

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Calculation of Derivatives for a Cropped Delta Wing with an Oscillating Constant-Chord Flap in a Supersonic Air Stream By
J. Watson, B.Sc., B.A., of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE

Calculation of Derivatives for a Cropped Delta Wing with an Oscillating Constant-Chord Flap in a Supersonic Air Stream

By
J. Watson, B.Sc., B.A. of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 3059
November, 1955

Abstract

Summary.-The lift, pitching moment and hinge moment are derived for a delta wing with a trailing-edge flap of constant chord when the wing is at zero incidence in a supersonic air stream and the flap oscillates harmonically with small amplitude and low frequency. It is assumed that the wing is sufficiently thin and the amplitude of oscillation sufficiently small to permit the use of linearised theory.

Expressions for the various control derivative coefficients are obtained for a particular delta wing of aspect ratio 1.8 and taper ratio $1 / 7$. The investigation covers partial-span flaps; in each case there is a lower limit to the Mach numbers for which the theory applies, though from practical considerations this restriction is not serious. The derivatives are evaluated and tabulated for Mach numbers $1 \cdot 1,1 \cdot 2,1 \cdot 4,1 \cdot 6,2 \cdot 0$. The theory is shown to apply without appreciable error, provided that the frequency parameter based on mean chord does not exceed $0 \cdot 4$.

The calculated values of hinge-moment damping are compared with preliminary experimental values obtained at the National Physical Laboratory.

1. Introduction.-Complete sets of oscillatory derivatives for a delta wing of aspect ratio 1.8 and taper ratio $1 / 7$ with control (Fig. 1) will be measured at the N.P.L. for Mach numbers up to $M=1 \cdot 8$. This report considers theoretical derivatives when the flap alone is oscillating for comparison with the experimental data at supersonic speeds. The theory is formally applicable much nearer to $M=1$ than is usually the case and the investigation offers the opportunity of assessing the usefulness of linearised theory near $M=1$; in the full-span case, for example, the theory is applicable to a lower limit of $M=1 \cdot 04$.

The aerodynamic loading is zero upstream of the hinge line of a thin plane delta wing of the plan-form shown in Fig. 1; the forces on the remainder of the wing were determined for low frequencies by Evvard's method (Ref. 1, 1950).

In section 3 the aerodynamic coefficients are calculated for the case of a full-span control and the extension to partial-span controls is given in section 4. The results of section 3 and section 4 are summarised at the end of section 4. The corresponding sets of derivatives for the delta wing with inboard or outboard controls are obtained in Section 5. The accuracy of the results and the ranges of Mach number for which they apply are discussed in section 6 .

[^0]2. General Supersonic Theory.-A method of calculating the forces acting on a wing is given by Evvard ${ }^{1}$ (1950). The general equations of supersonic flow are linearised with respect to velocity and written in terms of an unsteady perturbation velocity potential. The linearisation leads to a linear partial differential equation satisfied by the perturbation velocity potential, which is simplified by certain transformations ${ }^{2}$ (W. P. Jones, 1948) in the case of harmonic motion.

The square of the frequency is neglected. Thus the differential equation for general supersonic unsteady flow is transformed to the equation of steady flow at the particular Mach number $\sqrt{ } 2$.
2.1. Governing Equation.-The perturbation velocity potential, ϕ, satisfies

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t^{2}}+2 V \frac{\partial^{2} \phi}{\partial x \partial t}+V^{2} \frac{\partial^{2} \phi}{\partial x^{2}}=a^{2}\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right), \quad . \quad . . \quad . . \tag{1}
\end{equation*}
$$

where $a=$ velocity of sound, $V=$ velocity of air stream (Ref. 2, p. 1). With c_{f} as a length parameter, the transformations of x, y, z, t to the non-dimensional X, Y, Z, T

$$
\left.\begin{array}{l}
x=c_{f} X \cot \mu \tag{2}\\
y=c_{f} Y \\
z=c_{f} Z \\
t=c_{f} T / V
\end{array}\right\}
$$

where $M=V \mid a, \cot \mu=\sqrt{ }\left(M^{2}-1\right)$, are applied to equation (1).
In accordance with the assumption of simple harmonic motion ϕ is proportional to $\mathrm{e}^{i \omega t}=\mathrm{e}^{i \lambda T}$ and it is convenient to introduce a time-independent complex perturbation velocity potential Φ given by

$$
\begin{equation*}
\phi=\Phi \exp \left(i \lambda T-i \lambda X \sec ^{2} \mu \cot \mu\right), \quad . . \tag{3}
\end{equation*}
$$

where $\lambda=\omega c_{f} / V$. Equation (3) combines with the transformations (2) to reduce (1) to

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial Y^{2}}+\frac{\partial^{2} \Phi}{\partial Z^{2}}-\frac{\partial^{2} \Phi}{\partial X^{2}}=k^{2} \Phi, \quad . . \quad . . \quad . \quad . . \quad . . \quad . \tag{4}
\end{equation*}
$$

where $k=\lambda \sec \mu$. Since λ^{2} is being neglected, (4) becomes

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial Y^{2}}+\frac{\partial^{2} \Phi}{\partial Z^{2}}-\frac{\partial^{2} \Phi}{\partial X^{2}}=0, \tag{5}
\end{equation*}
$$

which is seen to correspond to steady motion at Mach number $\sqrt{ } 2$.
2.2. Boundary Conditions over the Control.-Under the assumptions of linearised theory, the control surface and the remaining triangular part of the wing may be treated as flat plates and the conditions over each may be referred to the plane $z=0$, in which the triangular part is assumed to lie. Since the fluid flow is undisturbed until the hinge of the control is reached, ϕ is zero on and upstream of the wave front from the hinge. Further $(\partial \phi / \partial z)_{z=0}$ over the projection of the control on the plane $z=0$ is determined by the motion of the control. These conditions are satisfied by Φ in the transformed ' X, Y, Z space '.

Let $\xi=\xi_{0} \mathrm{e}^{i \omega t}$ be the complex angle of control deflection (Fig. 2). Then $\zeta=x \xi=x \xi_{0} \mathrm{e}^{i \omega t}$ defines the downward displacement of points on the control surface. For tangential flow on the control

$$
\begin{aligned}
w_{z=0} & =\left(\frac{\partial \phi}{\partial z}\right)_{z=0}=\left(\frac{d z}{d t}\right)_{z=0} \\
& =-\left(\frac{\partial \zeta}{\partial t}+V \frac{\partial \zeta}{\partial x}\right)_{z=0} \\
& =-\xi_{0} \mathrm{e}^{i \omega t}(i \omega x+V) \\
& =-\xi_{0} V \mathrm{e}^{i \lambda T}(1+i \lambda X \cot \mu) .
\end{aligned}
$$

From equations (2) and (3) :

$$
\begin{align*}
\left(\frac{\partial \Phi}{\partial Z}\right)_{z=0} & =c_{f}\left(\frac{\partial \Phi}{\partial z}\right)_{z=0} \\
& =-c_{f} \xi_{0} V(1+i \lambda X \cot \mu) \exp \left(i \lambda X \sec ^{2} \mu \cot \mu\right) \\
& =-\xi_{0} c_{f} V(1+i \lambda X \cot \mu)\left(1+i \lambda X \sec ^{2} \mu \cot \mu\right)+0\left(\lambda^{2}\right) \\
& =-\xi_{0} c_{f} V(1+i \lambda K X), \ldots \quad \ldots \quad \ldots \quad \ldots \tag{6}
\end{align*}
$$

where

$$
K=\cot \mu\left(1+\sec ^{2} \mu\right)
$$

The governing equation (5) and the boundary condition (6) in ' X, Y, Z space' are independent of time and the solution Φ corresponds to a steady motion with $M=\sqrt{ } 2$. The forces on the delta wing are found from a knowledge of ϕ over the control surface.
3. Full-span Control.-The determination of ϕ over the control surface amounts to the determination of Φ on a rectangular region in the $X Y$ plane, bounded by the lines $X=0$, l and $Y= \pm m$ (Fig. 3).
3.1. Calculation of Velocity Potential.-Due to the symmetry of the problem the region considered is the control surface on one half of the wing, $0 \leqslant X \leqslant l, 0 \leqslant Y \leqslant m, Z=0$, which is divided into region A, where the flow is two-dimensional, and region B, bounded by the wing tip (Fig. 3).

Let $\Phi(X, Y)$ denote the value of Φ at the point (X, Y) on the upper surface of the wing; then $\Phi=-\Phi(X, Y)$ on the lower surface. The solution $\Phi(X, Y)$ in each region $(A$ and $B)$ is found by Evvard's method in the case of steady flow at Mach number $\sqrt{ } 2$ (Ref. 1, equations (17) and (29)).

Region A.-In region $A, \Phi(X, Y)$ is given by a double integral over a region of the type S_{1} (Fig. 3) ; from Ref. 1, equation (17)

$$
\begin{equation*}
\Phi(X, Y)=-\frac{1}{\pi \sqrt{ } 2} \iint_{s_{1}} \frac{\left(\frac{\partial \Phi}{\partial Z}\right)_{z=0} d r_{0} d s_{0}}{\left(r-r_{0}\right)^{1 / 2}\left(s-s_{0}\right)^{1 / 2}}, \quad . \quad \ldots \quad . \quad . \quad \ldots \quad . \tag{7}
\end{equation*}
$$

where $r \sqrt{ } 2=(X-Y)$,

$$
s \sqrt{ } 2=(X+Y)
$$

and S_{1} is the region bounded by $X=0$ and the forward 'Mach lines' from the point (X, Y), that is, $r_{0}+s_{0} \geqslant 0, r_{0} \leqslant r, s_{0} \leqslant s$.

From equations (6) and (7)

$$
\begin{align*}
& \Phi(X, Y)=\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2} \iint_{s_{1}} \frac{\left[1+i \lambda K\left(\frac{s_{0}+r_{0}}{\sqrt{2}}\right)\right] d r_{0} d s_{0}}{\left(r-r_{0}\right)^{1 / 2}\left(s-s_{0}\right)^{1 / 2}} \\
& =\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\int_{-s}^{r} \frac{d r_{0}}{\left(r-r_{0}\right)^{1 / 2}} \int_{-r_{0}}^{s} \frac{d s_{0}}{\left(s-s_{0}\right)^{1 / 2}}+\frac{i \lambda K}{\sqrt{ } 2} \int_{-s}^{r} \frac{d r_{0}}{\left(r-r_{0}\right)^{1 / 2}} \int_{-\rho_{0}}^{s} \frac{\left(s_{0}+r_{0}\right) d s_{0}}{\left(s-s_{0}\right)^{1 / 2}}\right] \\
& =\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\int_{-s}^{r} \frac{2\left(s+r_{0}\right)^{1 / 2}}{\left(r-r_{0}\right)^{1 / 2}} d r_{0}+\frac{i \lambda K}{\sqrt{ } 2} \int_{-s}^{\psi} \frac{4\left(s+r_{0}\right)^{3 / 2}}{3\left(r-r_{0}\right)^{1 / 2}} d r_{0}\right] \quad \ldots \quad \ldots \quad \ldots \tag{8}\\
& =\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\pi(r+s)+\frac{\pi i \lambda K}{2 \sqrt{ } 2}(r+s)^{2}\right] .
\end{align*}
$$

When the expressions for r, s are substituted from equation (7), it follows that

$$
\Phi(X, Y)=V \xi_{0} c_{f}\left[X+\frac{i \lambda K}{2} X^{2}\right] . \quad . \quad . . \quad . . \quad . \quad . \quad . \quad . \quad . \quad \text { (9) }
$$

This gives

$$
\begin{equation*}
\left(\frac{\partial \Phi}{\partial X}\right)_{z=0}=V \xi_{0} c_{f}[1+i \lambda K X] . \quad . \tag{10}
\end{equation*}
$$

Region B.--In region $B, \Phi(X, Y)$ is given by equation (7), where the double integral is taken over the region S_{2} (Fig. 3), bounded by $X=Z=0$ and the three Mach lines in the (X, Y) plane, that is, $r_{0}+s_{0} \geqslant 0, s-m \sqrt{ } 2 \leqslant \gamma_{0} \leqslant r, s_{0} \leqslant s$, where $s \sqrt{ } 2 \geqslant m$ and r, s are given in equation (7). Thus $\Phi(X, Y)$ is given by equation (8) when the lower limit, $-s$, in the integrals is replaced by $s-m \sqrt{ } 2$. The integrations lead to

$$
\begin{align*}
\Phi(X, Y)= & \frac{\xi_{0} V c_{f}}{3 \pi}\left[(3 \sqrt { } 2) (s + r) \left\{\sin ^{-1}\left(\frac{(m \sqrt{ } 2)-s+r}{s+r}\right)^{1 / 2}\right.\right. \\
& \left.+\sqrt{2}^{\prime} 2 \frac{\left.\left(s-\frac{1}{2} m \sqrt{ } 2\right)^{1 / 2}\{(m \sqrt{ } 2)+r-s\}^{1 / 2}\right\}}{(s+r)}\right\} \\
& +i \lambda K\left\{\frac{3}{2}(s+r)^{2} \sin ^{-1}\left(\frac{(m \sqrt{ } 2)-s+r}{s+r}\right)^{1 / 2}\right. \\
& \left.\left.+\frac{1}{\sqrt{ } 2}\left(s-\frac{1}{2} m \sqrt{ } 2\right)^{1 / 2}\{(m \sqrt{ } 2)+r-s\}^{1 / 2}(7 s+3 r-2 m \sqrt{ } 2)\right\}\right] \\
= & \frac{V \xi_{0} c_{f}}{3 \pi}\left[6 X \sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}+6(X+Y-m)^{1 / 2}(m-Y)^{1 / 2}\right. \\
& +i \lambda K\left\{3 X^{2} \sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}\right. \\
& \left.\left.+(5 X+2 Y-2 m)(m-Y)^{1 / 2}(X+Y-m)^{1 / 2}\right\}\right], \ldots \tag{11}
\end{align*}
$$

when X and Y are substituted from equation (7). From this expression it follows that

$$
\begin{align*}
\left(\frac{\partial \Phi}{\partial X}\right)_{z=0}= & \frac{2 V \xi_{0} c_{f}}{\pi}\left[\sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}\right. \\
& \left.+i \lambda K\left\{X \sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}+(m-Y)^{1 / 2}(X+Y-m)^{1 / 2}\right\}\right] . \tag{12}
\end{align*}
$$

3.2. Calculation of Aerodynamic Coefficients.-From equation (2a) of Ref. 1 the pressure on the upper surface of the control is

$$
p_{0}-\rho_{0}\left(\frac{\partial \phi}{\partial t}+V \frac{\partial \phi}{\partial x}\right)_{s=0} .
$$

Let P be the pressure difference across the control in the positive z direction. Then the lift per unit area is

$$
\begin{align*}
P= & 2 \rho_{0}\left(\frac{\partial \phi}{\partial t}+V \frac{\partial \phi}{\partial x}\right)_{z=0} \\
= & \frac{2 \rho_{0} V}{c_{f}}\left(\frac{\partial \phi}{\partial T}+\tan \mu \frac{\partial \phi}{\partial X}\right)_{z=0} \\
= & \frac{2 \rho_{0} V}{c_{f}} \exp \left\{i \lambda T-i \lambda X \sec ^{2} \mu \cot \mu\right\}\left[i \lambda \Phi(X, Y)+\tan \mu\left\{\left(\frac{\partial \Phi}{\partial X}\right)_{Z=0}\right.\right. \\
& \left.\left.-i \lambda \Phi(X, Y) \sec ^{2} \mu \cot \mu\right\}\right] \\
= & \frac{2 \rho_{0} V}{c_{f} \cot \mu} \exp \left\{i \lambda T-i \lambda X \sec ^{2} \mu \cot \mu\right\}\left[\left(\frac{\partial \Phi}{\partial X}\right)_{z=0}-i \lambda \Phi(X, Y) \tan \mu\right] \\
= & \frac{2 \rho_{0} V \mathrm{e}^{i \lambda T}}{c_{f} \cot \mu}\left[\left(1-i \lambda X \sec ^{2} \mu \cot \mu\right)\left(\frac{\partial \Phi}{\partial \bar{X}}\right)_{z=0}-i \lambda \Phi(X, Y) \tan \mu\right]+0\left(\lambda^{2}\right) . \tag{13}
\end{align*}
$$

In region A, P is obtained from equations (9), (10) and (13), where terms of order λ^{2} are neglected. It is found that

$$
\begin{equation*}
P=\frac{4}{\pi} p_{0} V^{2} \xi_{0} \tan \mu \mathrm{e}^{i \lambda T} F, \quad . \quad . \quad . \quad . \quad . . \quad . \quad . \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
F=F_{A}=\frac{1}{2} \pi\{1+i \lambda(\cot \mu-\tan \mu) X\} . \quad . \quad . . \quad . . \quad . \quad . \tag{15}
\end{equation*}
$$

Similarly, from equations (11), (12) and (13), in region B,

$$
\begin{align*}
F= & F_{B}=\sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}\left(1-i \lambda X \sec ^{2} \mu \cot \mu\right) \\
& +2 i \lambda \cot \mu\left\{X \sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}+(m-Y)^{1 / 2}(X+Y-m)^{1 / 2}\right\} . \tag{16}
\end{align*}
$$

Hence the lift coefficient

$$
\begin{align*}
C_{L} & =\frac{L}{\frac{1}{2} \rho_{0} V^{2} S}=\frac{2 \int_{0}^{l} \int_{0}^{m} P c_{f} d Y c_{f} \cot \mu d X}{\frac{1}{2} \rho_{0} V^{2} 2 s \bar{c}} \\
& =\frac{8}{\pi} \xi_{0} \mathrm{e}^{i \pi T} \frac{c_{f}^{2}}{s \bar{c}}\left[\iint_{A} F_{A} d X d Y+\iint_{B} F_{B} d X d Y\right], \ldots \quad \ldots \tag{17}
\end{align*} \quad \ldots \quad . .
$$

where, from equation (15)

$$
\begin{align*}
\iint_{A} F_{A} d X d Y & =\int_{0}^{l} d X \int_{0}^{m-X} \frac{1}{2} \pi\{1+i \lambda(\cot \mu-\tan \mu) X\} d Y \\
& =\cdot \frac{1}{2} \pi \int_{0}^{l}(m-X)\{1+i \lambda(\cot \mu-\tan \mu) X\} d X \\
& =\frac{1}{12} \pi l\left[3(2 m-l)+i \lambda\left(\beta-\frac{1}{\beta}\right) l(3 m-2 l)\right], \tag{18}
\end{align*}
$$

where $\beta=\cot \mu=\left(M^{2}-1\right)^{1 / 2}, l=1 / \beta, m=s / c_{f}$ (Fig. 3), and from equation (16),

$$
\begin{align*}
& \iint_{B} F_{B} d X d Y=\int_{0}^{l} d X \int_{m-X}^{m}\left[\sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}\left(1-i \lambda X \sec ^{2} \mu \cot \mu\right)\right. \\
& \left.+2 i \lambda \cot \mu\left\{X \sin ^{-1}\left(\frac{m-Y}{X}\right)^{1 / 2}+(m-Y)^{1 / 2}(X+Y-m)^{1 / 2}\right\}\right] d Y \\
& =\int_{0}^{l}\left[\frac{\pi X}{4}\left\{1-i \lambda X \sec ^{2} \mu \cot \mu\right\}+2 i \lambda \cot \mu\left\{\frac{\pi X^{2}}{4}+\frac{\pi X^{2}}{8}\right\}\right] d X \\
& =\frac{\pi l^{2}}{24}\left[3+2 i \lambda\left(2 \beta-\frac{1}{\beta}\right) l\right] . \tag{19}
\end{align*}
$$

Hence

$$
\begin{equation*}
C_{L}=\frac{\xi c_{f}^{2}}{s \bar{c}}\left[\left(-\frac{1}{\beta^{2}}+i \lambda \frac{2}{3 \beta^{4}}\right)+\frac{2 s}{c_{f}}\left\{\frac{2}{\bar{\beta}}+i \lambda\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)\right\}\right] . \tag{20}
\end{equation*}
$$

Similarly, the pitching moment about the hinge is given by

$$
\begin{align*}
-C_{m} & =-\frac{\mathscr{M}}{\frac{1}{2} \rho_{0} V^{2} S \bar{c}} \\
& =\frac{8}{\pi} \xi_{0} \mathrm{e}^{i \lambda T} \frac{c_{f}^{3}}{s \bar{c}^{2}} \cot \mu\left[\iint_{A} X F_{A} d X d Y+\iint_{B} X F_{B} d X d Y\right] \\
& =\xi \frac{c_{f}^{3}}{s \bar{c}^{2}}\left[\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+\frac{2 s}{c_{f}}\left\{\frac{1}{\beta}+\frac{2}{3} i \lambda\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)\right\}\right], \tag{21}
\end{align*}
$$

and, since $H=-, \neq$

$$
\begin{align*}
-C_{I I} & =-\frac{\mathscr{1}}{2 \rho_{0} V^{2} S_{f} c_{f}}=-C_{m} \frac{\bar{c}^{2}}{c_{f}^{2}} \\
& =\xi \frac{c_{f}}{s}\left[\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+\frac{2 s}{c_{f}}\left\{\frac{1}{\beta}+\frac{2}{3} i \lambda\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)\right\}\right] . \tag{22}
\end{align*}
$$

The loading due to interference by the starboard tip $\left(F_{B}-F_{A}\right)$, extends over the triangular region B (Fig. 3) ; a similar loading is due to the port tip effect. These may be superposed so long as the flow outboard of each tip is unaffected by the flow outboard of the other. Hence this analysis is valid provided that $c_{f} \leqslant 2 \beta s$.
4. Partial-span Controls.-The most general control surface is shaded in Fig. 1. It will be shown that the loading can be expressed in terms of at most six fundamental perturbation velocity potentials, four of which are derived in section 4.1. The aerodynamic loading on an outboard control is considered in section 4.2 and section 4.3 , where the condition is imposed that the Mach line from the leading-tip corner does not cross the inboard edge of the control, that is, η_{1} must satisfy $\eta_{1} \leqslant(1-\varepsilon)$, where $\varepsilon=c_{f} / \beta s$. In section 4.4 the general control is treated subject to the Mach line from the leading-tip corner not crossing the outboard edge of the control, that is, $\eta_{0} \leqslant(1-\varepsilon)$. Up to this stage only four fundamental perturbation velocity potentials arise. The extension to the cases $(1-\varepsilon) \leqslant \eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ or $(1-\varepsilon) \leqslant \eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ in section 4.5 introduces a fifth potential. The sixth potential arises only when either $\left(1-\frac{1}{2} \varepsilon\right)<\eta_{1} \leqslant 1$ or $\left(1-\frac{1}{2} \varepsilon\right)<\eta_{0} \leqslant 1$; these cases are briefly considered in section 4.6 , where a concluding table summarises the general equations for the aerodynamic coefficients.

By superposition and because of the symmetry of the flow about the centre-line it issufficient to consider the deflection of one control only, the starboard control, say.
4.1. Calculation of Fundamental Velocity Potentials.-The simplest case of an outboard control, when the Mach lines from the leading corners of the control neither intersect on the plan-form nor cross the port control, is shown in the (X, Y) plane in Fig. 4. This corresponds to $\frac{1}{2} \varepsilon \leqslant \eta_{1} \leqslant(1-2 \varepsilon)$; to fix ideas, it is supposed that $\varepsilon<2 / 5$. The outboard control covers the region $A+B+C$ in Fig. 4. Over the complete semi-span there are four regions, A, B, C, D, which correspond to different types of loading.

Regions A and B.-The complex velocity potential Φ as transformed by equation (3) is evaluated from the double integral (7), in which the area of integration in the plane $(r, s) \equiv\{(1 / \sqrt{ } 2)(X-Y),(1 / \sqrt{ } 2)(X+Y)\}$ depends on the region considered.

As shown in section 3.1, in the two-dimensional region A (Fig. 4), this leads to the expressions (9) and (10) for $\Phi(X, Y)$ and $(\partial \Phi / \partial X)_{z=0}$ and thence to equation (15) for the lift per unit area.

The region B for a partial-span control is equivalent to region B in section 3.1 (Fig. 3). It is convenient to translate the origin from 0 to 0_{1} on the inboard edge of the control so that $Y_{1}=Y-s \eta_{1} / c_{f}$ and at the wing tip

$$
\begin{equation*}
Y_{1}=m_{1}=\frac{s\left(1-\eta_{1}\right)}{c_{f}} . \quad . \quad . \quad . . \quad . \quad . \quad . \quad . \quad . \quad . \tag{23}
\end{equation*}
$$

Then, in region B (Fig. 4), the expressions for $\Phi(X, Y)$ and $(\partial \Phi / \partial X)_{z=0}$ are given by equations (11) and (12) with ($m-Y$) replaced by $\left(m_{1}-Y_{1}\right)$. This leads to

$$
\begin{align*}
F_{B}= & \sin ^{-1}\left(\frac{m_{1}-Y_{1}}{X}\right)^{1 / 2}\left(1-i \lambda X \sec ^{2} \mu \cot \mu\right) \\
& +2 i \lambda \cot \mu\left\{X \sin ^{-1}\left(\frac{m_{1}-Y_{1}}{X}\right)^{1 / 2}+\left(m_{1}-Y_{1}\right)^{1 / 2}\left(X+Y_{1}-m_{1}\right)^{1 / 2}\right\} . \tag{24}
\end{align*}
$$

Region C.-In region $C, \Phi\left(X, Y_{1}\right)$ is evaluate 1 from equation (7) with r, s, Y replaced by r_{1}, s_{1}, Y_{1}, where

$$
\left.\begin{array}{r}
r_{1} \sqrt{ } 2=\left(X-Y_{1}\right) \tag{25}\\
s_{1} \sqrt{ } 2=\left(X+Y_{1}\right)
\end{array}\right\} \quad . \quad .
$$

and the area of integration S_{3} (Fig. 4) is given by $r_{0}+s_{0} \geqslant 0, s_{b} \leqslant s_{1}, r_{3} \leqslant r_{1}, s_{0}-\gamma_{0} \geqslant 0$, where $0 \leqslant r_{1} \leqslant s_{1}$. Thus

$$
\begin{aligned}
& \Phi\left(X, Y_{1}\right)= \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2} \iint_{S_{3}} \frac{\left[1+i \lambda K\left(\frac{s_{0}+r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}\left(s_{1}-s_{0}\right)^{1 / 2}} d r_{0} d s_{0}\right.\right.}{=} \\
&=\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\int_{-s_{1}}^{0} \frac{d r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}} \int_{-r_{0}}^{s_{1}} \frac{d s_{0}}{\left(s_{1}-s_{0}\right)^{1 / 2}}+\int_{0}^{r_{1}} \frac{d r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}} \int_{r_{0}}^{s_{1}} \frac{d s_{0}}{\left(s_{1}-s_{0}\right)^{1 / 2}}\right. \\
&+\frac{i \lambda K}{\sqrt{2} 2}\left\{\int_{-s_{1}}^{0} \frac{d r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}} \int_{-r_{0}}^{s_{1}} \frac{\left(s_{0}+r_{0}\right)}{\left(s_{1}-s_{0}\right)^{1 / 2}} d s_{0}\right. \\
&\left.\left.+\int_{0}^{r_{1}} \frac{d r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}} \int_{r_{0}}^{s_{1}} \frac{\left(s_{0}+r_{0}\right) d s_{0}}{\left(s_{1}-s_{0}\right)^{1 / 2}}\right\}\right] \\
&= \frac{V \xi_{0} c_{f}}{\pi \sqrt{ } 2}\left[\int_{-s_{1}}^{0} \frac{2\left(s_{1}+r_{0}\right)^{1 / 2}}{\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}+\int_{0}^{r_{1}} \frac{2\left(s_{1}-r_{0}\right)^{1 / 2}}{\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}\right. \\
&\left.+\frac{i \lambda K}{\sqrt{2} 2}\left\{\int_{-s_{1}}^{0} \frac{4\left(s_{1}+r_{0}\right)^{3 / 2}}{3\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}+\int_{0}^{r_{1}} \frac{4\left(s_{1}-r_{0}\right)^{1 / 2}}{3\left(s_{1}+2 r_{0}\right)^{1 / 2}} d r_{0}\right\}\right] \\
&= \frac{V \xi_{0} c_{f}}{\pi \sqrt{ } 2}\left[2\left(s_{1}+r_{1}\right)\left\{\frac{\pi}{2}-\sin ^{-1}\left(\frac{r_{1}}{s_{1}+r_{1}}\right)^{1 / 2}\right\}\right. \\
&+2\left(s_{1}-r_{1}\right) \sinh ^{-1}\left(\frac{r_{1}}{s_{1}-r_{1}}\right)^{1 / 2} \\
&+\frac{i \lambda K}{\sqrt{2} 2}\left\{(s _ { 1 } + r _ { 1 }) ^ { 2 } \left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{r_{1}}{\left.\left.s_{1}+r_{1}\right)^{1 / 2}\right)}\right.\right.\right. \\
&\left.\left.+2\left(s_{1}^{2}-r_{1}^{2}\right) \sinh ^{-1}\left(\frac{r_{1}}{s_{1}-r_{1}}\right)^{1 / 2}-\left(s_{1}-r_{1}\right) r_{1}^{1 / 2} s_{1}^{1 / 2}\right\}\right] .
\end{aligned}
$$

Substitution for γ_{1}, s_{1} from (25) leads to

$$
\begin{align*}
\Phi\left(X, Y_{1}\right)= & \frac{V \xi_{0} c_{f}}{\pi \sqrt{ } 2}\left[(2 \sqrt{ } 2) X\left\{\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right\}+(2 \sqrt{ } 2) Y_{1} \sinh ^{-1}\left(\frac{X-Y_{1}}{2 Y_{1}}\right)^{1 / 2}\right. \\
& +\frac{i \lambda K}{\sqrt{2}}\left\{2 X^{2}\left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right)\right. \\
& \left.\left.+4 X Y_{1} \sinh ^{-1}\left(\frac{X-Y_{1}}{2 Y_{1}}\right)^{1 / 2}-Y_{1}\left(X^{2}-Y_{1}^{2}\right)^{1 / 2}\right\}\right], \quad \ldots \quad \ldots \tag{26}
\end{align*}
$$

and thence

$$
\begin{align*}
\left(\frac{\partial \Phi}{\partial X}\right)_{Z=0}= & \frac{2 V \xi_{0} c_{f}}{\pi}\left[\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right. \\
& \left.+i \lambda K\left\{X\left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right)+Y_{1} \sinh ^{-1}\left(\frac{X-Y_{1}}{2 Y_{1}}\right)^{1 / 2}\right\}\right] . \quad . \tag{27}
\end{align*}
$$

The lift per unit area, P in region C is given by equations (13), (26) and (27). When terms of order λ^{2} are neglected, P is given by equation (15), where

$$
\begin{align*}
F=F_{c}= & \frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}+i \lambda\left(\beta-\frac{1}{\beta}\right) X\left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right) \\
& +2 i \lambda \beta Y_{1} \sinh ^{-1}\left(\frac{X-Y_{1}}{2 Y_{1}}\right)^{1 / 2} . \tag{28}
\end{align*} \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots . .
$$

Region D.-In region $D, \Phi\left(X, Y_{1}\right)$ is calculated similarly. Here the double integral is taken over the region S_{4} (Fig. 4), given by $s_{0}+r_{0} \geqslant 0, s_{0}-r_{0} \geqslant 0,0 \leqslant s_{0} \leqslant s_{1} \leqslant r_{1}$. Thus

$$
\begin{aligned}
\Phi\left(X, Y_{1}\right)= & \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2} \iint_{s_{4}} \frac{\left[1+i \lambda K\left(\frac{s_{0}+r_{0}}{\sqrt{2}}\right)\right] d r_{0} d s_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}\left(s_{1}-s_{0}\right)^{1 / 2}} \\
= & \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\int_{0}^{s_{1}} \frac{d s_{0}}{\left(s_{1}-s_{0}\right)^{1 / 2}} \int_{-s_{0}}^{s_{0}} \frac{d r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}}+\frac{i \lambda K}{\sqrt{ } 2} \int_{0}^{s_{1}} \frac{d s_{0}}{\left(s_{1}-s_{0}\right)^{1 / 2}} \int_{-s_{0}}^{s_{0}} \frac{\left(s_{0}+r_{0}\right)}{\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}\right] \\
= & \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[2 \int_{0}^{s_{1}} \frac{\left\{\left(r_{1}+s_{0}\right)^{1 / 2}-\left(r_{1}-s_{0}\right)^{1 / 2}\right\}}{\left(s_{1}-s_{0}\right)^{1 / 2}} d s_{0}\right. \\
& \left.+\frac{i \lambda K}{\sqrt{2}} \overline{3} \int_{0}^{s_{1}} \frac{\left\{\left(r_{1}+s_{0}\right)^{3 / 2}-\left(r_{1}-s_{0}\right)^{1 / 2}\left(2 s_{0}+r_{1}\right)\right\}}{\left(s_{1}-s_{0}\right)^{1 / 2}} d s_{0}\right] \\
= & \frac{V \xi_{0} c_{f}}{\pi \sqrt{ } 2}\left[2\left(r_{1}+s_{1}\right) \sin ^{-1}\left(\frac{s_{1}}{r_{1}+s_{1}}\right)^{1 / 2}+2\left(s_{1}-r_{1}\right) \sinh ^{-1}\left(\frac{s_{1}}{r_{1}-s_{1}}\right)^{1 / 2}\right. \\
& +\frac{i \lambda K}{\sqrt{2} 2}\left\{\left(r_{1}+s_{1}\right)^{2} \sin ^{-1}\left(\frac{s_{1}}{r_{1}+s_{1}}\right)^{1 / 2}+2\left(s_{1}{ }^{2}-r_{1}{ }^{2}\right) \sinh ^{-1}\left(\frac{s_{1}}{r_{1}-s_{1}}\right)^{1 / 2}\right. \\
& \left.\left.-\left(s_{1}-r_{1}\right) r_{1}^{1 / 2} s_{1}{ }_{1}^{1 / 2}\right\}\right] .
\end{aligned}
$$

Substitution for r_{1}, s_{1} from (25) leads to

$$
\begin{align*}
\Phi\left(X, Y_{1}\right)= & \frac{V \xi_{0} c_{f}}{\pi \sqrt{2}}\left[(2 \sqrt{ } 2) X \sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2}+(2 \sqrt{ } 2) Y_{1} \sinh ^{-1}\left\{-\frac{X+Y_{1}}{2 Y_{1}}\right\}^{1 / 2}\right. \\
& +\frac{i \lambda K}{\sqrt{2}}\left\{2 X^{2} \sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2}\right. \\
& \left.\left.+4 X Y_{1} \sinh ^{-1}\left(-\frac{X+Y_{1}}{2 Y_{1}}\right)^{1 / 2}-Y_{1}\left(X^{2}-Y_{1}^{2}\right)^{1 / 2}\right\}\right], \ldots \tag{29}
\end{align*} \ldots \quad \ldots
$$

from which

$$
\begin{align*}
\left(\frac{\partial \Phi}{\partial X}\right)_{z=0}= & \frac{2 V \xi_{0} c_{f}}{\pi}\left[\sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2}+i \lambda K\left\{X \sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2}\right.\right. \\
& \left.\left.+Y_{1} \sinh ^{-1}\left(-\frac{X+Y_{1}}{2 Y_{1}}\right)^{1 / 2}\right\}\right] . \quad \cdots \quad \cdots \quad \ldots \tag{30}
\end{align*}
$$

Equations (29) and (30) are treated in the same way as equations (26) and (27), so that the lift per unit area is given by equation (15), where, in region D,

$$
\begin{align*}
F= & F_{D}=\sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2}+i \lambda\left(\beta-\frac{1}{\beta}\right) X \sin ^{-1}\left(\frac{X+Y_{1}}{2 X}\right)^{1 / 2} \\
& +2 i \lambda \beta Y_{1} \sinh ^{-1}\left(-\frac{X+Y_{1}}{2 Y_{1}}\right)^{1 / 2} \cdot \ldots \quad \ldots \quad \ldots \quad \ldots \tag{31}
\end{align*}
$$

Two other fundamental velocity potentials arise in Section 4.5 and section 4.6 ; the corresponding regions of integration are shown shaded in Figs. 5 and 6. Expressions for these and for the corresponding loading functions, F_{E} and F_{F}, are derived in Appendices A and B.
4.2. Outboard Control $\frac{1}{2} \varepsilon \leqslant \eta_{1} \leqslant(1-2 \varepsilon)$.-Consider firstly the simple case of flow as represented in Fig. 4. Here the lift coefficient is given by (17) with additional integrals over C and D. The region A in Fig. 4 is seen to correspond to twice that in Fig. 3, with $2 m$ replaced by m_{1}. When equation (18) is adapted in this way

$$
\begin{equation*}
\iint_{A} F_{A} d X d Y_{1}=\frac{1}{12} \pi l\left[6\left(m_{1}-l\right)+i \lambda\left(\beta-\frac{1}{\beta}\right) l\left(3 m_{1}-4 l\right)\right] . \quad . \quad . \quad . \tag{32}
\end{equation*}
$$

Equation (24) is integrated to give equation (19) and m_{1} and Y_{1} in place of m and Y. Hence

$$
\begin{equation*}
\iint_{B} F_{B} d X d Y_{1}=\frac{1}{24} \pi l^{2}\left[3+2 i \lambda\left(2 \beta-\frac{1}{\beta}\right) l\right] . \quad . \quad . \quad . \quad . \quad . \quad . \tag{33}
\end{equation*}
$$

From equation (28) and Fig. 4:

$$
\begin{align*}
\iint_{c} F_{C} d X d Y_{1}= & \int_{0}^{l} d X \int_{0}^{X} F_{C} d X d Y_{1} \\
= & \int_{0}^{l} d X \int_{0}^{X}\left[\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}+i \lambda\left(\beta-\frac{1}{\beta}\right) X\left\{\frac{\pi}{2}-\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}\right\}\right. \\
& \left.+2 i \lambda \beta Y_{1} \sinh ^{-1}\left(\frac{X-Y_{1}}{2 Y_{1}}\right)^{1 / 2}\right] d Y_{1} \\
= & \int_{0}^{l}\left[\frac{\pi}{2} X-\frac{X}{2}+i \lambda\left(\beta-\frac{1}{\beta}\right) X\left\{\frac{\pi}{2} X-\frac{X}{2}\right\}+2 i \lambda \beta \frac{X^{2}}{4}\right] d X \\
= & \frac{l^{2}}{12}\left[(\pi-1)\left\{3+2 i \lambda l\left(\beta-\frac{1}{\beta}\right)\right\}+2 i \lambda \beta l\right] . \quad \ldots \tag{34}\\
\cdots & \ldots
\end{align*} . .
$$

From equation (31) similarly:

$$
\begin{align*}
& \iint_{D} F_{D} d X d Y_{1}=\int_{0}^{l} d X \int_{-X}^{0} F_{D} d Y_{1}=\int_{0}^{l} d X \int_{0}^{X} F_{D} d\left|Y_{1}\right| \\
& =\int_{0}^{l} d X \int_{0}^{X}\left[\sin ^{-1}\left(\frac{X-\left|Y_{1}\right|}{2 X}\right)^{1 / 2}+i \lambda\left(\beta-\frac{1}{\beta}\right) X \sin ^{-1}\left(\frac{X-\left|Y_{1}\right|}{2 X}\right)^{1 / 2}\right. \\
& \left.-2 i \lambda \beta\left|Y_{1}\right| \sinh ^{-1}\left(\frac{X-\left|Y_{1}\right|}{2\left|Y_{1}\right|}\right)^{1 / 2}\right] d\left|Y_{1}\right| \\
& =\int_{0}^{l}\left[\frac{X}{2}+i \lambda\left(\beta-\frac{1}{\beta}\right) \frac{X^{2}}{2}-2 i \lambda \beta \frac{X^{2}}{4}\right] d X \\
& =\frac{l^{2}}{12}\left[3-\frac{2 i \lambda l}{\beta}\right] . \tag{35}
\end{align*}
$$

From equation (17) the lift coefficient for the pair of outboard controls is

$$
C_{L}=\frac{8}{\pi} \xi \frac{c_{f}^{2}}{s \bar{c}} \iint F d X d Y_{1}
$$

where, by summation of equations (32), (33), (34) and (35),

$$
\iint F d X d Y_{1}=\frac{\pi l}{8}\left(4 m_{1}-l\right)+i \lambda \frac{\pi l^{2}}{12}\left\{3 m_{1}\left(\beta-\frac{1}{\beta}\right)+\frac{l}{\beta}\right\} .
$$

Since in Fig. $4, l=1 / \beta$ and $m_{1}=\left(s / c_{f}\right)\left(1-\eta_{1}\right)$, it follows that
where

$$
\begin{equation*}
C_{L}=\frac{\xi c_{f}^{2}}{s \bar{c}}\left[\left(-\frac{1}{\beta^{2}}+i \lambda \frac{2}{3 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{2}{\beta^{2}}+i \lambda\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right], \ldots \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{1}=\beta s\left(1-\eta_{1}\right) / c_{f} \tag{37}
\end{equation*}
$$

This is identical to (20) with $2 s$ replaced by $2 s\left(1-\eta_{1}\right)$, the total span of control.
Similarly, the pitching moment about the hinge is given by

$$
\begin{aligned}
-C_{m}= & \frac{8}{\pi} \xi \frac{c_{f}^{3}}{s \bar{c}^{3}} \beta\left[\iint_{A} X F_{A} d X d Y_{1}+\iint_{B} X F_{B} d X d Y_{1}\right. \\
& \left.+\iint_{C} X F_{C} d X d Y_{1}+\iint_{D} X F_{D} d X d Y_{1}\right]
\end{aligned}
$$

where

$$
\begin{align*}
& \iint_{A} X F_{A} d X d Y_{1}=\frac{\pi}{8}\left[-\frac{8}{3 \beta^{3}}-2 i \lambda\left(\frac{1}{\beta^{3}}-\frac{1}{\beta^{5}}\right)+\frac{2 s}{c_{f}}\left(1-\eta_{1}\right)\left(\frac{1}{\beta^{2}}+i \lambda \frac{2}{3}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right], \ldots \tag{38}\\
& \iint_{B} X F_{B} d X d Y_{1}=\frac{\pi}{8}\left[\frac{2}{3 \beta^{3}}+i \lambda \frac{2}{2}\left(\frac{2}{\beta^{3}}-\frac{1}{\beta^{5}}\right)\right], \quad \ldots \quad \ldots \tag{39}\\
& . . \tag{40}\\
& \iint_{C} X F_{C} d X d Y_{1}=\frac{\pi}{8}\left[\frac{4}{3 \beta^{3}}+i \lambda\left(\frac{1}{\beta^{3}}-\frac{1}{\beta^{5}}\right)\right]-\frac{1}{6 \beta^{3}}+\frac{i \lambda}{8 \beta^{5}}, \ldots \\
& \ldots \\
& \ldots \\
& \ldots
\end{align*} . .
$$

and

$$
\begin{equation*}
\iint_{D} X F_{D} d X d Y_{1}=\frac{1}{6 \beta^{3}}-\frac{i \lambda}{8 \beta^{5}} \tag{41}
\end{equation*}
$$

Hence

$$
\begin{equation*}
-C_{m}=\frac{\xi c_{f}^{3}}{s \bar{c}^{2}}\left[\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{1}{\bar{\beta}^{2}}+i \lambda \frac{2}{3}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right], \quad \ldots \quad . \tag{42}
\end{equation*}
$$

which is consistent with (21).

Similarly, from equations (38), (39) and (40), the hinge moment is given by (Fig. 4):

$$
\begin{align*}
-C_{H} & =\frac{8}{\pi} \xi \frac{c_{f}}{s\left(1-\eta_{1}\right)} \beta\left[\iint_{A} X F_{A} d X d Y_{1}+\iint_{B} X F_{B} d X d Y_{1}+\iint_{C} X F_{C} d X d Y_{1}\right] \\
& =\frac{\xi c_{f}}{s\left(1-\eta_{1}\right)}\left[\left(1+\frac{2}{\pi}\right)\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{1}{\beta^{2}}+i \lambda_{3}^{2}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right] . \tag{43}
\end{align*}
$$

4.3. Outboard Control $\eta_{1} \leqslant(1-\varepsilon)$.-The aerodynamic coefficients C_{L}, C_{m} and C_{H} in equations (36), (42) and (43) apply when $\frac{1}{2} \varepsilon \leqslant \eta_{1} \leqslant(1-2 \varepsilon)$, where $\varepsilon=c_{j} / \beta s$; corrections to these expressions may be necessary when η_{1} is outside this range.

The range $(1-2 \varepsilon)<\eta_{1} \leqslant(1-\varepsilon)$ is considered first (Fig. 7). Here the Mach lines from 0_{1} and from the leading-tip corner intersect on the control. $F=F_{A}, F_{B}, F_{C}, F_{D}$ in regions R_{1}, R_{2}, R_{3}, R_{4}. So if $F_{B}=F_{A}+F_{B}{ }^{\prime}, F_{C}=F_{A}+F_{C}{ }^{\prime}$, then $F_{B}{ }^{\prime}$ and $F_{C}{ }^{\prime}$ represent the loading due to interference by the tip and the inboard edge of the control respectively. Hence, in region R_{5}, where the flow is influenced by both effects, it is clear that

$$
\begin{equation*}
F=F_{A}+F_{B}^{\prime}+F_{C}^{\prime}=F_{B}+F_{C}-F_{A} \tag{44}
\end{equation*}
$$

Further, the load distribution in Fig. 7 is composed of the loads F_{D} in R_{4}, F_{A} in $R_{1}+R_{2}+R_{3}+R_{5}$, $F_{B}{ }^{\prime}$ in $R_{2}+R_{5}$ and $F_{C}{ }^{\prime}$ in $R_{3}+R_{5}$, while the distribution in Fig. 4 is composed of F_{D} in D, F_{A} in $A+B+C, F_{B}{ }^{\prime}$ in B and $F_{C}{ }^{\prime}$ in C. The integrals $\iint F, \iint X F$ in the two cases are therefore formally equivalent, so that equations (36), (42) and (43) are valid for $(1-2 \varepsilon)<\eta_{1} \leqslant(1-\varepsilon)$.

The formulae for C_{L} and C_{m} are easily seen to hold for $0 \leqslant \eta_{1}<\frac{1}{2} \varepsilon$. However, there will be an increment, ΔC_{H} in the hinge-moment coefficient when the deflection of the control induces a loading on the port control.
This increment is given by

$$
\begin{equation*}
-\Delta C_{H}=\frac{8}{\pi} \frac{\xi c_{f}}{s\left(1-\eta_{1}\right)} \beta \iint_{G} X F_{D} d X d Y_{1}, \quad . \quad . \quad . . \tag{45}
\end{equation*}
$$

where, from Fig. 8 and equation (31),

$$
\begin{align*}
\iint_{G} X F_{D} d X d Y_{1}= & \int_{2\left(m-m_{1}\right)}^{l} d X \int_{-X}^{-2\left(m-m_{1}\right)} X F_{D} d Y_{1} \\
= & \int_{2\left(m-m_{1}\right)}^{l} X\left\{\frac{1}{2}\left(X^{2}-4\left(m-m_{1}\right)^{2}\right)^{1 / 2}-2\left(m-m_{1}\right) \sin ^{-1}\left(\frac{X-2 m+2 m_{1}}{1 / 2}\right\} d X\right. \\
& +i \lambda\left(\beta-\frac{1}{\beta}\right) \int_{2\left(m-m_{1}\right)}^{l} X^{2}\left\{\frac{1}{2}\left(X^{2}-4\left(m-m_{1}\right)^{2}\right)^{1 / 2}\right. \\
& \left.-2\left(m-m_{1}\right) \sin ^{-1}\left(\frac{X-2 m+2 m_{1}}{2 X}\right)^{1 / 2}\right\} d X \\
& -2 i \lambda \beta \int_{2\left(m-m_{1}\right)}^{l} X\left\{\frac{1}{4} X\left(X^{2}-4\left(m-m_{1}\right)^{2}\right)^{1 / 2}\right. \\
& \left.-2\left(m-m_{1}\right)^{2} \sinh ^{-1}\left(\frac{X-2 m+2 m_{1}}{4\left(m-m_{1}\right)}\right)^{1 / 2}\right\} d X \\
= & \frac{1}{12 \beta^{3}}\left\{\left(2+\tau^{2}\right)\left(1-\tau^{2}\right)^{1 / 2}-3 \tau \cos ^{-1} \tau\right\} \\
& +\frac{i \lambda}{24 \beta^{3}}\left[-\tau^{2}\left(1-\tau^{2}\right)^{1 / 2}-4 \tau \cos ^{-1} \tau+\tau^{2}\left(6-\tau^{2}\right) \cosh ^{-1}\left(\frac{1}{\tau}\right)\right] \\
& -\frac{i \lambda}{48 \beta^{5}}\left[\left(6+\tau^{2}\right)\left(1-\tau^{2}\right)^{1 / 2}-8 \tau \cos ^{-1} \tau+\tau^{4} \cosh ^{-1}\left(\frac{1}{\tau}\right)\right], \ldots \tag{46}
\end{align*}
$$

when l is replaced by $1 / \beta$ and $\left\{2\left(m-m_{1}\right)\right\} / l=2 \beta s \eta_{1} / c_{f}$ is denoted by τ. This equation holds provided that $0 \leqslant 2\left(m-m_{1}\right) \leqslant l$, i.e., $0 \leqslant \tau \leqslant 1$.

It is convenient to introduce a function

$$
\begin{align*}
f(\tau, \beta) & =\frac{8 \beta}{\pi} \iint_{G} X F_{D} d X d Y_{1} \quad(0 \leqslant \tau \leqslant 1) . \tag{47}\\
& =\frac{8 \beta}{\pi}(\text { Right-hand side of equation }(46)),
\end{align*}
$$

which vanishes when $\tau=1$ and is identically zero for $\tau \geqslant 1$.
In the special case $\tau=0$

$$
\begin{equation*}
f(0, \beta)=-\frac{2}{\pi}\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right) . . \quad . \quad . \quad . . \quad . . \quad . . \tag{48}
\end{equation*}
$$

When equations (43) and (45) are added together, the hinge moment for an outboard control such that $0 \leqslant \eta_{1} \leqslant(1-\varepsilon)$ is given by

$$
\begin{equation*}
-C_{H}=\frac{\xi c_{f}}{s\left(1-\eta_{1}\right)}\left[2 \tau_{1}\left\{\frac{1}{\beta^{2}}+\frac{2}{3} i \lambda\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}-\left(1+\frac{\pi}{2}\right) f(0, \beta)+f(\tau, \beta)\right], \tag{49}
\end{equation*}
$$

where $\tau=2 \eta_{1} / \varepsilon$ and $f(\tau, \beta)$ is defined in equation (47). This is seen to be identical to equation (43) when $\frac{1}{2} \varepsilon \leqslant \eta_{1} \leqslant(1-\varepsilon)$, since $f(\tau, \beta)=0$ and $f(0, \beta)$ is given by (48).

For the same range the lift and pitching moment are given by equations (36) and (42). It is easily verified that as $\eta_{1} \rightarrow 0$, equations (36), (42) and (49) reduce to the respective equations (20), (21) and (22) for a full-span control.
4.4. General Control ($\eta_{0} \leqslant 1-\varepsilon$). -The restriction is imposed that the Mach line from the leading-tip corner does not cut the outboard edge of the control, that is, $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$, so that the flow will be symmetrical about $y=\frac{1}{2} s\left(\eta_{0}+\eta_{1}\right)$. Such a control may be regarded as the difference between two outboard controls whose inboard edges are at $y=s \eta_{0}$ and $y=s \eta_{1}$. By superposition, it follows from equations (36) and (42) that

$$
\begin{equation*}
C_{L}=\xi 2 \frac{c_{f}^{2}}{s \bar{c}}\left(\tau_{1}-\tau_{0}\right)\left[\frac{2}{\beta^{2}}+i \lambda\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right] \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
-C_{m}=\xi \frac{c_{f}^{3}}{s \bar{c}^{2}} \chi, \quad . \quad . \quad . \quad . . \quad . \quad . \quad . \quad . \quad . \quad . \tag{51}
\end{equation*}
$$

for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$, where

$$
\begin{equation*}
\tau_{0}=\frac{\beta s\left(1-\eta_{0}\right)}{c_{f}} \quad . . \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi=2\left(\tau_{1}-\tau_{0}\right)\left[\frac{1}{\beta^{2}}+i \lambda \frac{2}{3}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right] . \quad . \quad . \quad . . \quad . . \tag{53}
\end{equation*}
$$

It remains to obtain the expression for hinge-moment coefficient for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$, which is best derived by removing part of the pitching moment in equation (51).

Consider first the simplest case, when the flows over the outboard controls with inboard edges at $Y=s \eta_{1} / c_{f}, s \eta_{0} / c_{f}$ are of the type shown in Fig. 4. The difference is shown in Fig. 9 when the Mach line from 0_{1} does not cut the outboard edge of the control, that is, when $\eta_{0}-\eta_{1} \geqslant \varepsilon$. This configuration applies provided that $\eta_{0} \leqslant(1-\varepsilon)$.

Since the flow is symmetrical about the line $Y=s\left(\eta_{0}+\eta_{1}\right) / 2 c_{f}$, it follows that

$$
\begin{equation*}
\frac{1}{\left(\eta_{0}-\eta_{1}\right)} \frac{\bar{c}^{2}}{c_{f}^{2}}\left(-C_{m}\right)-\left(-C_{H}\right)=\frac{2 \xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)} \frac{8 \beta}{\pi} \iint X F_{D} d X d Y_{1}, \quad . . \quad . . \tag{54}
\end{equation*}
$$

where $-C_{m}$ is given by equation (51) and the integral is taken over the triangle with vertices $\left(X, Y_{1}\right)=(0,0),(l, 0),(l,-l)$. Hence for $\frac{1}{2} \varepsilon \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon), \eta_{0}-\eta_{1} \geqslant \varepsilon$,

$$
\begin{equation*}
-C_{H}=\frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\{\chi-2 f(0, \beta)\}, \quad . \quad . \quad . . \quad . \quad . \quad . \tag{55}
\end{equation*}
$$

where $f(0, \beta)$ is given in equation (48).
The extension to $0 \leqslant \eta_{1}<\frac{1}{2} \varepsilon$ corresponds exactly to the outboard control case considered in Fig. 8. The loading induced on a triangular area of the port control gives rise to the same increase in hinge moment as equation (45). This amounts to increasing χ in equation (55) by $f\left(2 \eta_{1} / \varepsilon, \beta\right)$ in equation (47), so that

$$
\begin{equation*}
-C_{H}=\frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\left\{\chi-2 f(0, \beta)+f\left(2 \eta_{1} / \varepsilon, \beta\right)\right\} \quad . \quad . \quad . . \quad . \tag{56}
\end{equation*}
$$

for $0 \leqslant \eta_{1}<\frac{1}{2} \varepsilon<\eta_{0} \leqslant(1-\varepsilon), \eta_{0}-\eta_{1} \geqslant \varepsilon$.
Since $f(\tau, \beta)=0$ for $\tau \geqslant 1$, then (56) reduces to (55) for $\eta_{1} \geqslant \frac{1}{2} \varepsilon$ so that equation (56) holds for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon), \eta_{0}-\eta_{1} \geqslant \varepsilon$.

Consider next the difference between two flows of the type shown in Fig. 4 when $\eta_{0}-\eta_{1}<\varepsilon$. The resulting flow is shown in Fig. 10, where one Mach line from 0_{0} cuts the inboard edge of the control but the other does not cut the wing tip $\left\{\eta_{0} \leqslant(1-\varepsilon)\right\}$. Fig. 10 shows four distinct positions of the port control:

$$
\left.\begin{array}{ccr}
\mathrm{abb}^{\prime} \mathrm{a}^{\prime} & - & 2 \eta_{1} \geqslant \varepsilon \\
\mathrm{bcc}^{\prime} \mathrm{b}^{\prime} & 2 \eta_{1} \leqslant \varepsilon & \eta_{0}+\eta_{1} \geqslant \varepsilon \\
\mathrm{cdd}^{\prime} \mathrm{c}^{\prime} & \eta_{0}+\eta_{1} \leqslant \varepsilon & 2 \eta_{0} \geqslant \varepsilon \\
\mathrm{dee}^{\prime} \mathrm{d}^{\prime} & 2 \eta_{0} \leqslant \varepsilon & -
\end{array}\right\} .
$$

It will be remembered that the region with loading F_{D} in Fig. 9 leads to a term $-f(0, \beta)$ in equation (54). An identical term comes from the corresponding region outboard of the control. It is easily seen from Fig. 10 that both terms need to be replaced by

$$
-\left\{f(0, \beta)-f\left[\left\{\left(\eta_{0}-\eta_{1}\right) / \varepsilon\right\}, \beta\right]\right\} .
$$

Thus, when the port control is in the region $\mathrm{abb}^{\prime} \mathrm{a}^{\prime}$ and there is no interference between the controls,

$$
\begin{equation*}
-C_{H}=\frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\left[x-2 f(0, \beta)+2 f\left(\frac{\eta_{0}-\eta_{1}}{\varepsilon}, \beta\right)\right] \ldots \quad . \quad \ldots \quad . \tag{57}
\end{equation*}
$$

When the Mach line from 0_{1} cuts the port control but that from 0_{0} does not, χ must be increased by $f\left(2 \eta_{1} / \varepsilon, \beta\right)$ as in Fig. 8. Thus, when the port control is in the region $\mathrm{bcc}^{\prime} \mathrm{b}^{\prime}$,

$$
\begin{equation*}
-C_{H}=\frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\left[\chi-2 f(0, \beta)+2 f\left(\frac{\eta_{0}-\eta_{1}}{\varepsilon}, \beta\right)+f\left(\frac{2 \eta_{1}}{\varepsilon}, \beta\right)\right] . \tag{58}
\end{equation*}
$$

When the Mach line from 0_{0} cuts the inboard but not the outboard edge of the port control, that is, when the port control is cdd' c^{\prime} (Fig. 10), then it is evident that equation (58) is amended to

$$
\begin{align*}
-C_{H}= & \frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\left[x-2 f(0, \beta)+2 f\left(\frac{\eta_{0}-\eta_{1}}{\varepsilon}, \beta\right)\right. \\
& \left.+f\left(\frac{2 \eta_{1}}{\varepsilon}, \beta\right)-2 f\left(\frac{\eta_{0}+\eta_{1}}{\varepsilon}, \beta\right)\right] . \quad . \tag{59}
\end{align*}
$$

Finally when the Mach line from 0_{0} cuts the outboard edge of the port control, that is, when the port control takes up the position dee' d^{\prime} (Fig. 10), then it is easily seen the term $f\left(2 \eta_{0} / \varepsilon, \beta\right)$ must be added to x in equation (59) to give

$$
\begin{align*}
-C_{H}= & \frac{\xi c_{f}}{s\left(\eta_{0}-\eta_{1}\right)}\left[\chi-2 f(0, \beta)+2 f\left(\frac{\eta_{0}-\eta_{1}}{\varepsilon}, \beta\right)\right. \\
& \left.+f\left(\frac{2 \eta_{1}}{\varepsilon}, \beta\right)-2 f\left(\frac{\eta_{0}+\eta_{1}}{\varepsilon}, \beta\right)+f\left(\frac{2 \eta_{0}}{\varepsilon}, \beta\right)\right] . \tag{60}
\end{align*}
$$

It can readily be shown that as $\eta_{0}-\eta_{1} \rightarrow 0$, the expression in the square brackets in equation (60) is $0\left(\eta_{0}-\eta_{1}\right)^{2}$, so that $-C_{H} \rightarrow 0$ as $\eta_{0}-\eta_{1} \rightarrow 0$.

Since $f(\tau, \beta)=0$ when $\tau \geqslant 1$, equation (60) reduces to equation (59) when $2 \eta_{0} \geqslant \varepsilon$, to equation (58) when $2 \eta_{0} \geqslant \varepsilon,\left(\eta_{0}+\eta_{1}\right) \geqslant \varepsilon$ and to equation (57) when in addition $2 \eta_{1} \geqslant \varepsilon$. Furthermore, when $\eta_{0}-\eta_{1} \geqslant \varepsilon$ and consequently $\eta_{0}+\eta_{1} \geqslant \eta_{0} \geqslant \varepsilon$, equation (60) reduces to equation (56). Equation (60) is therefore valid for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$. Thus the lift, pitching-moment and hinge-moment coefficients for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$ are given by equations $(50),(51)$ and (60), where χ and the function $f(\tau, \beta)$ are given by equations (37), (52), (53) and equations (46), (47) respectively.
4.5. Controls with η_{0} or η_{1} in the Range $(1-\varepsilon)<\eta \leqslant\left(1-\frac{1}{2} \varepsilon\right)$.-Consider first an outboard control with $(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$, shown in Fig. 5. The expression for the new loading function, F_{E}, is derived in Appendix A. The loading $F_{B}+F_{D}-F_{A}$ in Fig. 5 is deduced in a similar manner to equation (44), the loading in region R_{5} of Fig. 7.

To evaluate the lift and moment it is convenient to start with the fictitious loading distribution of Fig. 11, which is conctructed so that the integrals $\iint F, \iint X F$ are formally equivalent to those for the flow represented in Fig. 7. It is then necessary simply to add to this the loading in Fig. 12, which represents the difference between the distributions of Figs. 5 and 11. It is supposed that the Mach line from 0_{1} does not cut the port tip, i.e., that $\eta_{1} \geqslant(\varepsilon-1)$.

The lift coefficient corresponding to Fig. 5 is obtained by adding to equation (36) the increment

$$
\begin{equation*}
\Delta C_{L}=\frac{8}{\pi} \xi \frac{C_{f}^{2}}{s \bar{c}}\left[\iint_{\Lambda_{1}}\left(F_{A}-F_{C}\right) d X d Y_{1}+\iint_{\Lambda_{2}} F_{E}^{*} d X d Y_{1}\right] \tag{61}
\end{equation*}
$$

where $F_{R}-F_{E}+F_{A}-F_{B}-F_{C}$. It is easily verified from equations (15), (28) and (31) that $F_{A}(X)-F_{c}\left(X, Y_{1}\right) \equiv F_{D}\left(X,-Y_{1}\right)$.
Hence the first integral in equation (61) becomes

$$
\iint_{\Lambda_{1}}\left(F_{A}-F_{C}\right) d X d Y_{1}=\iint_{\Lambda_{4}} F_{D}\left(X, Y_{1}\right) d X d Y_{1}
$$

From equations (15), (24), (28) and (A.5),

$$
\begin{align*}
F_{E}= & F_{E}+F_{A}-F_{B}-F_{C} \\
= & {\left[\sin ^{-1}\left(\frac{X-Y_{1}}{2 X}\right)^{1 / 2}-\sin ^{-1}\left(\frac{m_{1}-Y_{1}}{X}\right)^{1 / 2}\right]\left\{1+i \lambda X\left(\beta-\frac{1}{\beta}\right)\right\} } \\
& +2 i \lambda \beta\left(m_{1}-Y_{1}\right)^{1 / 2}\left\{m_{1}^{1 / 2}-\left(X+Y_{1}-m_{1}\right)^{1 / 2}\right\} . \quad . \quad . \tag{62}
\end{align*}
$$

It is easily seen from Fig. 12 that

$$
\iint_{\Lambda_{4}} F_{D} d X d Y_{1}+\iint_{\Lambda_{2}} F_{\dot{l}} d X d Y_{1}=\int_{m_{1}}^{l} d X \int_{-X}^{-m_{1}} F_{D} d Y_{1}+\int_{m_{1}}^{l} d X \int_{2 m_{1}-X}^{m_{1}} F_{E}^{*} d Y_{1},
$$

where $l=1 / \beta$ and $m_{1}=s\left(1-\eta_{1}\right) / c_{f}$. When equations (36) and (61) are added together, for an outboard control with $(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$
where

$$
\begin{equation*}
C_{L}=\frac{\xi c_{f}^{2}}{s \bar{c}}\left[\left(-\frac{1}{\beta^{2}}+i \lambda \frac{2}{3 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{2}{\beta^{2}}+i \lambda\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right]+\Delta C_{L}, \ldots \quad . \tag{63}
\end{equation*}
$$

$$
\begin{aligned}
\Delta C_{L}= & \frac{8}{\pi} \frac{\xi c_{f}^{2}}{s \bar{c}}\left[\frac{1}{4 \beta^{2}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(1+2 \tau_{1}\right)+\left(1-4 \tau_{1}\right) \sin ^{-1}\left(1-\tau_{1}\right)^{1 / 2}\right\}\right. \\
& +\frac{i \lambda}{6 \beta^{2}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2} \tau_{1}\left(5-2 \tau_{1}\right)-3 \tau_{1} \sin ^{-1}\left(1-\tau_{1}\right)^{1 / 2}\right\} \\
& \left.-\frac{i \lambda}{18 \beta^{4}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}^{2}\right)+3\left(1-3 \tau_{1}\right) \sin ^{-1}\left(1-\tau_{1}\right)^{1 / 2}\right\}\right]
\end{aligned}
$$

and

$$
\tau_{1}=m_{1} / l=\left(1-\eta_{1}\right) / \varepsilon .
$$

Similarly the increment to the pitching-moment coefficient as given in equation (42) is

$$
-\frac{8}{\pi} \frac{\xi c_{f}^{3}}{s \bar{\sigma}^{2}} \beta\left[\iint_{\Lambda_{4}} X F_{D} d X d Y_{1}+\iint_{\Lambda_{2}} X F_{\dot{E}} d X d Y_{1}\right] .
$$

The first integral is equivalent to equation (46), when the non-dimensional distance $2\left(m-m_{1}\right)=2 s \eta_{1} / c_{f}$ in Fig. 8 is replaced by $m_{1}=s\left(1-\eta_{1}\right) / c_{f}$ in Fig. 12, and contributes a term

$$
\frac{\pi}{8 \beta} f\left(\frac{1-\eta_{1}}{\varepsilon}, \beta\right)=\frac{\pi}{8 \beta} f\left(\tau_{1}, \beta\right) .
$$

The second integral plays a similar rôle, so that it is convenient to introduce another function

$$
\begin{equation*}
g\left(\tau_{1}, \beta\right)=\frac{8 \beta}{\pi} \iint_{\Lambda_{2}} X F_{E}^{*} d X d Y_{1}, \quad . \tag{64}
\end{equation*}
$$

when $1-\eta_{1} \leqslant \varepsilon\left(\right.$ i.e., when $\left.\tau_{1} \leqslant 1\right)$, where F_{E} is given in equation (62). Like the function $f(\tau, \beta), g\left(\tau_{1}, \beta\right)$ is defined to vanish when $1-\eta_{1}>\varepsilon$ (i.e., when $\tau_{1}>1$).

The moment coefficient for $(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ is therefore given by

$$
\begin{equation*}
-C_{m}=\frac{\xi c_{f}^{3}}{s \tilde{\sigma}^{2}}\left[\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{1}{\bar{\beta}^{2}}+i \lambda \frac{2}{3}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}+f\left(\tau_{1}, \beta\right)+g\left(\tau_{1}, \beta\right)\right] \ldots \tag{65}
\end{equation*}
$$

From equations (62) and (64) it can be shown that

$$
\begin{aligned}
& g\left(\tau_{1}, \beta\right)=\frac{2}{9 \pi}\left[\frac { 1 } { \beta ^ { 2 } } \left\{2 \tau_{1}{ }^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}{ }^{2}\right)-3\left(1-\tau_{1}{ }^{2}\right)^{1 / 2}\left(2+\tau_{1}{ }^{2}\right)\right.\right. \\
& \left.+6\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}+9 \tau_{1} \cos ^{-1} \tau_{1}\right\}+\frac{i \lambda}{10 \beta^{2}}\left\{8 \tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2} \tau_{1}\left(21-2 \tau_{1}-4 \tau_{1}{ }^{2}\right)\right. \\
& +15 \tau_{1}{ }^{2}\left(1-\tau_{1}^{2}\right)^{1 / 2}-120 \tau_{1} \cos ^{-1} \tau_{1}{ }^{1 / 2}+60 \tau_{1} \cos ^{-1} \tau_{1} \\
& \left.-15 \tau_{1}{ }^{2}\left(6-\tau_{1}{ }^{2}\right) \cosh ^{-1}\left(\frac{1}{\tau_{1}}\right)\right\}-\frac{i \lambda}{20 \beta^{4}}\left\{2 \tau_{1}{ }^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45+6 \tau_{1}+8 \tau_{1}{ }^{2}+16 \tau_{1}{ }^{3}\right)\right. \\
& -15\left(1-\tau_{1}{ }^{2}\right)^{1 / 2}\left(6+\tau_{1}{ }^{2}\right)+30\left(3-8 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}+120 \tau_{1} \cos ^{-1} \tau_{1} \\
& \begin{aligned}
&-15 \tau_{1}{ }^{4} \cosh ^{-1}\left(\frac{1}{\tau_{1}}\right) \\
& \text { for } \tau_{1} \leqslant 1
\end{aligned}
\end{aligned}
$$

The hinge moment is evaluated by subtracting from the pitching-moment integrals corresponding to equation (65) the integrals over the triangular region whose vertices are $\left(X, Y_{1}\right)=(0,0),(l, 0)$ and $(l,-l)$ in Fig. 5,

$$
\iint_{D} X F_{D} d X d Y_{1}=\frac{\pi}{8 \beta} f(0, \beta)
$$

and

$$
\begin{equation*}
\iint_{A_{3}} X\left(F_{B}-F_{A}\right) d X d Y_{1}=\int_{m_{1}}^{l} X d X \int_{-\left(X-m_{1}\right)}^{0}\left(F_{B}-F_{A}\right) d Y_{1} \tag{67}
\end{equation*}
$$

where $l=1 / \beta, m_{1}=\tau_{1} / \beta$.
By equations (15) and (24) the second integral in equation (67) is evaluated to be

$$
\begin{aligned}
& -\frac{1}{18 \beta^{3}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}^{2}\right)+3\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\} \\
& -\frac{i \lambda}{180 \beta^{3}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45-78 \tau_{1}+16 \tau_{1}{ }^{2}+32 \tau_{1}^{3}\right)+15\left(3-4 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\} \\
& +\frac{i \lambda}{360 \beta^{5}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45+6 \tau_{1}+8 \tau_{1}^{2}+16 \tau_{1}^{3}\right)+15\left(3-8 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\}
\end{aligned}
$$

From this result and equations (65) and (67) an expression for the hinge moment is obtained. However, the possible interference of the port control has not been taken into account. So the quantity $\left[\left(\xi c_{f}\right) /\left\{s\left(1-\eta_{1}\right)\right\}\right] f\left[\left(2 \eta_{1} / \varepsilon\right), \beta\right]$ must be included as was done in deriving equation (56) from equation (55). This gives

$$
\begin{align*}
-C_{H}= & \frac{\xi c_{f}}{s\left(1-\eta_{1}\right)}\left[\left(-\frac{2}{3 \beta^{2}}+i \lambda \frac{1}{2 \beta^{4}}\right)+2 \tau_{1}\left\{\frac{1}{\beta^{2}}+i \lambda \frac{2}{3}\left(\frac{1}{\beta^{2}}-\frac{1}{\beta^{4}}\right)\right\}\right. \\
& +f\left(\tau_{1}, \beta\right)+g\left(\tau_{1}, \beta\right)-f(0, \beta)+f\left(\frac{2 \eta_{1}}{\varepsilon}, \beta\right) \\
& +\frac{4}{9 \pi \beta^{2}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}{ }^{2}\right)+3\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}{ }^{1 / 2}\right\} \\
& +\frac{2 i \lambda}{45 \pi \beta^{2}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45-78 \tau_{1}+16 \tau_{1}{ }^{2}+32 \tau_{1}{ }^{3}\right)+15\left(3-4 \tau_{1}\right) \cos ^{-1} \tau_{1}{ }^{1 / 2}\right\} \\
& \left.-\frac{i \lambda}{45 \beta^{4} \pi}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45+6 \tau_{1}+8 \tau_{1}{ }^{2}+16 \tau_{1}{ }^{3}\right)+15\left(3-8 \tau_{1}\right) \cos ^{-1} \tau_{1}{ }^{1 / 2}\right\}\right], \tag{68}
\end{align*}
$$

where $\tau_{1}=\left(1-\eta_{1}\right) / \varepsilon$. Thus, for an outboard control, the lift, pitching moment and hinge moment are given by equations (63), (65) and (68), provided that ($1-\varepsilon$) $<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right.$) and $\eta_{1} \geqslant(\varepsilon-1)$, the latter condition being automatically satisfied when $\varepsilon<1$.

Now consider a general control with $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$, the condition $\eta_{1} \geqslant(\varepsilon-1)$ being satisfied. The case where $\eta_{0} \leqslant(1-\varepsilon)$ has been treated in section 4.4. The expressions for the lift and pitching moment are obtained by the superposition of flows as in section 4.4. Thus when $0 \leqslant \eta_{1} \leqslant(1-\varepsilon)$:

$$
\begin{equation*}
C_{L}=[\text { R.H.S. of equation (36) }]-\left[\text { R.H.S. of equation (63) with } \tau_{1} \text { replaced by } \tau_{0}\right] \tag{69}
\end{equation*}
$$

where $\tau_{0}=\left(1-\eta_{0}\right) / \varepsilon$. Similarly when $(1-\varepsilon) \leqslant \eta_{1} \leqslant \eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$:
$C_{L}=$ [R.H.S. of equation (63)] - [R.H.S. of equation (63) with τ_{1} replaced by $\left.\tau_{0}\right]$.
In the expression for the pitching moment in equation (65) the functions $f\left(\tau_{1}, \beta\right), g\left(\tau_{1}, \beta\right)$ vanish when $\eta_{1} \leqslant(1-\varepsilon)$, so that equation (65) reduces to equation (42) and is therefore valid for $0 \leqslant \eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right), \eta_{0}=1$. This result enables the pitching moment for a general control to be written as

$$
\begin{equation*}
-C_{m}=[\text { R.H.S. of equation (65) }]-\left[\text { R.H.S. of equation (65) with } \tau_{1} \text { replaced by } \tau_{0}\right] . \tag{71}
\end{equation*}
$$

In section 4.4 it is shown that the hinge moment is given by equation (60) for $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-\varepsilon)$ for a general control but when $0 \leqslant \eta_{1} \leqslant \eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ the flow over the control surface experiences no interference from the tip so that equation (60) remains valid.
4.6. Summary of Aerodynamic Coefficients.-To complete the investigation it would be necessary to consider controls with η_{1} or η_{0} in the range $\left(1-\frac{1}{2} \varepsilon\right)<\eta \leqslant 1$. Only one new loading function F_{F} is introduced; this is derived in Appendix B. The calculation of the lift, pitching moment and hinge moment is similar to that in section 4.5 and is omitted as it is not of much practical importance.

To summarise, expressions for the lift, pitching moment and hinge moment have been obtained, which cover the general case of Fig. 1 with three restrictions:
(a) $\varepsilon \leqslant 1$ (so that Mach line from inboard edge of starboard control cannot cut the port tip)
(b) $\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$
(c) either $\eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ or $\eta_{0} \doteq 1$.

The individual expressions only apply when further restrictions on η_{0} or η_{1} are made. The following table lists the appropriate equation numbers:

η_{0}	η_{1}	C_{L}	$-C_{m}$	$-C_{H}$
$0 \leqslant \eta_{0} \leqslant(1-\varepsilon)$	$0 \leqslant \eta_{1} \leqslant \eta_{0}$	50	51	$60 \dagger$
$(1-\varepsilon)<\eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$	$0 \leqslant \eta_{1} \leqslant(1-\varepsilon)$	69	$71 \dagger$	$60 \dagger$
$(1-\varepsilon)<\eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$	$(1-\varepsilon)<\eta_{1} \leqslant \eta_{0}$	70	71	$60 \dagger$
$\eta_{0}=1$	$0 \leqslant \eta_{1} \leqslant(1-\overline{2})$	36	42	$49 \dagger$
$\eta_{0}=1$	$(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$	63	65	68

5. Derivatives for a Cropped Delta Wing.-Each aerodynamic coefficient may be split uniquely into two parts, viz.,

$$
\left.\begin{array}{rl}
C_{L} & =-2 z_{\xi} \xi-2 z_{\xi}\left(\frac{\xi \bar{c}}{V}\right) \\
\left(C_{m}\right)_{0} & =2 m_{\xi} \xi+2 m_{\xi}\left(\frac{\xi \bar{c}}{V}\right) \tag{72}\\
C_{H} & =2 h_{\xi} \xi+2 h_{\xi}\left(\frac{\xi \bar{c}}{V}\right)
\end{array}\right\}
$$

where $\dot{\xi}=d \xi / d t$ and the real coefficients, $z_{\xi}, z_{\xi}, m_{\xi}, m_{\xi}, h_{\xi}, h_{\xi}$, are the required control derivatives.
The moment in the second equation will be taken about the pitching axis through the apex of the wing so that the moment coefficient there is equal to

$$
\left(C_{m}\right)_{0}=C_{m}-\left(\frac{c_{0}-c_{f}}{\bar{c}}\right) C_{L}
$$

where C_{m} is taken about the hinge line. Then the above equations may be written

$$
\begin{align*}
& C_{L}=-2 z_{\xi} \xi-2 z_{\xi}\left(\frac{\dot{\xi} \bar{c}}{V}\right) \\
& \left.C_{m}=2\left\{m_{\xi}-\left(\frac{c_{0}-c_{f}}{\bar{c}}\right) z_{\xi}\right\} \xi+2\left\{m_{\xi}-\left(\frac{c_{0}-c_{f}}{\bar{c}}\right) z_{\xi}\right\}\left(\frac{\dot{\xi} \bar{c}}{V}\right)\right\} \tag{73}\\
& C_{H}=2 h_{\xi} \xi+2 h_{\xi}\left(\frac{\dot{\xi} \bar{c}}{V}\right)
\end{align*}
$$

whence the control derivatives may be evaluated from the various expressions for C_{L}, C_{m} and C_{H} summarised in section 4.6. However, only the cases of an outboard control when $0 \leqslant \eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ and for an inboard control when $0 \leqslant \eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ will be dealt with here.

[^1]It is convenient at this stage to split the functions $f(\tau, \beta), g(\tau, \beta)$ into their real and imaginary parts

$$
\left.\begin{array}{l}
f(\tau, \beta)=f_{r}(\tau, \beta)+i \lambda f_{i}(\tau, \beta) \tag{74}\\
g(\tau, \beta)=g_{r}(\tau, \beta)+i \lambda g_{i}(\tau, \beta)
\end{array}\right\} . \quad .
$$

These are identically zero for $\tau \geqslant 1$.
Consider first an outboard control when $(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$. From equation (73) with the values of the aerodynamic coefficients given by equations (63), (65) and (68) and using equations (74) it is found that

$$
\begin{aligned}
& -z_{\xi}=\frac{c_{f}{ }^{2}}{2 s \bar{s} \bar{\beta}^{2}}\left(4 \tau_{1}-1\right)+\frac{c_{f}^{2}}{\pi s \bar{c} \beta^{2}}\left[\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(1+2 \tau_{1}\right)+\left(1-4 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right] \\
& -z_{\xi}=\frac{c_{f}^{3}}{s \bar{c}^{2} \beta^{4}}\left\{\frac{1}{3}+\tau_{1}\left(\beta^{2}-1\right)\right\}-\frac{2 c_{f}^{3}}{9 \pi s \bar{c}^{2} \beta^{4}}{ }^{\left[\tau_{1}^{1 / 2}\right.}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}{ }^{2}\right) \\
& \left.+3\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}-3 \beta^{2} \tau_{1}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(5-2 \tau_{1}\right)-3 \cos ^{-1} \tau_{1}^{1 / 2}\right\}\right] \\
& -m_{\xi}=\frac{c_{f}^{3}}{2 s \bar{c}^{2} \beta^{2}}\left\{\left(\frac{1}{3}-2 \tau_{1}\right)+\frac{c_{0}}{c_{f}}\left(4 \tau_{1}-1\right)\right\}+\frac{c_{f}^{3}}{2 s \bar{c}^{2}}\left[f_{r}\left(\tau_{1}, \beta\right)+g_{r}\left(\tau_{1}, \beta\right)\right. \\
& \left.+\frac{2}{\pi \beta^{2}}\left(\frac{c_{0}}{c_{f}}-1\right)\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(1+2 \tau_{1}\right)+\left(1-4 \tau_{1}\right) \cos ^{-1} \tau_{1}{ }^{1 / 2}\right\}\right] \\
& -m_{\xi}=\frac{c_{f}^{4}}{2 s \bar{c}^{3} \beta^{4}}\left\{\frac{1}{6}\left(-1+4 \tau_{1}-4 \tau_{1} \beta^{2}\right)+\frac{2}{3} \frac{c_{0}}{c_{f}}\left(1-3 \tau_{1}+3 \tau_{1} \beta^{2}\right)\right\} \\
& +\frac{c_{f}^{4}}{2 s \bar{c}^{3}}\left[f_{i}\left(\tau_{1}, \beta\right)+g_{i}\left(\tau_{1}, \beta\right)-\frac{4}{9 \pi \beta^{4}}\left(\frac{c_{0}}{c_{f}}-1\right)\left\{\tau_{1}{ }^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}{ }^{2}\right)\right.\right. \\
& \left.+3\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\} \\
& \left.+\frac{4}{3 \pi \beta^{2}}\left(\frac{c_{0}}{c_{f}}-1\right) \tau_{1}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(5-2 \tau_{1}\right)-3 \cos ^{-1} \tau_{1}^{1 / 2}\right\}\right] \\
& -h_{\xi}=\frac{c_{f}}{2 s\left(1-\eta_{1}\right) \beta^{2}}\left\{2 \tau_{1}-\frac{2}{3}\left(1+\frac{2}{\pi}\right)+\beta^{2} f_{r}\left(\frac{2 \eta_{1}}{\varepsilon} \beta\right)\right\}+\frac{c_{f}}{2 s\left(1-\eta_{1}\right)}\left[f_{r}\left(\tau_{1}, \beta\right)\right. \\
& \left.+g_{\gamma}\left(\tau_{1}, \beta\right)+\frac{4}{9 \pi \beta^{2}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(3+\tau_{1}+2 \tau_{1}^{2}\right)+3\left(1-3 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\}\right] \\
& -h_{\xi}=\frac{c_{f}{ }^{2}}{2 s \bar{c}\left(1-\eta_{1}\right) \beta^{4}}\left\{\frac{1}{2}\left(1+\frac{2}{\pi}\right)+{ }_{3}^{4} \tau_{1}\left(\beta^{2}-1\right)+\beta^{4} f_{i}\left(\frac{2 \eta_{1}}{\varepsilon}, \beta\right)\right\} \\
& +\frac{c_{f}^{2}}{2 s \bar{c}\left(1-\eta_{1}\right)}\left[f_{i}\left(\tau_{1}, \beta\right)+g_{i}\left(\tau_{1}, \beta\right)\right. \\
& -\frac{1}{45 \pi \beta^{4}}\left\{\tau_{1}^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45+6 \tau_{1}+8 \tau_{1}{ }^{2}+16 \tau_{1}^{3}\right)+15\left(3-8 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\} \\
& +\frac{2}{45 \pi \beta^{2}}\left\{\tau_{1}{ }^{1 / 2}\left(1-\tau_{1}\right)^{1 / 2}\left(45-78 \tau_{1}+16 \tau_{1}{ }^{2}+32 \tau_{1}{ }^{3}\right)\right. \\
& \left.\left.+15\left(3-4 \tau_{1}\right) \cos ^{-1} \tau_{1}^{1 / 2}\right\}\right] \\
& \text { where } \tau_{1}=\left(1-\eta_{1}\right) / \varepsilon \text {. }
\end{aligned}
$$

These results hold for $(1-\varepsilon)<\eta_{1} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$. The derivatives for $0 \leqslant \eta_{1} \leqslant(1-\varepsilon)$ are given by equation (75) if the terms in the square brackets are omitted.

The derivatives for an inboard control when $(1-\varepsilon)<\eta_{0} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$ are found in a similar manner. The aerodynamic coefficients in this case are given in equations (69), (71), (60) with $\dot{\eta}_{1}=0$. This leads to

$$
\begin{aligned}
&-z_{\xi}= \eta_{0} \frac{2 c_{f}}{\bar{c} \beta}-\frac{c_{f}^{2}}{\pi s \bar{c}^{2}}\left[\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(1+2 \tau_{0}\right)+\left(1-4 \tau_{0}\right) \cos ^{-1} \tau_{0}^{1 / 2}\right] \\
&-z_{\xi}= \eta_{0} \frac{c_{f}^{2}}{\bar{c}^{2}}\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)+\frac{2}{9 \pi \beta^{4}} \frac{c_{f}^{3}}{\bar{c}^{2}}\left[\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(3+\tau_{0}+2 \tau_{0}^{2}\right)\right. \\
&\left.+3\left(1-3 \tau_{0}\right) \cos ^{-1} \tau_{0}^{1 / 2}-3 \beta^{2} \tau_{0}\left\{\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(5-2 \tau_{0}\right)-3 \cos ^{-1} \tau_{0}^{1 / 2}\right\}\right] \\
&-m_{\xi}= \eta_{0} \frac{c_{f}^{2}}{\bar{c}^{2}}\left(2 \frac{c_{0}}{c_{f}}-1\right) \frac{1}{\beta}-\frac{c_{f}^{3}}{2 s \bar{c}^{2}}\left[f_{r}\left(\tau_{0}, \beta\right)+g_{r}\left(\tau_{0}, \beta\right)\right. \\
&\left.+\frac{2}{\pi \beta^{2}}\left(\frac{c_{0}}{c_{f}}-1\right)\left\{\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(1+2 \tau_{0}\right)+\left(1-4 \tau_{0}\right) \cos ^{-1} \tau_{0}^{1 / 2}\right\}\right] \\
&-m_{\xi}= \eta_{0} \frac{c_{f}^{3}}{\bar{c}^{3}}\left(\frac{c_{0}}{c_{f}}-\frac{1}{3}\right)\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)-\frac{c_{f}^{4}}{2 s \bar{c}^{3}}\left[f_{i}\left(\tau_{0}, \beta\right)+g_{i}\left(\tau_{0}, \beta\right)\right. \\
&+\frac{4}{9 \pi \beta^{4}}\left(1-\frac{c_{0}}{c_{f}}\right)\left\{\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(3+\tau_{0}+2 \tau_{0}^{2}\right)+3\left(1-3 \tau_{0}\right) \cos ^{-1} \tau_{0}^{1 / 2}\right\} \\
&\left.-\frac{4}{3 \pi \beta^{2}}\left(1-\frac{c_{0}}{c_{f}}\right) \tau_{0}\left\{\tau_{0}^{1 / 2}\left(1-\tau_{0}\right)^{1 / 2}\left(5-2 \tau_{0}\right)-3 \cos ^{-1} \tau_{0}^{1 / 2}\right\}\right] \\
&-h_{\xi}= \frac{c_{f}}{2 s \eta_{0}}\left\{\eta_{0} \frac{2 s}{c_{f}} \frac{1}{\beta}-f_{r}(0, \beta)+f_{r}\left(\frac{2 \eta_{0}}{\varepsilon}, \beta\right)\right\} \\
&-h_{\xi}= \frac{c_{f}^{2}}{2 s \bar{c} \eta_{0}}\left\{\eta_{0} \frac{4 s}{3 c_{f}}\left(\frac{1}{\beta}-\frac{1}{\beta^{3}}\right)-f_{i}(0, \beta)+f_{i}\left(\frac{2 \eta_{0}}{\varepsilon}, \beta\right)\right\} \\
& \text { where } \\
& \tau_{0}=\left(1-\eta_{0}\right) / \varepsilon .
\end{aligned}
$$

These formulae also give the derivatives for $0 \leqslant \eta_{0} \leqslant(1-\varepsilon)$ if the terms in the square brackets are omitted.

The functions $f_{r}, f_{i}, g_{r}, g_{i}$ defined in equation (74) are tabulated for ranges of values of $M=\sqrt{ }\left(\beta^{2}+1\right)$ and τ in Tables 1 and 2. Whereas f_{r} and f_{i} are required throughout the range $0 \leqslant \tau \leqslant 1, g_{r}$ and g_{i} are not required when $0 \leqslant \tau \leqslant 0 \cdot 5$ since $\tau_{0}=\left(1-\eta_{0}\right) / \varepsilon$ and $\tau_{1}=\left(1-\eta_{1}\right) / \varepsilon$ are not considered in this range. Table 2 is therefore restricted to $\tau=0.5(0 \cdot 1) 1 \cdot 0$.
6. Discussion of Results.-The derivatives given in section 5 for inboard and outboard controls are tabulated for a cropped delta wing (Fig. 1) of aspect ratio 1.8 and taper ratio $1 / 7$. For convenience the auxiliary functions $f_{r}, f_{i}, g_{r}, g_{i}$ are given in Tables 1 and 2 for various values of their arguments. The lift and pitching-moment derivatives from equations (75) and (76) are given in Table 3 and the hinge-moment derivatives in Table 4.

The stiffness or steady derivatives are plotted against the span of inboard and outboard controls for Mach numbers $M=1 \cdot 1,1 \cdot 2,1 \cdot 4,1 \cdot 6,2 \cdot 0$ in Fig. 13 while the damping or out-ofphase derivatives are similarly plotted in Fig. 14. From Fig. 14 it is seen that $-h_{\xi}$ rapidly decreases so as to become increasingly unstable as the Mach number decreases below 1.4 for an outboard control, this being particularly noticeable for the larger spans. For an outboard control with η_{1} in the range $0 \cdot 6 \leqslant \eta_{1} \leqslant 1$ it is evident that the interference from the tip gives a stabilising effect and positive damping at these lower Mach numbers.

The variation of the derivatives with Mach number is shown in Fig. 15, a cross-plot of Figs. 13 and 14 for the particular cases of full-span, half-span inboard and half-span outboard controls. From the graph of $-h_{\xi}$ it is seen that instability ($-h_{\xi}<0$) occurs below Mach numbers of $1 \cdot 4,1 \cdot 35$ and $1 \cdot 25$ for these respective controls.

Fig. 16 illustrates the variation of the hinge-moment derivatives with frequency. The results given for frequency parameters $v=\omega \bar{c} / V=0 \cdot 8,1 \cdot 6$ and $2 \cdot 4$ are those calculated by Acum ${ }^{3}$ (1950). From these curves it is evident that there is a negligible variation in the derivatives with frequency in the range $0 \leqslant \nu \leqslant 0 \cdot 8$ for $M>1 \cdot 4$. For lower Mach numbers the effect of frequency becomes more pronounced, but it amounts to less than 6 per cent for $0 \leqslant \nu \leqslant 0 \cdot 4$ and $M>1 \cdot 2$. Within these limits the present theory seems satisfactory.

Finally the variation of full-span hinge-moment derivatives with Mach number ($0 \leqslant M \leqslant 2$) is shown in Fig. 17. The subsonic points are taken from calculations by an extension of the Multhopp-Garner theory ${ }^{4}$ (1952) and the preliminary experimental values of $-h_{\xi}$ and $-h_{\xi}$ have been obtained by Bratt of the N.P.L. The theoretical curves in the range $0.8<M<1 \cdot 0$ are only speculative. In the subsonic range the theoretical and experimental values are in good agreement except near $M=1$; this is particularly true for - $h_{\dot{e}}$. On the other hand there is not good agreement in the supersonic range near $M=1$; linearized theory predicts too high a value for $-h_{\xi}$ and too low a value for $-h_{\xi}$. It is expected, however, that agreement between theory and experiment will considerably improve for higher values of Mach number.
7. Acknowledgements.-Most of the numerical results in this report were calculated by Mrs. J. S. Sindall and Miss S. M. Passmore.

LIST OF SYMBOLS

a	Speed of sound
$A \ldots D, G$	Areas of integration (Figs. 3, 4, 8)
c_{0}	Root chord
c_{f}	Control chord (tip chord)
\bar{c}	Mean chord
	$\frac{1}{2}\left(c_{0}+c_{f}\right)$
C_{H}	Complex hinge-moment coefficient
	$H!\frac{1}{2} \rho_{0} V^{2} S_{f} c_{f}$
C_{L}	Complex lift coefficient
	$L / \frac{1}{2} \rho_{0} V^{2} S$
C_{m}	Complex pitching-moment coefficient
	$\mathscr{M} / \frac{1}{2} \rho_{0} V^{2} S \bar{c}$
f	$f_{r}+i \lambda f_{i}$ (defined by equations (46), (47))
F	Complex non-dimensional loading (equation (14))
$F_{A} \ldots F_{F}, F_{E}^{*}$	Values of F defined by equations (15), (16), (28), (31), (A.5), (B.3), (62)

LIST OF SYMBOLS-continued

$$
\begin{aligned}
& g=g_{r}+i \lambda g_{i} \text { (given by equation (66)) } \\
& h_{\xi}, h_{\xi} \quad \text { Stiffness, damping derivative of hinge moment (equation (72)) } \\
& H \quad \text { Complex hinge moment } \\
& K=\cot \mu\left(1+\sec ^{2} \mu\right) \\
& l \quad \text { Non-dimensional tip chord (see Fig. 3) } \\
& =1 / \beta \\
& \text { Non-dimensional semi-span of wing (see Fig. 3) } \\
& =s / c_{f} \\
& L \quad \text { Complex lift }
\end{aligned}
$$

LIST OF SYMBOLS-continued

$$
\begin{aligned}
& Y_{0}, Y_{1} \quad \text { Co-ordinate referred to } 0_{0}, 0_{1} \text { as origin (see Fig. 9) } \\
& z_{\xi}, z_{\xi} \quad \text { Stiffness, damping derivative of lift (equation (72)) } \\
& \beta=\sqrt{ }\left(M^{2}-1\right) \\
& \Delta_{1} \ldots \Delta_{4} \quad \text { Areas of integration shown in Fig. } 12 \\
& \varepsilon=c_{f} / \beta s=l / m \\
& \zeta \text { Complex downward displacement (see Fig. 2) } \\
& \eta \quad \text { Non-dimensional spanwise ordinate } \\
& =y / s=Y c_{f} / s \\
& \eta_{0}, \eta_{1} \quad \text { Value of } \eta \text { at outboard, inboard edge of control } \\
& \lambda \quad \text { Frequency parameter based on control chord } \\
& =\omega c_{f} / V \\
& \text { Mach angle } \\
& =\sin ^{-1} 1 / M \\
& \text { Frequency parameter based on mean chord } \\
& =\omega \bar{c} / V
\end{aligned}
$$

REFERENCES

No.
Author
1 J. C. Evvard Use of source distributions for evaluating theoretical aerodynamics of thin finite wings at supersonic speeds. N.A.C.A. Report 951. 1950.

2 W. P. Jones Supersonic theory for oscillating wings of any plan-form. R. \& M. 2655. June, 1948.

3 W. E. A. Acum Aerodynamic forces on rectangular wings oscillating in a supersonic air stream. R. \& M. 2763. August, 1950.

4 H. C. Garner Multhopp's subsonic lifting surface theory of wings in slow pitching oscillations. R. \& M. 2885. July, 1952.

APPENDIX A

Calculation of $\Phi\left(X, Y_{1}\right)$ in Region E

As in section 4.1, $\Phi\left(X, Y_{1}\right)$ in region E (Fig. 5) is given by

$$
\begin{equation*}
\Phi\left(X, Y_{1}\right)=\frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2} \iint_{s_{5}} \frac{\left[1+i \lambda K\left(\frac{s_{0}+r_{0}}{\sqrt{ } 2}\right)\right]}{\left(r_{1}-r_{0}\right)^{1 / 2}\left(s_{1}-s_{0}\right)^{1 / 2}} d r_{0} d s_{0}, \quad \ldots \quad \ldots \quad \ldots \quad . \tag{A.1}
\end{equation*}
$$

where the area of integration S_{5} is given by

Hence, in region E,

$$
r_{0} \leqslant s_{0} \leqslant s_{1}, s_{1}-m_{1} \sqrt{ } 2 \leqslant \gamma_{0} \leqslant r_{1} .
$$

$$
\begin{align*}
\Phi\left(X, Y_{1}\right)= & \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2} \int_{s_{1}-m_{1} \sqrt{ } 2}^{\tau_{1}} d r_{0}\left\{\int_{r_{0}}^{s_{1}} \frac{\left[1+i \lambda K\left(\frac{s_{0}+r_{0}}{\left(r_{1}-r_{0}\right)^{1 / 2}\left(s_{1}-s_{0}\right)^{1 / 2}} d s_{0}\right\}\right.}{=}\right\} \\
& \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[\int_{s_{1}-m_{1} \sqrt{ } 2}^{r_{1}} \frac{2\left(s_{1}-\gamma_{0}\right)^{1 / 2}}{\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}\right. \\
& \left.+\frac{i \lambda K}{\sqrt{ } 2} \int_{s_{1}-m_{1} \sqrt{ } 2}^{r_{1}} \frac{4\left(s_{1}-r_{0}\right)^{1 / 2}\left(s_{1}+2 r_{0}\right)}{3\left(r_{1}-r_{0}\right)^{1 / 2}} d r_{0}\right] \quad \ldots \tag{A.2}
\end{align*} \ldots \quad \ldots \quad \ldots .
$$

This gives

$$
\begin{equation*}
\left(\frac{\partial \Phi}{\partial X}\right)_{z=0}=\frac{2 V \xi_{0} c_{f}}{\pi} i \lambda K\left[Y_{1} \sinh ^{-1}\left(\frac{m_{1}-Y_{1}}{Y_{1}}\right)^{1 / 2}+m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\right] \ldots \tag{A.4}
\end{equation*}
$$

From equations (13) and (14), (A.3) and (A.4), it is found that

$$
\begin{equation*}
F=F_{E}=2 i \lambda \beta\left[Y_{1} \sinh ^{-1}\left(\frac{m_{1}-Y_{1}}{Y_{1}}\right)^{1 / 2}+m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\right] . . \tag{A.5}
\end{equation*}
$$

APPENDIX B

Calculation of $\Phi\left(X, Y_{1}\right)$ in Region F

In region F (Fig. 6), $\Phi\left(X, Y_{1}\right.$) is given by equation (A.1), where the area of integration S_{8} is here $r_{0} \leqslant s_{0} \leqslant s_{1}, s_{1}-m_{1} \sqrt{ } 2 \leqslant r_{0} \leqslant s_{1}$, so that $\Phi\left(X, Y_{1}\right)$ is given by equation (A.2) with the upper limit, r_{1}, replaced by s_{1}.

This gives, in region F,

$$
\begin{align*}
\Phi\left(X, Y_{1}\right)= & \frac{\xi_{0} V c_{f}}{\pi \sqrt{ } 2}\left[2\left(m_{1} \sqrt{ } 2\right)^{1 / 2}\left(r_{1}-s_{1}+m_{1} \sqrt{ } 2\right)^{1 / 2}\right. \\
& -2\left(r_{1}-s_{1}\right) \cosh ^{-1}\left(\frac{r_{1}-s_{1}+m_{1} \sqrt{ } 2}{r_{1}-s_{1}}\right)^{1 / 2} \\
& +\frac{i \lambda K}{\sqrt{ } 2}\left\{2\left(s_{1}^{2}-r_{1}^{2}\right) \cosh ^{-1}\left(\frac{r_{1}-s_{1}+m_{1} \sqrt{ } 2}{r_{1}-s_{1}}\right)^{1 / 2}\right. \\
& \left.\left.+2\left(m_{1} \sqrt{ } 2\right)^{1 / 2}\left(r_{1}-s_{1}+m_{1} \sqrt{ } 2\right)^{1 / 2}\left(s_{1}+r_{1}-\frac{2}{3} m_{1} \sqrt{ } 2\right)\right\}\right] \\
= & \frac{V \xi_{0} c_{f}}{\pi \sqrt{ } 2}\left[2 \sqrt{ } 2 Y_{1} \cosh ^{-1}\left(\frac{Y_{1}-m_{1}}{Y_{1}}\right)^{1 / 2}+(2 \sqrt{ } 2) m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\right. \\
& \left.+\frac{i \lambda K}{\sqrt{ } 2}\left\{4 X Y_{1} \cosh ^{-1}\left(\frac{Y_{1}-m_{1}}{Y_{1}}\right)^{1 / 2}+4 m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\left(X-\frac{2}{3} m_{1}\right)\right\}\right] . \tag{B.1}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left(\frac{\partial \Phi}{\partial \bar{X}}\right)_{z=0}=\frac{2 V \xi_{0} c_{f}}{\pi} i \lambda K\left[Y_{1} \cosh ^{-1}\left(\frac{Y_{1}-m_{1}}{Y_{1}}\right)^{1 / 2}+m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\right] . \ldots \tag{B.2}
\end{equation*}
$$

From equations (13) and (14), (B.1) and (B.2), it is found that

$$
\begin{equation*}
F=F_{F}=2 i \lambda \beta\left[Y_{1} \cosh ^{-1}\left(\frac{Y_{1}-m_{1}}{Y_{1}}\right)^{1 / 2}+m_{1}^{1 / 2}\left(m_{1}-Y_{1}\right)^{1 / 2}\right] \ldots \tag{B.3}
\end{equation*}
$$

TABLE 1
Function $f=f_{r}+i \lambda f_{i}$ for certain Mach Numbers
(a) Values of f_{r}

$\tau \tau$	0	0.2	0.4	0.6	0.8	0.9	1.0
M							
1.10	2.0210	1.1895	0.5947	0.2212	0.0400	0.0072	0
1.15	1.3160	0.7746	0.3873	0.1440	0.0261	0.0047	0
1.20	0.9646	0.5677	0.2838	0.1056	0.0191	0.0034	0
1.25	0.7545	0.4441	0.2220	0.0826	0.0149	0.0027	0
1.30	0.6151	0.3620	0.1810	0.0673	0.0122	0.0022	0
1.40	0.4421	0.2602	0.1301	0.0484	0.0088	0.0016	0
1.50	0.395	0.1998	0.0999	0.0372	0.0067	0.0012	0
1.60	0.2721	0.1601	0.0801	0.0298	0.0054	0.0010	0
1.80	0.1895	0.1115	0.0558	0.0207	0.0038	0.0007	0
$\mathbf{2 . 0 0}$	0.1415	0.0833	0.0416	0.0155	0.0028	0.0005	0

(b) Values of $-f_{i}$

$\boldsymbol{\tau}$	0	0.2	0.4	0.6	0.8	0.9	$1 \cdot 0$
M							
1.10	7.2179	4.7850	2.6489	1.0805	0.2129	0.0396	0
1.15	3.0605	2.0964	1.1848	0.4906	0.0978	0.0183	0
1.20	1.6442	1.1641	0.6711	0.2818	0.0567	0.0107	0
1.25	1.0060	0.7364	0.4327	0.1840	0.0374	0.0071	0
1.30	0.6686	0.5061	0.3029	0.1303	0.0267	0.0051	0
1.40	0.3454	0.2798	0.1732	0.0761	0.0158	0.0030	0
1.50	0.2037	0.1766	0.1127	0.0505	0.0106	0.0020	0
1.60	0.1308	0.123	0.0796	0.0362	0.0077	0.0015	0
1.80	0.0634	0.0673	0.0464	0.0216	0.0048	0.0009	0
2.00	0.0354	0.0428	0.0307	0.0146	0.0032	0.0006	0

TABLE 2
Function $g=g_{r}+i \lambda g_{i}$ for certain Mach Numbers
(a) Values of g_{x}

τ	0.5	0.6	0.7	0.8	0.9	1.0
M						
1.10	0.17197	0.09751	0.04717	0.01704	0.00300	0
1.15	0.11198	0.06349	0.03072	0.01109	0.00195	0
1.20	0.08208	0.04654	0.02251	0.00813	0.00143	0
1.25	0.06420	0.03640	0.01761	0.00636	0.00112	0
1.30	0.05234	0.02968	0.01436	0.00519	0.00091	0
$\mathbf{1 . 4 0}$	0.03762	0.02133	0.0032	0.00373	$0 \cdot 0066$	0
$\mathbf{1 . 5 0}$	0.02889	0.01638	0.00792	0.00286	0.00050	0
1.60	0.02315	0.01313	0.00635	0.00229	0.00040	0
1.80	0.01612	0.00914	0.00442	0.00160	0.00028	0
$\mathbf{2 . 0 0}$	0.01204	0.00683	0.00330	0.00119	0.00021	0

(b) Values of $-g_{i}$

τ	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 7$	0.8	$0 \cdot 9$	$1 \cdot 0$
M						
$1 \cdot 10$	$0 \cdot 80565$	$0 \cdot 47732$	$0 \cdot 24095$	$0 \cdot 09069$	$0 \cdot 01664$	0
$1 \cdot 15$	$0 \cdot 36347$	$0 \cdot 21679$	$0 \cdot 11009$	$0 \cdot 04165$	$0 \cdot 00768$	0
$1 \cdot 20$	$0 \cdot 20753$	$0 \cdot 12455$	$0 \cdot 06359$	$0 \cdot 02417$	$0 \cdot 00447$	0
$1 \cdot 25$	$0 \cdot 13481$	$0 \cdot 08136$	0.04174	$0 \cdot 01594$	$0 \cdot 00296$	0
$1 \cdot 30$	0.09500	0.05764	$0 \cdot 02970$	0.01138	$0 \cdot 00212$	0
$1 \cdot 40$	$0 \cdot 05500$	$0 \cdot 03368$	0.01749	$0 \cdot 00675$	$0 \cdot 00127$	0
1.50	$0 \cdot 03619$	$0 \cdot 02234$	0.01168	$0 \cdot 00453$	$0 \cdot 00085$	0
$1 \cdot 60$	$0 \cdot 02581$	0.01604	$0 \cdot 00843$	$0 \cdot 00328$	$0 \cdot 00062$	0
$1 \cdot 80$	$0 \cdot 01526$	$0 \cdot 00958$	$0 \cdot 00508$	$0 \cdot 00199$	$0 \cdot 00038$	0
$2 \cdot 00$	$0 \cdot 01021$	$0 \cdot 00647$	$0 \cdot 00345$	$0 \cdot 00136$	$0 \cdot 00026$	0

TABLE 3

Lift and Pitching-Moment Derivatives

Inboard control $0 \leqslant \eta \leqslant \eta_{0}$

M	η_{0}	$-z_{5}$	$-m_{\xi}$	$-2 z_{5}$	$-m_{\bar{\xi}}$
-	0	0	0	0	0
$1 \cdot 1$	$0 \cdot 3938 \dagger$	$0 \cdot 4297$	$0 \cdot 6982$	-0.2021	-0.3368
$1 \cdot 1$	$0 \cdot 4544$	$0 \cdot 4954$	$0 \cdot 8051$	-0.2326	-0.3877
$1 \cdot 1$	$0 \cdot 5756$	$0 \cdot 6221$	$1 \cdot 0103$	-0.2878	-0.4792
$1 \cdot 1$	$0 \cdot 6968$	$0 \cdot 7377$	1.1968	-0.3315	-0.5513
$1 \cdot 1$	1	$0 \cdot 9257$	1.4974	-0.3818	-0.6337
$1 \cdot 2$	$0 \cdot 5812 \dagger$	$0 \cdot 4381$	0.7119	-0.0697	-0.1162
$1 \cdot 2$	$0 \cdot 6650$	$0 \cdot 5002$	$0 \cdot 8128$	-0.0790	-0.1316
$1 \cdot 2$	$0 \cdot 7906$	$0 \cdot 5852$	0.9500	-0.0881	-0.1465
$1 \cdot 2$	1	$0 \cdot 6748$	1.0933	-0.0900	-0.1494
$1 \cdot 4$	$0 \cdot 7165 \dagger$	$0 \cdot 3657$	$0 \cdot 5941$	-0.0019	-0.0032
$1 \cdot 4$	$0 \cdot 7732$	0.3941	$0 \cdot 6404$	-0.0018	-0.0031
$1 \cdot 4$	$0 \cdot 8583$	$0 \cdot 4331$	$0 \cdot 7033$	$-0 \cdot 0005$	-0.0007
$1 \cdot 4$	1	$0 \cdot 4741$	$0 \cdot 7690$	$+0.0036$	$+0.0062$
1.6	$0 \cdot 7776 \dagger$	$0 \cdot 3113$	0. 5058	$0 \cdot 0140$	0.0233
1.6	$0 \cdot 8221$	$0 \cdot 3288$	$0 \cdot 5343$	$0 \cdot 0149$	$0 \cdot 0248$
$1 \cdot 6$	$0 \cdot 8888$	$0 \cdot 3528$	$0 \cdot 5730$	$0 \cdot 0168$	$0 \cdot 0280$
1.6	1	0.3780	$0 \cdot 6133$	$0 \cdot 0204$	$0 \cdot 0340$
$2 \cdot 0$	$0.8396 \dagger$	$0 \cdot 2423$	$0 \cdot 3939$	$0 \cdot 0202$	$0 \cdot 0337$
$2 \cdot 0$	$0 \cdot 8717$	$0 \cdot 2515$	$0 \cdot 4087$	$0 \cdot 0210$	$0 \cdot 0350$
$2 \cdot 0$	$0 \cdot 9198$	$0 \cdot 2639$	$0 \cdot 4288$	$0 \cdot 0225$	$0 \cdot 0374$
$2 \cdot 0$	1	$0 \cdot 2771$	$0 \cdot 4498$	$0 \cdot 0247$	$0 \cdot 0412$

\dagger Signifies that all four derivatives are linear in η_{0} from $\eta_{0}=0$ to this value. The derivatives for a general control may be obtained by superposition.

TABLE 4
Hinge-Moment Derivatives
Inboard control $0 \leqslant \eta \leqslant \eta_{0}$
Outboard control $\eta_{1} \leqslant \eta \leqslant 1$

		Inboard control		Outboard control	
M	η_{0} or η_{1}	$-h_{\xi}$	$-h_{\xi}$	$-h_{\xi}$	$-h_{\xi}$
$1 \cdot 1$	0	0	0	1.7413	-0.9748
$1 \cdot 1$	$0 \cdot 1212$	$0 \cdot 5477$	$-0 \cdot 0592$	$1 \cdot 4552$	$-0 \cdot 7400$
$1 \cdot 1$	$0 \cdot 2425$	1-0476	-0.3652	1. 2335	-0.5224
$1 \cdot 1$	$0 \cdot 3031$	1-2561	-0.5413	1.1471	-0.4441
$1 \cdot 1$	$0 \cdot 3485$	1-3768	-0.6490	$1 \cdot 0749$	-0.3795
$1 \cdot 1$	$0 \cdot 3938$	1-4694	-0.7317	$0 \cdot 9918$	-0.3053
$1 \cdot 1$	$0 \cdot 4544$	1.5645	-0.8166	$0 \cdot 8647$	$-0 \cdot 1920$
$1 \cdot 1$	$0 \cdot 5756$	1.6945	-0.9328	$0 \cdot 5840$	+0.0619
$1 \cdot 1$	$0 \cdot 6968$	1.7793	-1.0085	$0 \cdot 3090$	+0.3445
$1 \cdot 2$	0	0	0	1-2972	-0.2301
$1 \cdot 2$	0.0838	$0 \cdot 3794$	0.0834	$1 \cdot 1747$	-0.1850
$1 \cdot 2$	0. 1675	0.7237	$0 \cdot 0093$	1.0971	-0. 1459
$1 \cdot 2$	0. 2094	0. 8679	-0.0472	1.0720	-0.1342
$1 \cdot 2$	$0 \cdot 3350$	1-1077	-0.1494	$0 \cdot 9897$	-0.0991
$1 \cdot 2$	$0 \cdot 4606$	$1 \cdot 2168$	-0.1958	$0 \cdot 8691$	-0.0477
$1 \cdot 2$	$0 \cdot 5812$	1.2771	-0.2216	$0 \cdot 6852$	+0.0307
$1 \cdot 2$	$0 \cdot 6650$	$1 \cdot 3061$	-0.2339	$0 \cdot 5021$	$+0.1115$
$1 \cdot 2$	$0 \cdot 7906$	$1 \cdot 3381$	-0.2476	$0 \cdot 2133$	+0.2847
$1 \cdot 4$	0	0	0	0.9241	0.0118
$1 \cdot 4$	$0 \cdot 0567$	$0 \cdot 2563$	$0 \cdot 0984$	$0 \cdot 8724$	$0 \cdot 0192$
$1 \cdot 4$	0. 1134	$0 \cdot 4899$	$0 \cdot 0938$	$0 \cdot 8439$	$0 \cdot 0271$
$1 \cdot 4$	$0 \cdot 1418$	$0 \cdot 5876$	$0 \cdot 0775$	$0 \cdot 8366$	$0 \cdot 0288$
$1 \cdot 4$	$0 \cdot 2835$	$0 \cdot 8040$	$0 \cdot 0352$	$0 \cdot 8002$	$0 \cdot 0359$
$1 \cdot 4$	$0 \cdot 4253$	$0 \cdot 8762$	$0 \cdot 0211$	0.7458	$0 \cdot 0466$
$1 \cdot 4$	$0 \cdot 5670$	0.9123	0.0141	$0 \cdot 6560$	0.0641
$1 \cdot 4$	$0 \cdot 7165$	0.9349	$0 \cdot 0097$	$0 \cdot 4639$	$0 \cdot 1017$
1.4	0.7732	$0 \cdot 9412$	$0 \cdot 0084$	0.3399	$0 \cdot 1287$
$1 \cdot 4$	$0 \cdot 8583$	0.9491	$0 \cdot 0069$	$0 \cdot 1443$	$0 \cdot 2083$
$1 \cdot 6$	0	0	0	0.7413	$0 \cdot 0550$
$1 \cdot 6$	$0 \cdot 0667$	$0 \cdot 2961$	$0 \cdot 0971$	$0 \cdot 7009$	$0 \cdot 0591$
1.6	$0 \cdot 1112$	$0 \cdot 4607$	$0 \cdot 0887$	$0 \cdot 6913$	$0 \cdot 0610$
1.6	$0 \cdot 2446$	$0 \cdot 6461$	$0 \cdot 0665$	$0 \cdot 6720$	$0 \cdot 0634$
1.6	$0 \cdot 3781$	$0 \cdot 7006$	$0 \cdot 0599$	$0 \cdot 6444$	$0 \cdot 0667$
$1 \cdot 6$	$0 \cdot 5115$	$0 \cdot 7267$	$0 \cdot 0568$	$0 \cdot 6017$	$0 \cdot 0718$
1.6	$0 \cdot 6450$	$0 \cdot 7420$	$0 \cdot 0549$	$0 \cdot 5270$	$0 \cdot 0808$
1.6	$0 \cdot 7776$	$0 \cdot 7520$	$0 \cdot 0537$	$0 \cdot 3639$	0. 1004
1.6	$0 \cdot 8221$	$0 \cdot 7547$	$0 \cdot 0534$	$0 \cdot 2666$	$0 \cdot 1145$
1.6	$0 \cdot 8888$	$0 \cdot 7581$	$0 \cdot 0530$	$0 \cdot 1133$	0. 1674
$2 \cdot 0$	0	0	0	$0 \cdot 5466$	$0 \cdot 0661$
$2 \cdot 0$	0.0481	$0 \cdot 2139$	0.0791	$0 \cdot 5266$	$0 \cdot 0670$
$2 \cdot 0$	$0 \cdot 0802$	$0 \cdot 3325$	$0 \cdot 0794$	$0 \cdot 5225$	0.0676
$2 \cdot 0$	$0 \cdot 2245$	$0 \cdot 4899$	$0 \cdot 0696$	$0 \cdot 5123$	$0 \cdot 0683$
$2 \cdot 0$	$0 \cdot 3689$	0. 5242	$0 \cdot 0675$	$0 \cdot 4974$	$0 \cdot 0692$
$2 \cdot 0$	$0 \cdot 5132$. 0.5392	$0 \cdot 0666$	$0 \cdot 4736$	$0 \cdot 0707$
$2 \cdot 0$	$0 \cdot 6736$	${ }^{\circ} 0.5483$	$0 \cdot 0660$	$0 \cdot 4226$	$0 \cdot 0739$
$2 \cdot 0$	$0 \cdot 8396$	$0 \cdot 5540$	$0 \cdot 0656$	$0 \cdot 2624$	$0 \cdot 0839$
$2 \cdot 0$	$0 \cdot 8717$	$0 \cdot 5548$	$0 \cdot 0656$	$0 \cdot 1923$	().0901
$2 \cdot 0$	$0 \cdot 9198$	$0 \cdot 5560$	$0 \cdot 0655$	$0 \cdot 0817$	$0 \cdot 1229$

Fig 1. Plan of wing.
:o

Fig. 3. 'Transform ' of full-span control.

Fig. 2. Motion of control surface.

A, B, C, D denote regions in which the loading
is $F_{A}, F_{B}, F_{C}, F_{D}$
Fig. 4. 'Transform' of starboard outboard control.

Fig. 5. Outboard control $(1-\varepsilon)<\eta_{I} \leqslant\left(1-\frac{1}{2} \varepsilon\right)$.

Fig. 6. Outboard control $\left(1-\frac{1}{2} \varepsilon\right)<\eta_{1} \leqslant 1$.

The R 's denote regions of flow
Fig. 7. Mach lines crossing on starboard outboard control.

A, B, C denote regrons in which the loading is F_{A}, F_{B}, F_{C}
Fig. 8. Mach line crossing port control.

$\frac{1}{2} \epsilon \leqslant \eta_{1} \leqslant \eta_{0} \leqslant(1-2 \epsilon)$, where $\epsilon=\frac{c_{f}}{\beta \mathrm{~s}}=\frac{L}{m}$
FIG. 9. Load distribution off general control $\left(\eta_{0}-\eta_{1}\right) \geqslant \varepsilon$.

$a b b^{\prime} a^{\prime}, b c c^{\prime} b^{\prime}, c d d^{\prime} c^{\prime}$, dee $^{\prime} d^{\prime}$
Fig. 10. Various positions of port control $\left(\eta_{0}-\eta_{1}\right)<\varepsilon$.

Fig. 11. Fictitious load distribution for outboard control.

in $\Delta_{1}, F=F_{A}-F_{C}$
in $\Delta_{2}, F=F_{E}+F_{A}-F_{B}-F_{C}$
FIG. 12. Difference between load distributions in Figs. 5 and 11.

Fig. 13. Variation of stiffness derivatives with control span.

Fig. 14. Variation of damping derivatives with control span.

Fig. 15. Variation of control derivatives with Mach number.

Fig. 16. Variation of full-span hinge-moment derivatives with frequency based on mean chord.

Fig. 17. Variation of full-span hinge-moment derivatives with Mach number.

Publications of the Aeronautical Research Council


```
    \(\mathbb{R} \mathbb{E} \mathbb{S} \mathbb{A} \mathbb{C} H \mathbb{C O U N C I L}(B O U N D\) VOLUMES)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 505. (525.).
    Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc.
        63s. (65s.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control,
        Structures, and a miscellaneous section. 50s. (52s.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control,
        Structures. 63s. (65s.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (77s.)
    Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels.
        47s. 6d. (495. 6d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (82s.)
    Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
                gos. (92s. 9 d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 6d.)
    Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
                Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels.
                84s. (86s. 6d.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 1305. (132s.9d.)
    Vol. II. Aircraft, Airscrews, Controls. 130s. (132s. 9d.)
    Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels,
                Propulsion. 130s. (132s. 6d.)
    Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. I 305 . ( 325.6 d .)
```

Annual Reports of the Aeronauticall Research Council1937 2s. (2s. 2d.) 1938 rs. 6 d. (Is . 8d.) $\quad 1939-48$ 3s. (3s. 5 d.)
Index to all Reports and Memoranda published in the Anmual Teclenical Reports, and separately-

April, 1950 - - - R. \& M. 2600 2s.6d. (2s. sod.)
Author Index to all Reports and Memoranda of the Aeronautical Research Council-

1909-January, 1954 R. \& M. No. 2570 15s. (15s. 8d.)
Indexes to the Technical Reports of the Aeronautical Research Council-

December 1, 1936-June 30, $1939 \quad$ R. \& M. No. 1850 is. 3 d. (Is. 5 d.)
July I, 1939-June 30, 1945
IN. 3d. (Is. $5 d$.
July 1,1945 - une 30 , 1946
R. \& M. No. 1950 Is. (Is. 2d.)

July 1, 1946-December 31, 1946
R. \& M. No. 2050 Is. (Is. 2d.)

January 1, 1947-June 30, 1947
R. \& M. No. 2250 1s. 3 d. (Is. 5 d.)

Published Reports and Mennorandla of the Aeronautical Research Council-
 Between Nos. $225 \mathrm{I}-2349$
 R. \& M. No. 2350 1s. 9 d. (Is. I Id.)
 Between Nos. 235 1-2449
 Between Nos. $2451-2549$
 R. \& M. No. 2450 2s. (2s. 2d.)
 Between Nos. $255 \mathrm{r}-2649$
 Between Nos. 2651-2749
 R. \& M. No. 2550 2s. 6d. (2s. rod.)
 R. \& M. No. 2650 2s. 6d. (2s. Iod.)
 R. \& M. No. 2750 2s. 6 d. (2s. 1od.)

Prices in brackets include postage
HER MAJESTY'S STATIONERY OFFICE
York House, Kıngsway, London W.C.2; 423 Oxford Street, London W.r; ${ }^{\text {3 }}$; Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Street, Cardiff; Tower Lane, Bristol \mathbf{x}; 80 Chichester Street, Belfast, or through any bookseller.

[^0]: Published by permission of the Director, National Physical Laboratory.

[^1]: \dagger Indicates that in these equations terms in $f(\tau, \beta), g(\tau, \beta)$ are zero when $\tau \geqslant 1$.

