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Summary.—The lift, pitching moment and hinge moment are derived for a delta wing with a trailing-edge flap of
constant chord when the wing is at zero incidence in a supersonic air stream and the flap oscillates harmonically with
small amplitude and low frequency. It is assumed that the wing is sufficiently thin and the amplitude of oscillation
sufficiently small to permit the use of linearised theory.

Expressions for the various control derivative coefficients are obtained for a particular delta wing of aspect ratio 1-8
and taper ratio 1/7. The investigation covers partial-span flaps; in each case there is a lower limit to the Mach
numbers for which the theory applies, though from practical considerations this restriction is not serious. The
derivatives are evaluated and tabulated for Mach numbers 1-1, 1-2, 1-4, 1-6, 2:0. The theory is shown to apply
without appreciable error, provided that the frequency parameter based on mean chord does not exceed 0-4.

The calculated values of hinge-moment damping are compared with preliminary experimental values obtained at
the National Physical Laboratory.

1. Introduction.—Complete sets of oscillatory derivatives for a delta wing of aspect ratio 1-8
and taper ratio 1/7 with control (Fig. 1) will be measured at the N.P.L. for Mach numbers up to
M = 1-8. This report considers theoretical derivatives when the flap alone is oscillating for
comparison with the experimental data at supersonic speeds. The theory is formally applicable
much nearer to M = 1 than is usually the case and the investigation offers the opportunity of
assessing the usefulness of linearised theory near M = 1; in the full-span case, for example, the
theory is applicable to a lower limit of M = 1-04.

The aerodynamic loading is zero upstream of the hinge line of a thin plane delta wing of the
plan-form shown in Fig. 1; the forces on the remainder of the wing were determined for low
frequencies by Evvard’s method (Ref. 1, 1950).

In section 3 the aerodynamic coefficients are calculated for the case of a full-span control and
the extension to partial-span controls is given in section 4. The results of section 3 and section 4
are summarised at the end of section 4. The corresponding sets of derivatives for the delta wing
with inboard or outboard controls are obtained in Section 5. The accuracy of the results and the
ranges of Mach number for which they apply are discussed in section 6.
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2. General Supersonic Theory.—A method of calculating the forces acting on a wing is given
by Evvard' (1950). The general equations of supersonic flow are linearised with respect to
velocity and written in terms of an unsteady perturbation velocity potential. The linearisation
leads to a linear partial differential equation satisfied by the perturbation velocity potential,
which is simplified by certain transformations® (W. P. Jones, 1948) in the case of harmonic motion.

The square of the frequency is neglected. Thus the differential equation for general supersonic
unsteady flow is transformed to the equation of steady flow at the particular Mach number 4/2.

2.1. Goverming Equation.—The perturbation velocity potential, ¢, satisfies

it et (</;+ 4’2+Z;‘;), O

o4 ox of

where a = velocity of sound, V' = velocity of air stream (Ref. 2, p. 1). With ¢; as a length
parameter, the transformations of x, y, z, ¢ to the non-dimensional X, Y, Z, T

x = ¢;X cotp
Y=Y ()
=0z , .. .. . .. ..

where M = V/a, cot u = +/(M?® — 1), are applied to equation (1).

In accordance with the assumption of simple harmonic motion ¢ is proportional to e*! = &7
and it is convenient to introduce a time-independent complex perturbation velocity potential @
given by

¢ = ®exp (1AT — 12X sec®u cotpu), .. .. 3)
where 4 = wc¢,/V. Equation (3) combines with the transformations (2) to reduce (1) to
R 0D 0
oyt oz T axe
where £ = Asecu. Since 2* is being neglected, (4) becomes
°0 | 0 0
Y R ch
which is seen to correspond to steady motion at Mach number 4/2.

= B0, R 1

R ()

2.2. Boundary Conditions over the Control—Under the assumptions of linearised theory, the
control surface and the remaining triangular part of the wing may be treated as flat plates and
the conditions over each may be referred to the plane z = 0, in which the triangular part is
assumed to lie. Since the fluid flow is undisturbed until the hinge of the control is reached,
¢ 1s zero on and upstream of the wave front from the hinge. TFurther (94/2z),_, over the projection
of the control on the plane z = 0 is determined by the motion of the control. These conditions
are satisfied by @ in the transformed ‘ X, Y, Z space .

Let &£ = &, e** be the complex angle of control deflection (Fig. 2). Then ¢ = x& = x&, e** defines
the downward displacement of points on the control surface. For tangential flow on the control

o= (30) .= (@),
== (575

= — & e iox + V)
= — &V e (1 + daX cotp) .
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From equations (2) and (3):

oD oD
(G_Z) . C’(EZ)
= — & V(1 + 44X cot p) exp (14X sec*u cot p)
= — & V(1 4 74X cot p)(1 + 44X sec*u cotu) + 0(2%)
= — & V(1 + 1AKX), .. .. .. .. . . (6)
where K = cot u(l + sec*u) .

The governing equation (5) and the boundary condition (6) in ‘ X, Y, Z space ’ are independent
of time and the solution @ corresponds to a steady motion with M = 4/2. The forces on the
delta wing are found from a knowledge of ¢ over the control surface.

8. Full-span Control.—The determination of ¢ over the control surface amounts to the
determination of @ on a rectangular region in the XY plane, bounded by the lines X = O,
land Y = 4 m (Fig. 3).

"8.1. Calculation of Velocity Potential—Due to the symmetry of the problem the region
considered is the control surface on one half of the wing, 0 < X < 7,0 < Y < m, Z = 0, which
is divided into region 4, where the flow is two-dimensional, and region B, bounded by the wing
tip (Fig. 3).

Let (X, Y) denote the value of @ at the point (X, Y) on the upper surface of the wing;
then & = — @(X, Y) on the lower surface. The solution ©(X, Y) in each region (4 and B) is
found by Evvard’s method in the case of steady flow at Mach number /2 (Ref. 1, equations (17)
and (29)).

Region A.—In region 4, ®(X, Y) is given by a double integral over a region of the type S,
7

(Fig. 3); from Ref. 1, equation (17)
(Z ) . dr, ds,
B(X,Y) = n\/2” e T T P
where 74/2 = (X — Y),
s4/2=(X+7),

and S, is the region bounded by X = 0 and the forward ‘ Mach lines’ from the point (X, Y),
thatls Yo+ 5020, 7, <7, 5o < 5.

From equations (6) and (7)
[t 4 a2k (20 ] ar, as,

2 iﬂ\rjcé ffsl (r — 7o) 1/2\(?__ 1/
= O [ g
- %’ f ~ 2((7”8——% o + T/sz B 32: f :%;2 dfo} (8)
=i°5cé alr + s HZ%( + 7).
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When the expressions for 7, s are substituted from equation (7), it follows that

B(X,Y) = Ve, [X + 1’1—2]_{ X2:| . (9)

This gives

0D , .
(aVX)ZZO:vgochHAKX]. S 0 (1)

Region B.—In region B, ®(X, Y) is given by equation (7), where the double integral is taken
over the region S, (Fig. 8), bounded by X = Z = 0 and the three Mach lines in the (X, Y) plane,
that is, 7o + s, = 0, s — m/2 < 7, < 7, S, < s, where s4/2 = m and #, s are given in equation
(7). Thus @(X, Y) is given by equation (8) when the lower limit, — s, in the integrals is replaced
by s — m+/2. The integrations lead to

o(X, V) =5 [3v/2(s -+

S RS

1o (8 — dmA/2){(m/2) + v — sP?
tvz (s +7) ‘

+ UK g % (s + 7)* sin™* ((m\/ZS)_;,S + ?)1/2

+ \/—12 (s — dmA/2) ¥ (mr\/2) + v — s} (Ts + 3r — 2m~/2) H

. 1/2
_ V;;cf [6X sin-! (mjry) L 6X 4 Y — m)m — V)

. s g (M — Y\ 12
—[—MK’&X sin ( X )
+ (6X 4+ 2Y — 2m)(m — Y)'*(X + YV — m)l/zﬂ ) . .. .. oo (1)

when X and Y are substituted from equation (7). From this expression it follows that
(7)o (X
0X)s0 . a X )

T MK%Xsin*l (@%}f)/ T m— Y)PX 4 Y — m)”zﬂ N § 0

3.2. Calculation of Aervodynamic Coefficients—From equation (2a) of Ref. 1 the pressure on
the upper surface of the control is

Do — Po (%? + Vﬁ)z:o.

ox
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Let P be the pressure difference across the control in the positive z direction. . Then the lift

per unit area is

Pl v

ot 0x
_2P0V 0¢ 0¢
g (57+ ’“a“”é?c)ho

_ 2,;.,1/ exp (iAT — i1X sec*p cot ) [z’/lqb(X,Y) 1 tan g 3(.”
f

— 1A®(X,Y) sec* u cotp

. 2p0V
T cycotu

_ 20,V @it
¢;cot u z=0

]

exp {iAT — ¢AX sec’ u cot u} l:(g;z) — 1A®(X,Y) tan ,u]
Z=0

[(1 — i1X sec’n cot p) (%‘-;) — 40(X,Y) tan M] T 00y .

(13)

In region A, P is obtained from equations (9), (10) and (13), where terms of order A* are

neglected. It is found that

P = gponfo tan u e’ F,
where

F = F,=4a{l + 7i(cot p — tan pu)X}.
Similarly, from equations (11), (12) and (13), in region B,

_ 1/2
F=Fp=sn" (M—/L——X—y) (1 — 24X sec®u cot p)
m— Y
X

-+ 24 cot u zX sin™! (

Hence the lift coefficient

. L pm
sz Pe,dY ¢, cot p dX
ET 1 VS $p,V? 2s

. * 2
§goemﬁf:[” F,,dXdY+” FBdXdY}, y
T SC A B

where, from equation (15)
I m—X
” F,dX dy =f de Ya{l - id(cot u — tan u) X} dY
F: 0 0

:%szfl (m — X)}1 + ir(cot p — tan u) X} dX

0

= [8(2m — 1) + 42 = /_5}.) am — 2],
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where § = cot u = (M?* — 1)V%, 1 = 1/8, m = sjc; (Fig. 3), and from equation (16),

" - 1/2
f f F,dX dY — f iX f [sin‘l (@“X*Y) (1 — i2X sec? s cot )
B V] m—

. 1/2
4 %7 cot | X sin—? (m = Y) o — V)X LY — m)m” iy
__f |:*~ {1 —i2X sec’u cotpu} + 2l coty? i + néf ﬂ ax
al®
24[3+21A(2[3—B) J Y O )
Hence
LT N G 2) l_l)
€, =Y [( o i)+ ﬂ+ Z(ﬁ 2 ” (0
Similarly, the pitching moment about the hlnge is given by
C M
- Ywm T T m
8 a7 6
= S e L oot p [” XF,dX dy -+ ” XFBdXdY]
e 2s 1 ;
______ A [( 3ﬁ2+ 12ﬁ4)+ ﬁ+3 (ﬁ ﬁg)] N 1)
and, since H — . #,
o A
— Ly = T %P()I/?Sfcf == — Ly, E;z
L5 2 1N %& 1 2. r1 g o
— ¢ s[( 3ﬁ2+M2ﬁ4>+ :, B—ngl(?j /33) :| .. .. o (22)

The loading due to interference by the starboard tip (¥, — F,), extends over the triangular
region B (Fig. 3); a similar loading is due to the port tip effect. These may be superposed so

long as the flow outboard of each tip is unaffected by the flow outboard of the other. Hence
this analysis is valid provided that ¢, < 28s.

4. Partial-span Controls.—The most general control surface is shaded in Fig. 1. It will be
shown that the loading can be expressed in terms of at most six fundamental perturbation
velocity potentials, four of which are derived in section 4.1. The aerodynamic loading on an
outboard control is considered in section 4.2 and section 4.3, where the condition is imposed
that the Mach line from the leading-tip corner does not cross the inboard edge of the control,
that is, #, must satisfy 5, < (1 — ¢), where ¢ = ¢,/#s. In section 4.4 the general control is
treated subject to the Mach line from the leading-tip corner not crossing the outboard edge of
the control, that is, 5, < (1 — ¢). Up to this stage only four fundamental perturbation Velocity

potentials arise. The extension to the cases (1 — &) <7, < (1 — fe) or (1 — &) < 9o < (1 — $¢)
in section 4.5 introduces 2 fifth potential The sixth potentlal arises only when either
(1 — &) <<ny < Yor (1l — %e) <o < 1; these cases are briefly considered in section 4.6, where

a concludlng table summarlses the general equations for the aerodynamic coefficients.

By superposition and because of the symmetry of the flow about the centre-line it issufficient
to consider the deflection of one control only, the starboard control, say.

4.1. Calculation of Fundamental Velocity Potentials.—The simplest case of an outboard control,
when the Mach lines from the leading corners of the control neither intersect on the plan-form
nor cross the port control, is shown in the (X, Y) plane in Fig. 4. This corresponds to
Lle < n, < (1 — 2¢); to fix ideas, it is supposed that ¢ << 2/5. The outboard control covers the
region 4 4+ B 4 C in Fig. 4. Over the complete semi-span there are four regions, 4, B, C, D,
which correspond to different types of loading.
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Regions A and B.—The complex velocity potential @ as transformed by equation (3) is
evaluated from the double integral (7), in which the area of integration in the plane
(r,s) ={(1/v/2) (X — Y), (1/4/2) (X + Y)} depends on the region considered.

As shown in section 3.1, in the two-dimensional region 4 (Fig. 4), this leads to the expressions
(9) and (10) for #(X,Y) and (2®/2.X),_, and thence to equation (15) for the lift per unit area.

The region B for a partial-span control is equivalent to region B in section 3.1 (Fig. 3). Itis
convenient to translate the origin from 0 to 0, on the inboard edge of the control so that
Y, =Y — spifc; and at the wing tip

n:m=ﬂ%ﬂ. L

Then, in region B (Fig. 4), the expressions for (X, Y) and (8€/0X),_, are given by equations
(11) and (12) with (m — Y) replaced by (m, — Y,). This leads to

_ 1/2
"y - Yl) (1 — 32X sec*p cotpu)

FB == Sil’l_l(

_ 1/2
+mwwxmﬁﬂyg o — V)X LY —m) L (24)

Region C.—In region C, #(X,Y)) is evaluatel from equation (7) with 7, s, Y replaced by
71, S1, Y., where

”wh”X“Yﬁg.. O )
siv2=(X+Y) ' )
and the area of integration S; (Fig. 4) is given by 7, -+ s, = 0, 5, <0 5, 73 < 7, S — ¥, == 0, where

0 <7, <s,. Thus

SE, ¥ = E"chffs [1 + 7AK (So\—/l—zyo)} .

__1, 1/2 _ )1/2

[ e
+ z\/l/fé 3f_51 " _c_ly;),o)l/zfs_lro (s(lso__—l—ssol)/z ds,
=R

VEe Sy + 7o)*/? 3—71/2
ﬂ\;é[f,sl (( . 01/2 dry -+ J 711— 7o) 01/2 Yo
MK (s1 —I— 7’0 )3/ 4(s; — 7o)"/* (51 + Zr) §
U_sl o) aro + L 3(r, — 7o)\ s }

Vrfocf

= 8 |2 ) |G — sin™ (E"jﬁ)/‘

20— s (- 25)
Yl )

1/2 ‘
+ 2(s," — 7,%?) sinh~! (i—) — (s, — 71)711/2311/25] .

$51— "
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Substitution for 7,, s, from (25) leads to

Véoc, (X — Y\ (X — Y1)1/2
O [(2\/2) — sin ( - ) | + (2v/2)Y, sinh (”?Yl
1K {1 oy (X — e
+\/2%2X (v—sm ( 5% ) )
_ 1/2
1 4XY, sinh-! (XZYYI) A Yf)”zu, (28
and thence
X 2V £y, (X — Y\
(aX)“ n [2 sin ( 2X )
i 1/2 . 1/2
—1—MK% (2 sin™! (XZXYI) )—l—Ylsinh‘1 (XZlel) H .. (27

The lift per unit area, P in region C is given by equations (13), (26) and (27). When terms of
order A* are neglected, P is given by equation (15), where

. m (X =Y 1 7 o (X — Y\
F_Fc_é—sm1<—_—-——~2X ) +zl(ﬁ——B)X(é—51n (——»—-WZX ) )

. . X — Y \'/2
-1 [ 1
-+ 2tA8Y, sinh ( 9y, ) .

(28)

Region D.—In region D, ®#(X,Y,) is calculated similarly. Here the double integral is taken
over the region S, (Fig. 4), given by s; + 7, > 0, s, — 7, > 0, 0 << s, < 5, < #,. Thus

So + 7o
B(X, schf f L4 [1 j:”/{ ( \1230))1}/2 ary dsy

. S[)ch S1 dso so dyo ZAK dso sg (SO + 1/0) d
N 775'\/2 [fo (Sl - 80)1/2f--50 (1’ )1}2 '\/2 ( )1/2f (7’1 — 7’0)1/2 1,0:’

—s9

&V, [ {(r, + s., VR — (r, — 8)%} s
Q

~ z/2 (S1 — So)*/?
+ Zji{ é {(ry 4 50)*® — (11 — $o)'* (254 + 1)} ds
V23, (S1 — $g)*/* ’
AT I s, \'/2 S sy \'?
= a2 [2(1/1 -+ s,) sin (71 T 31) + 2(s, — #,) sinh (71 — 81)
K 1/2 . L 1/2
+ 1\/2 (r, + s,)%sin? ( ;. il 81) + 2(s,® — #.%) sinh! ( : f_ 81)

o (81 - 71)711/2311/2E] .



Substitution for 7,, s, from (25) leads to

~ Ve . X 4 Y \12 L X 4y,
o(X, V) = % [(2\/2)}( sin-1 (——2"%?-%) + (24/2) Y, sinh— | — —Z?Q*E
; 1/2
+ i—’}% §2X2 sin-1 (X———-_-;;(YI)
1/2
+ 4XY, sinh~" (— X z—l;le) V(X — Yf)"ﬂﬂ O )
' 1
from which
20\ Ve, [. _ (X 4+ Y X 4 Y
(ﬁ)ho———————ﬂ [sm 1( 5% ) +12K§X51n 1( 5% )
1/2
-{—Ylsinh*l(——X;;{,Yl) H O/ 1)
1

Equations (29) and (30) are treated in the same way as equations (26) and (27), so that the
lift per unit area is given by equation (15), where, in region D,

F = Fp=sn™ (X ;S(Yl)m 442 (ﬁ — %) X sin* (X 243{1’1)”2
| )—{%71—{1)1/2. o 1Y)

Two other fundamental velocity potentials arise in Section 4.5 and section 4.6; the corre-
sponding regions of integration are shown shaded in Figs. 5 and 6. Expressions for these and
for the corresponding loading functions, Fy and Fy, are derived in Appendices A and B.

+ 2%18Y, sinh (—

4.2. Outboard Control ¢ < u, < (1 — 2¢).—Consider firstly the simple case of flow as repre-
sented in Fig. 4. Here the lift coefficient is given by (17) with additional integrals over C and D.
The region A in Fig. 4 is seen to correspond to twice that in Fig. 3, with 2m replaced by m;.
When equation (18) is adapted in this way

” F,dX dY, = - [6(1%1 — 1) il (ﬁ ”7};) 3y — 4z>J 3

A

Equation (24) is integrated to give equation (19) and m, and Y, in place of m and Y. Hence

” FBdXdY1=l—nZ2[3+2M<2/3-—l)l]. L 3
B 24 B

From equation (28) and Fig. 4:

1 X
” chXlezf de F,dX dy,
C 0 )]

Ly S o3 < B

— 1/2
4 2%28Y, sinh! (X Yl) ]le

27,
T T
:%[(ﬂ~1)§3+2ill(ﬂ——;)§+2ilﬁl:,. R 1:

9
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From equation (31) similarly:

I 0 i X
” FDdXdylzf de FDlezf de F,d|Y,|
D

= f de [sm‘1 ( IY ‘)1/2 + 22 (/3 ;) X sin™! ( ;}’(X_‘)l/z

— 2i24]Y,| sinh ( 2&% [)1/2] 4|7,

rx . 1\ X*®
—J [+l =)z 2o fax
I® 2021
— [3 - ”/T] :
From equation (17) the lift coefficient for the pair of outboard controls is
2
CL=§§C—f_”FdXdY1,
T SC
where, by summation of equations (32), (33), (34) and (35),
nl ., wl?
fdeXle 8(4m1—l)—|—z/11—2?3m1(p’ +73"
Since in Fig. 4, I = 1/8 and m, = (s/c,) (1 — #,), it follows that
o= (=t gl T 20+ (= )]
Y g 3p* ars g By

7, = Bs(1 — m)fc; . .. .. .. .. .
This is identical to (20) with 2s replaced by 2s(1 — #,), the total span of control.

where

Similarly, the pitching moment about the hinge is given by

=Sl [” XF,JXdYH—ff XF,dX dY,
44 SC A B

+ ffCXFC aX dy, + ”DXFD ix le],

where

fLXFAdXdY1=-’§i—%%(%ﬁ—-ﬁ‘-ﬁ)+%f<1 = | 25 (7
I eevax v =3 [ i B ]

J[ XFeaxavi—§ _ﬁsﬁ* (7= 7))~

and

[[ xF,axay, =§1ﬂ—3— %

Hence

o= (gt i) + 20 g

7 (=g

which is consistent with (21).
10
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Similarly, from equations (38), (39) and (40), the hinge moment is given by (Fig. 4):

— Cy = Ssh Uf XF,dX dY, +” XF,dX dY, +” XF, dXinl
= [+ 2) (gt itgp) tonlpr (- )] @

4.3. Outboard Control n, < (1 — ) —The aerodynamic coefficients C;, C,, and Cy in equation$
(36), (42) and (43) apply when fe < 5, < (1 — 2¢), where ¢ = ¢,/fs; corrections to these
expressions may be necessary when 7, is outside this range.

The range (1 — 2¢) <7, < (1 — &) is considered first (Fig. 7). Here the Mach lines from 0,
and from the leading-tip corner intersect on the control. F = F,, Fg, F., F, in regions R;, R,,
Ry, Ry, Soif Fy=F,+4 Fy', F,=F,+ F., then FF;' and F. represent the loading due to
interference by the tip and the inboard edge of the control respectively. Hence, in region K;,
where the flow is influenced by both effects, it is clear that

F=F,+Fy + F =Fy+ F,—F,. .. .. . L (44

Further, the load distribution in Fig. 7 is composed of the loads Fin R,, F,in R, + R, -+ R, + R,
F;' in R + R; and F.' in R, 4+ R, while the distribution in Flg 4 is composed of F,in D,
F,inA 4+ B+ C, Fy'in Band F. in C. Theintegrals [[F, [[XF in the two cases are therefore
formally equivalent, so that equations (36), (42) and (43) are valid for (1 — 2¢) < #; < (1 — &).

The formulae for C; and C,, are easily seen to hold for 0 < 5, << Le. However, there will be
an increment, ACy in the hinge-moment coefficient when the deflection of the control induces
a loading on the port control.

This increment is given by

8

—4Ch=

ﬂffXFdXle, L #s)

where, from Fig. 8 and equation (31),

m—ml

i —2(m—my)
” XF,dX dY, _f de XF,dY,
2(m—-m1) —X
. Y 1/2
_ f j — A — ) — 2(m — ) sin? (X 2m + zml) ; X
2(m—1my) 2X
A
442 ( B — _) f X* 3 HXE — dm — my)yr
16 2(m-—mq)
X — Om - Y\
— 2(m — my) sin™? ( 2”;(—'_ ml ; ax
— zmﬁf le(Xz — 4 — )R
2(m—mq)
— 2(m — my)* sinh~* (X T m + Zml [ ix

_ 1-215—3{(2 - o)(1 — 7912 — 8¢ cos—t 1)

4;2/35 [( + %) (1 — wH)* — 8z cos™' 7 + z* cosh™! (%—)] e .. (46)

when / is replaced by 1/8 and {2(m — m,)}/l = 2Bsn,/c, is denoted by =. This equation holds
provided that 0 < 2(m — m,) < /,ie, 0 <7 < 1.
11
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It is convenient to introduce a function
fos) =L [[ xpyaxay, o< <y . L L L @)
G

85 (Right-hand side of equation (46)),

which vanishes when v = 1 and is identically zero for r > 1.

In the special case v = 0
2 1
f(O,ﬁ):—-;( 362+ 264)... T

When equations (43) and (45) are added together, the hinge moment for an outboard control
such that 0 < #, < (1 — &) is given by
- CH — ‘*“*“5_‘— |i2T1

s(I — ny) pHE (;—gla)g —(1+§)f(0, B + /=, ﬁ)}, (49)

where v = 2,/¢ and f(r, ) is defined in equation (47). This is seen to be identical to equation
(43) when %e < %, < (1 — ¢), since f(r,8) = 0 and f(0, ) is given by (48).

For the same range the lift and pitching moment are given by equations (36) and (42). Itis

easily verified that as 5, — 0, equations (36), (42) and (49) reduce to the respective equations
(20), (21) and (22) for a full-span control.

4.4. General Control (n, < 1 — &).—The restriction is imposed that the Mach line from the
leading-tip corner does not cut the outboard edge of the control, thatis, 0 < 7, < 5, < (1 — &),
so that the flow will be symmetrical about y = $s(y, + 7.). Such a control may be regarded as
the difference between two outboard controls whose inboard edges are at y = sy, and y = s»,.
By superposition, it follows from equations (36) and (42) that

CL:§2E—§(1:1—10)I}ﬁgz—}—il(ﬁlé—%z)} RN - )
and
—c—e_zx, PR )

for 0 < %, < 5o < (1 — &), where

Ty = % .. .. .. .. .. .. .. .. (52
and

x=2m—w)[p+it(p-g)]. 69

It remains to obtain the expressmn for hinge-moment coefficient for 0 < 7, < 5, < (1 — &),
which is best derived by removing part of the pitching moment in equation (51).

Consider first the simplest case, when the flows over the outboard controls with inboard edges
at Y = sumy/c;, snofc; are of the type shown in Fig. 4. The difference is shown in Fig. 9 when the
Mach line from 0, does not cut the outboard edge of the control, that is, when 5, — 5, > ¢
This configuration applies provided that », < (1 — &).
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Since the flow is symmetrical about the line Y = s(y, + #,)/2c;, it follows that
1 c? 2&c, 8p
5= C)—(=C =___f-”XF ixay,, .. .. .. (54
(70 — 1) ¢ ( ) ( #) $(ne — m1) @ P ' (54)

where — C,, is given by equation (51) and the integral is taken over the triangle with vertices
(X,Y) =(0,0), (/,,0), !, — 7). Hencefor fe <5 <7y < (1 — ¢), 5o — m1 = &,

&c
o B — 08, P (1)

where (0, 8) is given in equation (48).

— Cpy=

The extension to 0 < n; < 4e corresponds exactly to the outboard control case considered in
Fig. 8. The loading induced on a triangular area of the port control gives rise to the same increase
in hinge moment as equation (45). This amounts to increasing y in equation (55) by f(2n./e, )
in equation (47), so that

ey ]
= Cu= gy X — 20, ) + fleme, ) L 88)

fOI'O 771 2£<770\(1_ )5770__771/

Since f(r, 8) = 0 for = > 1, then (56) reduces to (55) for , > }e so that equation (56) holds
for 0<m << (1—¢), no—mn=e

Consider next the difference between two flows of the type shown in Fig. 4 when 5, — . < e.
The resulting flow is shown in Fig. 10, where one Mach line from 0, cuts the inboard edge of the
control but the other does not cut the wing tip {n, < (1 — ¢)}. Fig. 10 shows four distinct
positions of the port control:

abb’ a’ — 2, = ¢
bee’ b’ 2n, < ¢ No + N = ¢
cdd’ ¢’ o + 71 < € e = ¢
dee’ d’ 2n0 < & —

It will be remembered that the region with loading ¥, in Fig. 9 leads to a term —f(0, 8)
in equation (54). An identical term comes from the corresponding region outboard of the control.
It is easily seen from Fig. 10 that both terms need to be replaced by

— {f(0, 8) — fl{{no — m)/<}, Bl}.

Thus, when the port control is in the region abb’a’ and there is no interference between the
controls,

CH:

é_(;}_oi"_{_m[x—zf(o,ﬁ)+2f(’7°:’71,ﬂ)].. )

When the Mach line from 0, cuts the port control but that from 0, does not, x must be increased
by f(2n./e, 8) as in Fig. 8. Thus, when the port control is in the region bce’ b/,

— 2

— Co= s [ =270, ) 2 (1 ) 7 (22 8)] . (58)
$(n 71)

When the Mach line from 0, cuts the inboard but not the outboard edge of the port control, that

is, when the port control is cdd’ ¢’ (Fig. 10), then it is evident that equation (58) is amended to

— Cu= gt [x = 270, ) + 27 (2 )

+f(2771 )-Zf(i"-—t—”l,ﬁ)] 9
13




Finally when the Mach line from 0, cuts the outboard edge of the port control, that is, when the
port control takes up the position dee’ d’ (Fig. 10), then it is easily seen the term f(2n,/e, 8)
must be added to y in equation (59) to give

— Cy = T

s(%_n)[x—Zf(O,ﬂ)Jer('n"—}—m,ﬁ)
+f<27_h )_zf(%t’h )+f(2’7° )} L (eD)

It can readily be shown that as #, — 5, — 0, the expression in the square brackets in equation
(60) 1s O(no — #,)?, so that — C,; —0 as , — 5, —0.

i

Since f(z, f) =0 when = > 1, equation (60) reduces to equation (59) when 27, > e, to
equation (58) when 2y, > ¢, (9, + 7)) = ¢ and to equation (57) when in addition 25, > ..
Furthermore, when %, — %, > ¢ and consequently n, 4+ 5, = 5, > s, equation (60) reduces to
equation (56). Equation (60) is therefore valid for 0 < 5, < 7o < (1 — &). Thus the lift,
pitching-moment and hinge-moment coefficients for 0 < 7, << 7 < (1 — ¢) are given by equatlons
(50), (51) and (60), where x and the function f(r, 8) are given by equations (37), (52), (53) and
equations (46), (47) respectively.

4.5. Controls with n, or 03 in the Range (1 — &) <n < (1 — 1¢).—Consider first an outboard
control with (I — &) <ny = (1 — §¢), shown in Fig. 5. The expression for the new loading
function, I/, is derived in Appendix A. The loadmg F,+ F,— F,in Fig. 5 is deduced in
a similar manner to equation (44), the loading in region R; of Fig. 7.

To evaluate the lift and moment it is convenient to start with the fictitious loading distribution
of Fig. 11, which is conctructed so that the integrals [[F, [[X F are formally equivalent to those
for the flow represented in Fig. 7. It is then necessary simply to add to this the loading in Fig.
12, which represents the difference between the distributions of Figs. 5and 11. It is supposed that
the Mach line from 0, does not cut the port tip, ¢.e., that 5, = (¢ — 1).

The lift cocfficient corresponding to Fig. 5 is obtained by adding to equation (36) the increment

a0, =3 Cf[” (F,— F dXdYJrff FaXav), .. .. ()

where I'; — I/, - F, — I'y — F.. It is easily verified from equations (15), (28) and (31) that
F (X)) — T(X Y) F(X—Y)

Hence the first integral in equation (61) becomes
” (Fy— Fo)dX dV, — ” Fp(X, Y, dX dY,.
4y Ay

From equations (15), (24), (28) and (A.5),
Fy=Fy+ F,— Fy— F;

} X — Y\ ) m, — Y, \? 1
— -1y ~1 — e it 1 =
= [sin (Fgx ) sint (M=)’ T} i (s = )]
+ 22p(m, — Y )" {m? — (X 4 Y, — my)'/% . .. .. .. (62)
It is easily seen from Iig. 12 that
I —m l "
” .FDdXdY1+ff F;;dXlezf de lFDcZY1+f chfl FidY,,
i Ag My -X my 2mq —
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where [ = 1/ and m, = s(1 — #,)/c;, When equations (36) and (61) are added together, for an
outboard control with (1 — &) < m < (1 — %e)

2 1 1 1
=L [(~gtitgn) +2ulmtit(p—g)l]+ac, .. . @3
where
ac, =25 Lmz{ (1 — ) (1 4 26,) + (1 — 4oy sin~ (1 — )73
+ g B = w5 — 2m) — B sint (1 — 5))
— T (L — (3 7 20 o 3(1 — 3e) sin (1 — )]
and » T =mfl = (1 —n)fe.
Similarly the increment to the pitching-moment coefficient as given in equation (42) is
_ 8ée/ ¢[[[ xF,axav,+ ([ XFiaxav).
7w SC* 44 Ay

The first integral is equivalent to equation (46), when the non-dimensional distance
2(m — m,) = 2sn,/c; in Fig. 8 is replaced by m, = s(1 — #,)/¢; in Fig. 12, and contributes a term

(P b =S ).

€

The second integral plays a similar role, so that it is convenient to introduce another function
8
g(r, ,e):;ﬂ” XFpdX dY,, .. .. . o8
43

when 1 — 5, < & (1.e., when 7, < 1), where Fj is given in equation (62). Like the function
Sz, B), g(zs, B) is defined to vanish when 1 — #, > & (¢.e., when 7, > 1).

The moment coefficient for (1 — &) < 5, < (1 — L&) is therefore given by
¢, =t (1 1 )
G [( 3 T g ) +2n ﬁ2 + 3 (,32 ,34) + f(r1, B) + &=, ﬁ)] ... (85)

sc?
From equations (62) and (64) it can be shown that

glry, ) = 2 [;2 {20 (1 — 7 )"*@3 + 7, + 27,4 — 3(1 — =.A)2(2 + 7.%)

87,21 — 7,)'*7,(21 — 27, — 41,%)

+ 6(1 - 31'-1) cos™' 7,'/* 4- Or, cos™* 11} + %_2
-+ 15112(1 — 1;12)1/2 — 1207, cos™! 7,1/* 4 607, cos™ ¢

— 157,%(6 — 7% cosh~! (l) 2r,12(1 — 7,)12(45 4 6ty + 8r.% L 1677)

7

20184
— 15(1 — =,*)"*(6 + 7,*) + 30(3 — 8ry) cos™' 7,'/* -+ 1207, cos™' 7,

-—15114cosh‘1(;1~1)§] e

fore,; <1
=0 forv, > 1.
15



The hinge moment is evaluated by subtracting from the pitching-moment integrals
corresponding to equation (65) the integrals over the triangular region whose vertices are
(X,Y,) =(0,0), (,0) and (/, — I) in Fig. 5,

ffDXFDdXle_—S—ﬁ-f(O 8)
and (8
”A X(FB—FA)dXlezf Xde (F, — F,)dY,

—(X—mq)

where [ = 1/8, m, = 7,/8.
By equations (15) and (24) the second integral in equation (67) is evaluated to be

Lﬂi{rlwu )3 4 1, + 20,7 - 3(1 — 3ry) cost vt/

180‘33{ l1 /2 1 —_—T )1/2(45 — 78‘61 + 161’1 + 3211) -+ 15(3 . 471) cos—1! 111/2}

g0 (1 = )45 4 B, + 8+ 161,7) - 15(3 — 8r) cos™ 1.

From this result and equations (65) and (67) an expression for the hinge moment is obtained.
However, the poss1ble interference of the port control has not been taken into account. So the
quantity [(éc/)[{s(1 — ,)}] f[(2n:/€), #] must be included as was done in deriving equation (56)
from equation (55). This gives

_CHSQ—%W[(M%SE_*' 5)—!—2rlgﬁ2+ Az(ﬁlz 731_4)‘
+f(71, B) -+ glry, B) — F(O, ﬁ)+f(2’71 )

-y ,32 231 — 1) 23 + 15 + 20,) + 3(1 — 3t,) cos™ 7,1/2)

22

+ s {11 — 2 )V2(45 — 787, + 167, + 327,°) + 15(3 — 4v;) cos™! 7,/
45 ﬁz

45ﬂ4 { 1/2 1 — )1/2(45 + 67, + 87,2 + 16‘513) -+ 15(3 — 87;1 cos™ly 1/2] (68)

where 7, = (1 — #,)/e. Thus, for an outboard control, the lift, pitching moment and hinge
moment are given by equations (63), (65) and (68), provided that (1 — &) <%, < (1 — 1¢) and
7, = (e — 1), the latter condition being automatically satisfied when ¢ < 1.

Now consider a general control with 0 < 5, < 5, < (1 — ,6)’ the condition 7, = (¢ — 1)
being satisfied. The case where 5, < (1 — a) has been treated in section 4.4. The expressions
for the lift and pitching moment are obtained by the superposition of flows as in section 4.4.
Thus when 0 < 5, < (1 — &)

C, = [R.H.S. of equation (36)] — [R.H.S. of equation (63) with 7, replaced by z,], (69)
where 7, = (1 — n,)/e. Similarly when (I — &) <, < 5o < (1 — $e): '
C, = [R.H.S. of equation (63)] — [R.H.S. of equation (63) with 7, replaced by z,] . (70)

In the expression for the pitching moment in equation (65) the functions f(z,, ), g(r., B)
vanish when 7, < (1 — ¢), so that equation (65) reduces to equation (42) and is-therefore valid
for 0 <<%, < (1 — %e), 5, = 1. This result enables the pitching moment for a general control
to be written as

— C,, = [R.H.S. of equation (65)] — [R.H.S. of equation (65) with =, replaced by z,] . (71)
16



In section 4.4 it is shown that the hinge moment is given by equation (60) for
0 <5 <7< (1 — &) for a general control but when 0 < n; < 5, < (1 — %¢) the flow over
the control surface experiences no interference from the tip so that equation (60) remains valid.

4.6. Summary of Aevodynamic Coefficients.—To complete the investigation it would be necessary
to consider controls with 5, or 5, in the range (1 — }¢) <<% < 1. Only one new loading function
F, is introduced ; this is derived in Appendix B. The calculation of the lift, pitching moment
and hinge moment is similar to that in section 4.5 and is omitted as it is not of much practical
importance.

To summarise, expressions for the lift, pitching moment and hinge moment have been obtained,
which cover the general case of Fig. 1 with three restrictions:
(@) ¢ < 1 (so that Mach line from inboard edge of starboard control cannot cut the port tip)
(0) m < (1 — %)
(c) either n, < (1 — %¢) or o = 1.
The individual expressions only apply when further restrictions on %, or #, are made. The
following table lists the appropriate equation numbers:

Mo i Cy —-C, — Cy

0 <(1— ¢ 0 <y 50 51 601
(1 — &) <mp<<(l— 39) 0<n < (1~ ¢ 69 71t 601
(1— & << (l— 39 (1 — &) <n < 70 71 60t
o= 1 0<n<(l— ¢ 36 42 49%

7o =1 1— o <m<(l—1%9 63 65 68

5. Derivatives for a Cropped Delta Wing.—Each aerodynamic coefficient may be split uniquely
into two parts, viz.,

Cp = — 2z& — 2% (;;_/c:)
(Cm)0=2m55+2m5-(%).>, @
Co = 205 + Oh (ff/c-)

where & = d¢/df and the real coefficients, 2, z:, m,, me, h;, &, are the required control derivatives.

The moment in the second equation will be taken about the pitching axis through the apex
of the wing so that the moment coefficient there is equal to

(Cm)O _ Cm - (CO —C_- Cf) CL )
where C,, is taken about the hinge line. Then the above equations may be written
£¢ ‘

comfm— (25

5+2§mé—(c°;cf)zéf(§]§) ” (73

Co = 20t + 2 (%)
whence the control derivatives may be evaluated from the various expressions for C;, C,, and Cy
summarised in section 4.6. However, only the cases of an outboard control when
0 < 9, < (1 — ¢) and for an inboard control when 0 < 5, < (1 — 1¢) will be dealt with here.

t Indicates that in these equations terms in f (=, 8), g (v, §) are zero when = = 1.

17
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It is convenient at this stage to split the functions f(r, 8), g(r, ) into their real and
imaginary parts

f(f’ /3) :ff’(T: ﬂ) _!_ ,M'fi(TJ ﬁ)
g(r, 8) = g(r, B) + 14g(x, B)

These are identically zero for = = 1.

(74)

Consider first an outboard control when (1 — &) <7, < (1 — %¢). From equation (73) with

the values of the aerodynamic coefficients given by equations (63), (65) and (68) and using
equations (74) it is found that

;= Zl{v[)’z (47, — 1) + nscéﬂz [2."*(1 — = )Y*(1 + 27,) 4+ (1 — 4v,) cos™ 7,*/%] ]
2 3
— %= 302[34{3 -+ (B 1)} — 93?3%@ [ (1 — 2)"%(3 4 7, + 27,°)

1 3(1 = 8r,) cos o, — Bty (1 — 1) H(5 — 2r,) — Bcos 7,11

+ o | Flo B) + e )

Cf Co .
= ﬁzg(— 26) 4 (dr, — 1)

2 0 1/2 1/2 —1 1/2
4;?@‘9hu0~mwuﬁm+u—%wmf“ﬂ

¢ 2
52253‘34 %(_1+471_’4T15)+%

(1 — 37, + 3@2)%

AP
< le

4 0 12 1/2
+230 [fi(rl’ﬂ)+g"(rl’ﬂ)*gﬂ4(;‘_ ){71/ L — o)'%3 + 7, + 27,
+ 3(1 — 37,) cos™' 7,'/%}

Co 1/2 1/2 —1 _ 1/2
+3nﬁ2("—— 1)’51{71/(1~—11)/(5—211)~3cos rl/}:l

-

zn_~@+-y+w(%”)$+%fgamﬂmm

c
— i
— b= 5

2s(1 — uy) p?

+ 80 B) + g /32 (1021 — ) %3 4 7, | 20,%) + 3(1 — 3r,) cos r11/2:|

2
e

286(1 — ) ﬂ4

2,
(142 + gt — 0+ v (22 5)]
+%mtqumhm+&mm)
- ZT/4 (031 — 1)12(45 + 6v, + 85, + 1607%) 1 15(3 — 87,) cos 7,7
+ 45, ﬁz{rﬂ“ — 7,)'/%(45 — 78, + 1672 4 327

+ 15(3 — 47,) cos™' = ”2}]

where 7, = (1 — #,)/e.

These results hold for (1 — &) <5, < (1 — 4¢). The derivatives for 0 < 5, < (1 — &) are
given by equation (75) if the terms in the square brackets are omitted.
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The derivatives for an inboard control when (1 — ¢) < 7, < (1 — %¢) are found in a similar
manner. The aerodynamic coefficients in this case are given in equations (69), (71), (60) with
7, = 0. This leads to

20 ¢l 1

— 2 =g — L [0 A1 — @) (1 + 26 + (1 — 4eo) 0057 7]

1
— s =% (3—5) + o i 5 (st 5(1 — )43 + 7o + 264)

 B(1 — Br) cos~t 7 — B%rfrd (1 — 7o (5 — 2r) — B cos v ]
o 1 3
— e = g C.fz (20_ — 1) 5 — o5 |:f,(ro, B) + &(70, F)

Cr

2 (C_'f’ _ ) {rot (1 — )21 + 2rg) + (1 — 4ro) cos™ 7 1/2}

np®\c
— =m0 (2; - %;) (7; — —;—3) 2Csfcs [ff(ro, B) + &z, £) L, .. (79)
+ g ﬁ4 ( ) w21 — ) 2(3 4 79 + 21,%) - 3(1 — Brg) cos~ 7%
— ,32( ) vl 21 — 7 V3(5 — 25)) — 3 cos~ v 1/2}}
— = g 2 = £ 8) 41, (3 6|
=g 135 (3 ) — 500+ (51 8)]
Where
= (1 - 770)/8 . J

These formulae also give the derivatives for 0 < #, < (1 — &) if the terms in the square
brackets are omitted.

The functions f,, fi, g, g defined in equation (74) are tabulated for ranges of values of
M = +/(f* + 1) and v in Tables 1 and 2. Whereas f, and f; are required throughout the range
0t < l,gr and g, are not required when 0 < = < 0-5 since 7, = (1 — 7,)/e and 1:1 = (1 — n)/e
are not considered in this range. Table 2 is therefore restricted to v = 0-5 (0-1) 1-

6. Discussion of Results—The derivatives given in section 5 for inboard and outboard controls
are tabulated for a cropped delta wing (Fig. 1) of aspect ratio 1-8 and taper ratio 1/7. For
convenience the auxiliary functions f,, /;, g,, g; are given in Tables 1 and 2 for various values of
their arguments. The lift and pitching-moment derivatives from equations (75) and (76) are
given in Table 3 and the hinge-moment derivatives in Table 4.

The stiffness or steady derivativés are plotted against the span of inboard and outboard
controls for Mach numbers M = 1-1, 1-2, 1-4, 1-6, 2-0 in Fig. 13 while the damping or out-of-
phase derivatives are similarly plotted in Fig. 14. From Fig. 14 it is seen that — /%; rapidly
decreases so as to become increasingly unstable as the Mach number decreases below 1-4 for an
outboard control, this being particularly noticeable for the larger spans. For an outboard control
with #, in the range 0-6 < n, < 11t is evident that the interference from the tip gives a stabilising
effect and positive damping at these lower Mach numbers.
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The variation of the derivatives with Mach number is shown in Fig. 15, a cross-plot of Figs.
13 and 14 for the particular cases of full-span, half-span inboard and half-span outboard controls.

From the graph of — 7; it is seen that instability (— % < 0) occurs below Mach numbers of
1-4, 1-35 and 1-25 for these respective controls.

Fig. 16 illustrates the variation of the hinge-moment derivatives with frequency. The results
given for frequency parameters » = wé/V = 0-8, 16 and 2-4 are those calculated by Acum?®
(1950). From these curves it is evident that there is a negligible variation in the derivatives
with frequency in the range 0 < » < 0-8 for M > 1-4. For lower Mach numbers the effect of
frequency becomes more pronounced, but it amounts to less than 6 per cent for 0 < » < 0-4
and M > 1-2. Within these limits the present theory seems satisfactory.

Finally the variation of full-span hinge-moment derivatives with Mach number (0 < M < 2)
is shown in Fig. 17. The subsonic points are taken from calculations by an extension of the
Multhopp-Garner theory* (1952) and the preliminary experimental values of — %4; and — %; have
been obtained by Bratt of the N.P.L. The theoretical curves in the range 0-8 < M < 1-0 are
only speculative. In the subsonic range the theoretical and experimental values are in good
agreement except near M = 1; this is particularly true for — %;. On the other hand there is not
good agreement in the supersonic range near M = 1; linearized theory predicts too high a value
for — %, and too low a value for — %;. It is expected, however, that agreement between theory
and experiment will considerably improve for higher values of Mach number.

7. Acknowledgements.—Most of the numerical results in this report were calculated by Mrs. J. S.
Sindall and Miss S. M. Passmore.

LIST OF SYMBOLS

a Speed of sound
4...D,G Areas of integration (Figs. 3, 4, 8)
Co Root chord
¢ Control chord (tip chord)
¢ Mean chord
= %o +¢)
Cy Complex hinge-moment coefficient
= Hl}p,V3Syc,
C, Complex lift coefficient
— LS
Co Complex pitching-moment coefficient
S
f = [, + iif; (defined by equations (46), (47))
F Complex non-dimensional loading (equation (14))
F,...F,F3 Values of F defined by equations (15), (16), (28), (31), (A.5), (B.3), (62)
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XY, %
X, Y, Z

LIST OF SYMBOLS—continued
g, + 7ig; (given by equation (66))
Stiffness, damping derivative of hinge moment (equation (72))
Complex hinge moment
cot u(1 4 sec® u)
Non-dimensional tip chord (see Fig. 3)
1/p
Non-dimensional semi-span of wing (see Fig. 3)
sfc;
Complex lift
Non-dimensional span of outboard control (see Fig. 4)
(1 — mi)/e;
Stiffness, damping derivative of pitching moment (equation (72))
Mach number of free stream
Via
Complex pitching moment about hinge line (nose up)
Complex pressure difference across control (equation (13))
Pressure of free stream
Axes parallel to Mach lines (equation (7))
Regions of flow (see Fig. 7)
Semi-span of wing
Surface area of wing
2s¢
Surface area of control
2sci(n0 — 1)
Areas of integration shown in Figs. 3, 4, 5, 6
Time
Non-dimensional time
Ve,
Speed of free stream
Complex upward component of velocity
Rectangular Cartesian co-ordinates defined by Figs. 1, 2

Non-dimensional co-ordinates defined by equation (2)
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LIST OF SYMBOLS—continued

Y, Y, Co-ordinate referred to 0,, 0; as origin (see Fig. 9)
2, 2 Stiffness, damping derivative of lift (equation (72))
po= Vr—1
4y...4, Areas of integration shown in Fig. 12
e = c¢fBs=1Ilm
¢ Complex downward displacement (see Fig. 2)
i Non-dimensional spanwise ordinate
= Yls=Yes
Yo, M1 Value of # at outboard, inboard edge of control
2 Frequency parameter based on control chord
= wglV
)% Mach angle
= sin™'1/M
v Frequency parameter based on mean chord
= iV
&, & Complex angle, amplitude of control deflection
Po density of free stream
% = (L—m)/e; (1 —mnofe
¢ Perturbation velocity potential .
@ Time-independent complex perturbation velocity potential (equation (3))

Function (equation (53))

) 27 X (frequency of oscillation of control)
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APPENDIX A
Calculation of ®(X, Y,) in Region E
As in section 4.1, (X, Y,) in region E (Fig. 5) is given by

14 K (ST e
2L, iﬂzcé‘ f fs5 [1’1 ) /2(31 \123 ))1;|2 dr, ds, ,

where the area of integration S; is given by

. . 0 < S < 8y, 8 — /2 <
Hence, in region E,

o+ 7
1+ z}{K S
@(X, Yl) — EOVCf { '\/2 ):l dS}

A/ 2 sl——ml'\/2 7’1 — 7o) 383 — )/
Vel aorpn,
a2 L) mys (n— 7
AK [ 4(s; — 7o)t2(s1 + 2ry) :|
+ '\/2 o2 3(1, — )1/2 d?’o

_ ‘EQVCf 1 — 5 '—]— ml'\/2 iz
nvz[Z( 7.) sinh- ( - )

+ 2(mA/2) P (ry — sy + M2

iIAK . ooy (T2 — Si A a2\
-+ \/2 32(31 — #,%) sinh ( 5 7. )

o 22— s /2 (s 4 — 22

V&g,

= 72 [(2\/2) Y, sinh™* (ﬂ#)l/z + (2N 2)m A (m, — Y,)M?

1AK
This gives

0X Y, .
From equations (13) and (14), (A.3) and (A.4), it is found that
. 1/2
F=F, =2 [Yl sinh~! (%_Y_Yl)
1

23

_ 1/2
§4XY1 sinh~* (”Lf_lﬁ) A, — Y ( x_
1

(35’?) AL (v, sinh-" (__—Y) P, — Y]
Z=0 .

R——

(A.1)

2 )H (A.3)

(A4)

(A.5)



APPENDIX B
Calculation of (X, Y,) in Region F
In region F (Fig. 6), #(X, Y,) is given by equation (A.1), where the area of integration S; is
here 7, < s, < 85, 84 — m\/2 < 7, < 54, so that @(X, Y,) is given by equation (A.2) with the
upper limit, #;, replaced by s,.
This gives, in region F,

io\l;(:f[ ( 1\/2)1/2( — 5 + ml\/z)1/2

— 2(r, — &) cosh~ 1( —Sl+m‘/2)m
! 7. — $;

o(X,Y,) =

1A K
V2

- 20man/2) ry — 1 4 Mg/ 25, - 7y — Bia/2) H

Kl cospos (S a2

Y1 — 8

_ Vf/"‘é’ [2\/2Y1 cosh™! (XT“I.@) 4 (242t m, — Vo)
. 1/2
+ ’\”/12{ §4XY1 cosh~? (-Y—Y_”ll) 4 dm o my — Y)Y — Bmy) ﬂ . (B.1)
1
Hence
. 1/2
(%%Z - 2Vf°(’f K [Yl cosh~? (ZLY—-;”—’@) - gty — Yl)l/ﬂ L. .. (B2
0 1
From equations (13) and (14), (B.1) and (B.2), it is found that
— 1/2
F— F,— 2ip [Yl cosh-1 (Y;Y.ﬂ) + i om, — Yl)m] ... .. (B3
1
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Function f = f, + il f; for certarn Mach Numbers

TABLE 1

(a) Values of f,

T 0 0-2 0-4 0-6 0-8 0-9 1-0
M
1-10 2-0210 1-1895 0-5947 0-2212 0-0400 0-0072 0
1-15 1-3160 0-7746 0-3873 0-1440 0-0261 0-0047 0
1-20 0-9646 0-5677 0-2838 0-1056 0-0191 0-0034 0
1-25 0-7545 0-4441 0-2220 0-0826 0-0149 0-0027 0
1-30 0-6151 0-3620 0-1810 0-0673 0-0122 0-0022 0
1-40 0-4421 0-2602 0-1301 0-0484 0-0088 0-0016 0
1-50 0-3395 0-1998 0-0999 0-0372 0-0067 0-0012 0
1-60 0-2721 0-1601 0-0801 0-0298 0-0054 0-0010 0
1-80 0-1895 0-1115 0-0558 0-0207 0-0038 0-0007 0
2-00 0-1415 0-0833 0-0416 0-0155 0-0028 0-0005 0

(b) Values of — f,

T 0 0-2 0-4 0-6 0-8 0-9 1-0
M N
1-10 7-2179 4-7850 2-6489 1-0805 0-2129 0-0396 0
1-15 3-0605 2-0964 1-1848 0-4906 0-0978 0-0183 0
1-20 1-6442 1-1641 0-6711 0-2818 0-0567 0-0107 0
1-25 1-0060 0-7364 0-4327 0-1840 0-0374 0-0071 0
1-30 0-6686 0-5061 0-3029 0-1303 0-0267 0-0051 0
1-40 0-3454 0-2798 0-1732 0-0761 0-0158 0-0030 0
1-50 0-2037 0-1766 0-1127 0-0505 0-0106 0-0020 0
1-60 0-1308 0-1213 0-0796 0-0362 0-0077 0-0015 0
1-80 0-0634 0-0673 0-0464 0-0216 0-0048 0-0009 0
2-00 0-0354 0-0428 0-0307 0-0146 0-0032 0-0006 0
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Function g = g, -+ 14g; for certain Mach Numbers

TABLE 2

(a) Values of g,

T 05 0-6 0-7 0-8 0-9 1-0
M
1-10 0-17197 0-09751 0-04717 0-01704 0-00300 0
1-15 0-11198 0-06349 0-03072 0-01109 0-00195 0
1-20 0-08208 0-04654 0-02251 0-00813 0-00143 0
1-25 0-06420 0-03640 0-01761 0-00636 0-00112 0
1-30 0-05234 0-02968 0-01436 000519 0-00091 0
1-40 0-03762 0-02133 0-01032 0-00373 0-00066 0
1-50 0-02889 0-01638 0-00792 0-00286 0-00050 0
1-60 0-02315 0-01313 0-00635 0-00229 0-00040 0
1-80 0-01612 0-00914 0-00442 0-00160 0-00028 0
200 0-01204 0-00683 0-00330 0-00119 0-00021 0

(0) Values of — g,

T 0-5 0-6 0-7 0-8 09 1-0
M
1-10 0-80565 0-47732 0-24095 0-09069 0-01664 0
1-15 0-36347 0-21679 011009 0-04165 0-00768 0
1-20 0-20753 0-12455 0-06359 0-02417 0-00447 0
1-25 0-13481 008136 0-04174 0-01594 0-00296 0
1-30 0-09500 0-05764 0-02970 0-01138 0-00212 0
1-40 0-05500 003368 0:01749 0-00675 0-00127 0
1-50 0-03619 0-02234 0-01168 0-00453 0-00085 0
1-60 0-02581 0-01604 0-00843 0-00328 0-00062 0
1-80 0-01526 000958 0- 00508 0-00199 0-00038 0
2:00 0-01021 0-00647 0-00345 0-00136 0-00026 0
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TABLE 3

Lift and Pitching-Moment Derivatives

Inboard control 0 < n < 7,

M o —3 —mg 3 — g
— 0 0 0 0 0

1-1 0-3938¢ 0-4297 0-6982 —0-2021 —0-3368
1-1 0-4544 0-4954 0-8051 —(0-2326 —0-3877
1-1 0-5756 0-6221 1-0103 —(0-2878 —0-4792
1-1 0-6968 0-7377 1-1968 —0-3315 —0-5513
1-1 1 0-9257 1-4974 —(0-3818 —0-6337
1:2 0-5812% 0-4381 0-7119 —0-0697 —0-1162
1-2 0-6650 0-5002 0-8128 —0-:0790 —0-1316
1-2 0-7906 0-5852 0-9500 —{0-0881 —0-1465
1-2 1 0-6748 1-0933 —0-0900 —0-1494
1-4 0-7165t 0-3657 0-5941 —0-0019 —0-0032
1-4 0-7732 0-3941 0-6404 —0-0018 —0-0031
1-4 0-8583 0-4331 0-7033 —0-0005 —0-0007
1-4 1 0-4741 0-7690 -+0-0036 +0-0062
1:6 0-7776% 0-3113 0-5058 0-0140 0-0233
1:6 0-8221 0-3288 0-5343 0-0149 0-0248
1-6 0-8888 0-3528 0-5730 0:-0168 0-0280
1-6 1 0-3780 0-6133 0-0204 0-0340
2:0 0-83961 02423 0-3939 0-0202 0-0837
2:0 0-8717 0-2515 0-4087 0-0210 0-0350
2:0 0-9198 0-2639 0-4288 0-0225 0-0374
2-0 1 02771 0-4498 0-0247 0-0412

t Signifies that all four derivatives are linear in #, from #,= 0 to this value. The
derivatives for a general control may be obtained by superposition.
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TABLE 4

Hinge-Moment Derivatives
Inboard control 0 < % < %,

Outboard control #, < 9 < 1

Inboard control

Outboard control

COC OSSOSO RDRRIDDD G DG i b bn B ha i A 10 1 DO 10 10 B B DD 1O b 1 1 1 i s

|

7o OF 71y — I — he — h
0 0 0 1-7413 —0-9748
0-1212 0-5477 —0-0592 1-4552 —0-7400
0-2425 1-0476 —0-3652 1-2335 —0-5224
0-3031 1-2561 —0-5413 1-1471 —0-4441
0-3485 1-3768 —0-6490 1-0749 —0-3795
0-3938 1-4694 —0-7317 0-9918 —0-3053
0-4544 1-5645 —0-8166 0-8647 —0-1920
0-5756 1-6945 —0-9328 0-5840 1-0-0619
0-6968 1-7793 —1-0085 0-3090 4-0-3445
0 0 0 1-2972 —0-2301
0-0838 0-3794 0-0834 1-1747 —0-1850
0-1675 07237 0-0093 1-0971 —0-1459
0-2094 0-8679 —0-0472 1-0720 —0-1342
0-3350 1-1077 —0-1494 0-9897 —0-0991
0-4606 1-2168 —0-1958 0-8691 —0-0477
0-5812 1-2771 —0-2216 0-6852 +0-0307
0-6650 1-3061 —0-2339 0-5021 +0-1115
0-7906 1-3381 —0-2476 0-2133 +0-2847
0 0 0 0-9241 0-0118
0-0567 0-2563 0-0984 0-8724 0-0192
0-1134 0-4899 0-0938 0-8439 0-0271
0-1418 0-5876 0-0775 0-8366 0-0288
0-2835 0-8040 0-0352 0-8002 0-0359
0-4253 0-8762 0-0211 0-7458 0-0466
0-5670 0-9123 0-0141 0-6560 0-0641
0-7165 0-9349 0-0097 0-4639 0-1017
0-7732 0-9412 0-0084 0-3399 0-1287
0-8583 0-9491 0-0069 0-1443 0-2083
0 0 0 0-7413 0-0550
0-0667 0-2961 0-0971 0-7009 0-0591
0-1112 0-4607 0-0887 0-6913 0-0610
0-2446 0-6461 0-0665 0-6720 0-0634
0-3781 0-7006 0-0599 0-6444 0-0667
0-5115 0-7267 0-0568 06017 0-0718
0-6450 0-7420 0-0549 0-5270 0-0808
0-7776 0-7520 00537 0-3639 0-1004
0-8221 0-7547 0-0534 0-2666 0-1145
0-8888 0-7581 0-0530 0-1133 0-1674
0 0 0 0-5466 0-0661
0-0481 0-2139 0-0791 0-5266 0-0670
0-0802 0-3325 00794 0-5225 0-0676
0-2245 0-4899 0-0696 0-5123 0-0683
0-3689 0-5242 0-0675 0-4974 0-0692
0-5132 0-5392 0-0666 0-4736 0-0707
0-6736 ‘0-5483 0-0660 0-4226 0-0739
0-8396 0+5540 0-0656 0-2624 0-0839
0-8717 0-5548 0-0656 0-1923 0-0901
0-9198 0-5560 0-0655 0-0817 0-1229
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| Mean chord, € =3(c,*cp)
: Area of wing, S =2sC
i
! Area of control, S.=2sc,(7;77,)
c, : Aspect ratio of wing 22 z
i Taper ratio of wing &£
| . y
|
P Y > —— free stream direction
lx K T : f . jwk
S Cs 7 angle of control deflectxon=.’R[§oe ]
[
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L=Yg , m= 5’/cf o FyoFefer fp

Fic. 8. ‘ Transform ’ of full-span control. Fic. 4. ‘ Transform ’ of starboard outboard control.
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