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Summary.—A method is developed for determining the loading on low-aspect-ratio wings. By allowing for down
stream effects on the flow at a station on the wing and for the trailing-edge condition, the method improves on
R. T. Jones’s theory for wings of very small aspect ratio. Calculations have been made for thirteen different wings and
a comparison with other methods of solution is given for some cases.

1. Introduction.—In recent years several methods for obtaining numerical solutions of the
lifting surface problem have been proposed, notably those of W. P. Jones' (1943), Falkner® (1943),
Multhopp® (1950) and Kiichemann* (1952). Although these have been successfully applied to
wings of medium aspect ratio, they are essentially high-aspect-ratio methods since they deter-
mine the spanwise variation of the loading more accurately than the chordwise variation. Their
application to low-aspect-ratio swept wings is also restricted by their use of either Birnbaum
expansions for the chordwise loading™** or the concept of effective incidence’.

For wings of very small aspect ratio the theory of R. T. Jones provides a useful first approxi-
mation. This solution is not wholly satisfactory since () it predicts zero load on any part of the
wing downstream of the section having maximum span and (b) it does not always satisfy the
Kutta-Joukowski condition of zero load at the trailing edge. Several theories based on slender-
~ body concepts overcome these objections. The first was that of Wieghardt® (1939), who solved
the problem for the particular case of the low-aspect-ratio rectangular wing. His results were
Jater improved in accuracy by Lomax and Sluder” (1951), who also gave solutions for slender
delta wings. A theory applicable to low-aspect-ratio wings of almost arbitrary plan-form has
been given by Lawrence® (1951). His method does not allow the complete load distribution to be
determined, however, since it gives only the chordwise variation of total lift. Recently Legras’
(1954) has obtained a second approximation to the loading on slender pointed wings which takes
partial account of the trailing-edge condition. = - :

The method proposed in this paper utilises certain slender-wing concepts but provides an
improvement on R. T. Jones’ theory. For some plan-forms it bridges the gap between slender-
wing theory and the methods of Refs. 1 to 4.

2. Statement of the Problem.—Consider the incompressible flow* past a finite thin wing at a
small angle of incidence «. Let the origin of the rectangular co-ordinates X, Y, Z be at the vertex
(or mid-point of the leading edge) of the wing and let the scale and orientation of the co-ordinate
system be adjusted so that the trailing edge passes through the point (1,0,0). Denote by Sw
and Sy the projections on the plane Z = 0 of the wing and wake respectively (see Fig. 1).

* The linearized subsonic flow past a given wing is related to the incompressible flow past a deformed wing by the
Gothert rule 19, '
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The following restrictions are imposéd on the wing geometry: .

() The wing must be symmetrical with respect to the plane ¥ = 0 and have a straight
trailing edge. '

(b) The local span must be a non-decreasing function of X.

(¢) The equation of the mean surface may be written Z = g(X).

The perturbation velocity pbtential due to the wing is equivalent to that of a doublet distribu-
tion over the wing and wake of strength y(X,Y) defined by:

ymjyzﬁwxx+m—wxx+m}

&f%{%(x,lf, +0) — (XY, — O)} ax
-

— — ] @y 10— xy, -0},

where U, cos ¢ is the perturbation potential. It follows that the doublet strength at any point
is a measure of the load carried by the chordwise section of the wing ahead of this point and also
that the doublet strength is independent of X over the wake. '

The problem is now to determine the doublet distribution on Sy, + S, which satisfies the
boundary conditions: o -

(i) tangential flow over the mean surface
(ii) smooth flow at the trailing edge
(iii) continuous pressure across the wake.

If U, is the speed of the undisturbed stream and (#U, cos «, vU, cos «, wl, cos «) is the pertur-
bation velocity due to the wing, the appropriate approximation to (i) becomes:

WEY0) =%« onSw .. .. .. . .o
Also C, = 2(%—]——21)—") = — 2 (u + «w) — (v* + w?), .. (2)
. Pl . .
so that (ifi) implies: # = 0onSy

If dg/dX = O(«), equation 1 is correct to 0(«? as required in slender-wing theory.

3. Fundamental Assumptions—The analysis of the next section is based on the hypothesis
that for .a large class of wings of small aspect ratio (conforming to the restrictions of section 2),
the doublet distribution on Sy + S, has an approximately elliptic spanwise variation. This
has been confirmed in several particular cases:

(@) An elliptic variation of the doublet strength is given by the slender-wing theory of
R. T. Jones® and also by the extension to this theory by Adams and Sears™

(0) Both Wieghardt® and Scholz™* have shown that the loading on low-aspect-ratio rectangu-
lar wings is very nearly elliptic : ‘ ' :

(¢) An elliptic variation of the doublet strength is given by the author’s exact solution
for the incompressible flow past infinite wings of parabolic plan-form.

(@) Garner’s” solution of the lifting-surface problem for a particular delta wing has shown
that the hypothesis may be true for some flat wings of aspect ratios as. high as three.
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In all the above cases the approximately elliptic doublet distributions give rise to a constant
value of the upwash across the span of the wing (i.e.,3/dYw(X, Y, 0) = 0 for —s(X) < Y < s(X)).
It may be assumed that this is true for all wings for which the hypothesis is valid. Thus the
required simplification of the lifting-surface integral equation can be achieved by assuming an
elliptic spanwise variation of the doublet strength and by satisfying the tangeney condition on
the centre-line of Sy.

4. Derivation of the Integral Equation.—The relationship between the perturbation velocity
- potential U, cos « ¢ and its discontinuity on Sy 4 Sy is':

4 (X,Y,Z) = ffSW+ST{q$(X,Y, +0) — $(X,Y, — 0} -%G) dy dx

2

where =X —x?2+ (Y —y)?-F Z,Z.>

The upwash is then given by '

e 09
w(X,Y,0) = lim, 35

This rather cumbersome limiting process can be avoided by using Hancock’s formula®:

(X — %) ulxy + 0) + (Y —9) v(xy + 0) dydx .. (3)

S+ S 7®

2 (X,Y.0) = — [ |

where 7 = (X — ) + (Y — )%, and the principal value of the y integration is to be taken
before that of the x integration.

" In accordance with the rémarks of the previdus section the doublet strength is taken to be:

P(X,Y) = o= (X)VEH(X) — V3,

where s(X) is the local semi-span and f(X) is a weighting function WhOSG. variation is to be
determined.

Hence : ,
T =2 By e 7
e WX +0) = 20 5% = — frmy

For Y = 0, the v integration in (3) may be achieved using the substitution y = s cn(4,k),
-where cn(t,k) is the Jacobian elliptic function of modulus (X ,x) = s(x)/v{(X — x)* + s*(x)}.

Thus , ‘
AP =08 L 2R [RsnPR) E_f‘ a cn(t,k)
f T =) aeen = Tl g e @
ok

= 22 (o) at = n | B(R) — B°K(R).
*E/TSOC%(:) = g (k) — (%)
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J’s 1 dl . %&- K dt
—A/ (82 — %) s® Jo dui(t,k)
2k 2k5 B sn*(t,k) 2k

Ll o L) @ = prg E(R)

fs vy 2k3 (4, k)

E = M(m”

. 2]33 K dt 2k3 ,K S%Z(t’k) . 2k . N

where K(&) and E(k) are complete elliptic 1ntegrals of the first and second kinds respectlvely

Now on Sz (i.e.,, x > 1) : s(x) = b/2 and by cond1t1on (1), flx) = f(1), thus using dk/dx =
(2/b) k' R>* the contribution from the wake may be obtained: ‘ ’ '

w k(X,1) (X,1)
| ME —E)ds = — 1 | KkkEdkzlb[kKJ
0

= {mb + O R(X,DK.
The upwash equation may now be written:
‘ ’2 2
— nw(X,0,0) fo (E——k—5f + z k,fer (K — E)f) ax
+ A1) (37 + KX 1K) Y

@i K—E(s . . &
T K) = — —p7— <s REZ + & )

and since

an integration by parts yields the more compact form:

— aw(X,0,0) ffd +f1s'E klszdx\+2nff()—|-f(1)}. .6

For a rectangular wing s(X) = b/2 and f(0) = O and it is found that (5), regarded as an equation
in f'(x), is identical to that used by Wieghardt® and Lomax and Sluder” for this plan-form.

“The integral equations derived from (4) and (5) are not amenable to numerical solution ‘and

it was found that a more suitable form of the upwash integral can be obtained by an integration
with respect to X. ‘

‘ : 3 o
Thus, since IX = s b (4) may be written:

— aw(X,00) = -5 {k(K E)f' + sRKf — K'Kf| dx + f(1) 3= + ¥/(X,1)K)

* In this report &’ does not denote 1/(1 — %2), for convenience it lS defined by
B=(X —2))y{(X -2+ @)} =+ (1)
4 . .



and integrating by parts:
K—E\, e
sl i J1) 36 + (1) B + FX1)RY

— aw(X,00) = akaJd R

= a—xfmfd,x (i + (jf‘; 7l

On applying boundary condition (i) (equation 1), the required integral equation may be
written: '

6)

8X:) — g(X0) + o (Xo — X0) = [ G(Xu) fix) dx — [ G(X,1) fiv) d

Xz
) [CeE) + Bax, ()
) }
0< Xi< X< 1,
where
¢ ER) (X — %)

G(X:x) — —n? ’ k — \/{(X . x)z "l‘ Sz(x)} *
. Under the slender-wing assumption s* « (X — %)%,

| E = (X—%

B 21X — x|

and equation (6) becomes: A
—w(X,0,0) =fX), -0 < X1

| =f1), 1<X.
Thus in the limit 4 — 0, equations (6) and (7) yield the slender-body solution.
Similarly in the limit 4 — o0,

E, S
X =2

so that (6) reduces to the integral equation of two-dimensional thin-aerofoil theory:

0(X,0,0) = lf xO'* dx.

5. Method of Solution.—Approximate solutions of the mtegral equation can be obtained by
finite-difference methods. Application of the trapezium-rule approximation to the integrals on
the right hand side of (7) reduces the integral equation to a system of linear simultaneous
algebraic equations. '

To obtain an N-point solution, divide the interval (0, 1) into N sub-intervals ; the resulting
equations become well-conditioned by taking:
2m — 1 X — 2m + 1
2N T ToN
5

Xl——- 74/&:1,2....N.



This results in N — 1 equations in the unknowns:

fN(Z%), n=12....N,
‘ (the coefficient of fx(0) is zero.)

The Nth equation is obtained from the Kutta condition; for if the flow leaves the trailing edge
~smoothly it may be assumed that: :

w(X,0,0) — % —a for1 <X <14 3N,
AX |x-y
3 e 2N -+ 1 <2N — 1> o
or _ (2N 41y /2N —1\ «
if
2N -+ 1 ' 1 4
(o) = o) + o 2| L
When the Kutta condition is applied in this way the equations become:
N-—1
' 2m -+ 1 71_)_(27%—1.%)} <ﬁ> ‘(2m—|—1 ) l]
Z{G< v &) A\ ey W MF +'{G —on— o 1) 3] (1)
_ (2m — 1 2m 4+ 1 ' : . -
‘ —g<W>—g<-—2—ﬁ—>+a e SR (10)
form=1,2,...., N and g{(2N + 1)/2N} defined by (9).

Values of | G | as a function of A are given for &2 > 0-14 in Tables 1 and 2. For £ < 0- 14
it is recommended that G be calculated from the alternative form G(X, x) ={s/(X — x)}(E/k).
Values of E[k are given in Table 3.

The numerical work may sometimes be simplified by assuming the wing to be of length 9N so
that X — x takes integral values only; %" is best calculated from:

(X —2f,  (X— x)z}‘l .

B2
k - Sz. SZ

i

The form of the equations makes them suitable for solution by relaxation, the starting values
being deduced from lower order solutions. In using the relaxation method the following rule
was found to assist convergence: ‘ over-relax if residue has same sign as adjacent unrelaxed
residues, under-relax if residue is of opposite sign to adjacent unrelaxed residues ’.

6. Evaluation of the Aevodynamic Forces—The aerodynamic coefficients can be obtained from
the values of fy(X) by suitable finite difference methods.

The loading is given by: A
AC, = C(X,Y, — 0) — C,(X,Y, + 0) = 4u(X,Y -+ 0), .o (11
the most convenient expression for # being: '

Y2

w(X,Y + 0) =\/<1~i—f)%{(fs) +f§—;\/<1,__ Xa) L
S

=sin0d%{—(fs)+cos@cot6fs’ifY:=scosﬂ.
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This is because the function fs is more suitable for numerical differentiation (at half-way points)
than f since f(0) s(0) = 0 and fs = {f(1)b for X = 1.

The chordwise variation of the lift force is given by: |

9L d '
W - 75,0[]02 m(szf), . .. ‘.. . « (13)
so that
p? ,
Cr = b & (1) = $nAf(1). N ¢ O

The pitching-moment coefficient (about X = 0) is:

21
—_cmch—gfoszfc;X )
and
i aC, 4 M,

The spanwise variation of total lift is elliptic; the variation of local aerodynamic centres is
given by:

‘ 4 ! 2 T2
WY) =1 = sy fXON(s —vyax, .. .. (17)

where the lower limit of integration is defined by s*(X,) = Y*.

Sufficient accurate estimations of the integrals in (15), (16) and (17) may be obtained by
judicious use of the Gregory* formula, except for rectangular wings where Bickley’s* formula
should be used near X = 0.

In subsequent sections of this report the symbols Cy, x, %y, etc., will be used to denote the values
of these coefficients based on N-point solutions of the integral equation.

7. Comvergence and Asymptotic Values—No. attempt will be made to establish formally the
convergence of the solutions of this paper. However, some conclusions as to their behaviour
for large N may be obtained by a technique similar to Richardson’s ‘ deferred approach to the
limit * % 8, : :

The method is -essentially a statistical one based on the 32 solutions of equation (10) which
have so far been obtained. These solutions are listed in Table 4. A detailed discussion of the
results is given in section 8. The basis of the method is illustrated in Figs. 10 and 11, which
show that there is a linear correlation between 1 fi (1)}/« and £{(2N + 1)/2N, 1} = 1/(1 4 b6°N?)
and also between /iy and 1/(1 4 52N?). Since values of { fy (1)}/« and % are determined by purely
algebraic processes which are invariant for all finite IV, an extrapolation to 1/(1 + 5°N?* =.0
will yield asymptotic values of these derivatives. Thus it appears that the solutions of this paper
converge like 1/N? but it is not apparent that their limiting values are equal to the exact values.

These remarks do not apply to the results obtained for wing H. "In this case the variation of
{ fx (1)}/e with N was negligible, the variation of 4y appeared to take the form 4y =a + (b/N).

* These formulae are given in Ref. 17,



8. Discussion of the Results.—The thirteen flat {g(X) = 0} Wings listed in Table 4 and sketched
in Fig. 2 were chosen to test the validity of the method over a wide range of plan-forms. No
undesirable feature of the method was revealed by this investigation.

Some typical solutions for fo(X) are shown in Fig. 3; Figs. 4 to 9 show the chordwise variation
of the loading at the centre-line for all thirteen wings. Fig. 6 illustrates the effect of cropping a
15-deg (apex semi-angle) delta wing.

Several comparisons with existing theoretical results are possible. In Fig. 9 the results obtained
by Lomax and Sluder for a square plan-form are plotted alongside those of this report. Both
curves represent 9-point solutions. Values of 3C./d« and % given by various authors are:

Lomax and Sluder”: 8C;/de = 1-465 % = 0-168

Falkner®: 1-49 0-148
Scholz'?: 1-45 0-179
Present method: - 1-44 0-192.

In Fig. 10 a comparison is shown with the results of Garner™ and Hancock for wing G, (aspect
ratio three). The agreement between the values for N = 7 and those of Garner, near the centre
of the wing, is surprisingly good since the present method is applicable primarily to wings of
lower aspect ratio. The less satisfactory agreement near the tips is probably due to the diver-
gence of the true circulation distribution from the assumed elliptic form. Values of aC,/dx and 4
obtained by this and other methods are: ' :

4

Garner™: dCy/ 00 = 3-038 ﬁr = 0-533
Multhopp?®: 3-057 0-535
Falkner®: 3-192  0-531
Present method: . 3-284 0-534.

Figs. 13 and 14 show the variation with aspect ratio of the asymptotic values of {f(1)}/a =
(2/mA) (9C,[ o) and 4 for slender parabolic and triangular wings. = It is thought that the values
for very low-aspect-ratio triangular wings given by the present method are more accurate than
those given by Lomax and Sluder since the method of obtaining asymptotic values reduces the
error due to approximations. Lomax and Sluder’s curve appears to have been based on results
for aspect ratios 0-90, 1-26 and 1-79, in which case slight changes resulting from higher order
solutions might seriously affect the shape of the extrapolated curve. '

Calculated values of aC./d« and % for all the wings investigated are listed in Table 5.

9. Conclusions.—The proposed method of obtaining solutions of the lifting-surface problem
has been found satisfactory for a large variety of low-aspect-ratio plan-forms, and it seems
satisfactory for delta wings for aspect ratios up to three.

10. Acknowledgments.—This investigation was made under the supervision of Professor H. B,
Squire of Imperial College. The author is also indebted to Professor W. G. Bickley for valuable -
discussion and to Mrs. P. Armitage for assistance with the numerical work.



X, Y, Z

X,y
Cu,U,W

K(k),E(k)
R(X %)
G(X,x)

)

-

NOTATION -

Rectangular cartesian co-ordinates

Variables of integration

The X, Y, Z components of the perturbation Ve1001ty
Angle of incidence

Function defining the mean surface

Speed of main stream

Projections on Z = 0 of the wing and wake respectively
Area of Sy |

Local semi-span

.Maximum span = 2s(1)

: Complete elliptic.integrals of the first and second kinds

Modulus of the elliptic integrals
Kernel of the integral equation
Chordwise weighting factor

Order of the approximate solutions
Approximate solution of order N
(2 — 20)[2p U

Cp {lower surface) — Cp (upper surface) *

Lift coefficient

Moment coefficient about X = 0.
Position of aerodynamlc centre.
Aspect ratio -



No.

1

o

10

11
12

13

14
15

16

17

18

19

Author

W. P. Jones
V. M. Falkner ..
H. Multhopp

D. Kiichemann

R. T. Jones

i{. Wieghardt ..

H. Lomax and L. Sluder
H. R. Lawrence

J. Legras

G. N. Ward

M. C. Adams and W. R. Sears
N. Scholz

H. C. Garner

H. Lamb
G. J. Hancock ..

G. J. Hancock ..

H. and B. S. Jeffreys ..

L. F. Richardson and J. A. Gaunt ..

V. M, Falkner ..
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E(k)
al B |

161=

Table 1 is for linear interpolation, 6” being less than 3.

k' |G| Y
.75 -53937
197
76 -53740
— 193
77 -53547
— 189
78 -53358
— 185
79 -53173
_ — 181
.80 +52992
, — 178
-81 -52814
: — 174
.82 -52640
: —171
-83 -52469
— 167
.84 -52302
: — 164
-85 -52138
, — 161
.86 -51977
— 158
.87 -51819
» — 156
.88 -51663
— 152
-89 -51511
— 150
-90 -51361 ‘
— 147
.91 -51214
— 144
.92 -51070
: : — 142
-93 -50928
— 139
.94 50789 ‘
— 137
.95 -50652
—~ 135
-96 -50517
133
97 | -50384
— 130
.98 -50254
— 128
.99 -50126
— 126
1-00 -50000 :
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TABLE 2

|G| =

differences: G, = G, + 77, + B"(6, + 67).

E()

m| k|
Table 2 has 6” < 60 and §” < 20 and is intended for use with Bessel’s formula-to second

72 |G| 512 8+ ol
14 -96642 o660 s

15 -93973 ou 86
16 .91566 o183 a1
17 89383 1000 a5
18 -87391 . 300
19 85564 — 1683 — 270
.20 -83881 155 938
.21 -82324 s oy
.22 - 80879 1346 s
.23 79533 - e
.24 78276 o2 —
.96 75992 o4 .
.98 73968 808 306
-30 -72160 Cies | —ass
.82 70532 1475 .
-34 -69057 1345 ou
-36 -67712 1031 o3
.38 66481 1139 185
.40 -65349 1046 16
.42 -64303 _ 90 13
44 -63333 s _1os
46 -62430 s s
48 -61588 R 103
-50 -60800 730 0
.52 60061 605 o
.54 -59366  ess _ %
.56 -58711 R s
.58 -58092  sse e
60 57506 - — 1336 — 347
65 96170 — 1181 — 284
70 -54989 1059 938
75 -53937 '
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TABLE 3

Table 3 is for linear interpolation.

LA Elk 8
0 1-0000

2111
01 1-02111

1794
.02- | 1-08905

1686
-03 1-05591

1625
04 | 1-07216

1586
-05 1-08802
' 1559
-06 1-10361

1539
-07 1-11900

1595
08 . 1-13425

1517
-09 1-14942

1512
-10 1-16454

1509
11 1-17963

1509
12 1-19472

1511
13 1-20983

1515
‘14 ©1-22498
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TABLE 4
Wings Investigated.

Wing Plan-form A ¢ Solutions obtained for:
A Parabolic | 0-5 0 N= 3,609
B Parabolic 1-0 0 3,6,9
C Delta 0-35 0 3,6,9, 12,15
D Delta 0-705 0 5,10
E Delta 1-072 0 3,6,9
E, Cropped delta 0-858 1/9 9
Iy Cropped delta 2-0 1/7 7
Fs Cropped delta 1-6 1/4 4,8
Ty Cropped delta |.  1-33 1/3 36,9
G; Cropped delté 3:0 1/7 7
Gs Cropped delta 2-4 1/4 4,8
G; Cropped delta 2-0 1/3 3,69
H Square 1-0° 1-0 3,6,9
Notes:
1. (t1p chord) = (root chord).
2. The plan-forms are sketched in Fig.'2.
3. WingsC, D, & E have semi apex angles 5 deg, 10 deg and 15 deg respectively,
4.  Wing E, is derived by cropping wing E.
5.

Wings Fy, Fy, Fs, are obtained by cropping a delta wing of aspect ratio 8/3; wings G, Gg, Gs are 51m11arly obtained
from a delta of aspect ratio 4,

14



Résults of Calculations.

TABLE 5

Wing Plan-form 3C [ da B Remarks
A Parabolic -736 480 Asyzﬁptotic values
B Parabolic 1-389 470 Asymptotic values
C Delta -519 -650 Asymptotic values
D Delta -904 -639 Asymptotic values
E Delta 1-445 -628 Asymptotic values
E, Cropped delta 1-232 -578 N =9 values
Py Cropped delta 2-474 -543 N = 7 values
K, Cropped delta 2-097 -494 Asymptotic values
Fy Cropped .delta 1-833 -454 Asymptotic values
Gy Cropped delta 3-284 -534 N = 7 values
Ga Cropped delta 2-818 -487 Asymptotic values
Gs Cropped delta , 2488 450 Asymptotic values
H | Square 1-441 <192 " Asymptotic values
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Fic. 1. Plan and elevation of wing. Fi1c. 2, Plan views of wings A to Gs.
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