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Summary.--A method is developed for determining the loading on low-aspect-ratio wings. By allowing for down 
stream effects on the flow at a station on the wing and for the trailing-edge condition, the method improves on 
R. T. Jones's theory for wings of very small aspect ratio. Calculations have been made for thirteen different wings and 
a comparison with other methods of solution is given for some cases. 

1. Introduction.--In recent years several methods for obtaining numerical solutions of the 
lifting surface problem have been proposed, notably those of W. P. Jones 1 (1943), Falkner 2 (1943), 
Multhopp a (1950) and Ktichemann 4 (1952). Although these have been successfully applied to 
wings of medium aspect ratio, they are essentially high-aspect-ratio methods since they deter- 
mine the spanwise variation of the loading more accurately than the chordwise variation. Their 
application to low-aspect-ratio swept wings is also restricted by their use of either Birnbaum 
expansions for the chordwise loading 1'2'a or the concept of effective incidence ~. 

For wings of very small aspect ratio the theory of R. T. Jones provides a useful first approxi- 
mation. This solution is not wholly satisfactory since (a) it predictszero load on any part  of the 
wing downstream of the section having maximum span and (b) it does not always satisfy the 
Kutta-Joukowski condition of zero load at the trailing edge. Several theories based on slender- 
body concepts overcome these objections. The first was that  of Wieghardt 6 (1939), who solved 
the problem for the particular case of the low-aspect-ratio rectangular wing. His results were 
later improved in accuracy by Lomax and Sluder 7 (1951), who  also gave solutions for slender 
delta wings. A theory applicable to low-aspect-ratio wings of almost arbitrary plan-form has 
been given by Lawrence 8 (1951). His method does not allow the complete load distribution to be 
determined, however, since it gives only the chordwise variation of total lift. Recently Legras ~ 
(1954) has obtained a second approximation to the loading on slender pointed wings which takes 
partial account of the trailing-edge condition. 

The method proposed in this paper utilises certain slender-wing concepts but  provides an 
improvement on R. T. Jones' theory. For some plan-forms it bridges the gap between slender- 
wing theory and the methods of Refs. I to 4. 

2. Statement of the Problem.--Consider the incompressible flow* past a finite thin wing at a 
small angle of incidence ~. Let the origin of the rectangular co-ordinates X, Y, Z be at the vertex 
(or mid-point of the leading edge) of the wing and let the scale and orientation of the co-ordinate 
system be adjusted so that  the trailing edge passes through the point (1,0,0). Denote by Sw 
and Sr the proiections on the plane Z = 0 of the wing and wake respectively (see Fig. 1). 

* The linearizedsubsonic flow past a given wing is related to the incompressible flow past a deformed wing by tile 
GSthert rule 10. 



The following restrictions are imposed on the wing geometry: 

(a) The wing must be symmetrical wi th  respect to the plane Y : 0 and have a straight 
trailing edge. 

(b) The local span  must be a non-decreasing function of X. 

(c) Tile equation of the mean surface may be written Z : g(X). 

The perturbation velocity potential due to the wing is equivalent to that  of a doublet distribu- 
tion over the wiflg and wake of strength 7(X,Y) defined by: 

± / , ( x , Y , '  + o) - , ( x , Y ,  o)1 7(X, Y) 
) 

1 X ' 

where U0 cos ~$ is tile perturbation potential. I t  follows that  the doublet strength at any point 
is a measure of the load carried by the ch0rdwise section of the wing ahead of this point and also 
tha t  the doublet strength is independent of X over the wake. 

The problem is now to determine the doublet distribution on Sw q- S~, which satisfies the 
boundary conditions: 

(i) tangential  flow over the mean surface 

(ii) smooth  flow at the trailing edge 

(iii) continuous pressure across the wake. 

If U0 is tile speed of the undisturbed stream and (uUo cos ~, vUo cos c~, wUo cos ~) is the pertur- 
bation velocity due to tile wing, the appropriate approximation to (i) becomes: 

W(X,Y,O) = dg d X  - o n  S w  . . . . . . . . . . .  (1) 

Also Cp -- 2(p -- Po) _ 2 (u + ~w) -- (v 2 -I-w~), (2) 
p U0 '~ . . . .  

so tha t  (iii) implies: u = 0 on ST... 

If dg/dX = 0(~), equation 1 is correct to 0(~ 2) as required in slender-wing theory. 

3. Fundamental Assumptions.--The analysis of the next section is based on the hypothesis 
that  for a large class of wings of smal] aspect ratio (conforming to the restrictions of section 2), 
the doublet distribution on Sw + S~. has an approximately elliptic spanwise variation. This 
has been confirmed in several particular cases: 

(a) An elliptic variation of the doublet strength is given by the slender-wing theory of 
R. T. Jones 5 and also by the extension to this theory by Adams and Sears 1~ 

(b) Both Wieghardt 6 and Scholz TM have shown that  the loading on low-aspect-ratio rectangu- 
lar wings is very nearly elliptic 

(c) An elliptic variation of the doublet strength is given by the author 's exact solution 
for the incompressible flow past infinite wings of parabolic p lan4orm 

(d) Garner's is solution of the lifting-surface problem for a particular delta wing has shown 
that  the hypothesis may be true for some flat wings of aspect ratios as  high as three. 
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In all the above cases the approximately elliptic doublet distributions give rise to a constant 
value of the upwash across the span of the wing (i.e., a /aYw(X ,  Y, 0) = 0 for - - s (X)  < Y < s(X)). 
I t  may  be assumed tha t  this is true for all wings for which the hypothesis is valid. Thus the 
required simplification of the lifting-surface integral equation can be aekieved by assuming a n  
elliptic spanwise variation of the doublet strength and by satisfying the tangeney condition on 
the centre-line of'Sw. 

o 

potential Uo cos ~ ¢ and its discontinuity on Sw + ST is*~: 

/ / l \  a 
4=¢(x,Y,z)  = __ _JJsw+.~l¢(x,Y, + o ) - ¢ ( x , v , - o ) i ~ k 5  ) dy d.  

where r ~ = (X -- x) ~ + (Y - -y)"  + Z ~. 

Derivation of the Integral Equat ion . - -The  relationship between the perturbation velocity 

The upwash is then given by 
• a¢ 

w(X,  Y,O) l im,  
z - > o  a Z  " 

This rather cumbersome limiting process can be avoided by using Hancock's formula15: 

_ ( (  (X --  x ) u ( x , y  + O) + ( Y  -~ y) v(x,y + O) dy dx 
2aw(X,Y,O) J J  ~a 

S W + ST 
(a) 

where r 2 = (X -- x) ' + (Y -- y)~, and the principal value of the y integration is to be taken 
before that  of the x integration. 

In accordance with the remarks of the previous section the doublet strength is taken to be" 

1 
r (x ,Y )  = N f (x )  V{s=(x)  - Y~,', 

where s(X) is the local semi-span and f ( X )  is a weighting function whose variation is to be 
determined. 

Hence a~, v ~  ) ~. s s ' ( X )  
u ( X , Y  + O) = 2= -g-X = f ' (X )V( s=  --  + J v/(-fi 7 =g2) 

ay Y 
and v ( X , Y  q- O) = 2~ a ¥  --  a/ ' /~s~ --  y2) • 

For Y = 0, the y integration in (3) may be achieved using the substitution y = s cn(t,k), 
where cn(t,k) is the Jacobian elliptic function of modulus k(X,x)  = s (x) /~ /{ (X --  x) 2 + s~(x)}. 

T h u s  

f ,  ) / ( ~ r 7  2k~-[ "~:~n~(t,k) - k ~ (~' a ~n(t,k) 
- YT) dy = s jo  dn~(t,k) dt E s  Jo sn(t ,k)  dt dt(t,~) dt 
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I . 

(" 1 dy 2k 3 (K dt 
J - ~ / ( s  ~ - y~) r~ - ~ J o dn~(t,k) 

= 7 Jo dt + 7 . S o  ~ ~ t  - - /~ , -~  E(I~) 

"~(  s~ - - 9 )  ~ - - ~ -  Jo ~ dt 

__ 2k ~ ( K  dt 
- -7- jo d~(t,k) 

2k~fK ,*,~(t,k) 2k 
7 .Jo dn"(t,k)dt = -  {K(/~) E(/~)} S 

where K(k) and E(k) are complete elliptic integrals of the first and second kinds respectively. , 

Now on ST (i.e., x ~> 1) • s(x) = b12 and by condition (iii), f(x) = f(1), thus using dkldx = 
(2/b)k'k ~* the contribution from the wake may be obtained: 

f° r ~<'<','<- ~ [ 17;i' k(K --  E) dx = -- {-b k ' ~  dk = ½b k ' K  
~ 0  

= ~ b  + .~b t~'(X;1)K. 

Tile upwash equation may now be written: 

-- ~w(X'O'O) = f I  (E---~'h'2K °' J + s s' k2E k - - r - f +  s k ( K - -  E ) f )  dx 

and since 

~ ( k ' K )  - 

+ f(1)(½- ~ + k'(X,1)K) 

k"k kk'2 + k' , 

(4) 

an integration by parts yields the more compact form: 

- -  ~w(X,O,O) = ~ f  dx + (5) j0 s ~ F 7 f g ~ +  ~ {f(0) -I- f ( 1 ) } . . .  

For a rectangular wing s(X) = b12 and/(0) = 0, and it is'found tha t  (5), regarded as an equation 
in if(x), is identical to that  used by Wieghardt" and Lomax and Sluder 7 for this plan-form. 

The  integral equations derived from (4) and (5) are not amenable to numerical solution a n d  
it was found that  a more suitable form of the upwash integral can be obtained by  an integration 
with respect to X. 

O k'k ~ d 
Thus, since OX -- s d k '  (4) may be written: 

- :~./x,o,o/= ~?o {~ ~ " -  "~ i ' +  . '~-i  ,,'.<i} ~,, ÷ i/,/',~: + ,,,~x,,>.! 

* In  this  repor t  k'  does not  denote  %/(1 --,  k2.), for convenience i t  is defined b y  
l~' = ( x  - x ) /% / {  ( x  - .,~)~ + ~ Ix)  } = ~ %/ (1  - 1~). 
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and integrating by parts: 

--  ~w(X,O,O) -JX o f dx --  ~ ~X~,~  f(1) ½b + f(1) r~ k ' (X,1)K} 

_ E 
(6) 

On applying boundary condition (i) (equation 1), the required integral equation may be 
written: 

i 

g(Xl) dx 
d o  d O  

+ f(1) fx~ {G(X,1) + ½} d X ,  . . . . . .  (7) 
X 1 

where 

G(X,x) E(k) k' = 

O < X I < X ~ <  1, 

( x -  ~) 
~ / { ( x  - x) 2 + s2(x)} " 

Under th e slender-wing assumption s ~ << (X - -  x) ~, 

and equation (6) becomes: 

E ~ ( X  - x) 

k ' - 2 l X - ~ l  

- w ( x ,  o, o) = f ( x ) , ,  o <~ x<~  1 

=f(1) ,  l ~ X .  

Thus in the limit A -+ 0, equations (6) and (7) yield the slender-body solution. 

Similarly in the limit A -+ 0o, 
E s 

F ~ ( x ' -  x)' 

so that (6) reduces to the integral equation of two-dimensional thin-aerofoil theory: 

- w(x ,o ,o)  = 1 f l  u(x,O, + o) 
-~ o ( x -  x) " dx. 

5. Method of So lu t ion . - -Approximate  solutions of the integral equation can be obtained by 
finite-difference methods. Application of the trapezium-rule approximation to the integrals on 
the right hand side of (7) reduces the integral equation to a system of linear simultaneous 
algebraic equations. 

To obtain an N-point solution, divide the interval (0, 1) into N sub-intervals; the resulting 
equations become well-conditioned by taking: 

X~- -2m- -  1 2mq- 1 
2N , X 2 =  2N , m =  1,2 . . . .  N .  
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This results in N -- 1 equations in the unknowns: 

~r , n = l ,  2, . . . .  N~, 

(the coefficient of iN(0) is zero.) 

The Nth  equation is obtained from the Kut ta  condition; for if the flow leaves the trailing edge 
smoothly it may be assumed that:  

w(x,o,o)  = dg d-Xx=i--  ~ f o r l ~ X ~ <  1 + ½ N ,  

o r  

,J 1 - - I N  

if 
dg 

_[2N + 1) 1 dX x=, (9) g~ -2/V -~ g(1) + 2N . . . . . . .  

When the Kut ta  condition is applied in this way the equations become: 
f - - 1  

~ . [g (2m~iv l+  ' N ) -  G ( 2 2 N  1,, N)l.f'v(N)n + { c(2m~\ 2iv+l , 1) + ½} iN(l) 

_ _ ~ \  ~ + ~ . . . . . . . . . .  ( l o )  

for m = 1, 2, . . . . , N and g((2N -4- 1)/2N} defined by (9). 

Values of ] G ]" as a function of k '~ are given for k '2 >/0.14 in Tables 1' and 2. F o r  k '~ <~ 0.14 
it is recommended that  G be calculated from the alternative form G(X, x) ={s/(X -- x)}(E/k). 
Values of Elk are given in Table 3. 

The numerical work may sometimes be simplified by assuming the wing to be oI length  2N so 
that  X -- x takes integral values only; k '~ is best calculated from: 

,1~,~ _ (X x)2{1 + (X - 

The form of the equations makes them suitable for solution by relaxation, the starting values 
being deduced from lower order solutions. In using the relaxation method the following rule 
was found to assist convergence: 'over-relax if residue has same .sign as adjacent unrelaxed 
residues, under'-relax if residue 'is of opposite sign to adjacent unrelaxed residues'  

6. Evaluation of the A erody~amic Forces.--The aerodyna~mic coefficients can be obtained from 
the values of IN(X) by suitable finite difference methods. 

The loading is given by: 

~ c ,  = c , ( x , Y ,  - o) - c ; ( x , Y ,  + o) = 4 u ( Z , Y  + o), . ,  . .  (11) 

the most convenient expression for ~ being: 
y ,  

u ( X , Y  + O) = 1 -- s' ] ~ (fs) -[- f-~ 1'-- . . . .  

d 
= sin 0 d--~-(fs ) + cos 0 cot 0 f s' if Y = s cos 0 , 



This is because the function f s  is more suitable for numerical differentiation (at half-way points) 
than f since f(0) s(0) = 0 and f s  --- ½f(1)b for X ~> 1. 

The chordwise variation of the lift force is given by: 

so tha t  

aL 
=pUo  . (13) 

aX  ~ . , x - - -  . . . . . . . .  

b 2 
CL = 1~ ~ - f ( 1 ) =  l~Af(1). (14) 

The pitching-moment coefficient (about X = 0) is: 

and 

- 

OC,,, 4 f l  h - -  OCL - - 1  b•(1) o s~f d X  . . . . . . .  (16) 

(15) 

The spanwise variation of total  lift is elliptic; the variation of local aerodynamic centres is 
given by: 

f;oJ  s h(Y)  = 1 -- f(1)~/(b ~ _ 4y~) 2 _ y~) dX,  (17) 

where the lower limit of integration is defined by s2(Xo) = Y~. 

Sufficient accurate estimations of the integrals in (15), (16) and (17) may be obtained by 
judicious use of the Gregory* formula, except for rectangular wings where Bickley's* formula 
should be used near X = 0. 

In subsequent sections of this report the symbols CL N, h~, etc., will be used to denote the values 
of these coefficients based on N-point solutions of the integral equation. 

7. Convergence and Asymptot ic  V a l u e s . - - N o  at tempt  will be made to establish formally the 
convergence of the solutions of this paper. However, some conclusions as to their behaviour 
for large N may be obtained by  a technique similar to Richardson's ' deferred approach to the 
l imi t '  17, is 

T h e m e t h o d  is essentially a statistical one based on the 32 solutions of equation (10) which 
have so far been obtained. These solutions are listed in Table 4. A detailed discussion of the 
results is given in section 8. The basis of the method is illustrated in Figs. 10 and 11, which 
show that  there is a linear correlation between {fN (1)}/~ and k'~{(2N + 1)/2N, 1} = 1/(1 + b~N ~) 
and also between hN and 1/(1 + b2N2). Since values of {fN (1)}/~ and h• are determined by purely 
algebraic processes which are invariant  for all finite N,  an extrapolation to 1/(1 - /  b~N ~) = 0 
will yield asymptotic values Of these derivatives. Thus it appears tha t  the solutions of this paper 
converge like 1/N 2 but it is not apparent that  their limiting values are equal to the exact values. 

These remarks do not apply to the results obtained for wing H. I n  this case the variation of 
{fN (1)}/~ with N was negligible, the variation of h• appeared to take the form hg = a + (b/N). 

* These formulae are given ill Ref. 17. 
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8. Discussion of the Results.--The thirteen fiat {g(X) ~- 0} wings listed in Table 4 and sketched 
in Fig. 2 were chosen to test the validity of the method over a wide range of plan-forms. No 
undesirable feature of the method was revealed by this investigation. 

Some typical solutions for fg(X) are shown in Fig. 3; Figs. 4 to 9 show the ehordwise variation 
of the loading at the centre-line for all thirteen wings. Fig. 6 illustrates the effect of cropping a 
15-deg (apex semi-angle) delta wing. 

Several comparisons with existing theoretical results are possible. In Fig. 9 the results obtained 
by Lomax and Sluder for a square plan-form are plotted alongside those of this report. Both 
curves represent 9-point solutions. Values of ~CL/&,. and h given by various authors are: 

Lomax and SluderT: 8CL/~ ---- 1 ;465 h ---- 0" 168 
Falkner~9: 1.49 0. 148 
Scholz12: l .  45 0. 179 
Present method: 1 . 4 4  0. 192. 

In Fig. 10 a comparison is shown with the results of Garner TM and Hancock TM for wing G1 (aspect 
ratio three). The agreement between the values for N ---- 7 and those of Garner, near the centre 
of the wing, is surprisingly good since the present method is applicable primarily to wings of 
lower aspect ratio. The less satisfactory agreement near the tips is probably due to the diver- 
gence of the true circulation distribution from the assumed elliptic form. Values of ~CL/ac~ and h 
obtained by this and other methods are: 

Garnerl~: OCL/a~ ---- 3" 038 ~ ---- 0" 533 
Multhopp3: 3" 057 0" 535 
Falkner TM : 3" 192 0.531 

Present method: 3. 284 0. 534. 

Figs. 13 and 14 show the variation with aspect ratio of the asymptotic values of {f(1)}/~ = 
(2/=A) (~CL/~) and h for slender parabolic and triangular wings. It  is thought that  the values 
for very low-aspect-ratio triangular wings given by the present method are more accurate than 
those given by Lomax and Sluder since the method of obtaining asymptotic values reduces the 
error due to approximations. Lomax and Sluder's curve appears to have been based on results 
for aspect ratios 0-90, 1.26 and 1.79, in which case slight changes resulting from higher order 
solutions might seriously affect the shape of the extrapolated curve. 

Calculated values of ~CL/~ and h for all the wings investigated are listed in Table 5. 

9. Conclusions.--The proposed method of obtaining solutions of the lifting-surface problem 
has been found satisfactory for a large variety of low-aspect-ratio plan-forms, and it seems 
satisfactory for delta wings for aspect ratios up to three. 

10. Acknowledgments.--This investigation was made under the supervision of Professor H. B. 
Squire of Imperial College. The author is also indebted to Professor W. G. Bickley for valuable 
discussion and to Mrs. P. Armitage for assistance with the numerical work. 
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NOTATION 

X , Y , Z  
x,y 

• ~ , U , W  

g(X) 

Uo 

Sw, Sr 

S 
~(x) 

b 

n(k),E(k) 

k(X,x) 
G(X,x) 

f(x) 
N 

f~(x) 
c~ 

~c~ 

cL 

c~ 
h 

A 

Rectangular cartesian co-ordinates 

Variables of integration 

The X, Y, Z components of the perturbation velocity 

Angle of incidence 

Function defining the mean surface 

Speed of main stream 

Projections on Z ~ 0 of the wing and wake respectively 

Area of Sw 

Local semi-span 

Maximum span = 2s(1) 

Complete elliptic integrals of the first and second kinds 

Modulus of the elliptic integrals 

Kernel of the integral equation 

Chordwise weighting factor 

Order of the approximate solutions 

Approximate solution of order N 

(p - po)/½p v 2 .  

Lift coefficient 

Moment coefficient about X ---- 0. 

Position of aerodynamic centre. 

Aspect ratio 
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T A B L E  ~ 1 

E ( k )  

k, I 

Table  1 is for l inear  in te r  ~olation, d" being less t h a n  5. 

k'2 G I 

. 75  . 5 3 9 3 7  

• 7 6  . 5 3 7 4 0  

• 77  . 5 3 5 4 7  

• 7 8  ~53358  

• 79  . 5 3 1 7 3  

• 8o .S2992 

• 81 . 5 2 8 1 4  

• 8 2  . 5 2 6 4 0  

• 83  . 5 2 4 6 9  

• 84  . 5 2 3 0 2  

• 85  - 5 2 1 3 8  

• 8 6  . 5 1 9 7 7  

• 87  . 5 1 8 1 9  

• 8 8  . 5 1 6 6 3  

• 89  . 5 1 5 1 1  

• 90  . 5 1 3 6 1  

• 91 . 5 1 2 1 4  

• 9 2  . 5 1 0 7 0  

• 9 3  . 5 0 9 2 8  

• 94  . 5 0 7 8 9  

. 95  . 5 0 6 5 2  

• 96  . 5 0 5 1 7  

• 97  . 5 0 3 8 4  

• 98  . 5 0 2 5 4  

• 9 9  . 5 0 1 2 6  

1 . 0 0  - 5 0 0 0 0  

- -  1 9 7  

- -  1 9 3  

- -  1 8 9  

- -  1 8 5  

- -  1 8 1  

- -  1 7 8  

- -  1 7 4  

- -  1 7 1  

- -  1 6 7  

- -  1 6 4  

- -  1 6 1  

- -  1 5 8  

- -  1 5 6  

- -  1 5 2  

- -  1 5 0  

- -  1 4 7  

- -  1 4 4  

- -  1 4 2  

- -  1 3 9  

- -  1 3 7  

- -  1 3 5  

- -  1 3 3  

- -  1 3 0  

- -  1 2 8  

- -  1 2 6  
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T A B L E  2 

u(k) 
[G[  = 

Table  2 has 6 H' < 60 and  8"' < 20 and  is i n t e n d e d  for use wi th  Bessel 's  f o r m u l a , t o  second 
differences" G. =- Go + n~/2 -]- B"((~ o + 0';). 

. 14  

. 15  

. 1 6  

. 17  

-18  

. 19  

. 2 0  

.21 

. 2 2  

-23  

-24  

. 26  

-28  

. 3 0  

. 3 2  

. 34  

. 3 6  

. 3 8  

. 40  

. 4 2  

. 44  

. 46  

. 4 8  

. 5 0  

-52  

. 54  

-56  

. 58  

. 6 0  

• 6 5  

"70 

"75 

. 9 6 6 4 2  

. 9 3 9 7 3  

. 9 1 5 6 6  

. 8 9 3 8 3  

. 8 7 3 9 1  

. 8 5 5 6 4  

.83881 

. 8 2 3 2 4  

. 8 0 8 7 9  

. 7 9 5 3 3  

. 7 8 2 7 6  

. 7 5 9 9 2  

. 7 3 9 6 8  

- 7 2 1 6 0  

. 7 0 5 3 2  

. 6 9 0 5 7  

. 6 7 7 1 2  

. 6 6 4 8 1  

. 6 5 3 4 9  

. 6 4 3 0 3  

. 6 3 3 3 3  

. 6 2 4 3 0  

. 6 1 5 8 8  

- 6 0 8 0 0  

-60061  

" 5 9 3 6 6  

-58711  

• 5 8 0 9 2  

" 5 7 5 0 6  

. 5 6 1 7 0  

" 5 4 9 8 9  

"53937  

- -  2 6 6 9  

- - 2 4 0 7  

- -  2 1 8 3  

- -  1992  

- -  1827  

- -  1683  

- -  1557  

- -  1445  

- -  1346  

- -  1257  

- - 2 2 8 4  

- - 2 0 2 4  

- - 1 8 0 8  

- - 1 6 2 8  

- - 1 4 7 5  

- - 1 3 4 5  

- ~ 1 2 3 1  

- - 1 1 3 2  

- -  1 0 4 6  

- -  9 7 0  

- -  903 ,  

- -  8 4 2  

. - -  7 8 8  

---  7 3 9  

- -  6 9 5  

- -  6 5 5  

- -  6 1 9  

- -  5 8 6  

- - 1 3 3 6  

- - 1 1 8 1  

- - 1 0 5 2  

- -  574  

- -  4 8 6  

- -  4 1 7  

- -  3 5 6  

- -  3 0 9  

- -  2 7 0  

- -  2 3 8  

- -  211 

- -  1 8 8  

- -  1 6 8  

- -  579  

- -  4 7 6  

- -  3 9 6  

- -  3 3 3  

- -  2 8 3  

- -  2 4 4  

- -  2 1 3  

- -  1 8 5  

- -  1 6 2  

- -  1 4 3  

- -  1 2 8  

- -  1 1 5  

- -  1 0 3  

- -  9 3  

- -  8 4  

- -  7 6  

- -  6 9  

- -  6 4  

- -  3 4 7  

- -  2 8 4  

- -  2 3 6  
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TABLE 3 

Table 3 is for linear interpolation. 

k,2 

0 

.01 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

.10 

.11 

.12 

.13 

.14 

1.0000 
2111 

1-02111 
1794 

1.03905 
1686 

1.05591 
1625 

1.07216 
1586 

1.08802 
1559 

1 10361 
1539 

1 11900 
1525 

1 13425 
1517 

1 14942 
1512 

1 16454 
1509 

1 17963 
1509 

1 19472 
1511 

1.,20983 
1515 

1.22498 
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Notes: 

1. 

2. 

3. 

4. 

5. 

Wing 

A 

B 

C 

D 

E 

E1 

F1 

F2 

Fa 

G1 

G~ 

Ga 

H 

TABLE 4 

Wings Investigated. 

Plan-form 

Parabolic 

Parabolic 

Delta 

Delta 

Delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Square 

A 

0.5 

1.0 

0.35 

0.705 

1.072 

0.858 

2.0 

1.6 

1.33 

3-0 

2.4 

2.0 

1 . 0  

0 

0 

0 

0 

0 

1/9 

U7 

1/4 

1/3 

1/7 

1/4 

1/3 

1.0 

Solutions obtained for: 

N =  3 ,6 ,9  

3, 6 ,9  

3, 6, 9, 12, 15 

5, 10 

3 ,6 ,9  

9 

7 

4,8 

3 ,6 ,9  

7 

4 ,8  

3 ,6 ,9  

3 ,6 ,9  

t = (tip chord) -- (root chord). 

The plan-forms are sketched in Fig. 2. 

Wings C, D, & E have semi apex angles 5 deg, 10 deg and 15 deg respectively. 

Wing E1 is derived by cropping wing E. 

Wings F1, F2, F3, are obtained by cropping a delta wing of aspect ratio 8/3; wings G~, G~, G3 are similarly obtained 
from a delta of aspect ratio 4. 

14 
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TABLE 5 

Results of Calculations. 

1 

" 7 -  

Wing Plan-form ~C L/ 0 ~ h Remarks 

A 

B 

C 

D 

E 

E1 

F1 

F3 

Fa 

G1 

G3 

G3 

H 

Parabolic 

Parabolic 

Delta 

Delta 

Delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Cropped delta 

Square 

.736 

1.389 

.519 

.994 

1.445 

1.232 

2.474 

2.097 

1.833 

3.284 

2.818 

2.488 

1.441 

"480 

"470 

•650 

•639 

•628 

• 578 

• 543 

• 494 

• 454 ~ 

'534 

• 487 

• 450 

• 192 

Asymptotic values 

Asymptotic values 

Asymptotic values 

Asymptotic values 

Asymptotic values 

N = 9 values 

N = 7 values 

Asymptotic values 

Asymptotic values 

N = 7 values 

Asymptotic values 

Asymptotic values 

Asymptotic values 

I5 
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FIG. 2. Plan views of wings A to Gs. 
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