
ROYAL ~ ~, . . . .  

1 
MINISTRY OF SUPPLY 

R. & M. No.  3036 
(18,474) 

A.R.0. Technical Report 

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  

A Method for Calculating the Pressure 
Distribution over Jet-Flapped Wings 

~y 

D. KUCHEMANN 

Grown Copyright Reserved 

L O N D O N  : H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  

1957 

VRICE 7 s. 6d.  WET 



A Method for Calculating the Pressure 
over Jet-Flapped Wings 

Distribution 

D. KUCHEMANN 

COMMUNICATED BY THE I)IRECTOR-GENERAL OF SCIENTIFIC RESEARCH (AIR), 

MINISTRy OF SUPPLY 

Reports Memoramta No. 

May, I956 
3036* 

Summary.---The incompressible flow past an aerofoil with a thin jet emerging from its lower surface somewhere near 
the trailing edge is considered. Based on unpublished work o2 Gates, Maskell and Spence, a simple method is 
described for calculating the pressure distribution over wings of non-zero thickness. The effects of finite aspect ratio 
and of camber are included and the method can be used for design purposes. The possible effects of sweep are briefly 
discussed. It is pointed out that a saddleback chordwise loading is typical 2or aerofoils with jets and that this is the 
basic reason for many of the aerodynamic advantages of the jet-flap system. 

1. Introduction.--The ' j e t - f lap '  system, as recent ly  described by  Davidson 1, has been t r ea ted  
in its physical  aspects by  Maskell and  Gates (unpublished);  and thin-aerofoil  theory  has been 
applied b y  D. A. Spence ~ to ca lcu la te  the  circulat ion and  the  chordwise loading for a th in  flat 
aerofoil wi th  a th in  shallow jet  emerging f rom the trail ing edge. The la t ter  results can be used 
to devise a simplified m e t h o d  for calculat ing the pressure distr ibution,  if the  external  lift force 
and  the  jet  m o m e n t u m  are known.  Such an extension of the existing me thod  is worthwhi le  if 
the  effects of non-zero thickness and  of camber  can be inc luded and if it can readi ly  be 
ex tended  to wings of finite aspect rat io and to swept  wings. Fur ther ,  the m e t h o d  should be 
simple enough to serve as a basis for a ra t ional  jet-flap wing design. I t  is the  a im of the  present  
paper  to describe such a method,  which  incorporates  the  jet flap as a special case in the general  
aerofoil theory~ of Refs. 4 and  8. ,, ~, 

The  considerations in this note  are restr ic ted to incompressible and  inviscid flow a l though some 
viscosity effects are briefly ment ioned.  Fur ther ,  only the forces on the  external  surfaces of the  
aerofoil  are considered. This leaves out  the  flow phenomena  near  the  exit nozzle as well as all 
the  problems connected  wi th  the  propulsive efficiency of the  sys tem and  the  in tegra t ion  of the  
lift and  propulsion units. In  part icular ,  in ternal  forces and  energy losses are not  considered (for 
these see, for example,  Ref. 9). Questions concerning the  s tabi l i ty  and control  of such aerofoils 
are also ignored. 

2. Lif t  and Drag Forces on a Wing at Zero Incidence without J.et .--As a pre l iminary  s tudy,  
consider the  problems of how a lift force can be produced  by  a wing at  zero angle of incidence 
and  how the  induced  drag can be accommodated .  The circulation associated wi th  the  lift force 
mus t  differ f rom the  .Kut ta  va lue  (which is zero) and it mus t  be such t ha t  the  rear  s tagnat ion  
point  is displaced forward f rom the  trai l ing edge by  the  same amoun t  as the  front  s tagna t ion  
point  is displaced downs t ream from the  leading edge. This m a y  be considered as a special case 
of the  ' Thwai tes  flap 3 '. 

* R.A.E. Report Aero. 2573, received 2nd June, 1956. 



We realise that ,  by  dropping the  K u t t a  condition, the  solution for the  chordwise loading of a 
flat wing of infinite span is no longer unique.  The solution l(x) with  x = 0 at the leading edge 
and  x = 1 at  the  trai l ing edge, of the downwash  equat ion:  

1 flZ(x, ) dx, ' - 0  

now takes the  general  form:  

whereas  the second te rm on the r igh t -hand  side of the  last equat ion  vanishes if the K u t t a  condit ion 
l ( +  2) = 0 is applied. 

For  a flat wing of infinite span, the chordwise loading for a given lift force can be seen at  once 
as being the  sum of two ' flat-plate ' distr ibutions,  as in Fig. 1, each of t h e m  being a solution for 
the  flat plate  at  incidence. Whereas  l~(x) produces a uni form downwash,  ~ ~ = CLI/2~, along 
the  chord, 12(x) produces a uni form upwash  e,~ = --  CL~/2z, of the  same amoun t  so t ha t  the  
plate  at  zero incidence is, in fact,-a streamline.  Thus,  for ~ = ~ + ac~ = 0, we have  CL~ = CL2. 
The  first component  dis t r ibut ion is given by  the  wel l -known relat ion due to Bi rnbaum" 

l~(x) = - -  A Cp(x) = + _ 2 CL 1 . . . .  . .  . .  (1) 
7g 

where  A @  is the  difference be tween the pressure coefficients Cp = (p - -po) / (½pVo ~) on the  upper  
and  lower surfaces of the  aerofoil. The second component  dis tr ibut ion is then" 

= \ Y - A - - - - x ]  . . . . .  

The overall  lift coefficient : 

CL = f l  I(x) dx  = CL~ + CL2 = 2CL, . .  . .  (3)  

can be freely chosen. 

The  chordwise loading tl + 12 is shaped like a ' saddleback ' ,  as shown in Fig. 1. 
suct ion force at  the  leading edge, to which only l~(x) contributes" 

There  is a 

CL1 2 - -  C L  2 • 

Crl = -  2~ 8~ . . . . . . . . . . . . .  (4) 

and  another  suct ion force in the  other  direction at the  trai l ing edge, to which only 12(x) contributes.  
This is equal  and  opposite to Crl so tha t  there  is no overall  drag. 

In  contras t  to the aerofoil of infinite span, the  wing of finite aspect ratio possesses s t reamwise 
vor t ic i ty  components ,  bo th  on the  wing surface and  in the  wake,  and these together  induce a 
downwash  over the  w i n g  surface. If the  aspect ratio of the  wing is large, this downwash  is 
constant  along the  wing chord and  if we assume fur ther  t ha t  the  plan-form is such as to give the  
smallest  induced  drag, this downwash  is constant  along the  span also, i.e., it  is constant  over the  
whole wing surface. I t  is then  possible to pu t  tile wing at  the  same incidence, name ly :  

1 dL  . . . . . .  (S) 

= = W00 = 2 X  . . . . . .  

as is induced  by  the  s treamwise vortices. The same lift is then  obta ined as on the  corresponding 
wing of infinite span at  zero incidence, wi th  the  same saddleback chordwise loading and  wi th  
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elliptic spanwise loading. This means tha t  the suction forces at the leading and trailing edges 
still cancel one another;  but  there is now a drag component from the pressure forces normal to 
the surface, which is equal to : 

CD, = C~ = dL~i = 1 . . . . . . . . . . . .  (6) 

by equation (5), as it shou]d be for the wings considered, in the absence of a jet. 

If the wing of finite aspect ratio is required to remain at zero incidence, the existence of a 
downwash contribution from the streamwise vorticity components means that  the bound vortices 
l~(x), which on the two-dimensional aerofoil had to produce all the downwash needed, can now 
be weaker and are required to contribute only part  of the downwash, as indicated in Fig. 2. 
The vortex distribution l=(x) is thus no longer equal to l,(1 -- x). This implies tha t  the chordwise 
loading becomes asymmetrical and tha t  the suction forces at the leading and trailing edges do 
not cancel one another any more. In fact, Cr, is smaller than Cr~ and it is in this manner tha t  
the induced drag occurs, in theory. 

That  the difference between leading-edge and trailing-edge suction has indeed the same value 
as the ordinary induced drag can be seen as follows. Consider an unswept wing of not too small 
an aspect ratio, so shaped as to give constant CL values along the span and minimum induced 
drag. The overall tangential  force is the sum of two components: 

Or = Cn + Cr,. -- CL122~ + CL~22~ 

by equation (4), so tha t :  

1 (Cn -{- CL~)(C~ CL,) (7) d r  = ~ - • . . . . . . . . . .  

On the other hand, the boundary condition on the wing reads ~1 + ~ ~ + ={ : 0, where: 

0~1 C~  . . . . . .  (8) 
~,1 : 27  and ~2 -- 2~ . . . . . .  

are the downwash angles belonging to the two bound vortex distributions and:  

CL (9) 
O~i ----- 7g---a . . . . .  ' . . . . . . . . . .  

with Cr : Cr = C~ + Cry, is the downwash from the streamwise vortices. This leads to: 

CLI = ½CL (1 - 2 )  and CL2 

so that ,  by  equation (7)" 
1 CL2 1 - C ~ = ~  ~d~=~-~CL ~ 

= ½c (1 + A  2--) . . . . . .  (lO) 

(11) 

as before. Accordingly,the same result is obtained for an aerofoil at any angle of incidence with 
any position of the stagnation points, which follows directly also from momentum and energy 
considerations,.- 

The main advantage of producing a lift force with a saddleback chordwise distribution lies in 
the fact that ,  for an aerofoil of non-zero thickness, the velocity distribution is more uniform 
than it normally is with the aerofoil at an angle of incidence. For instance, the velocity peaks 
at the leading and trailing edges of the aerofoil are only about half as high as the single velocity 
peak at the leading edge of an aerofoil at incidence, at the same overall CL value. The subsequent 
adverse pressure gradient behind the front peak can be slightly less steep for the aerofoil at zero 
incidence if it has about twice the lift. This implies tha t  any breakdown of the flow associated 
with laminar-flow separation and subsequent bubble formation close to the leading edge, and 
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possibly loss of lift, should be delayed on the aerofoil at zero incidence (i.e., with saddleback 
loading) until the lift is about twice that  reached on the aerofoil at incidence. Thus the value 
of CL~ax should be about twice as high for aerofoil shapes of moderate thickness-chord ratio 
(class B of Ref. 7). Further, the drag increment due to a breakdown of the flow at the leading 
edge, involving the loss of the suction force there, is also less since the suction force is only a 
quarter of that  occurring at the wing at incidence with the same lift, by equation (4). However, 
there is also the possibility of a flow separation from the trailing edge, even if it is r oundedand  
this is why such a flow never occurs in practice unless some external help is provided. Such a 
means is a jet which emerges from the lower surface near the trailing edge in that  it makes it 
possible to maintain such a circulation at zero incidence. At the same time, the jet makes the 
soht ion  unique and fixes the value of the circulation. 

3. Je t  Effects on Th in  Unswept  Wings . - -Cons ider  now the case of an aerofoil with a jet 
emerging from its lower surface somewhere near the trailing edge. The effects of such a jet on 
the circulation round the aerofoil and on the forces on it have been discussed in detail by 
D. A. Spence ~. For the present purpose, we remind ourselves that  the two principal effects of 
the jet are: 

(a) It  can establish an asymmetric flow and thus the natural circulation (as for the Thwaites 
flap), which would otherwise not be obtained because of viscosity effects 

(b) It  can increase the circulation beyond this value by virtue of its higher energy. 

This is illustrated in Fig. 3. In the case of an aerofoil of elliptic section shape, say, any value 
of the circulation around the aerofoil at zero incidence is possible in an inviscid stream in the 
absence of the jet (Fig. 3a). In a viscous stream, a flow separation at the rear end is likely to 
prevent such a circulation altogether (Fig. 3b). A jet will at least help to establish the ' natural 
circulation' which belongs to the .rear stagnation point being at the jet exit. In fact, the jet 
may produce a ' supercirculation ' above the natural circulation (Fig. 3c), if the momentum of 
the jet is large and if flow separations are avoided, in  the case of an aerofoil with a small flap, 
the natural circulation in inviscid flow (Fig. 3d) is likely to be reduced by viscosity effects (Fig. 3e), 
whereas a jet suitably discharged and making use of the Coanda effect may establish the natural 
circulation or even more (Fig. 3f). 

In an analytical t reatment of the inviscid flow past an aerofoil with jet, the jet may be replaced 
by a distribution of sources and vortices. These induce a velocity component normal to the 
aerofoil and, for the aerofoil to remain a stream surface, a vortex distribution along the aerofoil 
surface is required to cancel this upwash. The overall vorticity so added corresponds to the change 
in circulation and in lift force beyond the values which correspond to a position of the rear 
stagnation point at the jet exit. Now, it can be shown that  the contribution of the sources to 
the upwash and hence to the pressure forces on the aerofoil is very small, except in the immediate 
neighbourhood of the jet exit. To a first approximation, the sources may, therefore, be ignored 
and the vortices only considered. Further, the jet may be assumed to be thin and the static 
pressure in the exit to be equal to the undistm-bed pressure, P0, so that  the momentum of the a i r  
in the jet, M:,  remains constant along the jet. In that case, the aerofoil experiences a tangential 
force (parallel to the chord-line, i.e., a thrust) along its external surfaces* (excluding the duct) 
of the magnitude:  

T 
Cr - -  ½oVo~c - -  Cj(1 - -  cos 7) , . . . . . . . . . .  (12) 

as shown by Maskell and Gates by means of the momentum theorem. Drag forces are called 
pos i t ive ; ,  is the discharge angle and: 

M :  (13) 
C: - -  ½p Vo~c  . . . . . . . . . . . . . . . .  

* The forces considered throughout this note are always those acting along the external surfaces of the aerofoil, 
i.e., they do not include the direct lift and thrust components of the jet, unless otherwise stated. 
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the jet momentum coefficient. The lift force, on the other hand, cannot be determined by the 
momentum theorem as it depends essentially on the penetration of the jet into the stream. 
I t  can be calculated numerically by the more detailed method of Spence who obtained for the 
lift force on the external surfaces of a thin aerofoil at zero incidence : 

C ~ . =  2 ( = C j ) , / ~  __ C: = 3 . 5 4 ~ / c j  - c: 
T 

. .  (14a) 

for small values of C: and: 

C___~ = 3 . 5 4 C ~ / ~  _ 0.675C: -5 0. 156C: ~/~ 
77 

. .  (14b) 

as an approximation for Cj values up to about 10. The chordwise distribution of this load and 
the vorticity distribution along the jet can also be determined in Spence's method. 

In the following, we shall establish two simple approximate methods for calculating the 
chordwise distribution of the lift, as a supplement to Spence's more complicated method.  The 
first is tile simplest and only the overall lift can be made right whereas there is no external thrust  
force. In the secondmethod,  the thrust  force given by equation (12) is also accurately represented. 

The simplest approximation is obtained by assuming the lift distribution still to be symmetrical 
fore and aft, as in the case without jet. All the jet is supposed to do is to fix a certain circulation 
and thus a lift coefficient which can be taken from equation (14). In that  case 

Z(x) = + l (x) . . . . . . . . . . . . . .  ( i s )  

as in equations (1) and (2), with CL~+ CL~ = CL and CL~ ----CL2, whereas Cr = 0. The shape 
of the stagnation streamlines and the chordwise lift distribution obtained in this way are shown 
in Fig. 4 (case b) and compared wi th  the results from Spence's linearised theory (case a) for a 
typical example. I t  will be seen that  even this crude approximation gives reasonable answers, 
considering t ha t  the behaviour of the solution from linearised theory in the region of the trailing 
edge is not quite correct either*. 

To obtain a more refined solution, the chordwise loading must be asymmetric fore and aft so 
that  the suction forces at the leading and trailing edges are no more equal and opposite but leave 
room for fulfilling the thrust  condition (12). The simplest way of achieving the required asym- 
metry  is to leave the two partial solutions l~ and I, as they are and to add a third solution la. 
The latter must then be such tha t  the downwash induced by it exactly compensates for the upwash 
induced by the jet vortices. I t  will suffice for the present purpose to assume tha t  this upwash, 
~ : ,  is constant along the wing chord. The third partial solution is then:  

l~(x)  2 ~ / 1  - -  x \  ~/" . . . . . . . . . . . . . . .  ( 1 6 /  

I t  is of the flat-plate type, as l l(x).  The downwash induced by  it is constant along the chord 
and has the value CL3/2~. Hence ~ea = CL8/2~ = --- ~ : .  The total  loading is then" 

= ll(X) + Z (x) + z d x ) ,  . . . . . . . . . . . .  (17) 

with l~(x) from equation (1), l~(x) from equation (2) and l~(x) from equation (16). 

* Tile correct behaviour  of tile velocity near  tile trail ing edge is proport ional  to (x = 1) '~ - 1, with ½- ~< n ~< 1, depending 
on the discharge angle , ,  i.e., n = ~/(r + ~), for tile case of a jet emerging a t  the  trailing edge. In  contrast  to this, 
tile symmetr ica l  loading (case b) always gives ~ = -} ; and the linearised theory  gives a logari thmic infinity. T i le  
differences in tile chordwise loading are similar to those found by  Keune 6 for the case of a thin aerofoil with a hinged 
flap between the linearised solution of Glauert  ~ and the  exact  solution. 
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This is possible wi thout  actually I t  remains to determine the  coefficients CL1, CLg, and CL~. 
knowing how large ~,.j is. We use the  streamline condit ion:  

= ~ 1  + ~e, + ~e. + ~ , j  = o ,  . . . . . . . . . .  (18) 

which leads to ~1 + ~9, = 0 since ~8 = --  ~: .  By equat ion (8), ~1  + ~9, ---= (Cn/2~)  - -  
CL9,/2~) = 0 ,  a n d  thus" 

CL~ = CLg,, . . . . . . . . . . . . . . . .  (19) 

~.e., 11 -t- l~ is still symmetr ical  fore and aft and represents a pure circulation. Further,  for the  
overall lift" 

c ~  = cL~ + cL~ + c L ~ ,  . . . . . . . . . . . .  (20) 

where CL ma y  be taken from equat ion (14) or from experiment.  Hence" 

Cn = CLg, = } ( Q -  C ~ , )  . . . . . . . . . . . .  (21) 

and it remains to determine CL3. This can be done by  considering the suction force at the  leading 
edge" 

(CL1 + CL.) ~ 1 (CL + L.) (22) 
- -  C 9. , . , . • a . o • • • • 

2~ 8~  ' 

which is not  now equal and opposite to the  suction force at the  trailing edge" 

C 9, 1 
Lg, = ( C L -  C L ~ ) 9 ,  . . . . . . .  (23) 

2~ ~ . . . . . . . .  

We m a y  now consider the  extreme case where tile nozzle is so shaped tha t  the  thrust  from 
equat ion (12) is all carried at the  leading edge. Thus 

c ~  = - ( 1 / s ~ ) ( c ~  + c ~ )  ~ + ( 1 / s ~ ) ( c ~  - c~.)  ~ = - c : ( 1  - c o s  ~), 

which gives a relation for CL 3 if the overall lift and thrus t  coefficients are known : 

Cj (1 --  cos v) . . . . . . . . . . . .  (24) CL~ = 2~ ~ 

CL~ and CLg, can then  be calculated from equat ion (21) and hence the  chordwise loading is known 
by  equat ion (17). We have thus obta ined a solution for the chordwise loading, including jet  
effects, wi thout  knowing the  shape of the  jet  or the  vort ici ty  distr ibution along it. Stagnat ion 
streamlines and vor tex distr ibution within  the  wing chord are in reasonable agreement  wi th  
Spence's solution, as shown in Fig. 4, case (c). 

Now, the  je t - induced upwash,  implied in this calculation, is by  equat ion (24) • 

CL3 Cj (1 --  cos z) . . . . . . . .  (25) 
~ f  = --  ~3  - -  2~ - -  C--~ 

The jet  m a y  also induce a velocity component ,  v,:, parallel to the  aerofoil chord. This will be 
the  same on the  upper  and lower surfaces of the  aerofoil and it does not, therefore, contr ibute to 
the  lift force, to a first approximation.  As the  vort ic i ty  distr ibution along the  jet  is s i tuated 
behind  and below the  aerofoil, we may  assume v~: to be smaller than  o:~:Vo. Taking it to be 
constant  along the  chord, we ma y  put" 

v~]__ C r( l__cos~)  . . . . . . . . . . . .  (26) 
y--. - '~ - e l  

with a factor ~ of the  order of 1 or smaller than  that .  As v~j/Vo is a small t e rm compared wi th  
unity,  its value need not  be known very accurately, and for est imation purposes we shall put  

= 0 and, al ternatively,  ~ = 1 in later applications. 
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Proceeding to unswept wings of finite aspect ratio, we may consider the principal effect of the 
finite aspect ratio to be the existence of streamwise vorticity components both on the wing and 
in the jet. Thus, another additional downwash contribution, ~,  arises from the streamwise 
vortices. This is constant along the wing chord, as in the theory of Ref. 4, if the aspect ratio of 
the wing is large. We do not propose to go into any details here about how this downwash and 
the lift on the aerofoil can be determined but  make use of results which will be published later 
by Maskell. Our aim is again to determine the chord and spanwise pressure distribution if the 
overall lift and thrust forces are known. For the present purpose it is sufficient to take the 
result of Maskell that  the downwash has the value : 

Cr TOTAL (27) 
~ -- ~A + 2C a . . . . . . . . . . . . . .  

for unswept  wings of moderate and large aspect ratios with minimum induced drag, where 
dLZOTAL (=  Cr for short) is the overall lift coefficient of the whole wing including the direct jet 
lift. If we consider again the extreme case tha t  the whole external thrust  occurs at the leading 
edge and not at the nozzle ; and if we restrict ourselves to chordwise loadings of the type from 
equation (17), then it can be shown that  the factor CL3 of the jet-induced loading contribution 
is still, to a first approximation, given by equation (24). Equation (21) for the coefficients CL1 
and CL~, however, must now be amended because ~i occurs as an additional term in equation (18). 
In the case of wings of high aspect ratio with weak j et where C a < aA/2, so that  : 

CL (28) 
~ ~ ~ • • e I e .  e • e m o o  o o  o o  

~A 

equation (21) must be replaced by:  

. . . . .  ° • • * • . • 

to take account of the finite aspect ratio. CL1, CL~ and CL3 may be taken as being constant along 
the span for unswept wings of minimum induced drag. 

This leads to an interesting answer for the special case of a wing with elliptic span loading and 
a 90-deg jet (, = ~[2 and CL ---- Cr; Cj = Ca). The crudest form of the thrust-drag balance, 
ignoring profile drag as well as any other additional drag, demands that  the thrust, C j, must be 
sufficient to overcome the induced drag which, in this case, may be approximated by:  

C . ,  - . . . . . .  (30) 
- -  ~ • ° • • ° ¢ * • • • • 

Hence C] -~ CL2/zA and: 

2 CL . . . . . . . . . . .  (31) 
CL3 - -  A . . . . .  

by equation (24). We theI1 find from equation (29) that  CL1 + CL3 ~ ½CL and CL~ = ½C~., so 
that  the chordwise loading from equation (17) becomes: 

i.e., the chordwise loading is again saddleback and symmetrical fore and aft, as in the case of an 
aerofoil at zero incidence without jet at the same overall CL. In other words: as expected, the 
jet puts just as much thrust  back on to the leading edge as the suction there had been reduced 
to accommodate the induced drag (section 2). This result is of great practical importance for it 
implies that  the principal advantage, the saddleback chordwise loading, can be maintained on 
wings of finite aspect ratio with jet. 
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In all other cases where T < ~/2, or where part of the thrust  is carried at the nozzle, the suction 
at the leading edge is less than that  at the trailing edge, if the aerofoil is left at zero incidence 
to the main stream. To obtain the benefit of the saddleback loading, it is then necessary to put 
the aerofoil at a suitable positive angle of incidence. This should be one of the design conditions 
of an aircraft with jet flap. 

The present approach has the advantage that  it can easily be extended to wings of small 
aspect ratio and to swept wings, when the need arises (for swept wings, see section 71, because it 
can readily be incorporated into the theory of Ref. 4. Consider, for example, unswept wings of 
small aspect ratio. The induced incidence, ~ from equation (27), from the streamwise vortices 
increases by a downwash factor co as the aspect ratio becomes smaller, with co -+  1 as A --+ oo 
and ~ ~ 2 as A -+ 0. Whether ~ j  increases als0 has not yet  been investigated. This is unlikely 
to occur since ~ j  is a sectional property. For wings of small aspect ratio the index ½ in equations 
(1), (2) and (16) must be replaced by a parameter n, the value of which depends on the aspect 
ratio, with ½ ~< n ~< 1. Simultaneously, the effective incidence ~ as induced by the bound 
vortices is CL/a rather than CL/2~, where a is the sectional lift slope which depends on the aspect 
ratio of the wing; and the suction forces at the edges become CL~/a rather than CL~/2~. This would 
imply tha t  the general conclusions are not affected by aspect-ratio effects although the numerical 
values of the various parameters are different from those for wings of large aspect ratio. For 
instance, the chordwise loading would remain saddleback but the suction peaks near the edges 
would become sharper since equation (32) is replaced by:  

. . . . .  I(L ) t + t . . . . . . . .  (33) 
and because n approaches uni ty  as ,4 --> 0. This would detract from the benefits of the creation 
of l i f t  by means of a jet and, for this reason too, the jet-flap principle is more profitably applied 
to wings of moderate or large aspect ratio. 

4. EffecEs of Acre foil Thickmss.--The relations derived so far apply to aerofoils of zero thickness, 
thin flat plates as a rule, where tangential forces appear as infinitely high suctions on infinitely 
small areas. In reality all such shapes must be rounded to avoid flow separations. The suction 
in. then finite and distributed over a wider area, but the magnitude of the tangential  forces is 
not primarily affected by a non-zero wing thickness. I t  is the lift force tha t  is affected in the 
first place. 

The present results can readily be extended to aerofoils of non-zero thickness i f  the method 
of WebeP, 1953, is used. If l(x) from equation (17) is considered to be the solution for the thin 
aerofoil, then the pressure distribution along the surface of the thick aerofoil is given by : -  

+ v ,iVo} + , , 
1 / c L , / {  (34) 

J 

S(1)(x), SI2)(x) and S(3)(x) are functions of the shape z(x) of the aerofoil. This relation is derived 
from equation (3.30) of Ref. 8. The term 1 9- SIl>(x) 9- vxj/Vo follows from linearised theory 
for tha t  part  of the velocity increment which is the same on both surfaces, i.e., it includes 
the pure thickness effect without lift as well as the velocity increment v,j/Vo due to the jet 
(mainly mixing; see section 5 below). The term 

+ N + sin + , 
. 2 ~ / \ 1 - - x 1  

is the contribution of the vortex distribution aloflg the chord for the thin aerofoil, as determined 
before. The factor 1 9- S <3> (x) represents a second-order correction to the lift term due to 
thickness, the full derivation of which has been given in Ref. 8. The denominator 1 9- {S (2~ (x)} 2 
is again a second-order correction due to thickness, which matters mainly nea r  the leading 



and trailing edges and eliminates the infinite suction peaks which  occur in thin-aerofoil theory. 
For elliptic sections, these corrections are exact, c{' is the angle of incidence of the aerof0il in 
two-dimensional flow. ~' may  be interpreted as the effective incidence of a section on an unswept 
wing of finite span, provided the aspect ratio is not too small. ~' is then given by  the relation : 

, 1 _ . . . . . . . . . .  ( 3 5 )  

where 
( cQ 
\ 8~ /lin. th. 

is the value of the sectional lift slope as determined for the thin aerofoil from Spence's theory ~. 
v,j is given by equation (26) or equation (44), and ~ by equation (27). 

Equation (34) can be used in the following way for an unswept wing of moderate or large 
aspect ratio. We assume C j , ,  and CL to be given. A calculation of the induced angle of incidence 
ai then determines the spanwise loading* CL(y ) ,  the effective angle of incidence, ~ = ~ = ~,  
and also the geometric angle of incidence, a, which is needed to produce the required lift. From 
the values of Cz,(y) and ~,  it can be determined how much of this lift is due to the effective 
incidence and how much due to the jet effect at zero incidence by using Spence's result in the 
form" 

CL(y)  = Cr(o,~ = O) + C~,  , . . . . . . . . . . . . .  . (37) 

with CL(~ ---- 0) = %/(3"54CI)~ as a rough approximation by  equation (14) and C = aj. 
CL(~ = 0) is then the value to be inserted for CL into equations (21) and (24) and thus Col, Cv~. 
and CL3 can be determined, the values of which are needed in evaluating equation (34). This 
procedure ensures that,  although flat-plate distributions are used throughout as an approximation, 
the jet effects on the sectional lift and lift slope as well as on the induced downwash are properly 
represented. Alternatively, the value of ~' in equation (34) may be so determined as to lead to 
the  required lift force, whereas CL~, is determined so as to give the required thrust  force (this is 
used in calculating the results in Fig. 9 below). 

For aerofoils of elliptic section shape, an exact solution can be given: 

Cp = 1 -- 
1 [ c ° s ~ ' (  1 t v ' l \ +  " ]2, 

+ + - (as) 

, + (D ' . . . . . . . . . . . . .  l i _ _ .  (, D 
where t /c is the thickness-chord ratio of the aerofoil. In equations (34) and (38) the different 
signs in the numerator refer to the two different surfaces of the aerofoil. 

An important  effect of the non-zero aerofoil thickness is tha t  the sectional lift, as obtained by  
integration from" 

CL = _ f l  (C, s - -  . . . . . . . . . . . .  (39) 

is not the sam~ as CL~ + CL~ + C~3 + aj~, = CL~hi, for the thin aerofoil. For elliptic section 
shapes : 

C s . - - - - ( I + ~ ) C L < h ~ . ,  • . . . . . . . . . . . . .  (40) 

* In such a calculation according to the method of Ref. 4, it is advisable to insert for tile sectional lift slope, a, the 
value aj from equation (36)~ and to multiply the downwash integral by the factor 1/(1 + 2Cj/~A) according to equation 
(27). 
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whereas the factor 1 + tic becomes approximately equal to 1 + 0.8t/c for sections with sharp 
trailing edge. This means tha t  the lift can be appreciably higher on the thick aerofoil than on 
the thin aerofoil, in the absence of viscosity effects. This lift increase becomes even more im- 
portant on swept wings where the factor 1 + t/c must be replaced by 1 + {(t/c)/cos 9} which 
is the exact value for the sheared wing of infinite span with elliptic section. The relations are 
exact only when the chordwise loading of tile thin aerofoil is of the type l(x) from equation (17). 
They have been used as an approximation by Spence ~ for the different type of loading obtained 
from linearised theory, but  in view of the small difference between this loading and l(x), the 
resulting error should be small. This is borne out by the experiment where the lift increase due 
to thickness is evident. 

5. Some Examples and Comparison with Experimeut.--Before comparing calculated and 
measured pressure distributions, we may briefly consider possible effects of the viscosity of the 
stream. In the first place, the existence of a boundary layer along the aerofoil surfaces means 
tha t  the jet is enveloped ill a wake of reduced energy. Thus the asymmetry of the flow (up and 
down) may be affected and with it the circulation. We may expect this to influence mainly the 
integrated lift coefficient CL for a given C: but not so much the chordwise distribution of the 
load for a given CL, so tha t  calculated loadings should agree reasonably well with the measured 
ones if the overall CL is taken from experiment. Flow separations, on the other hand, can have 
much more drastic effects. They may occur, on an aerofoil with a jet emerging from the lower 

• surface near the trailing edge, immediately behind the leading edge and on either side of the 
nozzle, since in each of these places a large adverse pressure gradient is predicted by inviscid-flow 
theory. The effect of ally such separation must be apparent as a deviation between calculated 

• and measured pressure distributions. Thus the flow separation upstream of the nozzle, which is 
likely to occur for ally values of C j, , and ~, must show up in that  the calculated stagnation 
pressure is never reached in practice. The flow separation at the trailing edge is likely to be the 
more pronounced a s ,  increases and to appear as a reduction of the calculated suction peak there. 
This implies that  i t  is very difficult to check on the behaviour of the chordwise loading n e a r  the 
trailing edge by experimental means. A laminar separatio n near the leading edge is most likely to 
result in the formation of a separation bubble and thereby produce large but easily recognisable 
deviations between theoretical and measured pressure distributions. In practice, the existence of 
a bubble near the leading edge implies tha t  the suction force there is largely lost and this is 
equivalent to a drag increment of the order: 

eL  2 
CD : 8~ cos ~ . . . . . . . . . . . . . . . .  (41) 

on wings of moderate or large aspect ratios. This would appear to be inadmissible on wings with 
jet flap where one aspires to obtain high CL values. 

Lastly, possible effects of turbulent mixing may be mentioned. These may reduce the pressure 
in the immediate neighbonrhood of the nozzle but the magnitude can be expected to be small 
(see Ref. 9, p. 100). Experimental  results with a cold circular jet suggest the following relation 
for the pressur e decrement or the velocity increment: 

½pVo 2 - - 0 . 0 1  V0-- 1 ; o r ~ - ~  + 0 . 0 0 5  ~ - - l  , . . . .  (42) 

where V, is the mean velocity in the exit. In the simplified case where the momentum is assumed 
to be constant along the jet, C: as defined by equation (13) is related to the exit velocity ratio 
Ve/Vo by:  

C: : 2 c \Vo] . . . . . . . . . . . . . . .  (43) 
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being the width of the jet at the exit. Hence equation (43) becomes: 

Ap or v~ 

For a jet issuing from somewhere close to the trailing edge, such a velocity increment may be 
expected to appear on both surfaces of the aerofoil, falling off slowly as the distance from the 
trailing edge increases. Turbulent mixing may also be considered as a means of augmenting the 
thrust  but the range of useful application of such thrust  augmentors appears to be restricted to 
assistance at take-off (see Ref. 9). 

The method for calculating the pressure distribution has been applied to two cases where 
experimental results are available from tests by Dimmoek 1°. The aerofoil section was an ellipse 
with tic -~ O. 125 and the exit was located Oil the lower surface about 1 per cent of the wing chord 
upstream of the trailing edge, the nozzle width being about 0.002c and the discharge angles 
nominally 30 deg and 90 deg (31.4 deg and 90.0 deg exactly). The model was so mounted that  
the flow was very nearly two-dimensional. The results are reproduced in Figs. 5 and 6. Fig. 8 
contains results from a French test on a NACA 0018 section which was shortened to 90 per cent 
of its original chord, with a jet issuing at 58 deg again from the lower surface near the trailing 
edge. All these tests were made at low speeds (M0 < 1). 

Equation (34) has been used for the calculation, equation (38) for the special case of the elliptic 
section. In general, the results confirm the theoretical approach in that  the shape is nearly 
saddlebacked, there being no great difference between the two different methods of the present 
paper nor between these and Spence's solution s. The usefulness of this shape of the chordwise 
loading, in comparison with creating the same lift by means of an angle of incidence and no jet, 
is clearly demonstrated in Fig. 6d. The effect of the thickness of the aerofoil is quite considerable 
as can be seen from Fig. 6c where the results from the full calculation are compared with what is 
obtained from thin-aerofoil theory. The infinite suction peaks of the thin aerofoil especially 
make any design work impossible and for this purpose the inclusion of thickness effects is vital. 

The full lines in Figs. 5, 6 and 8 have been calculated on the assumption that  the thrust  CT 
from equation (12) is carried at the leading edge, with CL8 from equation (24). Dashed lines are 
shown ill Figs. 6d and 6e, which have been calculated on the assumption that  the external thrust 
acts  at the exit and not at the leading edge, i.e., CL3 ---- 0. Fig. 8 has also, been computed under 
this assumption, and the asymmetry (fore and aft) of the pressure distribution in this case is 
entirely due to the thickness distribution z(x) which thus proves to be an important  parameter. 
In general it will be seen that  the experimental results lie about half-way between the two 
estimates (with and without CL~) and do not, therefore, give a conclusive indication of which is 
to be preferred. 

The value of Cj in equation (24) has been taken as the overall thrust  measured on the balance. 
This is considerably less than the value of the momentum coefficient quoted in the figures of 
Ref. 10, especially in the c a s e ,  ---- 90 deg. This thrust loss is obviously a consequence of flow 
separations. Taking the full theoretical value of the thrust when determining CL8 from equation 
(24) inust give the wrong answer for the pressure distribution, as it is seen to do in Fig. 5f. 

The comparison between measured and calculated pressures gives some very clear indications 
of the effects of flow separations. A typical case of a laminar separation from the leading edge, 
with the formation of a long bubble, is shown in Fig. 6f. There is evidently little loss of lift but  a 
loss in the thrust  component of the normal pressure force. On the other hand, the suction inside 
the bubble (Cp --- -- 3.5 in this case) is uncommonly high for a bubble of this length as compared 
with what is normally found for aerofoils, at incidence (see, for example, McCullough and Gault n, 
1951). This means that  there is still some tangential force left and that  the drag estimate 
according to equation (41) may well be pessimistic. This effect may be explained from the 
physical picture of the flow as suggested by Norbury and Crabtree 12. According to this, the 
pressure coefficient Cp~, in the constant pressure part  of the bubble is such that  the pressure 
recovery through turbulent mixing is just large enough to bring the static pressure back to the 
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ambient pressure, fl0, or to some other value, Cp,, if the flow re-attaches to the surface. I t  is also 
suggested tha t  the pressure recovery coefficient" 

P~ - - P l _  Cp2-  C~1 
( 7  - -  

½PV12 1 - -  C~l 

is of the order: o f  0.4. This is confirmed by  the example of Fig. 6f where Cp~ -- 3.5 and 
Cp~ = - 1.7 (the station 2 being where the actual pressure distribution joins the one calculated 
for attached flow, which is fairly well defined here). Hence ~ = 0.40. The high suction in the 
bubble is therefore to be explained by the relatively high value of C~ which in turn is a consequence 
of the saddleback loading for attached flow. Thus this special type of loading has a beneficial 
effect even after the flow has separated from the nose in that  it makes high suctions and thereby 
shorter bubbles possible, compared with bubbles observed on aerofoils at incidence without a jet 
where the bubble growth is much more rapid. 

Another beneficial effect of the saddleback loading, with its implied suction peak near the 
trailing edge, is that  greater thickness/chord ratios may be used than is possible on an aerofoil at 
incidence. The latter suffers from its tendency towards rear separations and there is thus a limit 
to the use of round-nosed or drooped-nose shapes because, even if the leading-edge separation is 
thereby avoided, a rear separation ~vill occur. In the case of the aerofoil with jet, the adding of 
thickness, or camber, near the leading edge can be carried further because the rear separation 
is postponed by the jet. 

I t  is of interest to note in this context that  evidence of a flow separation from the upper surface 
near the trailing edge is consistently apparent for the case with 90-deg jet in Fig. 5. This reduces 
the trailing-edge suction but does not eliminate it, so that  it still appears possible to use leading- 
edge thickness and camber to delay the onset of the leading-edge separation further than on an 
aerofoil at incidence (i.e., to more than twice the CL value); and to benefit from a slower growth 
of the bubble, once separation has occurred. 

The effect of a flow separation on the lower surface upstream of the nozzle shows up in all 
cases in tha t  the main-stream stagnation pressure is never reached. However, there appears to 
be a noticeable effect of the presence of the jet and of its direction. Whereas, on ordinary aerof0ils 
without jet, the pressure coefficient at the trailing edge normally reaches a value of about 
Cp = + 0.1 (it should have been + 1.0 again, in inviscid flow, for finite trailing-edge angles), 
we find for the 30-deg jet values of about + 0.2 and sometimes more ; and for the 90-deg jet 
still higher values up to about + 0.6. This remains t o  be investigated. However, neither 
method can describe the conditions near the jet exit with any accuracy. For that,  a different 
approach is needed altogether. 

The experimental results indicate quite clearly that  the mean values of the velocities on the 
upper and lower surfaces, at the mid-chord point, say, are not the same for the various jet thrust  
values. Without  jet, t h i s m e a n  value depends only on the thickness distribution of the aerofoil 
section, to a first approximation, if the aerofoil is in a uniform stream of velocity V0. With a jet, 
a tangential velocity increment, vxl, may  be induced, as explained above, and this has been taken 
into account in equations (34) and (38) and in the examples in Figs. 5 and 6. Here, vxj has been 
replaced by a mean value over the chord and this has been taken from equation (44). Fig. 7 
confirms again that  v,i does exist and tha t  the estimates from equations (26) and (44) are of the 
right order, if ~ = 1 in equation (26). However, only the empirical estimate based on a mixing 
process, from equation (44), has a sound physical interpretation whereas the other has not, since 

= 1 seems far too extreme. Thus the agreement with equation (26) may be considered as 
fortuitous. The experiments, therefore, seem to indicate the existence of a small but significant 
mlxmg process and this merits further investigation. 

I t  would seem that  the reduction of the pressures due to mixing is also responsible for the 
discrepancies between measured values in Fig. 6d and values calculated by means of an electrolytic 
tank by  Malavard*. The latter are consistently below the measured pressures over most of the 
chord and the discrepancy is of the same order as the reduction due to mixing shown in Fig. 7. 

* These results have not yet been published and have kindly been put at our disposal. 
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Finally, a comparison tlas been made in Fig. 9 between a theoretical pressure distribution and 
one measured on a wing of finite aspect ratio by Williams and Alexanderlt  In this case, equation 
(34) has been used and lift and thrust  forces have been made the same as in the experiment. 
Thus the effect of the finite span has been taken into account only by adjusting the component 
distribution l~(x), as explained in section 2, i.e., the effective angle of incidence has been reduced. 
Fig. 9 shows tha t  this procedure accounts for most of the observed effects. The suction peak 
near the leading edge is considerably reduced whereas that  near the trailing edge remains largely 
unaltered. There is, however, a systematic discrepancy near the leading edge, the measured 
loading being peakier than tha t  calculated from two-dimensional flat-plate distributions. This 
may well be a genuine effect of the relatively small aspect ratio of the model tested (A = 2.75). 
A peakier loading with the load concentrated nearer to the edges is to be expected from the 
argument which led to equation (33). I t  is comforting to know, however, tha t  this effect is still 
relatively insignificant even at so low an aspect ratio. 

6. Effects of Camber.--In any practical application of the aerofoil with jet, it is desirable to 
avoid a separation of the laminar boundary layer from somewhere near the leading edge through- 
out the working range, in spite of possible benefits due to the jet, which may  be present even 
after the flow has separated. With the pressure distribution known for attached flow near the 
leading edge, the separation point can be estimated and, with the aid of Owen's criterion (see 
ReI. 13), we can also decide whether a long bubble, like that  in Fig. 6f, is likely to occur. As a 
much cruder rule, we can take the suction peak itself as an indication of whether separation is 
likely to occur or not, and we may assume that  the minimum pressure coefficient will no t  go 
appreciably below a value of about  -- 10 for symmetrical aerofoil sections. In Dimmock's 
tests ~ the highest measured values (which do not necessarily represent the minimum pressure 
however), were about Cp = -- 6-5. I t  appears worthwhile, therefore, to consider the effect of 
modifications to the leading edge, which will delay the formation of a long bubble, as there is 
no reason why an aerofoil with jet should be symmetrical. Among the various possibilities, 
such as leading-edge thickness and droop, kinked nose, nose flap, air injection, we consider here 
the simplest case of applying camber to the whole areofoil. 

Camber is used to reduce the sharp suction peak near the nose, for a given CL, and the family 
of camber-lines, which has been derived by Brebnef  ~ appears to be most suited for the present 
.purpose. Because of the high slope of these camber-lines near the nose, they are most effective 
m reducing suction speaks there. Brebner's family of camber-lines leads to functions y (x) of the 
chordwise vorticity distribution, which are tabulated i n  Ref. 14. With these, the pressure 
distribution along the surface of an aerofoil of non-zero thickness can be obtained from: 

1 COS 0~ 1 ~- S(1)(X) -}- V0 2 V 0 I ~ 

+ + s i n  + , t 4 s )  
2zN/ \ l - - x ]  l + SC~(x) 

which contains equation (34) as the special case of symmetrical sections, y -- 0. 
coefficient must now be obtained by integration, 

C ~ - - C N = - - f l A c ,  dx 

The overall lift 

from the difference between the pressure coefficients on the two surfaces" 

cosa '  1 +SO)(x) +Vo) 
- = z(x) = 4 1 + 2 x 

x [cos [cL, c 2/[ 

13 

(46).  



An explicit relation for the lift can be given for the special case of an aerofoil of elliptic section 
shape with v,j = constant and ~(x)/2Vo = 4.53f/c = constant, where f is the maximum camber 
of the section. This is a cambered aerofoil with the same ' constant- load'  camber-line as the 
one denoted by  N.A.C.A. as a = 1. The application of such a camber-line may be more reasonable 
in the case with jet than for ordinary aerofoils. In the latter case, local flow separations just 
upstream of the trailing edge detract considerably from the benefit obtained by  camber, whereas 
this need not occur as severely on the aerofoil with jet. Moreover, the fore and aft symmetry  
of this camber-line goes well with the saddleback loading. For the ' constant-load ' camber-line : 

( t v~:'~[ 1 (t/c) ~ , 1 + %/{1 --(tlc)~}7 f 
C N =  18"1 cosec ' 1 + c +  Vo] 1- - t / c  2 V { l ~ ( t / c ) 2 ~ m l - - ~ / { 1 - - ( t - ~ } J c  + 

(CL1 ~[-- CL2 + CL3 + O~ t) (47) t 
+ c o s ~ '  1 + 3  + V 0 ]  2~sin  . . . . . . . . .  

Note that  both thickness/ch0rd ratio and camber now enter the relation in a complicated manner. 
However, camber leads to a lift increment only and does not affect the lift slope CL/~, to a first 
order, as for ordinary aerofolls. The jet does affect the lift slope in the same way as for tile thin 
aerofoil, equation (40) and through the small term v,] such that,  to a first approximation: 

- ( t 
CL ~ CLo_ \I + c + VolaJ . . . . . . . . . . . .  (48) 

in this particular case, CL0 being the lift at zero incidence from equation (47). 

That  reasonable aerofoil shapes can be obtained in this manner is demonstrated in Fig. 10. 
This shows also how the occurrence of long bubbles can be delayed to higher values of the sectional 
lift coefficient by  the use of camber. For example, CL could be increased from about 2.4 to about 
3.2 by 4 per cent camber if the limiting C~ value were -- 10, for the 12.5 per cent thick elliptic 
section considered. For thicker sections, the CL values obtainable can be much higher. 

7. Possible Effects of Sweep.--It would appear that  swept wings open up another field where 
the jet-flap scheme may be employed with advantage. In general, swept wings suffer from the 
fact tha t  the pressure distribution due to thickness and the chordwise loadings vary along the 
span, as explained in Ref. 4. For instance, the lift slope at the centre section of a sweptback wing 
is, in general, less and its chordwise distribution less peaky than at a station near mid-semi-span 
where the ' sheared-wing ' conditions are similar to those on a two-dimensional unswept aerofoil 
but  for a factor of about cos ~v to the sectional lift slope. Conversely, the lift slope is higher and 
its chordwise distribution peakier near the tips of a sweptback wing. This non-uniformity, due 
to essentially three-dimensional-flow phenomena, is at the root of many  of the undesirable 
features of sweptback wings, such as premature flow separations and drag rises, as well as unstable 
pitching-moment characteristics. 

With the addition of a jet, two further parameters are introduced which can be varied at will 
in an at tempt to cure some of the unfavourable properties of the swept wing at their origins: 
the jet angle and the jet momentum. Both could suitably be varied along the span, depending 
on the angle of sweep. For example, stronger blowing at a higher angle in the centre region 
than near the tips could be used to make the loading more uniform. This might improve both 
the high-speed characteristics, by  straightening the isobars, and the stalling characteristics, by  
reducing the suction peaks for a given lift and thus delaying premature flow separations in un- 
desirable places. This might possibly be achieved up to CL values which can, in principle, be 
twice as high as on the wing without jet. I t  would appear that  such benefits cannot easily be 
achieved by any other known means. 

Whether this can in fact be achieved in practice cannot yet  be decided and requires further 
study. However, some peculiarities and difficulties can be pointed out already now, indicating 
the main problems to be tackled. These concern, as may be expected, again the centre and tip 
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regions. They can be demonstrated by considering the simple case of a swept wing of infinite 
span with circulation at zero incidence but  without jet (the case that  leads to the saddleback 
loading 11 + l~ for unswept wings, equations (1) and (2), as discussed in section 2). 

On a swept wing, the downwash induced by the bound vortices at the centre-section can be 
approximated by : 

v=(x) l lflz(x, ) dx '  I (49) V0 - - 4 ~  x- -x~ '  + ~ t a n f l ( x )  , . .  ~ . . . . .  

as has been shown in Ref. 4. This differs from the relation for the two-dimensional aeroIoil by  
the second term. In the present case, the boundary condition reads v= = 0, and an explicit 
solution with l - +  oo at both edges can be found" 

l(x) = l , (x)  + l~(x) = =1 CL cos ~ ( \ x ]  + \~------ x ]  t '  "" . .  (50) 

where 

and hence 

( no---=½ 1--~/2 (sl) 

The loading from equation (50) may be interpreted as the superposition of the loading of a 
swept-back wing (first term, ll) and that  of a swept-forWard wing with x replaced by 1 - - x  
(second term, 12). This has far-reaching consequences. 

In the first place, the lift coefficients of the individual distributions are no longer equal" 

whereas 

(52) 

. . . . . . .  

This implies that the loading is no longer symmetrical fore and aft. 
no longer at the mid-chord point" 

. . . . . .  (s3) 

The aerodynamic centre is 

x . . . . .  / 5 , )  
C - -  ~ "  ' . . . . . . . . . . . . . .  

i.e., x,.c./c = ½ only when ~ = 0. For swept-back wings, it is further aft. For ~ = + 45 deg, 
we have x~.c./c = ~. 

For a thick aerofoil at zero incidence, the pressure distribution at the centre section is given by" 

" 1 l S(~'(x) l 2 Cp = 1 - -  1 "{- {S(2)(X) }2 1 @ COS~0S(1)(X) - -  f(~0) COS ~) ~ E  1 _~_ {S(2)(X)}2 } ~ lZ(X) , . .  (55) 

where f(m) is a function of the angle of sweep, which is tabulated in Ref. 15. S°)(x)  and S¢2>(x) 
depend on the profile shape only. For elliptic sections, S O l ( x ) =  t/c = const.; S(2)(x) = 
(tic)I(1 - -  2x)/~v/{1 -- (1 -- 2x)~}l, as in equation (38). Fig. 11 shows a few examples of pressure 
distributions. The asymmetry fore and aft and the sharp suction peaks near the trailing edge, 
which result ftom the second, swept-forward, distribution, can clearly be seen. 
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F 0 r a  swept wing with jet, another load distribution will be needed, which corresponds to 
l~(x) of equation (16). This is to compensate for the upwash induced by the circulation of the jet. 
I t  cannot be of the form of 11 from equation (50), since such a distribution (corresponding to an 
ordinary swept-back wing) does not produce a suction force at the leading edge, as has been 
shown ill Ref. 6. In fact, l(x) from equation (50) leads to a suction force at the trailing edge only 
and thus to an overall drag. This is the same behaviour as is known from ordinary swept-back 
wings. 13(x) must, therefore, be of the  type l~(x) and it can be determined from the condition that  
the reduction of the suction force at the trailing edge is equal to the external jet thrust. 

This procedure does not contradict that  applied to unswept wings in section 3. The symmetry 
properties of the unswept aerofoil lead to the same result whether 11 is increased or 12 decreased, 
for the same sectional lift. 

A calculation of l~(x) cannot yet b e carried Out since the suction forces of the individual distribu- 
tions are not known. Theoretically, f rom equation (55) Crl = 0 and Cr~ = oo. Whereas the 
theoretical result Cr = 0 for the swept-back wing is supported by experimental evidence, little 
is as yet known about swept-forward wings. There are indications that  the suction force i s  
twice as high as that  of the corresponding sheared wing. 

This leaves us with a number of problems which remain to be investigated. But we can at 
least conclude that  the sectional properties of an aerofoil with jet cannot be carried over to the 
centre and tip regions of swept wings. 

8. Comlusions.--The present treatment of the aerofoil .with a jet emerging from its lower 
surface near the trailing edge is based on unpublished work by Gates, Maskell and Spence ~ and 
extends it by providing a simple method for calculating the pressure distribution over wings of 
non2zero thickness and finite aspect ratio. The main conclusions which can be drawn at the 
present Stage are as follows: 

(a) I t  is possible to estimate with reasonable accuracy the pressure distribution over the 
surface of any given thick aerofoil Section with jet, except in the region of the nozzle, 
if the external lift coefficient CL and the jet momentum coefficient are given. The 
method can readily be extended to wings of finite span and it provides a basis for a 
rational wing design, including cambered wings. 

(b) Several aerodynamic advantages of the jet-flap system become apparent. The saddleback 
chordwise loading, which is typical of the aerofoil with jet, allows CL values to be 
obtained without flow separation, which can be about twice as high as when the lift 
is created by means of putting the aerofoii at an angle of incidence. Further, this 
particular type of loading, with its rear suction peak not easily affected by flow 
separations, allows the use of thickness and camber near the leading edge to an extent 
which is not normally possible on ordinary aerofoils, whereby the lift obtainable is 
increased further. Lastly, when separation near the leading edge occurs, the resulting 
bubble can be shorter and the leading-edge suction higher than on ordinary aerofoils, 
again due to the basic saddleback loading. 

(c) The scheme may be particularly suited for swept wings where a grading of the jet 
momentum and angle along the span can be used to reduce the disadvantages inherent 
in such wings. However, further work is required since the sectional properties of an 
aerofoil with jet cannot be carried over to the centre and tip regions of swept wings. 
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