo{1 section. 

Introducing spanwise taper of thickness/chord ratio (i.e., reducing ~) causes a large reduction 
of the supervelocities over the outer parts of the wing, due to the decrease in the local thickness/ 
chord ratio, and a smaller reduction of the supervelocities near the centre of the wing due to 
the .greater amount of thickness taper. The net result of these changes is a reduction of the 
maximum supervelocity on the wing, and an inboard movement of its location. Coupled with 
this, is a reduction of the spanwise extent of the high supervelocity regions, and a general increase 
in isobar sweep near the maximum-thickness line of the wing .  Bo th  the reduction of the super- 
velocities, and the increase of the isobar sweep should produce an improvement in the critical 
Mach number of the wing. The larger isobar sweep should also tend to restrict the chordwise 
expansion of the supersonic flow regions when they form. 

One practical difficulty introduced by spanwise taper of thickness/chord ratio is the loss 
of volume within tile wing (for # = 0, tile wing volume is only three quarters of the volume for 
/, = 1.0). Because of the beneficial effects of thickness taper, however, the maximum super- 
velocity on the wing is only 0" 82 of the centre-line-section.two-dimensional value when # = 0, 
whereas for/~ = 1, the supervelocity is at least 3 per cent higher than the two-dimensional value 
outboard of ~ = 0.8. Thus the thickness/chord ratios throughout the span of the t~ = 0 wing 
can be increased by over 25 per cent without the maximum supervelocity exceeding the super- 
velocity at ~ = 0.8 on the/~ = 1 wing. This brings the volume of the ~ = 0 wing up to 94 per 
cent of the volume of the ~ ---- 1 wing, and provides greater structural and storage depth near 
the centre of tile wing without any loss of critical Mach number. With tile thin wings at present 
in use on aircraft, this increase in depth could lead to a significant saving in structure weight, 
and the elimination of many small excrescences made necessary by the impossibility of complete 
internal stowage of equipment within the wings. 

4.1.8. Brief summary of results for unswept wings.--For rectangular or tapered unswept wings 
having zero or linear spanwlse variation of thickness, the shape of the chordwise super- 
velocity distribution at any  spanwise position is similar to the pseudo-infinite sheared wing 
distribution for the local thickness/chord ratio, with a proportion Ks of the full centre-line 
' kink ' effect added. The centre-line ' kink ' term, and the spanwise variation of the factor Ks, 
are virtually independent of the spanwise thickness distribution, but are dependent on plan-form 
taper. 

Tile actual supervelocity distributions are related to these pseudo infinite distributions by  a 
factor 3, which is almost constant across the chord at any spanwise position. Thus, using the 
notation of equation (4), 

V,(x, ~l) _ 1 -}- v,(x, ~) 
Vo Vo 

= 1 + + - o ) f  , ,  
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The factor K1 has been includedln equation (16) to make it more general, even though no 
allowance has been made in the analysis of the results for unswept wings. K1 is zero at the 
maximum-thickness line, and at the centre-line of the wing, and can be ignored except for wings 
of very small aspect ratio. 

If the spanwise thickness taper is large near the centre of the wing, and is restricted to a small 
spanwise extent, the results for wing (2) suggest that an allowance should be made for the effect 
of finite aspect ratio on the shape of the pseudo untapered wing supervelocity distribution 
(see Ref. 3). 

The value o f ,  in equation (16) can be expressed in terms of the reduction of the supervelocity 
v,(k) at the maximum-thickness position, relative to the corresponding two-dimensional value. 
Within the limitations of the linearised theory, and the range of sections considered, this decrease 
of v,(k) is independent of aerofoil-section shape. 

For an unswept wing, at x = k, 9k =- 0, K1 = 0 and f (~)~ ----- 0. 

Therefore from equation (16) : 

Vo S(l~(k, n) 

/tv~(k, n) . . . . . . . .  (17) 
= 1 Vo S~l~(k, ~) . . . . . .  

where Vo S(~l(k, ~) is the supervelocity at the maximum thickness position of the corresponding 
two-dimensional wing (see Ref. 4), and Av,(k, ~) is the reduction of v~(k, 7) relative to the two- 
dimensional value. 

At the centre-line, A v~(k, o) is obtained for the appropriate span, plan-form taper and thickness 
taper from Fig. 25, but outboard of ~ 0.1, where Ave(k, 7) is independent of plan-form taper, 
it should be derived for a wing having the same spanwise thickness distribution. In general, 
wings have linear spanwise distributions of thickness, whether the rate of thickness taper is 
the same throughout the span or not, and hence the expressions derived in Appendix I are 
most useful in determining A v,(k). For wings having non-linear spanwise distributions of thickness, 
the expressions derived in Appendices II  and IV provide a wide range of distributions as a guide. 

4.2. Swept Wings.--Only two types of tapered swept wing are considered in this section, i.e." 
Wing (2)--having a linear spanwise variation of thickness/chord ratio from (to/Co) at the 

centre-line to zero at the tips 

Wing (3)--having constant thickness throughout the span. Two values of taper ratio have 
been used for this wing to show the effect of taper ratio on the supervelocity at the 
centre-line maximum-thickness position. 

4.2.1. Shape of the chordwise supervelocity distribution.--It is not necessary to discuss in great 
detail the chordwise supervelocity distributions for swept wings, since the conclusions derived 
for unswept wings should apply equally well to  swept wings (unswept tapered wings are them- 
selves swept at all but the maximum-thickness position). In order to check these conclusions, 
a few comparable results are shown for swept wings in Figs. 32 to 35. 

Fig. 32a shows the supervelocities at various chordwise and spanwise positions of a 60 deg 
swept wing of aspect ratio 3 (wing (2)) as calculated from equation (II.17) of Appendix II  
(indicated by symbols in Fig. 32a). These are compared with chordwise supervelocity distri- 
butions calculated from the expression used for unswept wings (see equation 16) : 

v0 - (1 + K~(x, ~))s(~(x, 7) - K2 S(2~(x, o ) f  (~) cos ~ ,  . . . .  (18) 

9 being the local angle of sweepback. 
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Values of K1 for infinite swept wings of the appropriate sweep angle ~0 (see Fig. 46) have been 
used. -The values of K~ were determined by comparing the results given by equation (18) for 
Ks = 0, with those given by equation (II.17) of Appendix II. At the centre-line, a value of 
unity has been assumed for Ks in calculating the results of Fig. 32a, though the value necessary 
to give agreement between the supervelocities calculated using equations (18)and (II.17) of 
Appendix II  is approximately 0.6. 

It is seen from Fig. 32a that the agreement between the supervelocities derived from the 
two equations is good, except at the centre-line, where the effects of finite span distort the shape 
of the supervelocity distribution, as in tile case of the unswept wing. The spanwise variation 
of the 'k ink  '-term reduction factor K2, derived as explained above, is compared with the 
corresponding values for an unswept wing of aspect ratio 3 in Fig. 32b. It is apparent that 
sweepback has little effect on the spanwise variation of Ks, and hence the results given in Fig. 17 
(and reproduced in Fig. 48b) can be used for tapered wings of any sweep, to supplement the 
interpolation curve derived in Ref. 4 for infinite swept wings. 

Fig. 32b shows that K2 has approximately the same value at the centre-line (not unity) for 
both the swept and unswept wing. This suggests that, as for the unswept wing, a better 
approximation to the shape of the centre-line supervelocity distribution might be obtained by 
using the pseudo finite wing centre distribution. Figs. 33 to 35 show comparisons between the 
centre-line supervelocity distributions for wing (2), and the corresponding pseudo infinite and 
pseudo finite centre distributions (wing (3) has the same centre-line supervelocity distribution 
as the pseudo-infinite wing). In view of the small aspect ratio of the wings considered, the agreement 
between the shape of the supervelocity distributions at the centre of wing (2) and those for tile 
corresponding pseudo finite wings, is reasonbly good. These results show that the supervelocities 
at the centre of wing (2), behave in a similar manner, irrespective of wing sweepback. 

No calculated supervelocity distributions are available for swept, tapered wings having 
constant thickness/chord ratio throughout the span, but on the basis of the comparison between 
the swept and unswept centre distributions for wing (2), it seems reasonable to assume that the 
shape of the centre-line supervelocity distribution for such a wing would be the same as that 
for the centre-line of the pseudo-infinite swept wing. This assumption is supported by results 
given m Ref. 4 for a delta wing having RAE 104 section shape throughout the span, which show 
that even with this entirely different type of aerofoil section, the measured pressure distribution 
at the centre of the wing is similar in shape to that for the pseudo-infinite wing. 

Estimated centre-line supervelocity distributions are shown in Figs. 33 to 35 for swept wings 
having constant thickness/chord ratio parabolic-arc aerofoil sections throughout the span. The 
value of v,(k) at the maximum thickness position has been estimated from the results for wing 
(2), taking the same sweepback and the same spanwise rate of thickness taper as for the constant 
thickness/chord ratio wings. It  is seen that for the A = 1 delta wing, the large amount of 
thickness taper near the centre of wing (2) relative to that at the centre of the wing with constant 
thickness/chord ratio throughout the span, has a marked effect, not only on the level of the 
s upervelocities, but also on the position of the maximum supervelocity. This shows that the 
sweep of tile peak suction line near the centre of wing (2) is greater than that for the constant 
(t/c) wing, since the shape of the supervelocity distribution further outboard should be similar 
for the two wings. This should have an important effect on the comparison of the critical Mach 
numbers for the two wings, in addition to the direct effects of difference in thickness/chord ratio. 

A few examples of centre-line supervelocity distributions are given in Figs. 36 and 37 for wing 
(2) to illustrate the qualitative effects of sweepback and aspect ratio. The main points of 
interest are • 

(a) For a given aspect ratio, the supervelocities at the centre-line of a tapered wing do not 
decrease as rapidly with sweepback as in the case of untapered wings of moderate or large, aspect 
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ratio. The maximum supervelocity is, in fact, almost independent of sweepback (Fig. 36) for 
angles of sweep less than 45 deg. The peak supervelocity is, however, considerably less than  
tha t  on an infinite swept wing having the same sweep on the maximum-thickness line. 

(b) Reduction of aspect ratio causes a decrease of the supervelocities at the centre of a tapered 
wing (whereas for an untapered wing, if the angle of sweepback is greater than about 35 deg. 
decrease of aspect ratio causes an initial increase i n  the supervelocities). This effect is par t ly  
due to the increase of thickness taper at the centre-line with reduction of aspect ratio, and part ly  
to the change of the local geometric sweep of the wing. The reduction of sweep aft of the 
maximum thickness reduces the local centre or ' kink ' effect. 

(c) Reduction of aspect ratio causes a forward movement of the peak supervelocity position: 
This is largely caused by  the change in the local angle of sweepback, and the consequent chordwise 
variation of the finite aspect-ratio and ' kink ' effects for this type of wing. 

(d) For a wing tapered in thickness/chord ratio and plan-form, the forward movement of the 
peak supervelocity position is roughly proportional to the decrease in the maximum supervelocity. 

4.2.2. Effect of plan-form and thickness taper on the superveIocity at the centre-line maximum- 
thickness position.--The variation of the supervelocity vx(k) at the centre-line maximum-thickness 
position of wing (3), with span/centre-line chord ratio, is shown in Fig. 38a for three values of 
taper ratio (i.e., ~ = 0, 0"5 and 1). 

As shown earlier, increase of plan-form taper increases the value of v~(k)relative to the 
corresponding untapered wing value, for unswept wings of fairly small aspect ratio. This effect 
becomes less marked with increase of sweep, and for 9 - " -50  deg, plan-form taper  has little 
effect on the value of vx(k). For sweep angles greater than 50 deg, increase of plan-form taper 
reduces the value of v~(k) slightly. 

Fig. 39a shows the increase of v~(k) for sweep, angles between 0 deg and 70 deg for two values 
of taper ratio (4 ---- 0 and ~ = 0.5). 

Only one set of results is available for swept wings tapered in thickness, i.e., results for wing (2). 
These are compared in Fig. 38b with v,(k) values for wing (3) of the same plan-form. As in the 
case of plan-form taper, the effect of thickness taper on v,(k) decreases with increase of sweepbaCk, 
and for ~0 ----- 70 deg, thickness taper has no effect for S/Co > O. 75. 

The variation of the reduction of v~(k) due to thickness taper with sweepback is shown in 
Fig. 39b. These values have been plotted against the ratio s'/Co (s' is the spanwise distance from 
the centre-line at which a tangent to the maximum-thickness line at the centre of the wing 
cuts the wing chord plane), since it has been shown that  for an unswept wing, the supervelocity 
v~(k) at the centre of wing (2) is almost equal to that  at the centre of wing (6) (constant 
thickness/chord ratio throughout the span) for the same rate of thickness taper at the centre±line. 
This must still be approximately true for swept wings, since superimposing wing •(3) on to wing 
(2) gives a crude approximation to a constant thickness/chord ratio wing near the centre, and 
the values of v~(k) for such a wing, obtained from the results of Fig. 38b, are in fairly close 
agreement with these for wing (2) at the same value of s'/co. 

As the increase of v,(k) due to plan-form taper shown in Fig. 39a is given relative to the  value 
for the corresponding untapered, finite aspect-ratio wing, the reduction of v~(k) due to decrease 
of aspect ratio has been given in Fig. 39c. These results apply to a wing having a parabolic-arc 
aerofoil section, but  as shown in Ref. 3, the first order correction term for the effect of finite 
aspec t ratio depends on the ratio • 

a r 4 a  of aerofoil!orofile (see equation (9)) . . . .  
area  of circumscribing rectangl e 
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This ratio is reasonably independent of aero-foil-section shape, varying between about 0.65 and 
0-75, and hence it would be expected that the results obtained for a parabolic-arc section, would 
apply fairly well to other aerofoil sections, except for very small aspect ratios, when higher 
order correction terms must be included. 

Hence the supervelocity at the centre-line maximum-thickness position of a wing can be 
obtained using the results given in Figs. 39a, 39b and 39c, provided the corresponding infinite- 
swept wing value is known. 

4.2.3. Spanwise variation of the supervelocity at the maximurn-thickmss positio~.--Theoretical 
results for the spanwise variation of the supervelocity at the maximum-thickness position are 
given in Fig. 40 for wing (2). These are the only theoretical results available for swept, tapered 
wings. 

The effect of sweepback on the spanwise variation of v~ for a constant aspect ratio (A = 3) 
is shown in Fig. 40a, where it is seen that increase of sweepback causes a reduction of v, at all 
spanwise positions. The reduction of the supervelocities due to sweep, is greatest at the centre 
and tips, the smallest change occurring at about ~ ---- 0.2. Comparative spanwise distributions 
have been given for infinite aspect-ratio swept-back, and sheared wings, of the local thickness/ 
chord ratio. The curves for the infinite swept wings show a similar trend to those for the finite 
aspect-ratio swept wing, and indicate that the effects of taper (particularly near the centre-line) 
decrease with increase of sweep. 

In Fig. 40b, a similar comparison is made for wings of 45-deg sweepback, to show the effect 
of changing the aspect ratio. Again the curves for the finite and infinite aspect-ratio swept 
wings show similar trends. The change in the infinite aspect-ratio wing curves is due to the fact 
that a given spanwise distance from the centre-line (in terms of the centre-line chord), represents 
a different value of ~ for each of the three wings, and hence, a change in the local thickness/chord 
ratio which has been allowed for in the results. The general effects of reducing the aspect ratio 
for the 45-deg wing are similar to those found for the unswept wing (see Fig. 26a), i.e., a decrease 
of the supervelocities near the centre, due to an increase in the spanwise thickness taper, and a 
small increase near the tips. The spanwise position at which aspect ratio has little effect on the 
supervelocity is, however, further inboard for the swept wing (i.e., ~ ~ 0.3) than for the unswept 
wing (~ -"- 0.5). 

The results for wing (2) shown in Fig. 40 have been replotted in Fig. 41, after deducting the 
increase of supervelocity due to the centre effect for the corresponding untapered, infinite 
swept-back wing of the local thickness/chord ratio. This increase of v~ which is the difference, 
between the supervelocity on an infinite swept wing and that on an infinite sheared wing, of the 
local thickness/chord ratio, and having the same sweepback as the maximum-thickness line : 

can be expressed as:  

KlV,~:(k)A = oo s h e a r e d  w i n g  

or VoK~S(~)(k) cos ~ ,  

VoS(~l(k) being the supervelocity v,(k) on the corresponding unswept two-dimensional wing. 

The resulting spanwise variation of the supervelocity at the maximum-thickness position, 
v,(k) -- Vo K~SI~I(k)cos ~ ,  is termed the 'quasi-sheared-wing .spanwise supervelocity distri- 
bution ' in this report. 

The quasi-sheared-wing spanwise supervelocity distributions shown in Fig. 41a indicate that 
for a given aspect ratio, the supervelocity decreases with increase of sweepback by an amount 
which is almost independent of spanwise position. In fact, the maximum variation in the 
reduction of A v,(k)/Vo from the value at the centre-line, nowhere exceeds 0.05 for unit centre-line 
thickness/chord ratio. 
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The results of Fig. 41b conf i rmthat  this result is not confined to one aspect ratio, but  applies 
equally well to smaller and larger aspect ratios, at least for 9 = 45 deg. Indeed it is clear tha t  
for infinite swept wings, deducting the increase of supervelocity (K~v,(k)~ = ,.~h .... d~i~g due to the 
centre effect, from the actual supervelocity, will give the supervelocity on the infinite sheared 
wing. The reduction of the supervelocity due to sweep is therefore completely independent of 
spanwise position for an infinite swept wing, and is equal to V0(1 -- cos ~k) S<~I(h). 

Thus for swept wings having symmetrical parabolic-arc aerofoil sections, and a linear spanwise 
variation of thickness/chord ratio, the spanwise Variation of v,(k) at the maximum-thickness 
line can be obtained to a close degree of approximation from the results for the corresponding 
unswept wing if the reduction of v~ at the centre-line, and the appropriate values of K~ are known. 

4.2.4. Effect of aerofoil-section shape, and spanwise thickness distribution on the spanwise variation 
of the supervelocity at the maximum-thickness position.--Theoretical results are not available for 
swept tapered wings having parabolic-arc aerofoil sections, and constant spanwise thickness/chord 
ratio, to determine whether spanwise thickness distribution has any effect on the conclusions 
drawn in the previous section. Experimental results are however available for an aspect-ratio-3 
delta wing having a 10 per cent thick NACA 0010 aerofoil section throughout the span, which 
were obtained in the Royal Aircraft Establishment 10 ft × 7 ft High-Speed Tunnel  at a Mach 
number M : 0.5. The results for higher Mach numbers indicate that  the variation of the 
pressure coefficients for this wing with Mach number are small below M ----- 0.5. 

The method used for determining the spanwise variation of the pressure coefficients for this 
wing is given in Table 1, and discussed in section 6. Briefly, it has been assumed that  the 
conclusions drawn in the previous section for wing (2) are applicable to wings having other 
aerofoil-section shapes and other spanwise thickness distributions. From the results for unswept 
tapered wings, it is known that  for the simple aerofoil-section shapes considered, section shape 
has little effect on the reduction of the supervelocity due to taper relative to the corresponding 
untapered wing value. The results of Ref. 7 have therefore been used to determine from the 
two-dimensional supervelocity the spanwise variation of v~ at the maximum thickness for an 
unswept tapered wing having NACA 0010 aerofoil section throughout the span. The  reduction 
of v, at  the centre-line has been obtained from Fig. 39, for the  appropriate sweep angle and 
span/centre-line chord ratio, and the quasi-sheared-wing spanwise distribution of v~ obtained 
by applying this reduction of v~ at all spanwise stations. Finally, the additional supervelocity 
due to the centre effect, K~v~A=,,~ho~rca~i~g, has been added to the quasi-sheared-wing spanwise 
distribution of v~, to give the estimated spanwise variation of v~ (values of K~ for a parabolic-arc 
aerofoil section have been used). These estimated supervelocities have been converted into 
pressure coefficients at zero Mach number, using the formula : 

C p = l - -  l + v 0 /  

(where Vo is the free-stream velocity) 

and are presented in Fig. 42a together with experimental values obtained at M = 0.5. 

I t  is seen that  over the outer part  of the span, the agreement between the experimental and 
the estimated values is extremely good, and even near the centre of the wing, the agreement is 
reasonably good. Some of the discrepancy between the estimated and the experimental results 
inboard of ~ = 0.3 may be due to the use of K1 factors calculated for the parabolic-arc section. 
Haines 5, in unpublished work has shown that  section shape does influence both the level and 
spanwise distribution of K~ slightly. 
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These results {ndicate that  change of aerofoii-section shape and spanwlSe thickness distribution 
do not have a marked effect on the conclusions derived earlier from the results for wing (2). 
The same method has therefore been applied to derive an approximate spanwise distribution 
of v, (Fig. 42b) for a 45-deg swept tapered wing having a parabolic-arc a~rofoil section of constant 
thickness/chord ratio throughout the span. This result will be useful for checking against 
other results for this type of wing when they become available (see Ref. 7). 

4.2.5. Effect of sweepback on the shape of the isobar pattern for wing (2).--Isobar patterns have 
been plotted in Fig. 43 for wing (2), aspect ratio 3, to show the effect of changing the sweepback 
from 0 deg to 60 deg. The chief effect of sweepback (apart from reducing the supervelocities 
at ally spanwise position), is to distort the isobars near the centre and tips of the wing, ill much 
the same manner as for an untapered wing (e.g., Refs. 1, 2, 3). I t  is shown, however, that  the 
centre or ' k i n k '  effect, which causes the backward movement of the peak supervelocity near 
the centre of the wing, extends over only a very limited portion of the span (about 17 per cent 
of the centre-line chord length from the centre), whereas, for untapered wings, the centre effect 
spreads over about three times this distance. It  is interesting to note ttlat near the centre of 
the swept wing, the isobars in the high supervelocity region aft of the maximum-thickness 
posi t ion (e.g., (~vJ/{4Vo(to/Co)} = 0.5) are almost unswept, as far outboard as ~ = 0.2. On 
the unswept wing, however, the isobars in this region are (except very close to the centre-line) 
fairly highly swept. This small isobar sweep (which also occurs on untapered swept wings 
having parabolic-arc aerofoil sections) would probably reduce considerably the increase m 
critical Mach number normally associated with sweepback. I t  would not be profitable, however, 
to discuss these isobar patterns in greater detail, since they refer only to one particular case, 
and it has been found that  for untapered wings, aerofoil-section shape has a considerable effect on 
the detailed picture (i.e., comparison of Fig. 23 of Ref. 3 and Fig. 21 of Ref. 4). These results 
showed that  changing the aerofoil section from symmetrical parabolic-arc to a round-nosed 
section, caused a relative increase in the supervelocities near the tips, and completely changed 
the shape of the isobar loops. I t  is unlikely that  change of section shape would have such a 
marked effect on the results for wing (2), but the isobar loops might become more elongated, 
with a greater sweep on the isobars aft of the maximum thickness. " 

Change of spanwise thickness distribution has already been discussed for the case of the 
unswept wing (Fig. 31), and it is probable that  similar effects wilI occur in the case of the swept 
wing. 

4.2.6. Brief summary of results for swept wings.--It has been shown that  the expression fo r  
the supervelocity at ally point of an infinite aspect-ratio swept wing : 

v.(x, v.(x, 
V0 V0 

1 = {(I + KdS(1)(x)- (,)} cos (19) 

(see equation (4)), can be used to find the shape of the supervelocity distribution at any spanwise 
position of a finite aspect-ratio swept tapered wing, if ~0 is taken to be the local angle of sweep. 

The value of K1 is dependent on the local  angle of sweep, and hence for a tapered wing, is 
replaced by Kt(x). The value of K~ is independent of sweep, and varies only with spanwise 
position and plan-form taper. 

The actual supervelocity distributions are related to this pseudo infinite wing distribution by 
a factor ~ which is almost independent of chordwise position. Thus, in general terms, the super- 
velocity v,(x, ~) can be expressed as : 

v (x, ,1) 
Vo - -  ~ [ { I  - I -  K1(x, rl)}S{11(x, rl) - -  K~S(21(x,o) f (~o)]cosqJ,  . . . . .  ( 2 0 )  
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Where 

V0 
• VoS~(x, '7) 

S~l(x, o) 

f (v,) = 

is the chordwise supervelocity at the point (x, ~) , 

is the free-stream velocity, 

represents the supervelocity at the corresponding chordwise position of 
an unswept two-dimensional wing of the same aerofoil Section (see Ref. 4), 

represents the slope of the aerofoil section at  the  point (x, o) on the Centre- 
line of the wing (see Ref. 4), 

is the locai angle of sweepback, 

l - I n ( } -  sin ~01 !si.n~9"~ <see Fig. 45), 

1 + K1 = supervelocigy ag maximum ~hickness of infinite swepg wing 
Sltl~erveloci~y af m~ximum thickness of infinite sllearecl wing 

K~ 

for the local angle of sweep (see Fig. 46a), 

is the centre-line ' kink '-term reduction factor (see Fig. 46b). 

S ince ,  is almost constant across the chord, i t s  value can be related to the reduction of the 
supervelocity at the maximum-thickness position. At the maximum-thickness position, S (21(x, o) 
is zero, and hence, from equation (20) " 

T = Vo{ 1 + K,(k,~)}Sm(k,*l)cos~o~ . . . . .  

The supervelocity ~,(kl ~) for a swept wing can be expressed as" 

where 

. . . . . .  (21) 

~,(k, ~) = @,(k, ~)}~=0 _ ~v,(< o)~ + K~(k, ~) S,~'(k, ~) cos~oL ..  . .  (22) 
Vo Vo Vo 

{v,(k, ~)},=o is the supervelocity at the corresponding position of an unswept wing having 
the same plan-form taper, and the same spanwise distribution of thickness 

Av,(k, o)~ is the reduction of v.~(k, o) due to swee)back, relative to the corresponding 
unswept wing, i.e., 

dv,(k, o)~ _ .{v,(< o)},=o ~,(k, o) 
Vo Vo Vo 

At the centre-line, v,(k, ~),=o = v,(k, o)~=o, can be determined from the unswept two-dimensional 
supervelocity for the centre-line section shape, and the results given in Figs. 25a, 25b and 25c, i.e., 

{v,(~, o)}~=o sc , (g  o) (~v~(k, o),}~=o + {~v,(k, oh}~=o _ {dv~(~, o)&=o (23) 
V0 -- Vo V0 V0 " " 

where {Ave(k, o),}~=0 is tile reduction of v,(k, o) due to finKe aspect ratio (Fig. 25c) 

{Av,(k, o)~}~=o is the increase of v,(k, o) due to plan-form taper (Fig. 25a) 

{A v,(k, o)~}~=o is the reduction of v,(k, o) due to thickness taper. 

Outboard of about ~ = 0.1, plan-form taper has little effect on the reduction of v~(k, ~) relative 
to the corresponding two-dimensional value Vo Sin(k, ~) and v,(k, ~)~=o can be expressed as" 

{v,(k, ~)}~=o _= Sm(k ' ~) _ {Av,(k, V)} ~=0 . . .. (24) 
Vo Vo ' " . . . . . . .  o . . . . . . . .  
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{Av, (k ,  v)}~=obeing obtained from (forlnstance) Figs. 10b, i lb ,  12b, 26b, 27b, 28 and 
Vo 30b for a wing having the same spanwise distribution of thickness. For 

wings not covered by the above figures, the expressions given in Appendices 

I to IV should be used to derive the appropriate value of {Av, (k ,  V)}~=o 
V0 

v,(k, o) can similarly be expressed as • 

dv,(k, o), ~v,(k, oh dv,(k, o), v,(k, o) _ S(~l(k ' o) cos ~ok + • (25) 
V0 V0 Vo V0 " " " 

Hence [{~v,(k, o)&_0 _ ~v,(k, o),] 
~v~(k,vo o) _ S(~)(k ' o){1 - cos ~ 5  --  L Vo - Vo 

+ L vo ~v,(k,Vo °h 1 

[{~v,(k, o)&_0 
- L - 

~v~(k, o)t l 
Vo . . . . . . . . . .  (26) 

= s~l~(k, o){1 - cos .~}  - ~v.(k,  o),,~ 
V0 

+ Av.(k, oh,~ dv.(k, o),,~ 
Vo Vo ' " " 

where Av,(k,  o)~,~ = {Av, (k ,  o),},=o -- Av,(k ,  o),, etc. 

Values of Av,(k ,  o),,~ etc. are given in Fig. 47. 
V0 J , 

(27) 

Thus v,(k, rj) can be determined from equations (22), (23), (24) and (27), and the value of 
obtained. {v,(x ,  ~)}/V0 can then be calculated from equation (20). 

I t  should be noted that  if there is a change in the spanwise rate of thickness taper close to 
the centre-line (i.e., wing (2)) the supervelocities at the centre-line may not be in very good 
agreement with equation (20). In this case, an allowance for the effect of finite aspect ratio on 
the shape of the pseudo infinite wing centre distribution should be made (see Figs. 20, 33, 34 and 
35), and a similar procedure to that  used above, adopted: 

An approximate correction for the effect of finite thickness can be applied to the. velocities 
derived from equation (20), if desired, by multiplying V~(x, o) at the centre-line, by the factor • 

1 1/~ 

Further outboard, where the flow approximates more closely t o  sheared wing conditions, 
the factor" 

1 + [  cos : 

should be used. 
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5. Effect of Aerofoil-Section Shape and Thickness on the Conclusions Derived from Linearised 
Theory.--In order to check whether aerofoil-section shape, and finite thickness, cause any radical 
changes in the effects of plan-form and thickness taper as deduced by linearised theory, the 
results obtained in this report have been used to estimate the supervelocities on a simple delta 
wing for which experimental pressure distributions are available. This wing has an aspect ratio 
of 3.08 (i.e., s/co -~ s'/Co -~ 0.77) and NACA 0010 aerofoil section throughout the span. 

The calculation of the pressure distributions for t h i s  wing is set out in Table 1. The two- 
dimensional supervelocity distribution Sill(x) for the NACA 0010 section is abstracted from 
Ref. 10, but had this information not been available, it could have been calculated by the method 
given in Ref. 4. 

The chordwise pressure distributions obtained in Table 1 are plotted in Fig. 44; these are 
shown for the pressure coefficient calculated from the supervelocity on the chord plane, and 
also for the approximate supervelocity at the surface, obtained by applying a thickness correction 
term (1/[1 + {SI~l(x, ~)}~])1/~. The calculations of Ref. 4 suggest tha t  this correction term is 
only applicable at the centre-line of the wing, but  it is found that  applying the infinite-sheared- 
wing correction term (1/[1 + {sl21(x, ~)/cos ~0}~]) 1/2 gives values of -- Cp which are much too small 
compared with the experimental results. I t  may be tha t  this is due to ignoring the spanwise 
component of Velocity induced by the wing, or possibly to the fact that  the centre and tip effects 
are present over practically the whole surface of the wing. More experimental results are needed 
to show whether this type of thickness correction term can be applied in general to wings having 
conventional section shapes. 

In general there is very good agreement between the estimated pressure coefficients (with an 
allowance for the effects of thickness) and the experimental results, showing that ,  at least for 
this particular wing, the pressure distribution at any spanwise position can be estimated with 
reasonable accuracy using the results obtained for the wings considered in this report. The 
greatest discrepancies between the estimated and experimental results occur over the inboard 
part  of the span, particularly at ~ = 0. 165. This may be due to the use of K1 factors obtained 
for wings with parabolic-arc aerofoil section, since it has been shown by Haines ~ . tha t  
aerofoil section has an effecty on the value of K1. The difficulty of obtaining reliable 
experimental results near the centre of a wing should not, however, be overlooked. The 
experimental pressure coefficients shown in Fig. 44 were obtained from tests in the R.A.E. 
10 ft × 7 ft High-Speed Tunnel, results for the four outboard sections being taken from tests 
on a half-model, and the centre-line results from tests on. a twin-sting-supported complete 
model. The pressure-plotting station, ~ = 0. 165, was also represented on the sting model for 
comparison with the half-model tests. All the results are given for M = 0.5, since the accuracy 
of the tests was greater at this Mach number than at lower values 6f M, and the tests indicated 
tha t  there was little variation of C, with Mach number below M -~ 0.5. 

I t  is seen that  for ~ ---- 0. 165, there is a considerable discrepancy between the results obtained 
from the half-model and the sting model. There are two main reasons why this difference 
might exist : 

(a) In the half-model tests, the presence Of the tunnel-floor boundary layer might alter the 
effective spanwise position of the pressure-plotting station, and affect the boundary-layer 
conditions, particularly towards the rear of the wing. 

(b) In the sting-model tests, the twin support stings were close to the pressure-plotting station 
at ~ ~- 0. 165, and extended forward outside the wing contour to about 20 per cent chord a h e a d  
of the trailing edge. 

~See Ref, 12, 
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It is clear from the above discussion that reliable experimental pressure-plotting data are 
required for comparison with the estimated results, before the full limitations of the method 
suggested in this report are known. This is partly catered for in the programme of 
test 8 initiated in 1952, which will provide pressure distributions at  low Speed on seven 
swept and unswept wings having RAE 101 section shape, and different amounts of plan- 
form and thickness taper. Meanwhile, the results presented in Fig. 44 give some indication 
that finite thickness and change of section shape do not invalidate the conclusions derived by 
means of linearised theory for wings having simple cubic or parabolic-arc aerofoil-section shapes. 

6. Comlusio•s.--The results considered in this report show that for wings having thin, 
symmetrical cubic or parabolic-arc aerofoil sections : 

(a) the velocities on straight tapered or untapered wings can be expressed in terms of: 

(i) the velocities on the corresponding unswepttwo-dimensional wing 

(ii) the centre or ' k ink '  effect of the corresponding infinite swept wing 

(b) the increase or decrease of the supervelocity on a straight tapered, or untapered wing 
relative to the velocity on the corresponding infinite sheared wing is independent of aerofoil- 
section shape (for cubic and parabolic-arc aerofoil sections) 

(c) spanwise variation of absolute thickness has a marked effect on the velocities near the 
centre of a wing, the velocities being reduced with increase of spanwise thickness taper near 
the centre-line 

(d) the effect of thickness taper decreases with increase of sweepback 

(e) plan-form taper has a marked effect on the velocities near the centre of a wing, but little 
effect (apart from any change in local thickness/chord ratio) on the velocities outboard of about 
0.1 semi-span 

( f )  the effects of plan-form taper decrease with increase of sweepback 

(g) a relative increase of velocity generally occurs at a position where the rate of spanwise 
thickness taper is reduced discontinuously. This increase of velocity is mainly dependent on 
the change in the rate of thickness taper across the discontinuity. 

A l though  the above conclusions have been derived from results for wings having parabolic 
or cubic-arc aerofoil sections, there is some evidence that they apply equally well to wings 
having conventional aerofoil-section shapes. A method for calculating the pressure distribution 
over a wing having a conventional aerofoil section, using the results for the parabolic-arc aerofoil 
section, is outlined in the text. 

7. Further Work Required.--The results 1given in this report provide a qualititative (and 
probably a quantitative) indication of the main effects of plan-form and thickness taper on the 
velocities on swept and unswept wings. Experimental results are required to provide more 
information on the effects of aerofoil-section thickness and shape. 

Consideration should also be given to the effect of varying the aerofoil-section shape across 
theSpan; Or part of the span, since many high-speed aircraft have wings of this form to reduce 
the effects of the  discontinuities at the root and tips of the wing. The results of Appendix III  
can be adapted to provide some information on this point for aerofoil sections formed by parabolic 
arcs, and it is hoped to publish these results shortly. 
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NOTATION 

R~ectangular co-ordinates; x-axis coincident with centre-line chord; 
y-axis spanwise 

Semi-span 
Centre-line chord 
Aspect ratio 
Geometric sweepback of constant percentage chord-line 
Leading-edge sweepback 
Trailing-edge sweepback 
Mid-chord-line sweepback 
Maximum-thickness-line sweepback 
Value of x at maximum-thickness position on centre-line chord 

Tip chord 
Thickness/chord ratio at wing centre-line 
Thickness/chord ratio at wing tip 
Local chord length 
y/s 
Local thickness/chord ratio 
(1 - ~)s'/s 
Spanwise distance at which tangent to maximum-thickness line at centre 

of wing cuts wing-chord plane 
y/s' 
Factor which determines spanwise thickness distribution of wing (4) (see 

Appendix IV) 
Chordwise supervelocity component 
Reduction of supervelocity at centre-line maximum-thickness position 

due to finite aspect ratio 
Increase of supervelocity at centre-line maximum-thickness position 

due to plan-form taper 
Decrease of supervelocity at centre-line maximum-thickness position 

due to thickness taper 
Reduction of A v~(k, o)s due to sweepback 
Reduction of z]v,(k,o )~ due to sweepback 
Reduction of A v,(k, o)~ due to sweepback 
Free-stream velocity 
Supervelocity for two-dimensional wing (see Ref. 4) 
Slope of aerofoil-section contour (see Ref. 4) 

f (9) 
-¢ 

1) (see Fig. 46) 

' Kink '-term reduction factor (see Fig. 46) 

---- ~-lln(ll --+ sinSin~) 

Supervelocity reduction factor 
3! 

K1 = (superveloci ty at  maximum-thickness  of infinite swept wing _ _  
\superveloeiSy aS maximum-thickness  of infinite sheared wing 

• K s 
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A P P E N D I X  I 

Derivation of the Supervelocity at any Point on the Chord Plane 
of a Rectangular Wing Having a Symmetrical Cubic-Arc 

A erofoil Section and a Linear Spanwise Variation 
of Thickness~Chord Ratio 

In  Fig. 48 the  origin is taken at  the  midpoin t  of the  centre-line chord, the  leading and trail ing 
edges being at x = 1 and x = -- 1 respectively ; y is t aken  posit ive to the  right,  the  semi-span 
being s. 

The equat ion to the  surface of the  r ight -hand half of the  wing is • 

z' to 1 - - - - ( l - - i f )  (1 ~) )~(1  - - x '  
Co s - - -  3 k ~ / '  (I.1) 
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where z' = half-thickness at  (x', y') 

~0 

Co 
--  centre-line thickness/chord rat io 

/zt__o = tip thickness/chord rat io 
Co 

k = x-co-ordinate of maximum=thickness line (--  (1/3) ~< k ~ (1/3)). 

The corresponding source s t rength per uni t  area required to represent this wing is • 

az  / 
q' = --  2Vo ax----' 

= 4 v 0 t - °  1 -- ( 1 - - # )  ( x ' - - k ) ( 1  + 3 k x ' )  
Co (1 - k~) ~ ' 

(1.2) 

where V0 is the free-stream velocity. 

Represent ing  the wing by  a series of source-sink f i laments  parallel to the y-axis, the elemental  
chordwise velocity av, induced at  the point  (x, y) by a source element at  the point  (x', y') is" 

e' dx' dy' ( x -  x') . . . . .  . (I.3) 
~v~ ----- -- 4z~R ~ R ' " . . . . .  

where R~ = (x - x') ~ + (y - y')~. 

Then the elemental  veloci ty due to the r ight-hand half of the source f i lament is 

d T;) x .~ -  

{ ' } Voto(x'--k)(lcoz~ ( t + 3 k x ' ) ( x - - x ' ) d x ' f l - -  k2) ~ 1 -  ~ ( 1 -  # ) d y '  

{ ( x -  x ' ?  + ( y -  y,)~)~/, 
(1.4) 

In tegra t ing  (I.4) and rearranging terms gives the veloci ty due to a single source line as • 

(1--k~) ~ ~ d v ,  _ 

v.(~o/Co) 

( x ' - -  k)(1 + 3kx') \ L(x - x') L s J 

(1 -- #)(x-- x')] 1 
s {( x -  x') ~ + ( y -  s)2}1/~ 

[(x y- x') { 1 - y - ( 1 - ~ )  } s  s { (x  - x')  ~ + y~) i /2  • (1.5) 

Subst i tu t ing x ' =  ;~-  ( x -  x') and rearranging terms, the velocity v, induced at  the point  
(x, y) by  the r ight -hand half of the wing is given by  • 
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( 1  - -  k 2 ) "  - -  
dv, 

vo(to/~o) _ { ( ~ -  x' )"  + ( y -  s)~p/~ 

f + l 1 dx' - -  / I t ( 1  - ~  6 k X -  3 k 2 ) ( y  - -  S) _ ~(~, - -  x t ) .  .~_ ( y  - -  S)2}l/" 

( }  + (x -- k) (l + 3kx) (y -- s) 1 - - Y - ( 1 - - ~ )  (x x'){(x x ' ) ' + ( y  s)'}~/" 
S _ - -  - -  - -  

_~ (1 - ~) (1 + 6 k x  - 3k  ~) 
S 

3k, 1 

f ~ i  {(X" - -  .9('t)2 -~ ( y  - -  S)2}l/2 dX t 

( ~ -  x ' ) { ( x -  x') ~ + ( y -  s)"}l/2 dx' 

(1 --/z!( 1 + 6 k x -  3k ~) [(x -- 1){(x -- 1) 2 + (y -- s)2}~/~ -- (x + 1){(x + 1)" + (y s)~}~/2] 
2 s  - -  . 
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( l - - k 2 )  2 ~ v ,  _ 

V o ( t o / C o )  

{ ~k~,(, - y)  + (~ - k)(1 + 3k~)(~ - ~ ) }  E{(~ - ~)~ + (y - s)2)~,. _ { (x  + ~). + (y - s)~)1,2 l 
S 

+ {3ky - - (x  -- k)(1 +s3kX)(1-  t*)} [ { ( x -  1)"+ y2}1/2 {(X "q-- 1)"+ y~.}l]~] 

- - { 3 k y -  ( x -  k)(1-+- 3kx)(1 --/~)} f+  I ( x - - x ' ) d x '  
s _ { ( x -  x ' )  ~ + y.}i/2 

+ yO + 6kx - 3k 2) ((x - x'? + y2}tz~ 

- y ( x  - k)(1 + 3kx)  1 - Y- (1 - e )  (x - x ' ) { ( x  - x')" + y"}~/" 
S 

f+i - + - -  3k ) - + 
S 

+ s (1 -- ~) (x -- x'){(x -- x') 2 + y2}1/, . . . . . . . . .  (1.6) 

These integrals are all of standard form and present no difficulties provided care is taken ill 
obtaining the correct principal values for the third and eighth terms. 

Then : 



+ (~ -2, # ) (~  + ~k~ - 3k 2) E(~ - 1){(~ ~)2 + y ~ y 2 _  (~ + ~)~(x + 1) 2 + 

+ ~(1 - #) [{ (~  - 1) 5 + (y - ~)3}~/2 _ {(~  + 1)2 + (y _ ~.)2F/~ ] 

- - .~(1  - -  # ) [ { ( x  - -  1) 3 + y2}~/~_ {(x  + 1) 2 + y3},/~] 

+(Y--s)( l+6kx--3k2){ 1 (s+Y)(1--#)} l n { ( x - l ) 2 + ( y - s ) 2 } ~ / 2 + ( x - 1 ) 2 s  {(x + 1) 5 + (y -- s)2} ~/2 + (x + 1) 

{(x 1) 2 + y3} ~/3 + 1) 
- y ( 1  + ~kx - 3k 3) 1 - zs (1 - #) In 

I 

{(x + 1) 2 + y5}1/5 + (x + 1) 

--(x--k)(1-C-3kx){1 Y--(1--#)}ln[ { ( x - l ) 2 + ( y - s ) 3 Y 3 + ( s - y ) ]  
- ~  k{(* + 1) 2 + ( y -  ~)5p,5 + ( ~ _  

~ { ( ~ -  1)3 + y3}~/5 + 7 1  {(~ + 1)5 + y3}~3 + 

The contribution to the velocity vx at (x, y) due to the left-hand half of the wing is the same as 
the contribution of the fight-hand half of the wing to the velocity at the point (x, --y).  Then 
changing the sign of y in equation (1.7) and adding the result to equation (I.7) gives the velocity 
v., at the point (x, y) due to the whole wing : 

( l - - k 2 )  ~- ~vx _ 
4 vo(tolco) 

[ (1 - #)(18s + x)(1 + 2kx -- 3k) 2 + ~k (s -- y){1-~ 2# -- (1--  #) ~}I{(I -- x)2 Av (s -- y)2}1/2 

[ { :}1 + (1--#)(1 +x)(1  + 2 k x - - 3 k  2) + ~ ( s + y )  1 + 2 #  + (1 - -# )  { ( l - - x )  5+ (s+y)3}l/2 
8s 

4s (1 +z) (1  + 2 k x - - 3 k  3) + 2 k y  2 { ( l - - x )  2+y2}1/2 

+ ( 1 - -  #) ( 1 - -  x) (l + 2kx --  ak2) --  ~(s --  y) 1 +  2# --  ( 1 - -  #) { ( l + x ) 5 + ( s - - y ) 3 } l / 2  
8s 

+ (1 - - # ) ( 1 . _ x ) ( l _ / 2 k x _ 3 k  2) - - ~ ( s + y )  1 - / 2 # - k  (1 - -# )  {(1 +x) 5-{- (s+y)3}l/5 
._ 8s 
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1 

(s -Y)(1  {1 4 + 6kx " 3k =) 

(s +4 Y)(1 + 6kx - a,~ ~) {1 

9 {  } 4s (1 -- x)(1 + 2kx -- 3k ~) -- 2ky' {(1 + x) = + y'}*/~ 

( s+y)a  } { ( 1 -  
2s ' -- #) l n { ( 1 +  

(s --Y)(12s -- tt)} In {(1{(1 q--- 

.,~)~ Jr- ( s -  j)2}1/~ (1 - x) 
x) = + (s -y)=}, '~  + (1 + x) 

x) = + (s + y)~},~ - (1 - x) 
,x) ~ + (s + y)=}'/= + (1 + x) 

y 2 
"q-- ~--~(1 - -  /.4)(1 --~- 6/~X - -  3/~ 2) I n  { ( 1  - -  .~)2 _~ y2}1/2_ ( l  - -  x)  

{(1 + x ~) + y~)~/~ + (1 + x) 

( x - - k ) ( l + 3 k x ) { 1  Y } C{(1-- x)~ + (s--YPP/~ + (s--Y) 1 -- 4 -- - ( 1 - - t , )  in 

{ } (s +y)] 
(x --4 k-)(1 q- 3kx). 1 + Y-s (1 --/~) ln L{(1 + x) ~ + (s + y)~}~/~ + (s + y) 

y] 

- - ( x - - k ) ( l + 3 k x ' l n ( 1 2 ~  ) .  .. (1.8) 

The particular case of a rectangular wing tapered in thickness, and having a symmetrical 
parabolic-arc aerofoil section is obtained from equation (I.8) by putting k = 0 • 

$~V x 

4Vo(to/Co) 

( ) 1 - -  /~ (1 @ x) [ { (1  - -  X) 2 + (s - -  y)~}~/~ + { (1  - -  x) 2 -~- is q - y ) ~ } l , ' 2 - -  2 { ( 1  - -  x) ~ @y~}1 /2 ]  
8s 

+ 

4 1. 2s j {(1 + x) =. + (s -y)=}~/= + (1 + x) 

(S -I- Y ) ~ I  - -  (S - -  y ) ( 1  - -  # ) ~ l n  {(1 - -  x) = -~- (s -t- y ) 2 } 1 / ~ _  (1 - -  x) 
4 [ 2s J {(1 + x) 2. + (s + y)2}~/~ + (1 + x) 

y= {(1 -- x) ~ + y=}~/2 (1 -- x) 
+ ~ s ( 1  -- t~)In {(1 q- x) 2 + y2}~/= _]_ (1 + x) -- 
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y F{(2 - x) ~ + (s - y ) ~ } ~  + ( s -  y )  [{(2 - x/~ + y~}l~ 
--- - -  S [.((2 @ X)" @ (s - -  y)2}1/~ @ (S - -  y)  k{(2 + x) ~ + + y 

4{2 + - (2 }~) - l Y~}*/= 1 
S In [{(1 x) ~ + ( s + y ) ~ }  ~/~+ ( s + s )  [ ~ ( 1 - - x )  ~ + y ~ } ~ / ~ - s  

_ x l n ( {  + x ) _  . . . . . . . . . . . . . . . . . . . . .  (1.9) 

The equation for the supervelocity distribution on a finite rectangular wing of parabolic-arc 
aerofoil section and constant thickness/chord ratio can now be found from (I.9) by putt ing 
~ = 2 :  

~.v, (s -- y) In {(2 + x) 2 + (s -- y)~}~/~ + (2 + x) 
4Vo(to/Co) -- 4 ((2 -- x) ~ + ( s  - y)2}~/~ (1 --  x) 

+ !~ + y__A i~ ((2 ~- x)~ + (~ + y)~}~ + (2 + ~) 
4 { ( 1  - x)  ~ + (~ + y)~}~/~ - (2 - ,~) 

x {(1 + x) ~ + ( s -  y)~}l/~ + ( s -  y) 
+ ~ln-- 

( ( 2  - x)  ~ + (s - y )~} l /~  + (~ - y )  

x {(2 + x) ~ + (s + y)2}1/~ + (s + y) 
+ 41n{(2 -- x) 2 + (s +y)2}~/2 + (s + y )  

which is the formula given in Ref. 

) ~ ° ° . • 

3, equation (4.23). 

(1.2o) 

A P P E N D I X  II  

Derivation of the Supervelocity at any Point of the Chord Plane 
of a Tapered, Swept-back Wing, Having a Symmetrical Biconvex 

Parabolic-Arc Aerofoil Section, and a Linear Spanwise 
Distribution of Thickness/chord Ratio (Wing 2) 

In Fig. 48, the origin is taken to 
and trailing edges of the centre-line 
taken to be positive to the right, the 

The equations to the 

Zl to 
Co 

Z' to 

Co 

be at the mid-point of the centre-line chord, the leading 
chord being at x = + 1, and x = --  1 respectively ; y is 
semi-span of the wing being s. 

surface of the wing are : 

ahead of the maximum thickness 

aft of the maximum thickness 

, (11.1) 
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where " z' = half  thickness at  point  (x', y ' )  

to/Co = centre-line thickness/chord ratio 

x't, x't = intercepts  on the x axis of lines passing through (x', y ' )  parallel to the  wing 
mid-chord line. 

The corresponding source s t rength  per uni t  area to represent  this  wing is" 

q' ----- -- 2V0 ~z' 
. . . . . . . . . . . . . . . . .  (11.2) 

i.e., q' = 4Vo(to/Co)X'~ ahead of m a x i m u m  thickness . . . . . . . .  (II.3) 

and 4Vo(to/Co)X', aft of m a x i m u m  thickness . . . . . . . . .  (11.4) 
where V0 is the free-stream velocity. 

The wing can therefore be represented by  a series of uniform kinked source fi laments as in the 
case of an untapered  swept-back wing of constant  thickness/chord ratio. 

Thus the result for tile tapered swept-back wing wi th  l inear spanwise var ia t ion of thickness/  
chord rat io can be derived by  subt rac t ing  the superveloci ty contr ibut ion due to those sources 
represent ing the par ts  of an infinite swept-back wing which lie outside the plan area of tile 
finite tapered wing t. In  calculat ing the effect of this  ' excess ' wing, the supervelocities can be 
determined at  points on the chord plane of the tapered wing, since no source filaments cross the 
wing plan-form. The result for the complete infinite swept wing has already been considered in 
Refs. 1, 2, 3 and the correct l inearised-theory answer obtained.  

Referring to Fig. 48, and considering only the r ight -hand half of the wing, tile elemental  
veloci ty ~v, induced at  a point  (Xo --  y tan  9o, Y) by  an infinitesimal source element q' dx '  dy '  
at  tile point  (x', y ' )  is • 

~v, = q' dx '  dy'  
4aR~ (xo - -  x '  - -  y tan  90) . . . . . . . . . . .  (Ii .S) 

where R 2 = (Xo --  x' --  y tan  ~o) ~ + (y' --  y)~ 

x' y = x't - -  t an  ~o. 

q' dx', F ~'=~ {xo --  x', + (y '  - -  y)  t an  9o} d2' 
Then dv, = 4~ • jy ,  [{xo - -  x',  + (y '  - - y )  t an  ~00} ~ + (y '  --y)2]~/~ 

for tha t  par t  of tile fi lament extending from the wing leading edge to infinity. 

This in tegrat ion involves no difficulties, and it is found tha t  • 

dv~ 

- -  q' dx', cos go ~ l y~ _ y ) 

4~ xo - -  x',  - -  (xo - -  x',)[(Xo - -  x'~)2cos' ,o+ {y, _ y  + (xo --  x',) s in,0 cosg0}~] ~/~ . (11.6) 

Subst i tu t ing  from Yz = (1 --  x'z)s, the superveloci ty due to the fi lament ahead  of the  m a x i m u m  
thickness is • 

- - q ' d x ' , c o s ~ o ~  1 ra ~ / 2 + s ( x , - x ' Z )  ] 
- - - -  o - -  ( X o  - -  - -  x',) + --  x " ) +  ' (II.7) 

tThis device is adopted, in preference to direct integration over the wing desired, for tile reason given in section 5 
of the main text. 
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where  : r~ = (s + sin ~o0 cos 9o) ~ + cos ~ 90 

r2 ----- 2(s + sin 9o cos ~Oo) {s(1 - Xo) - -  y }  

~ = {~(~ - Xo) - y}~ .  

Similar ly ,  for  f i l amen t s  af t  of t he  m a x i m u m - t h i c k n e s s  line, whe re  Yt = (1 + x',) s : 

- -q 'dx ' tcOSgo I 1 rJ-/~--S(Xo--X'~) ] 
dv,~R = 4:~ X o -  x', (Xo -  x't) { r d X o -  x',) ~ + r~(Xo- x',) + r~} 1/~ ' (II .8) 

w h e r e  : r~ = (s - -  sin 9o cos ~oo) ~ + cos ~o  

r5 = - -  2(s - -  s in 9o cos 90) {s(1 + xo) - -  y }  

ro = { s ( t  + X o ) -  y}~. 

S u b s t i t u t i n g  for t h e  source  s t r e n g t h  q' f r o m  e q u a t i o n s  (11.3) a n d  (11.4) t h e  supe rve loc i t i e s  v,~ 
a n d  v~R are g iven  b y :  

¢o No COS To Xo 
- -  V . F  : d x ' ~  

XO - -  X t l  0 

- -  Xo r81/2 

0 

dx't 
(Xo - x' ,){r~(xo - x ' y  + r~(xo - x',) + r d  "~ 

f ]  dx'~ + (r3 "~ - SXo) { r d x o -  x',) ~ + r~(xo - x',) + r3} ~" 

+ s {r~(xo - x ' y  + r~(xo - x',) + r~} 1" 
(11.9) 

- -v~R = t_o VocoS~o Xo ---- dx'~ 
\Co./ :~ 1 Xo --  X't 1 

f l  dx', - -  x°r°ll2 ~ (Xo - x',) { r 4 ( x o -  x't) 2 + r s ( X o -  x't) + r6} 1/2 

f l dx't 
+ (to 1/~ + SXo) 1 { r d x o  - x,') ~ + rs(xo - x',) + to}  "~ 

- -  s 1 { r a ( X o -  x',) ~ + rs(Xo-  x',) + r6} ~/2 . . . . . . .  (I.lO) 

T h e n  t h e  cho rdwise  s u p e r v e l o c i t y  v. i n d u c e d  a t  t h e  p o i n t  (Xo - -  y tan~0o, y) b y  t he  r i g h t - h a n d  
ha l f  of t h e  w i n g  is g iven  b y  : 

v. = v,~ + v~R . . . . . . . . . . . . . . . . . .  ( I I .11)  
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These integrals present no difficulties, being of s tandard  form, and after some rearrangement ,  
the superveloeity v~ is obtained as • 

2TVx . 

Vo(to/Co) cos 9o 
=--2--xoln{R:--(1--xo) singoc°SgO--Yy} 

+ (1 + Xo) sin 9o cos ~Oo 

cos ~ ( s2)Sing~cosgt} {R~_(l_xo) sing~cosgo_ycos(gt_q)o)l + 9~ 1 Xo In : g O - -  - -  - -  
cos 90 L s ~ + xo sin 9~ cos 90 + (s --  y) cos (~ --  9o)J 

~ ( sY-) sin 9~-c°s 9t} in fR2 + (1 cosg~ Xo-- 1 - F X o - -  R 3 + x o  
cos 9o I 

C0S2  9~ cos2 9~ FR~-  R~] + [R~ --  R~] . . . .  
S C O S  ~ o  o - S COS ~ 9 o  " ' 

sin 9~ cos 9o + (s --  y) cos (9o --  9,)" L 
+ Xo) sin 9, cos 9o --  y cos (90 --  9,)J 

. . . . . . . .  (11 .12)  

where R~ ~ = (1 --  Xo) ' cos ~ 9o + 2y(1 --  xo) sin 90 cos 9o + 3 '~ 

R, ~ = (1 + Xo) ' cos 2 90 --  2y(1 + Xo) sin 90 cos 90 + Y" 

R~ 2 = xo 2 cos 2 % + 2(s --  y)xo sin % cos 9o - /  (s --  y2). 

This result must  be subtracted from tha t  for a semi-infinite sheared wing which is given in 
Ref. 3 (equation 3.13) as" 

~Vx 

vo(to/~o) cos 9o 
= - -  2 - -  X o  I n  

{R~ -- (1-- Xo) sin.~°o COS go ~ Yy} 
R~ + (1 + x~) sin % cos 9o 

+ Y ln{R~--(1--Xo) COSqDo--ysingo} 
cos 9o R2 + ' ( 1  + xo) cOSgo - - y  sin 90 " . .  (11.13) 

Hence the supervelocity v, at  the point (Xo -- y tan 90, y) due to the r ight-hand half of wing (2) is • 

=v, {R~-- ( 1 - -  xo) cOS go -- y sin goo } 
Vo(to/Co) -- y l n  + (1 + xo) cos ~o --  y sin 

( ( { y ' ~  s i n  2 ~ , \  R~ - -  (1 - -  : go / s in  9~ c o s  9o - -  y c o s  (~, - -  9o)?, 
--cos~o z x0- -  1 - - X o - - s )  2s j l n  R 3 + x o s i n g ~ c o s 9 0 + ( s  y) c o s ( f ~ - - f o ) J  

- - c o s g t  Xo-- l + x o - -  2s j l n  ~ _ F  (1TXo--)-si-n~o-~cos90--ycos(~o0_ 

@ sC°S" 9~cos 9~--o R1 -F sC°S~%co---s 9--~ R~ --  (c°s2 9~s cos-F cos~ ~ot)9o R3 . . . . . . . . .  (II. 14) 

In order to make  the chordwise ordinate in terms of the local chord independent  of the spanwise 
position, new variables m a y  conveniently be introduced, i.e., y = ~s ; xo = (1 --  ~)x. 
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Then _. ~v, 
Vo(to/Co) 

f (R? + Cs*) 1/~ - R~} 
- ~s in L(R?  + Cse) ~/* + 

[(R5 ~ + "qes2)l/2 - -  R5 sin 9z -- rjs cos 9J 
-(I - ,)R~ cosg, ln L 7-(I Z_ ~ +-¢~- 9)7 sec9 

- (~ - - , ) R ,  cos  9, l n  V ~(1 - ~ ) { 1  + cos  (9 - 9 , ) }  seo  9 1 
kRd + ¢s2) ~/~ + R~ sin 9~ -- ~s cos %3 

cos 9, (R? + Cse) ~/e + + - g -  
COSe 9t (RG ~ - /¢s~)1/e  

_ !1 - ~) (cos ~ 9, + cos e 9,) . . . . . . .  
cos 9 

(1 - -  x) sin 29z where R s =  1 - - x + ~ s t a n 9  R s = x  2s 

. .  (II .15)  

R , = l + x - - ~ s t a n 9  (1 + x) sin 29,. Re = x 2s 

It  is now necessary to determine the contribution of the left-hand half of the wing to the super- 
velocity at the point (x0 --  y tan 90, Y). This is equal to the supervelocity at the point P1 (Fig. 48) 
due to the right-hand half of the wing. It  is not sufficient however to put (-- y) for y in equation 
(II.14), as this would give the supervelocity at the point Pe (Fig. 48), 2y tang0 ahead of PI: 
It  is clearly necessary therefore to put (x0 + 2y tan 9o) for x0 before substituting (-- y) for y in 
order to obtain the supervelocity at  P~. 

Thus the contribution of the left-hand half of the wing to the supervelocity at the point 
(Xo -- y tan 90, Y) is" 

Vo(to/Co) - -  + y In ~ + (1 + Xo) cos 90 --  Y singo 

yX~ sin 29l ( + c o s g ~  X o -  1 - X ; - s /  2 s  Y ( 2 s  tan 9 O s  + sin 29ttan 9o + s in29z)} 

R1 -- (1 -- Xo) sin 9~cos_9_o_+_y cos - (ff_~ _--_ 9o) "~ 
× in R4 + Xo sin 9, cos 90 + (s - y) cos (9, - 90) + 2y cos 9z cos 90 f 

{ ( ~ )  sin 29t Y- (2s  tan ~° -- sin 29' tan 9° + si -n-29~)} +cosg~  Xo--. l + x o  2s - - s  

X I n f  R4 -~-Xosingtcos9o-}-(s--y)cos(9o--9t) @ 2ycos9tcos9o)  
R~ + (1 + x) sin 9t cos 9o + Y Cos (90 + 9t) 

c°s~ ~' R~ cos ~ 9, Re + (c°se 9, + cos ~ %) R4 . . . . . . .  (II. 16) 
S COS 90 S COS 90 S COS ~o 

where R42 ---- R3 ~ + 4sy cos e 90 • 
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P u t t i n g  e q u a t i o n  (II.  16) in t e r m s  of x a n d  ~, a n d  a d d i n g  to  e q u a t i o n  (II.  15) gives  t he  s u p e r v e l o c i t y  
v, a t  a n y  p o i n t  (x, ~) due  to  t h e  whole  of t he  t a p e r e d  w i n g  • 

~v~ (cos  2 ~, + c o s  2 ~ , ) (1  - ~ + R , )  

4Vo(to/Co) 4 cos 

c°S~2s ~ (RS~ + n~s~)l/2 c°S22s ~' (R"~ + ~s~)l/~ 

t 

+ (1-~)c°s~'lnL 7(f--~U~i--~e~(,,--~)}sec, 

R. [-(R: + ~ ) 1 / ~  + R0 sin ~ , -  ~ cos.~,] 
4 ( 1  - ~) cos ,, in L Y(~ -- ~ -+ c~ (w - ~ 5 - ~  / 

(R. 
- -  --~7) c o s ~ , l n [  j? (R52+~2s2)l/2-Rssing'+flse°sg~ ] + 

ZI~ 7 - -  - -  

(R0 
- - ~) cos in [ (Rg +"~s~)l/~+R°si~'+"~e°s~' ~1 

R~)(  1 9, s{R7 + (1 ~) cos ( ,  , ,)  + 2~ cos 9, cos ~} sec 

w h e r e "  R , =  1 - - x + ~ s t a n 9  

R , =  1 + x - - ~ s t a n 9  

R~ ~ = (1 - -  ~)2 + 4~ cos2~ 

R~ = x - -  s in 2 9~ (1 - -  co t  ~o~ t a n  ~o) 

R .  = x + sin ~ 9, (1 - -  cot  ~v~ t a n  ~o) 

2~ 
R~o - -  (1 - -  ~)-(s t a n  ~o~ - -  cos ~ ~o~) 

2~ (s t a n  ~o~ + cos ~ ~o~) ~ 1 =  (~_~) 

I f  t he  s e m i - s p a n  s is n o w  inc rea sed  t o  inf in i ty ,  ~s - +  y,  a n d  ~, a n d  ~ ,  ~ - +  ~o. 

T h e n  • 

4Vo(to/Co) cos ~Oo 

I t s - +  oo 

(II.17) 

1 + x R1 - -  (1 - -  x) s in 90 cos % --  R1 - -  (1 - -  x) sin ~Oo cos 9o + Y cos 29o'~ 
~i in  R2 + (1 + x) sin 90 cos 90 - -  + (1 + x) sin 90 cos 9o + Y cos 29oj  

Y t a n  90 In ~R1 --  (1 - -  x) sin 9o cos 9o + y cos 2%'~ 
2 LR~ + (1 + x) sin 9o cos ~o + y cos 2~00J = 
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- -  x - -  ( R 1  - -  y )  t a n  ~ o J  

Y tango0 In fR~ + (1 q - x ) s i n  ~o cos % + y  cos ~ }  . . . .  (II.20) + 
- -  (1 -- x) sin ~o cos ~0o + y cos 

which is the formula given in Ref. 3 for the velocity at any point of an infinite swept-back wing 
of parabolic-arc aerofoil section (equation (4.15) of Ref. 3). 

A P P E N D I X  I I I  

The Supervelocity at the Centre-line of a Tapered Swept Wing 
Having Constant Spanwise Thickness, and a Symmetrical 

Parabolic-Arc Aerofoil Section (Wing 3) 

The wing is taken to have the centre-line chord along the x axis, the mid-chord point being 
at the origin, and the leading and trailing edges at x ---= + 1 and x---= -- 1 respectively (Figs. 
1 and 49). 

The equation to the surface of the right-hand half of the wings is • 

where" 

\ C o / ~  ( s  - (1 - ~)y'}~ J '  " 

z' is the half thickness at the point (x', y') 

(to/Co). is the centre-line thickness/chord ratio 

s is the semi-span of the wing 

. .  ( t l i .1 )  

Then 

1 - - Z  
is the spanwise position at which the extended leading and trailing edges 

intersect 

,l is the taper ratio tip chord 
cen'~rc-lilte chord 

~0 is the sweep of the mid-chord line. 

Oz' 2 to s y, 
a x ' -  20 s - (1 - ~)y'  (x' + t a n  ~0) . . . . . .  (111.2) 

and the source strength per unit area to represent this wing is • 

q ' = - - 2 V o 3 Z ' _ 4 v o ( t ° ) ( s  y ~x' Co s -- (1 - -  Z)y' ( x ' + y ' t a n ~ 0 )  . .  (III .3) 

where Vo is the free-stream velocity. 

Thus the actual source strength over an element (dx' dy') is • 

()( to " s  y ,  
q ' d x ' @ ' = 4 V o  ~o , s - i f - ~ ) y '  ( ~ ' +  tan~o) dX'dy'. 0 • (III.4) 
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Put t ing  x j = Xo -- y '  t an  9 ~ 

= xoQS - -  ( l s T  a ) Y ' )  - -  y '  t a n g o  

where 9' is the sweepback of the constant=percentage chord-line passing th rough  the point  (x', y ' ) ,  
and x0 is the intercept  of this line on the x axis. 

Then dx'  ( s  --  (l -- ,~)y') d x  0 
s 

¢0) 
and q' dx '  dy '  = 4Vo ~o x o d x o d y '  . . . . . . . . . . . . .  (III.5) 

Referring to Fig. 49, the  elemental  chordwise superveloci ty av, at the poin t  P due to the 
source element at the point  (x', y ' )  • 

to)  (cos ~ cos 9' + sin ~ sin 9') . . . . .  (I l l .6)  
V0 X0 dxo dy' 

6V, = - -  Co 7oR 2 

where R is tile distance between P and the point  (x', y') 

is the angle between the line joining the points P and (x', y ) ,  and the line 
passing through P normal  to the constant-percentage chord line (x ' ,y ' ) .  

If n is the l eng th  of tile perpendicular  from P on to the constant-percentage chord-line th rough  
(x', y ') ,  then  : 

R = ~ sec 7 

y '  = y  + R sin (y -- 9) 

= y + u( tan  r cos 9' -- sin 9') 

and dy'  = ra sec = y cos ~0' dy . 

Then the superveloci ty  (dv,) at  the point  P due to the source fi lament xo - -  y '  tan  ~0' extending 
from the centre-line to y '  = s is given by  ' 

fv'=s ~z d v .  " x o 

Vo( 0/Co) y'=0 
dxo (cos 7 cos 9' + sin 7 sin 9') cos 9' dy 

~4 

XodXo 

n 
cos 9' {sin (/~' --  9') + sin (9' -- ~ )} . . . . . . .  (III.7) 

where 

Subs t i tu t ing  Y = (1  - = (1  - 7 ) ( *  - *o)  c o s  9 ' ,  

the supervelocity at the point P due to the right-hand half of the wing is given by ' 
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~ V  x 

G(to/~o) ;+i( ;o)( )( Xo s 1 - - ~  - - V  
_ x - -  1 - - ~  [ { 4 ( 1 - - X ) ( X - - X o ) + S  1 - - X - - ~ ) t a n g }  ~ + s ~ ( 1 - x - ~ ) ~ ] ~ / ~  

+ [ { ( 1 - -  X)(x - -  Xo) - -  ~s t a n  9} ~ + ~s~  ~/~ dxo 

_ ( S l _ ~ ) { x ( l _ a _ ~ ) i i _ ( t _ ~ _ ~ ) 1 2 + x ~ i 3 _ ~ i 4 }  

w h e r e  • 

f +~ dxo 
-~ ( x -  ~o){~2(1 - x ) ' ( x -  Xo) ~ + 2 ~ ( 1  - z)(~ - ~ - ~ ) ( ~ -  ~o) t a n ,  + ~ ( ~  - x - ~)~ seo ~ ~ } ' ~  

;ii 1 2 =  {~(1 - -  2)~(x - -  xo) 2 + 21s(1 - -  ~)(1 - -  ~ - -  ~)(x - -  Xo) t a n  9 + s2( 1 - -  ~ - -  ~)~ sec2 ~°} ~/2 

f +~ dxo 
G = _ (x - -  xo){(1 - -  Z)~(x - -  Xo) ~ - -  2~s(1 - -  Z)(x - -  Xo) t a n  9 + ~ ~s~sec~ 9} 1/~ 

I~ = {(1 - -  Z)~(x - -  Xo) ~ - -  2~s(1 - -  Z)(x - -  xo) t a n  ~0 + ~ s  ~ sec ~ 9}~/~ " 

All these  in tegra l s  are  of s t a n d a r d  form,  a n d  a f t e r  some  r e a r r a n g e m e n t ,  t h e  s u p e r v e l o c i t y  a t  
t he  po in t  (x, o) due  to t h e  r i g h t - h a n d  half  of t he  wing  is o b t a i n e d  as"  

Vo(to/Co) 
x c o s 9  lnRl~ + s - -  ~(1 - -  x) s i n 9  c o s 9  

R13 + s + 4(1 + x) sin 9 cos 9 

_ s in RI~ + s sin 9 - -  ,~(1 =- x) cos 9 
Ri3 + s s i n ~  + 4(1 + x) cos 

x 1 sin ~o'~ 
(111.9) 

w h e r e  : R12 ~ = ~2(1 - -  x) 2 cos ~ ~o - -  2Xs(1 - -  x) sin 9 cos ~o + s 2 

Rid  = ~(1  + x) ~ cos ~ ~o + 2Zs(1 + x) sin 9 cos 9 + sL 

T h e  c o n t r i b u t i o n  to v, due  to t he  l e f t - h a n d  hal f  of t h e  wing  is, b y  s y m m e t r y ,  equa l  to t h a t  
due  to  t h e  r i g h t - h a n d  half  of t h e  wing.  H e n c e  the  s u p e r v e l o c i t y  a t  t i le cen t re - l ine  due  to  t h e  
c o m p l e t e  wing  is g iven  b y  : 

~v, s i n R 1 3 + s s i n g + 4 ( 1 + x )  c o s 9  

4Vo(to/Co) - -  2~ RI~ + s sin 9 - -  4(1 - -  x) cos 9 

X 
+ ~ l n  

R 1 3 + s + 4 ( 1  + x )  s i n g c o s 9  

R12 + s - -  4(1 - -  x) sin ~0 cos ~o 

x (11 + x ) ( 1  + s i n ~ )  
- - ~  c o s g l n  - - x  - - s i n  " . .  ( I I I . lO)  
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W h e n  ~ = 1, 9 = 90, and this equat ion reduces to • 

nv, _ s in {( l+x)~cos~F°+2s( l+x)s ing°c°sg°+s~}i /~+ss ing°+( l+x)c°Sq)o  
4Vo(to/Co) 2 {(1 --  x) 2 cos ~ 90 -- 2s(1 -- x) sin 9o cos 90 + s~} ~/~ + s sin 90 -- (1 -- x) cos 90 

+ x {(1 + x)~cos~9o +2s(1 
cos 90 In {(1 -- x) ~ cos2 9o -- 2s(1 

+ x) sin 9o cos 9o + s~} 1/~ - / s  -/(1 + x) sin 9o cos 90 
- -  x) sin 90 cos 90 + 8 2 ) 1 / 2 - ~  - S - -  (1 - -  X) sin 90 cos ~o 

-- 5 cOsgoln --  x 1- --  sin . . . . . . . . . . . . .  (III.11) 

which, since s = A for an untapered  wing, is in agreement  with equat ion (4.13) of Ref. 3 for t he  
supervelocity at the centre of a finite aspect-ratio, untapered,  swept wing. 

For s = o% the first t e rm of equat ion (III.11) becomes cos 90, and hence for an infinite swept  
wing, the  supervelocity at the  centre-line is given by • 

4Vo(to/Co)--c°sg° 1 - - ~ l n  - - x  - - - 2 I n  - - s i n  " 

To obtain the  expression for the supervelocity at the  centre-line of a fully tapered wing having 
constant  spanwise thickness, it is necessary to put  2 = 0. This is not  strictly permissible, because 
the  thickness/chord ratio at the  tips of such a wing is infinite, and linearised theory  cannot  
be applied under  these conditions. A similar case occurs near the leading edges of round-nosed 
aerofoil sections, however,  and it has been shown elsewhere tha t  in this case, the  results given 
by. linearised theory  are invalid only near  the leading edge. Since, for the case of the fully tapered 
wing considered, only the velocities at  the  centre-line are required, it has been assumed, wi thout  
formal proof, t ha t  the expression obta ined from equat ion (III.10) for Z = 0 gives the  correct 
value of the  superveloci ty at the centre-line chord. Some justification for this assumption is 
provided by  the  fact tha t  for a given rate of planform taper, v,/Vo at  the centre-line does not  
vary  great ly wi th  2 as X -+  0 : for Z =~ 0, the thickness/chord ratio at  the tip is not  infinite and 
can indeed be very  small, thus complying with the requirements  of linearised theory. Further-  
more, the  excellent agreement  between the  supervelocities at the  centre of wing (6) which include 
the  supervelocities due to wing (3), ~ = 0, and those at  the centre of the constant  thickness/chord 
ratio wing considered in Ref. 7, shows tha t  any errors involved in this assumption are small and 
of a negligible order. 

As a--+ 0, the first term of equat ion (III.10) becomes cos 9, and hence the  expression for 
the superveloci ty at the centre of a fully tapered wing, having constant  spanwise thickness is : 

~ V  x 

--  cos 4Vo( o/ o) { l _ 2 1 n ( } _ + x ) _ 2 1 n ( 1  l_+s !n ; )} . sm .. (III.13) 

Equa t ion  (III. 13) shows tha t  the supervelocity at a point on the  centre-line chord of such a 
wing is the  same as tha t  at the corresponding point of an infinite swept wing, having the same 
sweep as the  constant-percentage chord-line of the tapered wing which passes through tha t  point,  
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A P P E N D I X  IV 

The Supervelocity at the Centre-line of a Tapered Unswept Wing 
Having a Cubic Spanwise Variation of Thickness, and a 

Symmetrical Parabolic-Arc Aerofoil Section (Wing 4) 

The wing is taken  to have the centre-line chord along the x axis, the midpoint  of the  chord 
being at the  origin, and the leading and trailing edges at x = + 1 and x---- --  1 respectively. 

The equat ion to the  surface of the r ight -hand half of the wing is • 

?oo ~ + ~ (~ - - ~ ' ) ~ J \  ~ ' 

(IV.l) 

where 

to 

z' ---- is the half thickness of the  wing at the point  (x, Y') 

io/Co = is the centre-line thickness/chord ratio 

s ---- is the semi-span of the wing 

1 +N--Ys ' )Cs--y ' ) is thethickness/ch°rdrat i°atspanwisep°si t i°ny"Nbeingac°ef f ic ient  
varying from -- 1 to + oo for wings which have positive thickness 

s through-out  the  span. 

. . . . . . . . . . . .  

~x' \ C o l \  

Therefore q' (the source s t rength per unit  area) required to represent this wing is • 

2Vo az' --  ( V  q ' : - -  4Vo t° 1 + x ' ,  . . . . . .  
~x' k C 0 / k  

(IV.8) 

where V0 is the free-stream velocity, i.e., q varies linearly along lines parallel to the max imum-  
thickness line. Thus, referring to Fig. 49, the  supervelocity 0v~ at the point  P (x, y) due to the  
e lementa l  source at the point  (x', y') is given by  • 

q' dx' dy' 
0v,------  4~zR . cosy 

VOC:o) x _ - d ' ( I V . 4 )  ~-~ 1 + c o s ~ d x '  y ,  . . . . . . . .  

where • R is the distance between P and the point  (x', y') 

~, is the angle between the line joining P with (x', y'), and the perpendicular  
from P on to the  source fi lament x = x'. 

Thus the supervelocity dvx at P due to the  source filament x = x' is given by  • 

a dvx x '  c o s  y 

vo(tol~o - ~ '  1 + - ~  ay'  = 
,J T"=O 
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)[ N y  Y --  Yl __ y Y~}~/' - ; _  p 1 + S -  { ( ~ -  ~')~ + ( y -  y y p .  { ( ~ -  ~,)~ + 

s { (x  - x')~ + ( : y -  y , ) , } , ,  - { (x  - x'),  + y ,p ,~  d ~ ' . . .  (IV.5) 

For the front half of the wing, yz = s(1 -- x') ; putting x' = x -- (x -- x') and integrating from 
x ' = O t o x ' - - - -  1, w e o b t a i n f o r y = 0 "  

YcV x 2(, 
- -  - -  x l n  
Vo(to/Co) V(~ ~ + ~) - 

s { s (1 - -x ) (  x N )  N(2s ~ - l ) ( 1 - x )  ~} V(I+s2)%/(x ~ + s  ~ ) + x + s  ~ 
+ ~ / ( l + s ~ )  1 - -2x - -  (l_]_s)~ s -1- 2 (1 -1- s2) ~ in ( l _ x ) ( N / ( l + s 2 ) _ l )  

1 { x N  2Ns(1 --  x) N ( x  + s~)%/(x 2 + s ~) 
(1 + s  2) s + s + (1 + s  2) < l - - x  %/(x " + s 2 ) } -  - 2s(1 +s~) ~ 

+ N(1--  x2) f 1 1 } x N  Nx~ . . . . .  (IV.6) 
2s (1 +s~) ~ + ~ - ( 1 - 2 x ) - t -  2s . . . . .  

The supervelocity at the point (x, o) due to the rear half of the fight:hand wing can be obtained 
from equation (IV.6) by putting - - x  for x. Adding the result obtained to equation (IV.6), 
and doubling to give the supervelocity due to the left- and right-hand halves of the wing, gives 
the supervelocity at the centre-line of the whole wing as " 

4Vo(to/Co)--4s 1 (1 +s")" ( t - - x )  ~ +  (1 + x ) "  3x"N X s  2s 2(1 + s~) ~ ~/(x~ + s2) 

1 f2Ns(1--X) N~} 
2 ( 1 + ~ ) ' [  ~ f ~ f  + s +  f l - - , ~ - - % / ~ + ~ ) }  

1 f2Ns(1 + x) 
2(1 + ~) [ i i  v~ ~) + ~ - -  

NJ} {1 + x - V(x ~ + s~)} 

s { 
+ 2%/(1 -t- s 2} 1 -- 2x 

~(1+~) ~) 
(1 + s ~) ( s  + 

N(2s 2 -  1 ) (1 - -  x)2"/ %/(1 - /s~)%/(x ~ + s 2) -1 - .  + s  ~ 

+2%/(1-~s  ~) 1- -2x  l ( + s  ~) s 

N ( 2s ~ --  1)(1 
)\~j In (1 +x){%/(1 + s  2) -- 1} -- 2(1 +s2 )~  x %/( l+s~)%/ (x~+s~) - - x+s~  
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T A B L E  1 - - c o n t i n u e d  

(1) (2) (3) (4) (5) (6) (7) (8) 
X/O 3(1)(2, 9~) S(2)(x, o) 99 cos  ~9 s in  ~7 f (~9) cos 9) S(2((x, o) S(1)(x, 9~) 

All ~ x (6) x cos 
0.05 0.151 +0.255 51 ° O' 0 . 6 2 9  0"777 0-415 + 0 . 1 0 6  0.095 
0'10 0.158 0.146 49 ° 29'  0 . 6 5 0  0 .760  0-412 0.060 0-103 
0.20 0.153 +0.049 46 ° 7'  0 . 6 9 3  0.721 0.401 + 0 . 0 2 0  0-106 
0.30 0.133 0 42 ° 18' 0 - 7 4 0  0 .673  0.384 0 0-098 
0.40 0.112 -0 .030  37 ° 57'  0 - 7 8 9  0-615 0.361 --0-011 0.088 
0.50 0.091 --0.051 33 ° 2'  0 - 8 3 8  0-531 0-319 --0-016 0.076 
O' 60 0.067 --0'  067 27 ° 29'  O. 887 O. 462 O- 284 - -0 .019 O- 059 
0.70 0.046 --0.080 21 ° 18' 0 . 9 3 2  0 .363  0.226 - -0-018 0-043 
0.80 0.020 --0.093 14 ° 34 '  0 - 9 6 8  0-252 O. 159 - -0 .015 0.019 

x/c 
0.05 
0.10 
O.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 

x/c 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 

(9) (10) (11 )  (12) (13) 

+- 1 + K~(x, ~7) > 
, / = 0  r / = 0 . 1 6 5  ~ 1 : 0 . 3 6 6  ~ / = 0 . 5 8 4  r 1 : 0 - 7 3 3  

1.000 1.167 1.152 1 .079  1.050 
1.000 1.152 1.145 1 .077  1.050 
1.000 1.123 1-128 1 .072  1-047 
1"000 1.097 1 -099 1 -061 1.040 
1.000 1.068 1- 073 1 • 048 1 • 033 
1.000 1" 044 1. 049 1- 034 1. 026 
1.000 1.027 1.030 1 .023  1.017 
1.000 1.018 1-019 1 . 0 1 3  1 -009- 
1"000 1.008 1- 008 1. 006 1- 005 

(19) (20) (21) (22) (23) 

< K~S( 2)(x, o) f ((Y) cos q~ > 

~7=0 ~/=0"165 ~ 7 = 0 " 3 6 6  v / = 0 - 5 8 4  ~7 = 0 . 7 3 3  
K2=l.00 K,=0"02 K 2 = - - 0 - 1 9  K 2 ~ - - O ' 2 2 K ~ = - - - 0 " 2 0  

+0" 106 0" 003 --0" 020 - - 0 -  023 - - 0 -  021 
0"060 0"001 --0"011 - - 0 " 0 1 3  - - 0 - 0 1 2  

+0.020 0 --0-004 - - 0 " 0 0 4  --0"004 
0 0 0 0 0 

--0.011 0 - + 0 . 0 0 2  + 0 - 0 0 2  + 0 - 0 0 2  
--0'016 0 0 .003  0 - 0 0 4  0-003 
--0.019 0 0-004 0 -004  0-004 
--0.018 0 0 .003  0 . 0 0 4  0 .004  
--0.015 0 + 0 .  003 -+0-  003 + 0 .  003 

(14) (15) (16) (17) • (18) 

( {1 + Kl(X , V) }S(1)(X, ~) COS ~ > 
~ = 0  ~ = 0 - 1 6 5  ~ = 0 . 3 6 6  ~ = 0 . 5 8 4  ~----0.733 

0"095 0-111 0.110 0.102 0"100 
0.103 0"119 0-118 0.111 0.108 
0-106 0.119 0"119 0.114 0.111 
0-098 0.108 0.108 0.104 0.102 
0-088 0-094 0.094 0.092 0.091 
0.076 0"079 0.080 0.079 0-078 
0.059 0.061 0.061 0.060 0.060 
0.043 0.044 0-044 0.044 0.043 
0.019 0.019 0.019 0.019 0.019 

(24) (25) (26) (27) (28) 

< [(1 + Kl(x, ~7)}S(1)(x, ~]) -- K2S(2)(x, ~7)f (~)] cos q~ 
,/ = 0  ~ = 0 " 1 6 5  , / = 0 . 3 6 6  r / = 0 . 5 8 4  r / = 0 . 7 3 3  

- -0 .011 0.108 0"130 0.125 0.121 
- -0-043  0-118 0.129 0.124 0.120 
+ 0 - 0 8 6  0.119 0.123 0.118 0.115 

0.098 0"108 0-108 0.104 0.102 
0.099 0.094 0.092 0"090 0.089 
0.092 0.079 0.077 0"075 0"075 
0-078 0.061 0.057 0 . 0 5 6  0"056 
0-061 0-044 0.041 0.040 0.039 

+ 0 . 0 3 4  0.019 0.016 0.016 0.016 

(29) (30) (31) (32) 

Vo Vo Vo 
0 O. 133 - -  O- 008 O- 008 
O. 165 O. 133 +0 .019  - -  - -  
0.366 O. 133 0.011 - -  - -  
O" 584 O" 133 +0 .003  - -  - -  
O" 733 O. 133 --0.003 - -  - -  

(43) (44) (45) (46) 
x/c +-  v .(x ,  v) 

Vo 
r/----0 ~ ----0.165 v/ = 0 - 3 6 6  ~7 -~- 0-584 

0.05 -0.010 0.102 0. 134 0- 138 
0.10 +0.038 0.112 0- 133 0- 137 
0.20 0.076 0.113 0. 127 0" 131 
0.30 0'087 0.102 0- 111 0. 115 
0'40 0.088 0.089 0- 095 0-100 
0' 50 0.082 0.075 0- 079 0. 083 
0.60 0.069 0. 058 0" 059 0- 062 
0.70 0.054 0" 042 0. 042 0" 044 
0'80 +0.030 O. 018 O. 016 O. 018 

(33) (34) (35) (36) (37) (38) (39) (40) 

{ Avx(k, o), } ~=o (v~(k, v) } ~=o s(1)(k, o) Avo(k, ok ~ Av.(k, oh, ~ A..(k, o),, ~ Ave(k, o)~ K~(k, o)~ 
Vo Vo x(1 --  cos ~) Vo Vo Vo Vo S(~)(k, ~) cos ~ 

0-025 0.108 0.035 0.010 0.010 0.014 0.021 0 
- -  0-114 0.035 0.010 0.010 0"014 0.021 0.009 
- -  0.122 0-035 0.010 0.010 0.014 0-021 0.010 
- -  0-130 0-035 0-010 0"010 0.014 0-021 0.006 
- -  0.136n 0.035 0.010 0.010 0.014 0.021 ~ 0.004 

(47) (48) (49) (50) (51) (52) 

~----0.733 ~ = 0  ~----0.165 ~ = 0 . 3 6 6  ~ = 0 . 5 8 4  ~ = 0 . 7 3 3  
0.141 - -0 .020 0.214 0.286 0.295 0.302 
0-140 +0 -078  0.236 0.284 0.293 0.300 
0-134 0-158 0.238 0.270 0.280 0-286 
0.119 0-182 0.214 0.234 0.242 0.252 
0.104 0.184 3.187 0.200 0.210 0.218 
0-088 0.170 0.156 0"165 0.173 0.184 
0.065 0.142 0.120 0.122 0-129 0.135 
0-046 0.110 0.087 0.087 0"090 0"094 
0-019 + 0 . 0 6 0  0.036 0.032 0.036 0"039 
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(53)  
,( 

(54) 

(41) 
vx(k, V) 

V o 
0-087 
0.102 
0.111 
0.115 
0.119 

(55 )  (56)  (57)  
- -  C~ (with thickness correction) 

(42) 

0.888 
0.945 
1.029 
1.106 
1.167 

(5s) 

1 +(S(2)(x)) 2 ~----0 ~ = 0 . 1 6 5  ~ = 0 . 3 6 6  ~ = 0 . 5 8 4  ~----0.733 

0.943 - -0 .076 0.145 0.213 0.221 0.228 
0.980 + 0 . 0 5 6  0.212 0.258 0.266 0.274 
0.997 0.154 0.234 0.265 0.275 0-281 
1.000 0.182 0.214 0.234 0.242 0.252 
0.999 0.182 0.185 0.199 0.209 0.216 
0.997 0.166 0.152 0.161 0.169 0.180 
0.995 0.136 0.115 0.116 0.124 0.129 
0.993 0-092 0.080 0.080 0.083 0.086 
0.991 + 0 . 0 5 0  0.026 0.023 0.026 0.030 



T A B L E  1 

Calculation of the Chordwise  Pressure Distributions on a Delta Wing : 

A = 3 .08  ," A erofoil Sect ion N A  CA 0010 Throughout the Span 

From eqtmtion (20): 

v,~(x, ~) __ rE{1 + K~(x, ~)7 S (~) (x, 7) - -  K2S¢~)(x,°)f(q))]c°s9 . 
Vo 

From equation (21): 

Vo{1 -F- K, (k ,  r])} S(1)(k, ~) c o s % "  

From equation (22): 

~-o - L  Vo L=o-  
Jv.(k, o)~ + K~(k, ~;) SI~I(k, ~) cos ~ .  

Vo 

From equation (23): 

o,} OLo t o,, t 
~"  ~v=0 = S(l'(k' o) - -  Vo -~ L Woo )~=0-  [ ~0 jg= 0 ' 

Vo'-  _~o 
and from equation (24) : 

Vx( k, = S(I ' (~ ,  ~]) 

~o 39=0 - L  Vo_)j~=o 
(Av,~(k, ~?)} be ing  o b t a i n e d  from Fig. 10b or the results of Ref. 7. 

V0 cp~0 

From equation ,(27) : 

Av,~(k,o)~ _ S~l~(k ' o){1 - -  cos  ~ - - }  Avx(k ,  o),,9 Av,(k, o),,~ 
V0 Vo + V, 

Ave(k, o),,~ 

V0 

Av,(k,o)s, ~;,~,~,nat, ~ b e i n g  ob ta ined  from Fig. 47. 
Vo 

{ vx(x, ~/F 
Then G =  1 - -  1 -[- Vo J ' 

or allowing for the effects of aerofoi l  t h i c k n e s s  : 

1 +  Vo 3 
Cp = 1 - -  1 + {S(2)(x, ~)}~ 

49 
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