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Summary.--In this paper the various methods that have been devised for the determination of the natural frequencies 
and normal modes of aircraft are discussed and their accuracy and the amount of work that they entail are compared. 
An extensive bibliography is given. The discussion is mainly from the point of view of the flutter analyst, who commonly 
bases his analyses on the normal modes, but the description and comparison of the various methods should be of general 
interest. 

1. Introduction.--By normal  modes are mean t  the  natural  modes of vibrat ion of the  structure. 
They  mus t  strictly be defined for an idealized structure, one wi thout  any structural  damping  
vibrat ing in still air, the  air being assumed to have only an inert ia effect. Such a system can 
vibrate  freely wi th  constant  ampli tude at certain particular f requencies- - the  natural  frequencies. 
The mode of deformat ion of the  sys tem at any one of these frequencies is t e rmed  a normal  mode  
because these modes are orthogonal  with respect to bo th  the  mass distr ibution and the  stiffness 
distr ibution o f  the structure. For a real structure, which possesses structural  damping,  some 
energy must  b e  supplied to it for it to vibrate at constant  ampli tude.  This is wha t  is done in a 
resonance test, in which a periodic excit ing force is applied over a range of frequencies. Maximum 
ampli tudes of vibrat ion will then  occur at certain frequencies. If the  s tructural  damping  is not  
very  large, the  frequencies at which these peak ampli tudes occur will be equal to the natural  
frequencies of the  damping-free structure, and the  modes of vibrat ion at these frequencies will 
be little different from the  normal  modes. 

The calculation of normal  modes, which will normal ly  be done in the  design stage of the  aircraft, 
is impor tan t  for several reasons, First, by  examining the normal  modes obta ined and part icularly 
the  positions of the  modal  lines, it ma y  be possible to tell whether  flutter is likely or not, and in 
any  case such an examinat ion  will indicate what  types of flutter should be investigated.  It  m ay  
also be possible to predict  whether  there is any likelihood of resonant  vibration, due to the  
proximi ty  of the  natural  frequencies to the  forcing frequencies of the power plant.  However,  
such frequencies are usually high overtone frequencies which are difficult to calculate accurately. 

Further ,  the  normal  modes are commonly  used for the  actual flutter calculations. Theoretically, 
any set of independent  deformat ion modes can be used as degrees of freedom in set t ing up the 
flutter equations, but  from practical considerations we want  to select those modes which give an 
accurate flutter speed when the  number  of chosen modes is small. This is more likely to be tile 
case when the modes 'are related to the  actual structure, as the normal  modes are, t han  when 
the  modes chosen are qui te  arbitrary. I t  has not, however,  been conclusively demons t ra ted  tha t  
t he  normal  modes are the  best for this purpose. I t  is possible wi th  less effort to obtain other  
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modes whioh are in some degree related to the particular structure, but an additional reason why 
it is desirable to use normal modes is because they can later be compared with the resonance-test 
mo des. 

This paper is concerned with the theoretical calculation of normal modes. It reviews the 
various methods that have been devised and compares them for accuracy and the amount of 
work they entail. The methods fall into types, according to the type of equation used and the 
type of semi-rigidity assumed, and this fundamental classification is presented in section 2. 
The methods themselves are described and discussed in sections 3 to 10, in terms, for convenience, 
of either purely flexural or purely torsional vibrations of a beam. In sections 11 to 13 the 
discussion extends to the further complications that  occur in practice: coupled flexure-torsion 
vibrations, the calculation of modes of complex structures, and the calculation of modes of a 
complete aircraft. A bibliography is given. 

2. Types of Methods.--Before we can consider the calculation of the normal modes of a complete 
aircraft we must first consider the calculation of its component parts (wing, fuselage and tail 
unit) in isolation. The various methods by which these are calculated are based on one of three 
types of fundamental equation : the basic differential equation, the integral equation incorporating 
flexibility coefficients, and the Rayleigh or Lagrangian equation. The displacement of the 
system is either specified at a number of finite points, or is expressed as a linear combination of 
known functions; in either case the actual system, which has an infinite number of degrees of 
freedom, is replaced by one which has a finite number of degrees of freedom. In addition, certain 
approximations are normally made- - the  effects of shear deflection, shear lag and rotary inertia 
on the flexural vibrations and of warping of sections in torsion are neglected. The error thus 
introduced increases with the overtone order. Methods which use flexibility coefficients could in 
principle take account of shear effects, but the calculation of flexibility coefficients incorporating 
these  effects would not be easy ; experimentally determined values might be preferable, provided 
they could be accurately measured. When coupled flexure-torsion vibration is considered, an 
assumption has to be made about a flexural axis; this is discussed in section 10. First of all, 
however, we shall consider the simpler cases of pure flexure and pure torsion. 

With the above assumptions, the three types of basic equation are then as follows: 

(a) Differential Equation. 

(i) For pure flexure" 

t I B(Y) dy2t = oo2[~(y) z(y) . . . . . . . . . . . . .  (2.1) 

This may be written as the set of equations" 

dS 
dy 

dM 
- -  S ( y )  . .  dy 

d~ 
B(y) ~ = M(y) 

. .  

d y  

.. (2.2) 

. .  (2.3) 

.. (2.4) 

. .  (2.5) 

with the end conditions" 
z(y) = ~p(y) -- 0 at a clamped end 

M(y) = S(y) = 0 at a free end .  

0 0 

I 0 

0 0 

0 a 

0 I 

I Q 

. .  ( 2 . o )  

. .  ( 2 . 7 )  



(ii) For pure torsion:  

e I c(y ) eo I - o(y) ~? ~ =  
This may  be wri t ten as the pair of equations : 

d T  
- ~ ( y )  o(y) ay 

dO 
C ( y ) ~ .  = T ( y ) ,  . .  cvy 

with the end condit ions:  
0 (y) = 0 at a c lamped end 

T(y)  = 0 at a free end. . .  

(b) The Integral Equatiora. 

(i) For a cantilever beam in flexure: 

. . . . . . . . . . . .  ( 2 . S )  

( 2 . 9 )  

2.10) 

I 6 

O I 

Q 

I • • I • ° 

. .  2 . 1 1 )  

. .  ( 2 . 1 2 )  

f 
! 

z(y) = ~,~ F (y ,u )  e(u) z(u) du . . . . . . . . .  ( 2 . 1 3 )  
0 

This equat ion incorporates {he end conditions. If shear effects are neglected, the  flexibility 
function is given by :  

[<,,~ (v - y)(v  - u) 
F ( y ,  u) = ~o B(v) d r ,  . . . . . . . .  (2.14) 

where the  upper  l imit is the  smaller of y and u. 

(ii) For a canti lever beam in torsion : 

f' O(y) = ~,~ e ( y ,  u) ,~(u) o(u) d u ,  . . . . . . . .  (2.15) 
0 

where according to the  simplified theory  the  flexibility function is given by :  

- -  dv . . . . . . . . . . . . .  (2.16) 

the  lef t -hand sides of equations (2.13) and (2.15) 

z(y) -- z(O) -- y ~(0) . . . . . .  (2.17) 

o(y) - o ( o ) ,  . . . . . . . .  ( 2 . 1 s )  

~(Y' ~) = ~o c~) 
(iii) For an unsuppor ted  structm-e, 

must  be altered as follows: 

z(y) is replaced by 

0 (y) is replaced by 

where the  origin y = 0 is taken  to be one end of the  beam. 

Fur ther  equations are then  required. These are obta ined by  equat ing  the tota l  inertia forces 
and inertia moments  to zero, i.e., 

j #(u) z(u) du = 0 . . . . . . . . . .  (2.19) 
0 

f #(u) u z(u) du = 0 . . . . . .  . . . .  (2.20) 
0 

~' ~(~) 0 ( . )  a ~  = 0 . . . . . . . . . .  ( 2 . 2 1 )  
0 
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For a symmetr ica l  beam, the  origin y = 0 should be taken  to be the centre of the  beam. For 
example, for a pair of wings wi th  free root, the  origin y = 0 is t aken  as the  wing root. The cases 
of symmetr ical  vibrat ion and ant i -symmetr ical  vibrat ion may  then  be considered separately, 
and it is only necessary to consider one half of the  beam. For symmetr ical  flexure we write 
W(0) = 0, and equat ion (2.20) is discarded, bu t  equat ion (2.19) mus t  still be satisfied; for anti- 
symmetr ica l  flexure we write z(0) = 0 and equat ion (2.19) is discarded but  equat ion (2.20) 
satisfied. For  symmetr ica l  torston 0(0) is re ta ined as an unknown parameter ;  for anti- 
symmetr ica l  torsion we write 0(0) = 0 and discard equat ion (2.21). 

(c) Rayleigh' s Equation. 
If co=J - = m a x i m u m  kinetic energy and V = m a x i m u m  potent ia l  energy we have :  

o~ ~ ~Y = ~V,  . . . . . . . . . . . . . .  (2.22) 

where ~Y and dV are the changes in J" and V respectively due to a small change in mode shape. 

For  pure flexure, we ma y  wri te :  

Y = ½  

For pure torsion:  

v = - ~  

J = ½  

V = l  

f*o p(y) {~(y)}~ gy .. 

f[  B(y) {z"(y)}~ dy . . . 

f'o~(y) {O(y)}~ ay .. 

~* C(y) {o'(y)}~ gy . 
o 

. .  ( 2 . 2 3 )  

. .  ( 2 . 2 4 )  

(2.25) 

(2.26) 

Funct ions z(y) or 0 (y) can be found to satisfy these equations (differential, integral  or Rayleigh) 
only for certain characteristic values of o), which are the natura l  frequencies of the physical 
problem;  the functions z(y) or 0 (y), which are then  found, are the normal  modes. 

Suppose tha t  z,(y), zs(y) are the  normal  modes in pure flexure corresponding to t h e  distinct 
na tura l  frequencies co,, co, respectively. Then it can be deduced from equat ion (2.1) tha t  z,(y) and 
Zs(y) are orthogonal  with respect to bo th  the  mass distr ibution and the  stiffness distribution, 
tha t  is : 

f l  t~(Y) z,(y) &(y) dy = 0 . . . . . .  (2.27) 

.[ B(y)~:'(y)~:'(s) ey = 0 . . . . . . .  (2 .25)  

Similarly if O~(y) and O/y) are two different normal  modes in torsion, they  mus t  satisfy the 
or thogonal i ty  relations : 

[* ~.(y) o,(y) <(y) g y  = o . . . . . .  ( 2 . 2 9 )  
d o 

. [  c ( y )  o/(y) o/(y) ey = 0 . . . . . . .  (2 .30)  

An orthogonal i ty  relation consistent wi th  these can be derived from the integral  equation.  
For  flexure, this is: 

[ '  [ '  F(y, u) ~(u) ~(u)~(y) ~,(y) d~ ey = o . . . . . .  (2 .31)  
J 0 d.O 

and for torsion z 

o 

.. (2.32) 
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The various methods will now be described and discussed, in terms, for convenience, of purely 
flexural or purely torsional vibrations. (Later, in sections 11 to 13, the application of these 
methods to more complicated cases will be considered.) The classification of each method is 
indicated with the heading, as follows: for the type of semi-rigidity assumed, PD denotes the 
use of point displacements, DF denotes the use of displacement functions : for the type of equation 
on which the method is based, DE denotes differential equation, IE denotes integral equation, 
and EM denotes energy method. 

3. T h e  H o l z e r - M y k l e s t a d  M e t h o d  (PD/DE).--A step-by step method of solving the differential 
equations for pure torsion was introduced by Holzer in 1921, and was extended by Myklestad to 
the case of flexural vibration. 

The beam is divided into a number of segments, and for pure flexure the distributed mass of 
each segment is replaced by a discrete mass at the centre of gravity of the segment. The points 
where these masses are situated are numbered consecutively from a free end of the beam, which 
for definiteness we take to be the right-hand end of the beam. 

We let m~ = 

z , =  

~ r  

S r 

M r  z 

mass at point r 

vertical dispIacement at point r 

slope of bending curve at point r (positive when z,,_~ > z~ > z,+~) 

shearing force to immediate right of point r 

bending moment  at point r 

distance between point r and point r + 1. 

We also introduce flexibility coefficients, and for the purpose of defining them, the segment 
Ir is supposed clamped at the point (r + 1). Then 

f~ = displacement of point r due to unit load at point r 

g~ = slope of bending curve at point r due to unit load at that  point 

= also displacement of point r due to unit rotary couple at that  point 

h,, = slope of bending curve at point r due to unit rotary couple at that  point. 

The differential equations (2.2) to (2.5) for flexural vibration may now be replaced by the 
following set of difference equations" 

S~+1 = Sr + m ~ %  . . . . . . . . . . . .  (3.1) 

M~+I = M,, + S~+J~ . . . . . . . . . . . .  (3.2) 

~ + ~  = ~ - -  M ~ h ~  - -  S ~ + l g ~  . . . . . . . . . .  ( 3 . 3 )  

z~+~ = z~ - -  ~o,+J~ - -  Mrgr  - -  S~+if~ . . . . . . . . .  (3.4) 

At r = 1, the free end of the beam, we have S~ = M~ = 0. A particular value is assumed for 
the frequency ~o, we write z~ = 1 and leave ~o~ as an unknown parameter. By using the difference 
equations for r = 1, 2, 3, etc., in turn, we can find the values of S ,  M,. ,  ~ and z~ at each point 
in turn in terms of the unknown ~1 until we arrive at the far end of the beam. At this far end, 
two end conditions have to be satisfied. ~ For example, if it is a clamped end we must have 
z,, = ~o,~ = 0. The value of ~01 can now be determined by satisfying one of these end conditions. 
The process is now repeated with varying values of o) until both end conditions are satisfied. 
The final value of co is then a natural frequency of the structure, and the corresponding values 
of z, determine the modal shape. 
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The process can be given a physical meaning. For example, for a symmetric beam performing 
symmetrical flexural oscillations, the conditions to be satisfied at the centre of the beam are 
S,~ = ~o,~ = 0. If we have chosen wl so that  ~p,~ = 0, then for an arbitrary value of co we have 
S,~ not zero, and we may write 2S,, = F cos cot, where F cos cot is an externally applied force 
at the beam centre required to maintain the oscillations of frequency co. This external force 
becomes zero at the resonance frequency or natural frequency of the structure. 

For pure torsion, each segment of the beam is replaced by a discrete polar moment of inertia J,. 

If T, = torque to immediate right of point r 

0r --= angle of twist at point r 

¢~ : twist at point r due to unit torsional couple at that  point with segment clamped 
at point (r -b 1), 

the difference equations are: 

T,+I = T,  + co"],.O 

0~+~ : O~ - -  ¢~T,+1. 

. . . . . . . . . . . .  (3 .5)  

. . . . . . . . . . . .  (3.6) 
The procedure is similar in principle to that  .for pure flexure, but it is simpler since there are 

only two equations in each set of difference equations, and there is no parameter such as ~o~ 
which must be kept unknown during the step-by-step process. 

The method will determine overtone modes and frequencies as well as the fundamental without 
the necessity of determining the fundamental mode and frequency first. The accuracy, however, 
becomes worse as the overtone order increases ; for reasonable accuracy there should be at least 
four times as m a n y  segments as there are frequencies required. 

4. The Stodola Method (PD/DE).- - In  the Stodola method the differential equations are solved 
by iterative integration. 

For a cantilever beam performing flexural oscillations, the following equations may be derived 
from the differential equations (2.2) to (2.5) and constitute one stage of the iterative process. 

f 
l 

Y 

M,(y )  = S,(u) du 
Y 

f; v , / y ) -  o 

(4.1) 

(4.2)  

(4.3) 

fY  z,.(y) - -  ~ (u)  du . . . . . . . . . . . .  (4.4) 
0 

co2 z,(l) = z,_l(l) , . . . . . . . . . . . . . .  (4.5) 

where S,(y) ,  etc., are the approximations to S(y) ,  etc., obtained during the r th iteration; the 
cantilever is clamped at the point y = 0 and y = l is the free end. 

The factor co2 has been dropped in equation (4.1); this is permissible since the mode shapes 
z(y) can be determined only to within a constant factor. The quantities Sdy ), M / y ) ,  ~ ( y )  are 
now consistent with z~(y) as regards absolute magnitude but not with z~_~(y). The dropping of 
the factor co" in equation (4.1) is compensated by equation (4.5), where z~(l) is chosen as a measure 
of the absolute magnitude of z d y  ). 
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A shape is assumed for z0(y) ; the integrations in equations (4.1) to (4.4) are then performed, 
and m, determined from equation (4.5), for r = 1, 2, 3, etc., in turn. The process is repeated 
until  two consecutive shapes zr(y) (say zN(y) and zN+dy)) agree to the required accuracy. This 
is then the fundamental mode and con is the fundamental  frequency. 

Since the integrations will have to be performed numerically, the mode shape z,.(y) will have 
• to be specified at a finite number of points, and the quantities S,,(y), M,,(y), ~,,(y) determined 

at a finite number of points. The simplest method is to specify z /y) ,  M,,(y) at equidistant points 
~-a 3a/2, . . (¢¢ -- ½)a, where na l, and to specify S,(y) and ~jJ,.(y) at the intermediate 

points y = a, 2 a , . . .  ~a. The integrations may then be replaced by simple summations, giving : 

where either 

o r  

~ -- I 

S,(ka) = Z m~z,_~[(s q- ½-)a] . . . . . . . . . . .  (4.6) 

f 
( s + l ) ~  

m ,  = a # [ ( s  + ½)a] 
,~-- 1 

M , [ ( k  - -  { )a]  ---- a Z £ ( ka )  . . . . . . . . . . . .  (4.7) 
s = k  

i M,[(s -- ½)a] . . . . . .  (4.8) 
= a , : ,  B [ ( s  - ½)a] . . . .  

k 

z,E(k + ½)a] = a ~ ~,(sa) . . . . . . . . . . . . .  (4.9) 
s = l  

Other methods of numerical integration, such as Simpson's rule, may also be used. 

For beams with other end conditions an unknown parameter must be added to one or more 
of equations (4.1) to (4.4). This parameter is kept as an unknown during each iteration cycle 
and its value is determined from one of the end conditions at the end of the cycle. 

The overtone modes may be found in turn by the above process if at the end of each iteration 
cycle the derived mode shape z~(y) is modified by  adding to it multiples of each of the lower modes 
in such a way that  the modified mode shape is orthogonal to all the lower modes. The process 
becomes increasingly laborious as the order of the overtone increases; a limit to the number of 
overtone modes and frequencies which can be accurately determined is set by  the number of 
integration stations used. 

5. Solution of Integral Equations by Numerical Integration and Collocation (PD/IE) . - -For  a 
cantilever beam in flexure: 

f' = y)  z (u)  d u  . . . . . . . . .  ( s .1 )  
0 

We can derive from this equation an iteration sequence in the same way as for the Stodola 
method. However, since it will be impossible in practice to perform the iterations exactly, the 
method reduces to one using numerical integration and collocation. This replaces the integral 
equations by  a matrix equation, which need not necessarily be solved by iteration, although the 
iteration method is usually the most convenient. 

The collocation points will coincide with the points at which the integrands are evaluated 
for use in the integration formulae. Let these points be tile points y ---- y~ and let ff(y~) ---- #~, 
etc., and F(yr, y,) = F , .  
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If the numerical integration multipliers are denoted by c~, equation (5.1) reduces to: 

z~ = o;' ~ F,,,OCs~,Z~. . . . . . . . . . . . .  (5.2) 
s = l  

We now introduce the following matrices : 

m : diagonal matrix whose sth diagonal term is e,~, 

F = square symmetric matr ix  IF,,] 

z = column matrix [z,,] . 

Then equation (5.2) may be written in the matr ix form : 

~ F ~ z  = z . . . . . . . . . . . . . . . . .  (5.3) 

Owing to the discontinuity in the third derivative of the flexibility function F ( y ,  u) at the 
point y = u, and possible discontinuities in the mass and stiffness distributions, there is no 
advantage in using integration formulae of higher order than Simpson's rule. For torsional 
vibrations the flexibility function has a discontinuity in its first derivative, and only the 
trapezoidal or summation rules can conveniently be used. 

6. T h e  M o r r i s  D i scre t e  M a s s  M e t h o d  (PD/IE) . - -A particular case of the last method described 
is the discrete mass method, as devised independently by  a number of writers and as developed. 
in England by J. Morris, and is the simplest method to apply in practice. For pure flexure, the 
system is divided into a number of segments and the mass of each segment concentrated at its 
centre of gravity, so that  the system is replaced by a weightless beam carrying discrete masses 
rn~ at a distance y~ from the root. If the integral equation (5.1) is applied to this system of 
discrete masses, we at once obtain an equation similar to (5.2), namely:  

z, = ~ ~ F ,  msZ~. . . . . . . . . . . . .  (6.1) 
s = l  

This equation can be obtained by physical reasoning. The flexibility coefficient is defined as 
the displacement at point y~ due to unit load at the point y,, the root being presumed encastr6. 
When the beam is vibrating, the inertia load at point Ys is ms o)"y,, so tha t  by  equating the product 
of flexibility times load, summed over the beam, to displacement, equation (6.1) is obtained at 
once. This equation leads to the matrix equation: 

z = c o ~ F m z ,  . . . . . . . . . . . . . .  (6.2) 

identical in form to equation (5.3) in the collocation method, where m is now a diagonal matr ix 
with sth diagonal element m,. 

The most convenient method of solving this matr ix equation is by  iteration. Use must be 
made of the orthogonal property of the modes ill determining the overtone modes and frequencies ; 
this is the matrix equivalent of equation (2.27). Although the work this involves increases with 
overtone order, there is the compensating advantage tha t  the order of the matr ix equation is 
reduced at each stage. In going from each mode to the one next higher, approximately one 
significant figure is lost. The lower modes must therefore be evaluated to a large number of 
significant figures. This loss of accuracy is a feature of most methods of solution of the matr ix 
equation. 

The methods that  have so far been mentioned all suffer from the defects inherent in replacing 
the structure by  a discrete mass system. Duncan has shown by considering the torsion of a 
uniform cantilever that  the error in the frequency obtained by means of the discrete mass method 
is inversely proportional to the square of the number of degrees of freedom used. To obtain 
an accuracy of 1 per cent we must use six times as many  degrees of freedom as there are desired 
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modes. The accuracy for flexure may be a little better. If we decide that an accuracy to within 
2 per cent should be aimed at, then at least four times as many degrees of freedom as there are 
desired modes should be used for either flexure or torsion. In addition to ensuring the accuracy 
of the frequency, this should give a sufficiently large number of ordinates to determine the mode 
shapes with reasonable accuracy. 

7. T h e  L a g r a n g i a n  or R a y l e i g h - R i t z  M e t h o d  (DF/EM).--We consider the case of flexure of a 
beam to illustrate the method, and let the displacement be expressed as a linear combination of 
assumed functions of the form: 

= z (y) q , ,  . . . . . . . . . . . .  (7.1) 
r = l  

where Z r ( y )  are the assumed functions and q, are the generalized co-ordinates. 

We can now use the simplified Langrangian equations (or the Rayleigh equations): 

¢ j ) g  m 
~:- aV 
aq, --  aq~' . . . . . . . . . . . . . .  (7.2) 

where co~3 - = maximum kinetic energy, and V = maximum potential energy. 

If the expression (7.1) for z ( y )  is substituted in the equations (2.23) and (2.24) forY and VI 
and the differentiations with respect to q,, then performed, we obtain the matrix equation: 

[coM - -  E J q  = O , . . . . . . . . . . . . . . . .  (7.3) 

where A is an inertia matrix with elements : 

A~, = # ( y )  Z , ( y )  Z , ( y )  d y  , . . . . . . . . . .  (7.4) 

and E is an elastic stiffness matrix with elements : 

= B ( y )  Z / ' ( y )  z,"'/y)" dy (7.5) 
0 

Since the mass distribution #(y) and stiffness distribution B ( y )  will not in general be expressed 
as mathematical  functions, the coefficients (7.4) and (7.5) will have to be evaluated by using 
some method of numerical integration; Simpson's rule is the best for this purpose. To keep the 
errors in this process sufficiently small, the number of integration stations must be at least four 
times the number of desired modes, and if possible six times as great. This rule is similar to that  
given for the discrete mass methods of the preceding paragraphs. The order of the matrix 
equations to give results of a prescribed accuracy will, however, be much less in the Lagrangian 
method than in the Morris discrete mass method. This reduction in the order of the matrix 
equation is obtained at the expense of more complicated expressions for evaluating the coefficients 
of the matrices. 

If the order of the matrix equation is not greater than four, the determinant 

l o : A  - -  E [ . . . . . . . . . . . .  (7.6) 

can be expanded and the resulting equation solved for the frequency co. If the order of the 
matrix equation is greater than four, either the iteration method or the escalator method (see 
Appendix II) can conveniently be used. If the iteration method is used and a cantilever beam 
is being considered, the first step is to find the reciprocal of the matrix E, and then to form the 
equation : 

c o 2 E - 1 A q  = q . . . . . . . . . . . . . . .  (7.7) 
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Alternatively, the matrix E may be expressed as the product of a lower triangular matrix and 
its transpose, that  is: 

E = LL '  . . . . . . . . . . . . . . .  (7.8) 

If we now write ~ = L'q, equation (7.7) becomes: 

co ~ L -~ A (L-l) ' c~ = c] . . . . . . . . . . . . . . .  (7.9) 

We thus have to find the reciprocal of a triangular matrix, which is easier than finding the 
reciprocal of E. 

The accuracy of the method will depend on the choice of displacement functions Z / y ) .  It  is 
most desirable that these displacement functions should satisfy not only the boundary conditions 
at the fixed end of the beam, but also those at the free end. The boundary conditions at the free 
end are given in the first place as dynamical conditions, but from them can be deduced geometric 
conditions: there are three different cases, depending on the ratio of flexural rigidity to mass 
per unit length at the free end. 

Duncan has determined sets of displacement functions of polynomial form which satisfy these 
geometric end conditions (see Appendix I). The first four of these for a blunt-ended beam are 
shown in Fig. 1. For a uniform beam, accurate results for modes and frequencies can be found 
by using one more function than there are desired modes. For less ideal bodies, however, it 
appears that rather more are necessary. Even for a uniform beam, the full accuracy can be 
obtained only by keeping a large number of figures in the calculations. Figures are lost for the 
overtone modes ; there is some loss of figures for the generalized co-ordinates q, during the solution 
of the matrix equation and a further loss for the displacements z when the numerical values of 
the q~ are substituted in equation (7.1). This loss of figures would be even greater if the boundary 
conditions at the free end were not satisfied. The reason for the loss is that  the change in shape 
as we pass from one displacement function to the next is only a slow one. A way of Considerably 
reducing it is to start the calculations not vdth the Duncan functions themselves but with linear 
combinations of them. In this new set of functions the first is identical with the first of the 
Duncan functions. For the second we combine the first two Duncan functions to give a nodal 
point in roughly the expected place. The third function is a combination of the first three 
Duncan functions to give two nodes where we expect them to be, and so on. The first three 
functions derived in this way are shown in Fig. 2. 

For a freely supported beam, one or possibly two of the displacement functions must represent 
the rigid mode displacements of vertical translation or roll or both. The 'remaining displacement 
functions may conveniently be taken to be Duncan's displacement functions, or combinations 
of them ; these satisfy the conditions Z / y )  = Z / ( y )  = 0 at the point y = 0, which may be taken 
to be the end of an asymmetric beam or the centre of a symmetric beam. 

In this case the matrix E will have a null row and null column for each rigid mode. Before 
the matrix equation can be expressed in the form (7.7), as required in the iteration method, the 
rigid mode co-ordinates will therefore have to be eliminated from the equation. This elimination 
will not, however, be necessary if the escalator method is used. 

Displacement functions of a different kind have been introduced by Rauscher of America. 
Whereas Duncan's functions do not depend on the particular structure, apart from the end 
conditions, Rauscher's functions depend on the elastic properties of the structure, and might 
therefore be expected to give more accurate results. 

Rauscher starts by dividing the beam into a number of segments, equal to the number of 
functions he wants to find, and imagines the loading curve which is typical of any one of the 
normal modes to be given approximately by a polygon, linear in each segment. This polygonal 
loading is in turn replaced by the sum of a number of triangular loadings, each triangle extending 
over two segments, except the tip triangle, which extends over one only (see Fig. 3). Each 
triangular loading is then considered in turn, and by integrating four times, introducing the 
stiffness distribution in the process, the displacement produced by the triangular load is obtained. 
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Since we require only the shape of the deflection curve, the height of the triangle is not in fact 
specified. The displacements obtained in this way for all the triangular loads then give the 
displacement functions. The functions found by this process for a uniform beam, with four degrees 
of freedom considered, are shown in Fig. 4. These functions are more alike than Duncan's 
functions and the risk of computational inaccuracies is therefore greater, so that  it is even more 
necessary to combine them linearly in the way that  has been described above. The second 
derivatives of the functions will have been found half-way through the integration process, so no 
disadvantage arises in not having the functions expressed in algebraic form. If there are rapid 
changes in the mass distribution, a refinement of the functions can be made-- ins tead of triangular 
loads we take loads which are the product of a triangle and the mass distribution. 

What  is really done in the construction of the Rauscher functions is to start  with a set of 
arbitrary functions and obtain a set of improved functions by  one round of iteration. An 
alternative way of obtaining functions appropriate to the particular structure considered is to 
start  with a set of simpler algebraic functions, say functions ~ +~, and integrate to obtain improved 
functions. 

A matrix equation identical with that  of the Lagrangian method is obtained if the Galerkin 
method is applied to the differential equation. This is a method of making the mean error in the 
differential equation a minimum. 

8. The Complementary Energy Method (DF/EM).--One disadvantage of the Lagrangian method 
is tha t  the elastic coefficients depend on the second derivative of the displacement. The displace- 
ment functions when combined together can represent the true mode only to within a certain 
error. Differentiation always increases such errors so that  the potential energy in the modes 
is given less accurately than the kinetic energy. 

This differentiation is avoided in the complementary energy method, which was first developed 
by Grammel and reintroduced by Westergaard and Reissner. The potential energy for flexure 
is expressed in the form" 

v = o M 2 ( y )  d y  . . . . . . . . . . .  (8.1) 

where the bending moment M(y) is given by  the double integral : 

M ( y )  = du  dv . . . . . . . . .  (S.2) 
y v 

If this form of the potential energy is used in applying Lagrange's equations, we obtain a 
matr ix equation of the form: 

EA -- ~K~q = 0 ,  . . . . . . . . . . . . . . . .  (8.3) 

where the inertia coefficients A~ are the same as in the Lagrangian method (equation (7.4)) and 
the elastic coefficients are given by" 

where 
f z 1 

K,.s = M~(y) M~(y) dy 
o~(y) . . . . . . . .  (8.4) 

M / y )  ---- d v . .  . . . . . . . . .  (8.5) 
y v 

In this matrix equation the frequency occurs in conjunction with the elastic matrix, and not 
with the inertia matrix as in the ordinary Lagrangian method. 
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If the elastic properties of the beam are expressed in terms of flexibility functions, the 
expression for the potential energy may be written in a different form by equating it to the work 
done by the inertia forces. If we express the displacement in the form (2.13), we than have:  

(it(y) It(u) z(u) du dy (8.6) V 1 0 )  4 

2 JO 0 . . . . .  

I t  follows by differentiation that  the coefficients K~, are given by:  

K ,  = 0it(y) z,(y)  o F(y, It(u) dy . . . . .  (8.7) 

This form of the expression for K,, is particularly convenient when flexibility coefficients have 
been determined experimentally. 

This method gives more accurate frequencies than the Lagrangian method, but it has the 
disadvantage that  more figures must be kept in the calculations to obtain this accuracy. 
The modes are not noticeably different, but  improved mode shapes can be obtained by using 
the formula : 

S z(°(y) = F ( y ,  u) It(u) z(u) du . . . . . . . . . .  (8.8) 
0 

i f '  = s = 1  qs oF(y'u)I*(U)Z,(U) d u ,  . . . . . . . .  (8.9) 

which is derived from equations (2.13) and (7.1). The integrals under the summation sign will 
have already been obtained if the elastic coefficients K,, have been determined from equation 
(8.7), and little additional work is therefore entailed. 

The above treatment applies specifically to a cantilever beam, and all the displacement functions 
must satisfy the condition Z(y)  = Z ' ( y )  - - 0  at the clamped end. For an unsupported beam 
additional functions representing the rigid modes are required, but a difficulty now arises in the 
application of the method. 

When the ordinary Lagrangian method is used, the equations obtained by differentiation with 
respect to the rigid mode co-ordinates are identical with equations (2.19) and (2.20), that  is, they 
are mathematical  expressions of the vanishing of the total  vertical inertia force and total  inertia 
moment. This will not be the case if the complementary energy method in the above form is 
used; the results obtained will be incorrect and the following modification is made. 

The elastic terms in the equations of motion are now obtained by evaluating the derivatives 
~V/aq~, which appear in Lagrange's equations, subject to the condition that  the total  force and 
moment equations (2.19) and (2.20) be satisfied. This is equivalent to expressing the rigid mode 
co-ordinates in terms of the remaining generalized co-ordinates by using equations (2.19) and 
(2.20), and substituting these expressions in the potential energy (8.1) or (8.6) before performing 
the partial differentiation. 

A matrix equation identical wKh that  of the complementary energy method is obtained if the 
Galerkin method is applied to the integral equation, making the mean error in the equation a 
minimum. 

9. Collocatio~ with Assumed  Modes (DF/ IE) .~For  flexure, the displacement z(y) is again 
expressed in the form: 

z(y) = E Z,(y)  q , ,  . . . . . . . . . . . .  (9..1) 
~ '=1  ' 

where the Z / y )  are the assumed functions. 
For a cantilever beam clamped at y = 0, the functions Z,(y)  must satisfy the condition 

Z,(0) = Z,'(0) = 0. For this case, the expression (9.1) for z(y) is substituted in the integral 
equation (2.13); if the order of integration and summation is interchanged, we obtain: 

i i f  Z~(y) q~ = a~' q, F(y ,u )  it(u) Z~(u) du . . . . . . .  (9.2) 
s = l  . s = l  0 
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This equation cannot now'be satisfied at all points of the beam, but  an approximate solution 
may be obtained by satisfying it at n selected collocation points yl, y~, . . . y~. 

If we write: 

and let 

f 
I 

G~s = F ( y ,u )  t~(u)Z,(u) d u  . . . . . . . .  (9.3) 
0 

Z~, = Z , ( y , )  . . . . . . . . . . . . . .  (9.4) 

G = n th  order square matr ix with typical element G~s 

Z = n th  order square matr ix with typical element Z,, 

q = matr ix column {ql, q2, • • • q,,}, 

we obtain the matr ix equation: 

[co~G -- Z7~q = 0 . . . . . . . . . . . . . . . . .  (9.5) 

In the energy methods described in the last two sections the matrices in the matr ix  equation 
are symmetric. In  the collocation method, however, the matrices G and Z are not symmetric, 
and if matr ix iteration is used the calculation of the overtone modes and frequencies is a little 
more troublesome• The accuracy is in general not quite as good as in the energy methods, but  
may be better  if t he  collocation points happen to have been chosen fortunately. 

For an unsupported beam, two of the displacement functions must represent the rigid modes 
of vertical translation and roll. The modification (2.17) is now made to the left-hand side of the 
integral equation (2.13) and equation (9.2) is altered accordingly. This equation is now satisfied 
at only (n -- 2) collocation points, and the deficiency in the number of equations is made up by  
satisfying equations (2.19) and (2.20) which equate the total  inertia force and total  inertia 
moment to zero. A matrix equation of similar form to equation (9.5) is again obtained, but  the 
matr ix  corresponding to Z has two null rows and two null columns. 

10. N u m e r i c a l  E x a m p l e  C o m p a r i n g  the  V a r i o u s  M e t h o d s . - - T h e  following results for the flexural 
modes of a tapered beam of constant width, with depth at the tip one fifth of the depth at the 
root, are taken from a report by  Siddall and Isakson 1. 

M e t h o d  

L a g r a n g e  . . . . . . . . . . . .  

C o m p l e m e n t a r y  e n e r g y  . . . . . . . .  

C o m p l e m e n t a r y  e n e r g y  . . . . . . . .  

D i s c r e t e  m a s s  . . . . . .  . . . . . .  

M y k l e s t a d  . . . . . . . . . . . .  

D e g r e e s  of 
M o d e s  f r e e d o m  

P e r  c e n t  e r r o r  i n  f r e q u e n c y  

•.  D u n c a n  

. .  D u n c a n  ( 

• .  R a u s e h e r  

2 
3 

2 
3 

2 

5 

11 

1st 

+ 2 " 4  
+ 0"45  

- -  0 " 0 5  
- -  0 " 0 9  

- -  0 " 0 9  

- -  0 " 0 9  

- -  0 " 0 2  

2 n d  3 r d  

+ 4 2 . 0  
+ 9 . 3  + 6 6 - 2  

+ 4 . 3  
- -  0 . 6 5  - -  1 2 . 2  

- -  1 . 8  

+ 2 . 8 2  

+ 0 . 6 9  

If an accuracy to within 2 per cent is our objective, then the first line shows tha t  the Lagrangian 
method with two of Duncan's functions almost gives this accuracy for the fundamental  frequency. 
For the first overtone frequency, however, at least four of Duncan's functions would be required ; 
if we make the reasonable assumption that  the errors in this frequency with increasing number 
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of functions form a geometric sequence*, then four functions would be sufficient to give an error 
of not more than 2 per cent. This  suggests that  the Lagrangian method in conjunction with 
Duncan's functions will give sufficiently accurate results if the number of assumed functions is 
two greater than the number of desired modes. If Duncan's modes are used in the complementary 
energy method we see that  the number of frequencies given accurately is one less than the number 
of assumed modes. If the modes are replaced by Rauscher's modes, there is a further improve- 
meri t-- two frequencies are given to within an accuracy of 2 per cent when only two displacement 
functions are used. 

For the Morris discrete mass method, however, even with five masses the second frequency is 
nearly 3 per cent in error. The Myklestad method will give errors which are very little different 
from those of the Morris discrete mass method; with 11 masses the first two frequencies have 
errors almost the same as the complementary energy method using three of Duncan's functions. 

One point which may be noted is that  while the error in the Lagrangian method is always 
positive (that is, the calculated frequencies are too high), the error in the complementary energy 
method may be positive or negative. 

The mode shapes for the fundamental  mode are quite good in every case. Fig. 5 shows the 
shape of the first overtone mode when two degrees of freedom are used, compared with the exact 
mode shape. The Rauscher functions give a better mode shape than do Duncan's functions; 
there is little difference between the Lagrangian and complementary energy methods, but  the 
mode shape obtained by the latter method can be improved by integration, as has been indicated 
above. There is then little difference between the mode obtained and the true mode in this 
particular case. 

The best method to be used for a particular problem will depend on the calculating aids 
available. If desk machines are used, it is recommended by the author that  in general the 
Lagrangian method should be used in conjunction with displacement functions of the Rauscher 
type, but if the flexibility function is known for the system the complementary energy method 
with Duncan's modes should be used, as in this case the modes can be improved without difficulty. 
This would enable a given accuracy to be obtained with the minimum number of degrees of 
freedom. This saving of work is offset by  the increased work involved in setting up the matr ix 
equations as compared with the Lagrangian method ill terms of Duncan's displacement functions, 
and especially compared with the discrete mass methods. In addition, greater care is needed to 
avoid computational errors. However, the reduction in the order of the matr ix equation is the 
most important  consideration, and in all probability there is a saving of effort. 

If a digital computer were available, however, it would be important  to keep the programming 
as simple as possible even though the number of degrees of freedom was relatively large. Since 
standard sub-programmes exist for the manipulation of matrices, the Morris discrete mass method 
would be the best method to use. 

One method which has not been mentioned is a method devised by Duncan based on Lagrange's 
equations which makes use of the orthogonal properties of the modes in such a way that  only 
two degrees of freedom need be considered at any stage of the calculation, whichever mode is 
being evaluated. The solution of the matr ix  equation is therefore quite simple, and the method 
is well suited for desk-machine calculation. There is an accumulation of error as the overtone 
order increases, additional to that  in the ordinary Lagrangian method, but  when applied to a 
uniform beam good accuracy is obtained for the first three frequencies. 

11. Coupled Flexure-Torsiora.--When the coupling between flexure and torsion has to be taken 
into account, some assumption has to be made about a flexural axis. Suppose tha t  some line 
can be found in the structure such that  a couple applied at any point about the tangent to the 

* The error given by  tile Lagrangian method decreases much more rapidly with the number of degrees of freedom 
than does the error given by the discrete mass method. 
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line produces no flexural curvature of the line at tha t  point. If this line (the locus of flexural 
centres) is straight and normal to the line of clamping at the root (normal to the centre-line for 
an aircraft wing), the line is termed a flexural axis. 

The basic equations of section 2 need some modification for this case. 

(a) Differential Equat ions . - -Equat ions  (2.1) and (2.8) are replaced by  the equations: 

a~ I a~ t ay~ B(y) ay2t = ~2{~(y) ~(y) + ~(y) o ( y ) } ,  . . . . . . . .  (11.1) 

d 
c ( y )  , , y  = , . . . . . . . .  (11.2) 

where ~(y) = mass moment about flexural axis per unit length. 

These equations must now be considered as a pair instead of separately. 

Similarly, equations (2.2) and (2.9) are replaced by  the equations: 

dS ay - ~{,.(y) z ( y )  + ~(y)  o ( y ) } ,  . . . . . . . .  (11.3) 

aT  
dy --  m={~(y) z(y) + ~(y) o(y)} . . . . . . . . .  (11.4) 

Equations (2.8) to (2.5) and (2.10) remain unaltered. 

(b) The Integral Equat ion. - -Equat ions  (2.13) and (2.15) are replaced by the pair of equations: 

~(y) = ~ ~ (y ,~ )  {~(~) ~(~) + ~(~) o(~)} a~ . . . . .  (11.5) 
o 

o(y) = ~ ~(y ,~)  {~(~) ~(~) + ~(~) o(~)} a~ . . . . .  (11.6) 
0 

If a straight flexural axis in the above sense does not exist, a more general form of these 
equations may be used, provided that  sections normal to the beam may still be assumed not to 
distort. We can then write: 

z ( y )  = ~o ~ F ( y ,  ~) {~(u) ~(~) + ~(u) 0(~)} au 
0 

Y + co ~ T(y ,  u) {$(u) z(u) + z(u) 0(u)} du ,  . .  . .  (11.7) 
0 

Y o(y) = ~ ~(u,  y) {~(~) z(u) + ~(u) 0(u)} au 
0 

+ ~ ~(y, u) {~(u) ~(u) + ~(~) 0(u)} au ,  .. .. (11.8) 
0 

where the axis of y is now taken as any convenient axis along the length of the structure, and the 
new influence function is defined as: 

g~(y, u) = displacement at point y on axis due to unit torsional couple at point u 

N(u, y) = angle of twist at section y due to unit load at point u on axis. 

The functions F(y ,  u) and # (y, u) have the same physical meaning as before except that  they 
are referred to the reference axis instead of to the flexural axis. They will not now, however, 
be defined by equations (2.14) and (2.16). The three functions F, ~ and N could be measured 
experimentally, and can in principle take account of the shear effects. 
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Equations (2.19) to (2.21), which express the fact that  the total  inertia force and moments 
are zero, are replaced by the equations" 

f l  + = 0 . . . . . . . . .  (11.9) 

f ~ { ~ ( ~ ) ~ ( ~ ) + ~ ( ~ ) o ( ~ ) } ~ a ~ = o , .  . . . . . . .  (11.1o) 
0 

0{~(u) z(u) + ~(u) 0(u)} du = 0 . . . . . . . . .  (11.11) 

These equations apply whether tile axis of y is the flexural axis or not. 

(c) Rayleigh's  E q u a t i o n s . - - T h e  expressions (2.23) and (2.25) for Y are now replaced by the 
single equation : 

9" = ½ o{tt(y) z2(y) + 2~(y) z(y) O(y) + n(y) O~(y)} dy , . .  . .  (11.12) 

and the expressions (2.24) and (2.26) for V are replaced by the single equation" 

1;1 I V = ~" o B(y )  \dyU + C(y) \dv]~ dy . . . . . . . . .  (11.13) 

The methods described in the previous sections can now readily be generalized by using the 
above equations. In the discrete mass methods the system is replaced by a weightless beam 
carrying discrete masses and moments of inertia at the end of a finite number of transverse rigid 
arms. In the Myklestad method six difference equations have now to be considered together, 
equations (3.1) and (3.5) being suitably modified. Two unknowns 01 and ~/J1, instead of only one, 
have to be carried through each stage of the work and determined by the boundary conditions 
at the far end. Similarly in the Stodola method a set of six integrals has to be considered at 
each. iteration step. In the collocation and Morris discrete mass methods, equations (5.2) and 
(6.1) are replaced by a pair of summation equations, and the matrix equation corresponding 
to (5.3) or (6.2) can be readily derived. 

In the methods using displacement functions we express the flexural and torsional displacements 
by the pair of equations" 

z(y) = ~ Z , (y )  q~, . . . . . . . . . . . . . .  (11.14) 
s = l  

o ( y ) - -  ~ o s ( y )x  . . . . . . . . . . . . . . . . .  (11.15) 
S = I  

where Zs(y),  O,(y) are the flexural and torsional displacement functions respectively, and qs, 
xs the corresponding generalized co-ordinates. The number of flexural freedoms n and torsional 
freedoms v must be the same in the collocation method, but  can be different in the energy methods. 
The resulting matrix equation can be written in partitioned form, the partition lines dividing 
each matrix into four sub-matrices of which the two diagonal sub-matrices are pure flexure and 
pure torsion matrices and the two remaining sub-matrices contain the coupling I terms. In the  
matrices corresponding to Z of the collocation method and E of the Lagranglan method, the 
coupling sub-matrices are null, but in the complementary energy method there are no zero 
elements. 

I t  may sometimes be convenient to take assumed modes each of which are part ly flexural and 
part ly torsional. Then instead of (11.14) and (11.15) we write" 

2n 

z(y) = Z z:(y)  qs, . . . . . . . . . . . . . .  (11.16) 
s = l  

o(y) = ~, O~(y) q , ,  . . . . . . . . . . . . . .  (11.17) 
S = I  
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so tha{ :the motion in each degree of freedon qs is represented b y t h e  pair  of displacement functiong 
Zs(y) and O/y). When these equations are used, the expressions for the elements of the matrices 
in the matr ix  equation are more complicated than when the simpler equations (11.14) and (11.15) 
are used. A particular case when equations (11.16) and (11.17) would be appropriate is when 
the normal modes of a structure have been found and the normal modes of the structure af ter  
some modification of it are required. The normal modes of the original structure could then 
conveniently be used as assumed modes in the calculations. 

12. Com])lex Structures.--Except for the integral equation in the form (11.7) and (11.8), t he  
discussion of the last section assumed that  there will be a straight flexural axis, but  in general 
this will not be the case. I f  we consider a swept-back wing, the locus of flexural centres may be  
straight for most of the span, but  it will certainly be curved near tile wing root and will meet 
the centre-line at right angles (see Fig. 6). In dealing With such a wing the simplest approximation 
is to assume tha t  the root triangle ABC is rigid. A better approximation is to assume a shape for- 
the deflection of the curved part  of the line of flexural centres, say parabolic. If the line AC 
and all other lines radiating from A in the root triangle are assumed to remain rigid, the mot ion 
of all points in the triangular area is prescribed. Flexural and torsional displacement functions 
may then be assumed relative to the root triangle for the remainder of the structure and the  
equations of motion set up. 

In the more general case, where the locus of flexural centres is everywhere curved, it may be  
possible to approximate to it by a polygonal curve. Each straight part  of the polygon is t r ea ted  
separately and certain continuity relations satisfied at the junction of consecutive parts. 
However, it is possible to treat  the problem properly in this case only if flexibility coefficients 
are known at various points over the surface, and the same applies if the distortion of chordwise 
sections .is not sufficiently small, as may be the case for wings of Small aspect ratio. In this case 
the motion of the wing is described not by  a combination of flexure and torsion but by  t h e  
displacement of points over the whole wing area. The integral equation may then be wri t ten:  

z(,, y) = f f F(x, y.. v) v) v) ev . . . . . . .  (re.l), 

where p(x, y) = mass per unit  area 

F(x,y," u, v) = deflection at point (x, y) due to unit  load at point (u, v) 
= F(u, v ;x ,  y). 

This equation could be solved by  the Morris discrete mass method, collocation with assumed/ 
modes or the complementary energy method. The discrete mass method would be the simplest 
in practice. The wing surface is divided into a number of small areas and the mass in each area 
is concentrated at its centre of gravity. The matr ix  equation for frequency and displacement 
can then be set up in a way similar to tha t  for a simple beam. Flexibili ty coefficients are required 
for each of these centres of gravity, giving the deflection at one centre of gravi ty due to unit  
load at each of the others in turn. D. Williams 9~ has developed a method suitable for a digitaI 
computer by  means of which these flexibility coefficients can be calculated. 

Displacement functions for wings of this general type for use in either the collocation or 
complementary energy methods can be obtained by  a generalization of Rauscher's method. 
Fig. 7 shows a delta wing divided into squares (the number of chordwise areas shown are probably 
more than are necessary). Instead of obtaining the deflections due to a triangular load, we must 
now consider a pyramid load covering four adjacent squares with apex at the common point  
of t he  squares, and determine the deflected shape of the wing under such a load. 

13. Complete Aircraft.--When the frequencies and modes of a complete aircraft are required, 
a convenient method is first to obtain separately by  a matr ix  method the frequencies and modes. 
of the wings encastr6 at the root ari~d-of-the fuselage-tail combination encastre at its junct ion 
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with  the wing. 
_matrix form" 

The equation for the complete system may then be written in the partit ioned 

i ]  . . . . .  ,131, 

where the matrices W,  F and R represent the wing, fuselage-tail combination and rigid mode 
terms respectively. The rigid freedoms will be vertical translation and pitch for symmetric 
motion, and roll, lateral displacement and yaw for antisymmetric motion. The matrices ~. and 
represent the coupling terms arising from the rigid freedoms. We first consider one rigid freedom 
only  which is represented by one row and one column of the matr ix in (13.1). Then from the 
known solutions of the fixed root equations: 

Wq~ = O, Fq~ = 0 . . . . . . . . . . . . . . .  (13.2) 

we can by  using the escalator method (see Appendix II) obtain an equation for frequency in 
the form" 

• c ,  - -  d , 2  - -  e - - f Z ,  . . . . . . . . . .  ( 1 3 . 3 )  

where 2 = 1/~o ~. This equation can be solved for 2 by  a method of successive approximations, 
and  the elements of the column matrices q~, ql and q~ are then obtained from expressions of 
similar form to the left-hand side of the equation. A second rigid freedom is now added and an 
equation of the form (13.3) is again used, where the quantities a to f now depend on the solution 
wi th  one rigid freedom. If there are three rigid freedoms, the process is again repeated. 

The escalator method is equivalent to setting up a new matrix equation in terms of the fixed 
root  modes of the wing and the fuselage-tail combination which have already been determined, 
but  the method does this systematically and one does not have to think of it consciously. 

The escalator method cannot, however, be used if the complementary energy method is used 
to set up the matr ix equation. This is because of the dffficulty introduced by the rigid freedoms 
mentioned at the end of section 8. When the modified procedure described there is adopted, 
it  is found that  the matrices W and F of equation (13.1) are different from the matrices W and 
F in the fixed root equations (13.2), and in addition equation (13.1) does not contain any null 

sub-matrices. The best procedure is therefore to use the fixed root modes as new assumed 
modes in setting up the equations for the complete aircraft, using the ordinary Lagrangian method 
to do so. The inertia coefficients are readily obtained from differentiation of the kinetic energy, 
and the elastic terms then follow at once since the fixed root natural  frequencies are known. 
With  one rigid mode we then obtain at once an equation of the form (13.3); when further rigid 
modes are added we can again use the escalator method. This method could also be used if the 
fixed root modes of the wing and fuselage-tail combination have been obtained by either the 
Myklestad or the Stodola method. 

The procedure described above of calculating the fixed root frequencies and modes first and 
using these results in obtaining the frequencies and modes of the complete aircraft is certainly 
advisable if desk machines are used for the calculations. When an electronic computer is used, 
:on ~he other hand, the saving in calculation time compared With that  required to solve equation 
(13.1) dire.ctly would probably be insufficient to compensate for the complication in the 
programming. Even in this case, however, it might still be advisable to adopt the above procedure, 
for there are grounds for believing tha t  the fixed root modes are better suited for use in flutter 
.calculations than are those of the complete aircraft. The modes of the complete aircraft would 
still have to be calculated, for it is only by a subsequent comparison of them with the resonance- 
t e s t  modes tha t  the calculations could be checked. 
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M ( y )  

M,  

Mr(y) 

N4 

q4 

q 

qr 

s(y) 
St(V) 
T(y) 

9 -  

g ,  V 

NOTATION 

: [A~,l Square matr ix of inertia coefficients 

Flexural rigidity, or fiexural stiffness per unit length. Young's modulus 
times second moment of area of section about neutral axis 

Torsional rigidity, or torsional stiffness per unit length 

----- [E,,] Square matrix of elastic stiffness coefficients 

Flexibility or influence function. Displacement at point y due to unit load 
at point u 

= F(y,,  y,) Flexibility coefficient 

= [F,s~ Square matr ix  of flexibility coefficients 

Displacement at point (x, y) due to unit load at point (u, v) 

Flexibility coefficient for flexure of r th segment of beam (displacement due 
to unit load) 

= [G,,I Square matr ix of coefficients for method of collocation with assumed 
modes 

Flexibility coefficient for flexure of r th segment of beam (slope due to unit 
load) 

Flexibility coefficient for flexure of r th segment of beam (slope due to unit 
couple) 

Unit matrix 

Polar inertia of r th segment of beam 

= [K,~ Square matrix of elastic coefficients in the complementary energy 
method (dimensions stiffness divided by frequency ~) 

Length of beam 

Lower triangular matr ix 

Bending moment at point y 

= M(y,) 

Either r th iterate to bending moment or bending moment due to loading 
~(y) Zr(y) 

Discrete mass at point Yr 

Diagonal matr ix with elements m, or ¢,t* (Y,) 

Number of degrees of freedom 

Column matrix with elements q, 

Generalized co-ordinate associated with r th degree of freedom 

Sheafing force at point y 

r th iterate to shearing force 

Torque at point y 

(1/~o 2) times maximum kinetic energy 

Integration variables 
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z,(y) 
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o,(y) 
.(y) 

2 
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+(y) 
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60 

OJ r 

NOTATI ON--continued 

Maximum potential energy 

Transverse co-ordinate 

Co-ordinate along length of beam 

Vertical displacement of beam at point y 

z(y ) 
Column matrix with elements z, 

Either flexural displacement in r th  normal mode or r th  iterate to the 
flexural displacement 

Displacement function for flexure 

Square matrix [Z,,J 

Numerical integration constant 

y/Z 

Torsional displacement 

O(y~) 

Torsional displacement in r th normal mode 

Displacement function for torsion 

Moment of inertia about reference axis per unit length 

Mass per unit length 

Number of torsional degrees of freedom 

Mass moment about reference axis per unit  length 

Mass per unit area 

Flexibility function for torsion. 
Twist at point y due to unit torque at point u 

Flexibili ty coefficient for torsion of r th  segment of beam (twist due to unit  
torque) 

Function of coupling flexibilities. 
Displacement at point y due to unit torque at point u 

Frequency of vibration in radians per second 

Either r th natural  frequency or r th  iterate to the frequency 

A superscript dash denotes the derivative of a function or the transpose of a matrix. 

The origin y = 0 is taken to be the clamped end of a cantilever beam, one free end of an 
asymmetric unsupported beam, and the centre of a symmetric unsupported beam. 
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A P P E N D I X  I 

Duncan's  displacement funct ions  

(a) Flexure of  Cantilever Beam. 

(i) (1 - -  y) ~ ( y ) / B ( y )  --+ 0 as y - +  l ;  no  c o n c e n t r a t e d  m a s s  a t  t i p  y =  l. 

Z,(y) = { ( r  -I- 2 ) ( r  -4- 3)v '+z - -  2r(r 4- 3)V '+2 -1- r(r -4- 1)rF+a}/6 

w h e r e  ,/ = y/l .  

(ii) F o r  b e a m  as in  (i) e x c e p t  t h a t  t h e r e  is a c o n c e n t r a t e d  m a s s  a t  t h e  t ip  b u t  no  d i sc re te  
ro l l ing  i n e r t i a ;  or for  a b e a m  w i t h o u t  d i sc re te  ro i l ing  i ne r t i a  a t  t ip  s u c h  t h a t "  

(1 - -  y) # ( y ) / B ( y )  is n o t  zero) 
for  y = 1 

(l - -  y)~ # ( y ) / B ( y )  = 0 

z,(y) = ½{(r + 2)~ ' - "  - r~'+~}. 

(iii) F o r  a n y  b e a m  w h i c h  has  a d i sc re te  m a s s  a n d  ro l l ing  i ne r t i a  a t  t h e  t ip ,  or w h i c h  is s u c h  
t h a t  

(1 - -  y)~/~(y) /B(y)  is n o t  zero for  y = 7  

Z,(y)  = ~'+~ 

(b) Torsion of Cantilever. 

(i) No  d i sc re te  po l a r  m o m e n t  of i ne r t i a  a t  t ip"  

O,(y) = (r + 1)~" - -  r~ "+1 

D i s c o n t i n u o u s  f u n c t i o n  for  i so l a t ed  loads  a t  ~ = P "  

Oo(y)  = ~ o <~ ~ <~ P 

= P P <~ ~ <<. I. 

(ii) D i sc re t e  po la r  m o m e n t  of i ne r t i a  a t  t ip"  

o,(y) = ~'. 

S u p p o s e  t h a t  t h e  e q u a t i o n s "  

A P P E N D I X  I I  

The escalator method 

EA - -  B ~ l x  = 0 . . . . . . . . . . . .  (1) 

~EA - -  B z ]  = 0 . . . . . . . . . . . .  (2) 

w h e r e  A a n d  B are s q u a r e  m a t r i c e s  of o rde r  (n - -  1) a n d  ~ is scalar ,  h a v e  b e e n  so lved  to  g ive  t h e  
(n - -  1) roo t s  &, Z2, • • • ~ - 1  a n d  c o r r e s p o n d i n g  n - -  1 m o d a l  c o l u m n s  &, x2, • • • x,,_~ a n d  n - -  1 
m o d a l  rows  gx, g~., . . .g,~_~. 

I f  A a n d  B are b o t h  s y m m e t r i c ,  t h e n  : 

~, = x , '  { r  = 1 t o  ( n  - 1)} .  

S u p p o s e  n o w  t h a t  we  r equ i r e  t h e  so lu t ions  of t h e  e q u a t i o n  : 

;l lI 2 = ° '  . . . . . . . . . . .  
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A P P E N D I X  I I - - c o n t i n u e d  

where a is a column matr ix ,  fl is a row mat r ix  and ~ is a scalar, and ~, fl and ~ are l inear funct ions 
of ~. 

Let  
[x~, x~, . . . x,~_~] = X 

{ ~ ,  ~ ,  . . . ~ _ ~ )  ---- X 

and  diag (2z, 22 . . . .  ~_~) ~ A 

so t ha t  X,  X,  A are all square matr ices of order (n --  1). 

Then  from equations (1) and (2) we have :  

A X  = B X A  

_ ~ A  = A X B ,  

whence : 

. . . . . . . . . .  (4) 

. . . . . . . . . .  ( s )  

X A X  -~  X B X  . A - ~  A . X B X  , 

so t ha t  . ~ B X  ~ diagonal mat r ix  = D ,  say. 

Thence : 
(XB)-~ = X D  -~  . 

Equa t ion  (3) m a y  be wri t ten  as the  pair  of equat ions :  

( A - - B ~ ) x + ~ y = 0  . .  

~ x + v y = 0 .  

Pre-mul t ip ly ing  (7) by  X and using (5), we have :  

(A --  ~I)XBx + X~y = O, 
whence 

I g Q I ~ I Q O 

m O 

. .  ( 6 )  

. .  ( 7 )  

. .  ( s )  

x = - -  X D - I ( A  - -  ~ I )  -~  f f~ey  . . . .  (9) 
by  vir tue of (6). 

Subs t i tu t ing  for x in (8), we have :  

p X D - ~ ( A  - -  ~ I )  -~ f i J~y  = y y  . . . . . . . . . . .  (10) 

If  we wri te :  
f f ~  = { P 1 ,  P 2 ,  • • • P,,-1}, a mat r ix  column, 

pX --- EP1, P2, • • .P,~-~] , a ma t r ix  row 

where P ,  P ,  are l inear in ~, equat ion (10) m a y  be wr i t t en :  

~ 1  ~ ( ~  z ~)  - ~ Y ,  . . . . . . . . . .  ( 1 1 )  

where d~ are the  diagonal  elements of D. This equat ion m a y  now be wr i t ten  in the  form (13.3). 

The values of ~ which sat isfy (3) can now be found from (11) b y  successive approximat ions ,  
and  the  modal  column {x, y)  then found from (9) (y m a y  be given the value unity) .  

B y  s ta r t ing  With the known solution of a second order mat r ix  equation,  successively adding 
rows and columns and using the  above process at  each stage, the solution to a mat r ix  equat ion 
of any  order can be  determined.  
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