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Swummary.—The lift, pitching moment and full-span constant-chord control hinge-moment are derived for a cropped
delta wing describing harmonic plunging and pitching oscillations of small amplitude and low-frequency parameter in
a supersonic air stream. It is assumed that (a) the wing has subsonic leading edges, (b} the wing is sufficiently thin
and the Mach number sufficiently supersonic to permit the use of linearised theory.

Expressions for the various derivative coefficients are obtained for a particular delta wing of aspect ratio 1-8 and
taper ratio 1/7; these are avaluated and tabulated for Mach numbers 1-1, 1-15, 1-2, 1-3, 14, 1-5, 1-6 and 1-944.

1. Imtroduction.—This report considers theoretical derivatives of lift, pitching moment and
hinge moment corresponding to slow plunging and pitching oscillations of a cropped delta wing
with subsonic leading edges. Values of these derivatives are determined for comparison with
experimental data to be obtained at supersonic speeds. Measurements of the oscillatory deriva-
tives for a wing of aspect ratio 1-8 and taper ratio 1/7 with a full-span constant-chord flap
(Fig. 1) are in progress at the National Physical Laboratory for Mach numbers up to M = 1-8.

In a previous paper the author' (1955) determines theoretical derivatives for a cropped delta
wing with constant-chord flap, when the flap alone is oscillating. In conjunction with Ref. 1,
the present theory yields approximate expressions for the complete set of theoretical derivatives
for low-frequency longitudinal oscillations of the wing-flap combination.

In a supersonic air stream the loading on part of a thin plane cropped delta wing of the plan-
form shown in Fig. 1 is identically that on the complete triangular wing performing the same
motion. Over the remaining part of the wing the velocity potential has been calculated by
Evvard’s® (1950) method (section 3). :

Formulae for the aerodynamic coefficients and derivatives are obtained in section 4; the
accuracy of the results is discussed in section 5.

2. General Supersonic Theory.—The governing equation and the boundary condition are made
non-dimensional and, under the assumption of simple harmonic motion, a transformation is made
which, for low frequency, reduces the unsteady problem to a steady one at the particular Mach
number 4/2 (e.g., Watson' (1955) ).

2.1. Governing Equation.—The perturbation velocity potential, ¢, satisfies

82¢ 82¢ azd) - 32';[7 a2¢ 82¢
Wt UE=e(GrEr ). e

where a = velocity of sound, U = velocity of air stream.

* Published with permission of the Director, National Physical Laboratory.
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Non-dimensional space and time variables X, Y, Z, T are introduced by

x =X
y=27Y
L’ (2.2)
2 =737/
t=2¢T|U J

where M = Ula, § = 1/(M* — 1), ¢ = mean chord of wing. In accordance with the assumption
of simple harmonic motion, ¢ is proportional to e — e*” and a time-independent complex
perturbation-velocity potential, @, is given by

—oep T —b(p+5)X|, .. . . . @23

where » = w¢/U. Equations (2.3) and (2.2) transform (2.1) to

o’ *D 2D M#?

572+5_Z‘2~ﬁ2:]\42—_1¢' . . .. .. (2.4)
Since »? is being neglected, equation (2.4) becomes

%P %D %P

m—l'-—a——z—z—"a—)(zzo, . .. . . .. (25)

which corresponds to steady motion at Mach number 4/2.

2.2. Boundary Condition over the Wing.—Under the assumptions of linearised theory the wing
may be treated as a flat plate and the conditions over the wing (Fig. 1) may be referred to the
plane z == () so that the ‘ transformed > wing in XY Z-space (Fig. 3) may also be treated as a
flat plate and the conditions over the wing referred to the plane Z = 0.

It is only necessary to consider pitching oscillations of the wing, plunging motion being the
particular case when the axis of oscillation is at infinity. Let the wing oscillate about the axis
x = ¢h, z =0 with complex angle of incidence « == «, e*' = «, "7, where «, is a constant
amplitude. Then the complex displacement of points on the wing above the plane z = 0 is
given by (Fig. 2)

[ = a(ht — x) = ay e (hé — x). .. . .. .. (2.6)

The boundary condition is that the flow is tangential over the wing, so that under the approxi-
mations of linearised theory the upwash on the wing

2= (@)= (G0 3)
<72 z»——ii“ H—Ifz:uﬁ Elf—"—UaX z =0

= tway €' (b — x) — age' U

= — aU{(1 — wh) + wpX},
2



since w = »U/¢ and x = ¢8X. From this result the upwash on the transformed wing is given by
W—<ﬁ)2=o c(az>z 0—C<az)z=0exp sz—f—wﬁ+ﬂx}
—_ aOEU[(l — k) + i,,(zﬁ n %) X]

on neglecting squares of ». Thus the upwash on the transformed wing may be written in the
form

W=W,+ W,, .. . .. .. .. .- .. .. (2.7)
where W, = — «i¢U(1 — wh) and W, = — gX, where ¢ = wa,fU {28 + (1/8)}. Since W, is a
constant, it may be regarded as the upwash when the transformed wing is at a constant incidence
and since W, = — ¢X, where ¢ is a constant, W, may be regarded as the upwash on the trans-

formed Wing when it is pitching about the axis X = Z = 0 with a constant angular velocity g.
The condition W = W, will be called the uniform incidence case and W = W, the uniform pitching
case, both being governed by (2.5), the quasi-steady-equation corresponding to M = /2.

Let #(X, Y) denote the value of @ at the point (X, Y) on the upper surface of the wing and
(0@/0X), -, the corresponding value of 3®/3.X; on the lower surface of the wing, ® = — @(X, Y)
and 30/0X = — (3®/3X), _,.

The pressure difference across the wing in the positive z-direction or the lift per unit area is

Ponl o)

ox
-2 ).

_ ()| oo i — o+ D).

Since terms of order »* are being neglected the lift per unit area may be written as

p:z’;—f “T[{l—zv</3—}« ) }(g)z=0~%¢(x,Y>], 28

It is convenient to introduce the non-dimensional loading function, F, defined by
F = Pigl(20,U €*7), .. . .. .. .. .. .. .. (2.9)

so that, from (2.8)

F:{1—z'v(,s+%>X}(%’9Z=0—%@(x,y>. L (210

When F has been determined over the transformed wing the aerodynamic coefficients are found
as follows: because of the symmetry about Y = 0, the complex lift coefficient is

9z ” d _
C, = L i A+B+C’P X4y _ 28
2P0U2S ‘lpoUz 236_ P(]UZS

ewT
” FdXdy; .. .. .. .. .. .. @1
A+B+C

J' PAX dY
A+B+cC




the complex pitching-moment coefficient about the axis through the apex is

M

Co = —res
n T T poUPSE

- 2¢p® f
T pOUZSf A+B+C xp dX‘dY

B 4[3 ew'I J‘f -
== i A+B+cXFdXdY’ - .. . .. .. (2.12)

the complex hinge-moment coefficient about x = ¢4, is

H

Cn = e
H %Pﬂ UZSfC{

~ gzl 3)
= — o T B+CX——PdXdY

<302 T
2 ZPOﬁUC_e ffm(,(X_@))FdXdY

P()UZSCf2 ﬁ
= 4661”()” <X—}L>FdXdY
o Us \¢ B+C 3
T wT
() e+ 25 ([ xpaxay +ne, —n T [[ Faxav] . @iy
i

The suffices of the integral signs refer to the areas of integration (Fig. 3},
A denoting the area 0 <7 X < X, 0 << Y < m, X
B denoting the area X, << X < X,,0 << Y << X,(1 4+ my) — X , .. (2.14)
C denoting the area X, = X < X,, X,(1 + m,) — X <Y < m, X,

where X, = ¢,/p¢. Xy == (co — ¢;)/p¢ and m, = Bs/(co — ¢;).

It is assumed that the Mach lines from the tips of the leading edges do not intersect on the
wing and that the wing has subsonic leading edges, so that

(X, — X/ Xo=m. <1, .. .. .. .. .. (215

[T v 59T e

For most practical cropped delta plan-forms the restriction imposed by the lower limit of M is
unimportant; for the particular wing of aspect ratio 1-8 and taper ratio 1/7, being tested at the
N.P.L., cquation (2.16) gives the condition 1038 << M <C 1-944.

which is equivalent to

3. Velocity Potential.~ Tet @, be the solution of equation (2.5) subject to the boundary
condition (39,/3Z2),., = W, (the uniform incidence case) and @, the solution of equation (2.5)
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subject to the boundary condition (0®,/6Z2),_, = W, (the uniform pitching case). Then
® = b, + D, .. . .. . . . L (3.1)

is the solution of (2.5) subject to (2.7). Non-dimensional loading functions F,, F, are defined by

A= iv(/i n %)A}(%i)/: _ %’mx, Y) .. .. (39
and F, — {1 _ iv(ﬂ + %)X}(%)Z=O _ %”qsz(x, Y), .. .. (33

so that, by (2.10) and (3.1)
FeF 4 Fa .. .. (3

Expressions for @,(X, V) and F, are derived in section 3.1 and those for @,(X, Y) and F, in
section 3.2. Because of the symmetry about the plane Y = 0, only theregion Y > 01s considered.
Under the condition (2.15) the flow in regions A and B (Fig. 3) is the same as that over the infinite
triangular wing formed by producing the leading edges downstream; there are known solutions
for the velocity potential of an infinite triangular wing with subsonic leading edges at uniform
incidence or with uniform pitching (Ref. 3), so that @,(X, Y) and @.(X, Y) are known in regions
A and B. The potentials @,(X, Y) and @,(X, Y) in region C are found by Evvard’s method in
the case of steady flow at Mach number /2 (Ref. 2, equation (29) ).

3.1. Velocity Potential for Uniform Incidence.—Since the flow in regions A4 and B is the same
as that over the infinite triangular wing with subsonic leading edges ¥ = - m,X, then in those
regions @,(X, Y) is the perturbation-velocity potential on the triangular wing at a uniform
incidence — W,/U in a stream with Mach number 4/2. This perturbation-velocity potential
is known (Ref. 3, p. 302, equation (148) ); in the present notation

3@1) o Wom2X .
( 0X/z=0  E(R)(m2X? — Y2’ . e .. (3.5)

where E(k) is the complete elliptic integral of the second kind with modulus &2 = (1 — m,?)'/2.
From (3.5) it follows that

W,

X, Y) = — g

(m2X? — YR, R £ X )

since @,(X, Y) is zero on Y = m,X. From (3.2), (8.5) and (3.6), the loading function in regions
A and B .

Fo— — 1% [{1 — i»(ﬁ n %)X}(mw;z)f_ o %’ (m2X? — Yz)”z] @37

In region C, Evvard’s method for steady flow at M =- /2 (Ref. 2, equation (29)) gives
®,(X, Y) as a double integral over a rectangular region of the type S, ++ S, (Fig. 4), namely,

1 <g§;—1>z—o s @S,
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where ry/2 = (X —7)
s4/2 = (X 4 Y)

In the region S, on the plan-form the upwash (9@,/37),_, equals W, (equation (2.7) ), so that
(3.8) may be written in the form
<a¢, ) _dr, das,

(3.9)

4]
B X, Y) = szﬂsl Rt O Y, . (310
where
dr[, ois0
B dr, fs ds,
\/2 s mxoV2 (F — 7o)t/ (L) (s — so)t/%"

1+ m1

This repeated integral is easily evaluated and by use of (3.9) we obtain

2mX + Y)

CIX, ¥) = [T (sinh ™ o o (L, )
where w — L) o — V) S . . . o (812

X + Y)

If the leading edges of the wing are produced downstream so as to form an infinite triangular
wing, then the flow in S, remains unaffected and is precisely that investigated by Behrbohm*
(1952). The upwash outboard of an infinite triangular wing at uniform incidence with subsonic
leading edges Y = 4 m,X, as quoted in equation (12a) of Ref. 4, should read

«U

. ] (1 — ) o
W,y — — F(k){ (6, k) — H} for my < |n] < 1,

- mlz)l/z
so that, in the present notation

a0\ W, V(X2 — Y
<~é—Z—>z o F(k) { (‘15 k) X(YZ — mlzxz)l/zj

Y _

< | IX\

for m,

where I (¢, £) is the incomplete elliptic integral of the second kind with modulus 2 = (1 — mlz)”é
and argument ¢ = sin~' [{(X* — Y*'*}/kX]. In region S,, Y/X is negative so that

<%>Z:o = EVE;) { (¢, k) -+ X%;(/)z{z — 1{212;21,2} Lo (313)

This upwash is a function of Y/X only or, by (3.9), a function of (s — 7)/(s + 7) only. Let

SOWVO

So+ 7o

UV =

(3.14)

Then, in terms of current co-ordinates, the upwash is a function of v only and may be written
in the form

(%)Z/:o = f%) L)  (for—1<v<—m), .. .. (315



where :_[ ‘“Zi+E@@]H . 318)

_ o2\1/2
and ¢ = sin™! (—1~———l,-a~v—l—-

It is convenient to change the variables of integration in the integral (3.10) from (#,, s,) to (7,, @).
Then from (3.15), equation (3.10) becomes

I

T T «
—Wl@l(X, Y) = T E® + C(X,Y), .. .. . .. .. (3.17)
L(v) dv, dv
where I = \/2ffbl T30 (7 = 7 (s = 5" . . (3.18)

The integral I does not appear to be integrable in terms of known functions. Accordingly,
since the integrand of [ is positive in S,, the term (s — s,)7'/? in the integrand of / is expanded
in the form

(s — 50~ —w*{y+%+gz+”].. e e (319

and term-by-term integration gives successive approximations to /. Only the first two terms
of this expansion are retained, as the effect on @,(X, Y) of omitting the remaining terms is in
general small. Thus equation (3.18) becomes

I'=1,+1, .. .. . . . . .. (3.20)
where
_[2\1 ) dry dv
_(> ffsll—v (r — 7o)'7 .. .. .. (3.21)
and, from (3.14),
7o L{v ) dry dv
1, Tﬂw” Oy_y+l b . B2

In terms of (#,, v), the region S, is defined by (Fig. 4) s — m, Xo/2 < vy <7, — 1 <o < — my

so that (3.21) becomes
1/2 pfr K 7o dif(] J‘—nu L('Z)) d?)
I o <S> J‘s-~m1X0‘/2 (7 - 1/0)1/2 -1 (1__7_;52 ' o ot (323)

The integration with respect to 7, is easily performed and it is found that

i’ d 2
f ) XVZ(—%Z 3(7—s~[—m1X V2 (2r 4 s — m,Xo\/2)
93/4
=5 (m Xy — V)12 (BX — Y — 2m,X,) .. .. (3.24)

by (8.9). The other integral in (3.23), where L(v) is given by (3.16), is an elliptic integral whose
7



value is

[ 7S = B — (1 = BKGY . .. 329

where K (%) is the complete elliptic integral of the first kind of modulus & = (1 — m,*)'/%

By (3.9) the factor (2/s)'/? equals 2*/*/(X + Y)'”?, so that (3.24) and (3.25) reduce (3.23) to

2y2 1
3R

mX, — Y

I - (mE(R) — (1 — kz)K(k)}<—XT_Y~)”2 (BX — Y — 2mX). (3.26)

Similarly, equation (3.22) may be written in-the form

1 r 702d70f(+)() .
[2 o W2 J‘sﬂ;z,);},\’z (_,;/_:—..-_7[))1/2 —1 ( ) ’ o o o (3.27)
where
J’ 7o d7q ot e \ , e
.\»,mxvz(i’_—%—)m =15 (m, X, — V)12 (18X% — 10XY + 7Y% — 20m, X X
— 4m XY + 12m°X %), .. .. .. (3.28)
fﬁm‘ U i'lv)fz,(;;) do }3— {4 — 3k — (1 — m)® — mk* E(k) — 2(2 — 3k 4- B)K(k)] .. (3.29)
,,,1 ’
and
1 Q174
ST — X FYPr .. .. .. .. (3.30)

From (3.28), (3.29) and (3.30), equation (3.27) becomes

V21

L=T5p

{4 — 88— (1 — my)* — mABE(R) — 22 — 3k -+ BVK(R)] X
<m1X0 - &7)1/2 2 2 2 2 Q
X —()H——Y)g/_z (15X? — 10XY + 7Y% — 20m, X X — 4m, X, Y + 1Z2m?X 7). (3.31)

Finally from (3.20), (3.26) and (3.31), the velocity potential @,(X, Y) from (3.17) may be
written 1n the form

WXy — Y

_ l@l(X’ Y) R C(X, Y) — 2’171(1%1)< X I )%

1/2
7 ) (83X — Y — 2m, X,)

(m, X, — Y)'?

— 2r,(m,) X YR (158X? — 10XY - 7Y% — 20m, X X — 4m, X, Y + 12m,*X %), (3.32)

where C(X, Y) is given by (3.11),

nim) = 2 szl?(){l() 1~ BE®E) .. .. .. .. .. (333
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and

va(my) = %o% %- [{4 — 3k — (1 — m,)® — mEE(R) — 2(2 — 3k + KYK(R)].  (3.34)

Differentiation of (3.32) with respect to X yields

(1, X, — V)1

n (3D 2m -
W <8—.X1>Z=o - (_1_———-—%115)-172 sinh ™" '/ — 7,(m,)

(leo . Y)uz

— 73(m,)
— 28m, X, Y — 36m,°Xy%), .. (3.35)

where » is defined by (8.12). The loading function, F,, in region C is given by (3.2), (3.32) and
(3.35), namely,

7 . 1 2 ,
— T/I;I F]_ = {1 — ZV(ﬁ + E)X} lj(l—;-lZ:LllT)llzslnh‘lul/z —

(m, Xy — Y)'72

—- 71(7’”1)

o 1/2
— vy(my) <’z¢—§(-_°r?—)§;—,)2— (15X2 + 70XY — 41Y* + 20m, X, X —
— 28m,X,Y — 36m12X02)]

w X, — Y\ o«
-7 [C(X, Y) — 2r4(my) (—X-jr—y—> (8X — Y — 2m.X)

(m, Xy — Y)'/?
X + Y)s/z

— 27,(m,) (18X* — 10XY + 7Y% — 20m, X X —

—4m1X[,Y—l~12m12X02):I L (3.38)

where u, C(X, Y), v.(m,), v.(m,) are defined by equations (3.12), (3.11), (3.33) and (3.34) respec-
tively. .

3.2. Velocity Potential for Uniform Piiching.—The derivation of the velocity potential in this
case is similar to that performed in section 3.1. Here the perturbation-velocity potential
@,(X, Y) on the triangular wing with subsonic leading edges, ¥ = 4 m,X, has to satisfy the

steady condition W = W, = — ¢X in a stream of Mach number 4/2. By Ref. 3, p. 334,
L gX(MIZXZ . 172)1/2 o«
D,(X,Y) = 20 , .. .. .. o .. . o (3.37)
1 — 2m,? m,® .

9



this 1‘eprese1it5 the perturbation-velocity potential in regions 4 and 5. It follows from (3.37)

that
a(pz> g (2m?X® - Y7
< 0X/)sa0 6(1%1) (WL12X2 — Yz)1/z . . .. . . - (339)

Thus from (3.3), (3.37) and (3.39) we obtain the loading function F, in regions 4 and B. Since
¢ 1s proportional to » and terms of order »* are being neglected, then the loading function may be

written in the form
- 8(152>

so that, in regions A and B,

L 1 (2miX — V)
q 2 6(14/1,1) (m12X2 - Y2)1/2 '

(3.40)

As in section 3.1, Evvard’s method in the case of steady flow at Mach number /2 (Ref. I,
equation (29) ) is used to calculate @,(X, Y) in region C. Thus ®,(X, Y) 1s given by (3.8) with @,

replaced by @,; since (89@,/32),_, = W, = — ¢gX over S,, it follows that
5 ( 2> dr, ds,
ol X, ¥) = quﬂ;y-wlm — W2+D@TW .. (3.41)
where

@*ﬂmm
X y = ,\/2 fng 7 _1, 1/2 —80)1/2

dr, s (So ~+ 7’0)
—)17.2 f q as,.

2 s mXoV2 (7 — L — ml) (S _ 80)1/2

i-+m

This integral is easily evaluated and by use of (3.9) we obtain

_ (mX +Y)

DX, Y) = T = " (2 — m)X + m, Yi{sinh ' os'/% |- 2172 (1 4 2)/%
- 1

—éﬁ%%%%wxqﬂwwwa+mW,.. .. (3.42)

where u is defined by (3.12).

The upwash outboard of a uniformly pitching infinite triangular wing at M = 4/2 as quoted
by Behrbohm (Ref. 4, equation (12) ) should read

gX (1 — 2m?® £

’“:_4)1—ml

b8+ 2 F () — LI form < o] <1

so that, in the present notation

10



‘Y‘(Xz Yy \
(‘/’ k) X({;z - MIZXZ)I/ZJ

oD, . gX (1 — 2m,
(57)ecs = = iy (T30 6000 15

for m, < |Y/X| < 1

where F (¢, k) is the incomplete elliptic integral of the second kind with modulus & = (1 — m,*)'/*
and argument ¢ = sin™' [{{X*® — Y*'/®}/kX]. Since Y/X is negative in S,, then in that region

3P, _ gX jl 2, my N V(X2 — Y3 ) )
(-a-—Z->Z L= o) T e F(qb, k) + 1—_—“"1%12 F(‘/{’: k) CX(A S mlzxz)lﬂf ) (3'43)

which in terms of the current co-ordinates (#,, v) (equations (3.9) and (3.14) ) may be written as

9P, _ g7e M(v) o )
<82>z 0 = V2 e(my) (for =1 v < ), TN . .. (3.44)
where . )
1 1 2m,® m,® v(l — p?)i/2
]WWZ‘W1-m{1— F@ﬁ%+l_mﬁﬂﬁm+wﬁ:wﬁm}.. (3.45)
and
¢ = sin~! (1——:—kv—z)lf ,

By changing the variables of integration in the integral of (3.41) from (r,, s,) to (v, v), and by
making use of (3.44), we have

TouX, V) = — L £ DIX.Y), .. .. (348

7 (X, Y) e(m1)+ ( ) (3.46)
7e® M (v) dv, dv .

where —2ff511——v 7 ) (s — s .. .. .. .o (3.47)

It can readily be shown that the integrand of J is positive within S,. As in section 3.1, an
approximation to J is obtained by replacing the term (s — s,) 7*/* in the integrand of J by the
first two terms in the expansion (3.19). Thus (3.47) becomes

J=Ti+TJo - e L (348

72 M (v d1f av
- l/sz 1"-‘() - )1/2 .. .. Lo .. . .. (3.49)

where

and, since s, = 7, (1 + v)/(1 — v) by (3.14),

(3.50)

Jom L[] M 040 drdo
2 — s3/2 8 (1 . 7})3 (7, . 70)1/2

As for the corresponding integrals in section 3.1, (3.49), (3.50) may be written as a product of
two integrals. Thus (3.49) becomes

7= 2 7" dr, f"’” M(v) dv
1= ST o myo2 (7, — 70)1/2 B (1 — v)z,

11
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where the first integral is given by (3.28) and the second integral, where M (v) is given by (3.45),
is an elliptic integral whose value is

f*l:" %“_)—f)ﬂ - % e(my) (), L (35
where
i) = gy (2 = B 4 (1= m)* (1 — 260 (H
2R (1 —m)Y (1 — K] . .. (3.53)

By (3.9) the factor 2/s'/? equals 2°/*/(X -+ Y)'?, so that (3.28) and (3.52) reduce (3.51) to

m Xy — Y\'?
L= 2e(my)oy(my) (o) (15X% — 10XY + 7Y — 20m, XX — 4m,X,Y
X+Y

+12m2X). .. .. .. (3.54)

Similarly, equation (3.50) may be written in the form

1 7es dv, f‘"“ (1 + v) M(v) dv
]2 - ss_/z fs—;mXWZ (1, — 7/0)1/2 . (1 — 7))3 PR (355)
where
v P . 1/2
f T Lo Z)’?’/z - (ml‘};‘;M 35Y )7 (85X® — 35XV 4 49XY? — OY® — T0m,X,X?
— 28m X XY — 22m,X,Y? + 84m2X 32X + 36miXPY — 40mPX), (3.56)
and
(] M) dv ,
f ( *(“1 o) v)(?, V4 (850 Delm)onm), .. .. .. (357)
where
oalm) = VP [(R(32 — 34k 4 B & (1 — my) (4 — dmy — 3k X
2T 420k%e (my) ! :
% (1 — 2B)YE(R) — {2k*(16 — 9F%) + (1 — my)® (4 — 4m, — 3k} ¥
x (1 — B)K(R)], T € X <)
and
| et
s.:i_/z:‘:m. Y .« . .. .. . .« .. .. (3-59)

From (3.56), (3.57) and (3.59), equation (3.55) becomes

Js = 2e(my)o(my) X — Y)'

X F VPR (35X°% — 35X?Y - 49X Y* — 9Y? — 70m, X, X*?

— 28m, X XY — 22m, X Y? 4 84m 2 X' X + 36m XY — 40m,°X®). (3.60)
12



Finally from (3.48), (3.54) and (3.60), the velocity potential @,(X, Y) from (3.46) may be
written in the form '

X, — Y\
g¢2(x, Y) = D(X, Y) — 20,(m,) (%ﬂ“) (15X® — 10XY + 7Y? — 20m,X,X
(mX, — V)2

— AmX,Y + 127X — 2osfm) S

(35X° — 35X°Y

+ 49XY? — OY® — TOm, X, X® — 28m X XY — 22m,X,Y* + 84m*X2X
+ 36m2X2Y — 40mPXe), .. .. .. .. .. .. (38l

where D(X, Y) is given by (3.42), o,(m,) by (3.53) and o,(m,) by (3.58). By differentiation of
(3.61) with respect to X we obtain (6®,/9.X), ., Since gis proportional to» and terms of order »*
are being neglected, the loading function, F,, equals (99,/0X);_, so that, on performing the
differentiation of (3.61) with respect to X, we obtain for F, in region C,

Fy= 2 lim(2 — )X+ Yhsinh= 0 & (1 — my — mp®) (mX + V)

i &
g (1 — my)

— 1/2
S (1 4 )] — oy(my) PaXe = VD7 530 1 50X Y — 2777 — 20mX,X

(X _|_ Y)3/2

(m, X, — Y)'72

— 86m, X, Y — 12m,2X ) — oy(m,) X YR

(45X* + 130XY + 181Y*

+ 20m,X X + 68m,X,Y + 36m2X,3), O X:

where %, o,(m,), o4(m,) are defined by (3.12), (3.53) and (3.58) respectively.

To summarise, the loading function, F, is given by (3.4), where, in regions 4 and B, F,, F,
are given by equations (3.7), (3.40) respectively, and, in region C, F,, F, are given by equations
(3.36), (3.62) respectively.

4. Aerodynamic Coefficients and Derivatives.—In section 8, expressions have been given for the
loading function, F, in the regions A, B and C (Fig. 3), so that the aerodynamic coefficients
follow from the integrations in (2.11), (2.12) and (2.13). Expressions for the lift, pitching moment
and hinge moment are obtained in section 4.1. The aerodynamic derivatives in section 4.2 then
follow directly from these coefficients.

4.1. Calculation of Aevodynamic Coefficients.—In order to calculate the aerodynamic coefficients,
(2.11), (2.12) and (2.13), it is necessary to evaluate the integrals

H (1, X) F dX dY, ” (1, X) F dX dY,
A+B+C A

where (1, X) denotes 1 or X. Since the expression for F in regions 4 and B, given by equations
(3.4), (3.7) and (3.40), differs from the expression for F in region C, given by (3.4), (3.36) and

13



(3.62), then the integrals to be evaluated are split up into the six integrals

[, axrFaxay, [[ q,x)Faxay, [[ (1 x) Faxay,

o

or more conveniently into the twelve integrals

” (1, X) F, dX dY, ” (1, X) F,dX dY, ” (1, X) F,dX dY,
N A+ B A+DB o c
(4.1)
“ (1, X) F,dX dY, ” (1, X) FdX dY, ” (1, X) FdX dY
() A A

o

It is indicated in Appendix A how the integrals (4.1) reduce to a linear combination of the
integrals in Appendices B, C, D, E, F. We thus obtain the following twelve results in a form
suitable for calculation:

— g ], raxay = g lmtp =il (5 )+ 2] 4
- ”A XFaXay = o l:mlzP {mlP (ﬁ + %)—F%}:I} . 43
"(;H“ FdXdY—-(m)(mIP PN
gfwaBXngXdY:e(—;-l—) (m?Py - P)i .. .. .. ... .. (45

om
-~ [[ Fiaxay = [(1 i O — ) (3501 — 45,1 + 6,0,

- Tg(m]) (1550’, | S 4051,,,‘2 - 9652‘A3 _I" 6074’&1X050,M2

+ 240m,X,S, 5 — 180m12X0250,,3)] [(ﬂ - ﬁ) {( 2 >/2 0, —

1y (my) (3Ses — Si 1 — 45y s + 3, XoSe 1 - 10m XS, s
— M 2X Sy, ) — Ta(m) (15Ss — 25, 1 — 1368,

- 9BS,, s + 45m,XoSe, 1 + 340, XS, + 336m.XeS. s
— 240MX S, s — A20m2X 2, - 180m13X0350,_3)} |

. % {(lea 4+ 0 + Ry — 7, () (3Sop + 451 — 61, X,S, 1)

<1 . m12)1/2
- Tz(ml) (1550,0 "!" 4051,_1 "‘i_ 3252,_2 - GOleoso’,l

— 80MX,Sy, s - 60m3)_{0250ﬁ2>}] ; .. (48
14



2m,
.. f f _XF,dXdY = [(—1-—_—%-)—/ Os — 1a(12) (3S0s — Sy — 4S,_s + BmXoSe s

+ 10m.XoSy, s — 612X S, s) — 7a(ms) (1554,
955, . — 136S, _, — 965, _; + 45m.X,S,_; + 340m,X,S, s

1 386m,X,Ss s — 240m,*X,2S, 5 — 4202 X3S, 4 1 180m,2 X3S, 3)]

' [(,9 + %){(1__2%?77 05 — 7:(m) (8Sus - 2510 — 55, _,

A4S,y - 14m XSy 1 4 14m,XoSe s — 9m2X 2SS,y — 16m2X2S,
- 6m* XSy, ) — Ta(ms) (15S,, — 10S,, — 161S, .

— 9325, , — 96S,_s - 301, XS0, + 410m,X,S, s + 812m, XS, .
- A32m, XS, s — 285m X3S0 1 — 1000m2X2S,. s — 756m,2X %S,

1 420m,°X,So,_» - 600m X3S, 5 — 180m, XS, 3)}

N % {(ml(gs O R) ) (8Sus -+ 7Su0 + 45,

(I — m2r
O, X,Sop — 10m. XSy 1 + 6m2X Sy 1) — 1a(ms) (1550
4555, + 725, 1 4+ 325, — 75m.XSe — 180m,X,S, _,
112, XS, - 120m,2X2S,_, - 140mX,2S, _,

—60m13X0350,_2)}]; R 7

2] Feax ay = [ = m 2 = w0 4 Qu - (1 — e — )Ry}
— oy(my) (45550 - 405, 1 — 325, , — 60mXoSo s + 80mXoS: s
 B0MEIX S, ) — oa(m) (455, , — 40S,_, + 96S,_,

- 60mXoSe_s — 240m.X0S,, 5 + 180m12X0250,_3)]; .. (48

15



T , , 2
“q ch KF2 axdy = [Z‘l—‘_—%l—z)gﬁ {7’}41 (2 — m12) Q5 -‘f— Q4 —{‘— (1 —_m, — m12)R2}

— ay(my) (45S,, + 855, + 8S,,_; — 3255, _, — 1051, X,S,,

— 20m, XS, 1+ 112m, XS, o — 140m° X 2S,, 5 -+ 60m° XS, o)
— ay(my) (45S., + 5S,, .1 + 565, _» - 96S; 5 + 15m, XS,

— 140m, XS, — 336m, XS, 5 + 120m32X %S, » + 420m2X2S,

_ 18()%3)(0350,,3)]; R )

7 [[ Faxay - - [ty — inlmet (5 + ;) + %—}] Lo o)
- [ xrax dqu’(fg)[mfn*iv{mfn(ﬂ +/1§> n %—}] R PR}
g‘[ [ Foaxay - T T T Y
gffAXFz AX dY — 6_(;;_) Ty + Tol. oo e e (413)

In these equations W, and g are given by (2.7), e(m,), v:(m,), t4(m,), o,(m,), o,(m,) are defined by
(3.38), (3.33), (3.34), (3.53), (3.58) respectively and the P’s, (’s, R’s, S’s and 7’s are given in
Appendices B, C, D, E and F respectively.

It is convenient to express the right-hand sides of equations (4.2), (4.3) . . . (4.13) in the forms
R,(4.2) — wR;(4.2), R,(4.3) — wR;(43), ... R,(4.13) — = R,(4.13),
respectively, so that the equations may be written in the form

Wir@o — awr@2), .. . (414

i

J |, Fuaxay - -
AVRB

W,

T

”4 XF XY = — R(A3) — dRMA3), .. .. . . L (415

“ Foax ay -4 R 44, O PR T
JALEB 7T
H XF,dxdy — 4R (45), N T U )
A+ B JT
W . 1
” [dX dY — — ZHR(46) — oR@AS), .. . . .. (418)
C z
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HC XF, dX dY = — % {R(47) —»R(47)}, .. .. .. .. .. (419
”C FydX dY = f{ R,(4.8), O ¢ 8.0)
[[ xpiaxay =Ir@e), .. .. . L @2
[| Fiaxay = - Mo R@10) —iR@10), L @2
[[ xFaxay = - Dw@m —ar@my, . L @)
[f Feaxay =Ir@1z, .. .. . L 429
[| xFoaxay =Ir@iy, .. . . . L @2

since to the first order in frequency F, is real.

Then from equations (2.11), (3.4) and (4.14) . .,. (4.25), the complex lift coefficient becomes

4euT
=G5 o Bt PO ax 2y

AW (R + R — #(R(A2) + R(48)

4-7%’{13,(4.4) + R,(4.8)}] . T 5
Similarly the complex pitching-moment coefficient, (2.12), becomes

4ﬂ ezuT

C. — [— W, ({R (4.3) - R(4.7)} — iv(R/(4.3) + R,.(4.7)})

+§{R44.5)+R,(4.9)}]. O PR3,

The complex hinge-moment coefficient, (2.13), becomes

A% 4p e*T W, . q
o —<;f> [Cot G+ - (= R — dRAI} + TR (413)
hodeT ) W, .
_te (_ “1R,(4.10) — »R(4.10) +7%R,(4.12)>:| L. @)

17



After substituting for W, and ¢ from (2.7) and discarding terms in »* we obtain the complex lift
coefficient in the form

C, -4 <;f;> [:oc (]\’,(4.2) n R,(4.6)> . (”-5) <{Ri(4.2) L R(4.6) + hR,(4.2)

1

D) (R (4.4) + R, . L @)

© hR(4.6)) — (Qﬁ +3

where o, e”” has been replaced by « and e, e"” by (¢¢/U), where ¢ = dafdt. Similarly the
complex pitching-moment and hinge-moment coefficients become

O 4p <_> [a (R,(4.3) 4 R,(4.7)> _ (%) ({R,-(4.3) 4 R(47) + hR(43)
L OAR(47)) — (z/a n >{R (4.5) + R,(4.9)}>] , 430

Cor — (g) [r © R, - 4 <gc?z> (o«.{/)’R,(Al.ll) — hoR,(4.10)}

f

_ (g){ﬂmm.n) - BAR,(4.11) — ﬂ(Zﬁ + %)R,(4.13) — hR,(4.10)

— Bk R(4.10) + h[,<2ﬂ+%>{€,(4.12)}ﬂ. S @3

4.2. Calculation of Aerodynamic Derivatives.-—-Each aerodynamic coefficient may be split
uniquely into two parts, viz.,

o fady )
C, - -H7oc~24<(—(——>
)t m, <%5> S W 23
Co 2+ 2h, ({)

where @ = dafdt and the real coefficients, z,, 2, m,, m., k,, h, are the required derivatives.

The moment in the second equation of (4.32) will be taken about the axis of oscillation of the
wing (¥ h¢) so that the moment coefficient (C,,), = C,, + #C,, where C,, is taken about the
pitching axis through the apex of the wing. Then equations (4.32) may be written

C, = — 220 — 22, (Q) 1

U

. ac
C,, = Am, + hz o + Am, + hz, [( >

- (4.33)

g

Cy = 2 - 2, < U)
18



The derivatives may be evaluated by identifying (4.33) with the expressions for the aerodynamic
coefficients given by (4.29), (4.30) and (4.31):

2R (42) + R(46))

I

o

X [(Zﬂ + %) {R(4.4) ~ R,(4.8)} — {R(4.2) -+ R,.(4.6)}] + ha,

ST

o, = ER (43) + R(AT) + k2,

s
o 23%0 [(2,3 + %) (R(4.5) - R,(4.9)) — {R(4.3) + Ri(4.7)}J

+ h(my -+ hz,) + hz, L e (434)

— = (63)2 [52—5 (hoR,(4.10) — BR(4.11)} — (m, + hz,) + hozm:|

— h = (5) x {‘ﬂR,‘(4.11) — hR(4.10) — ﬂ(Zﬁ + %) R,(4.13)

1A <2,3 + Bl-) R,(4.12)) — {(m, + hz) + him, + ha,)}

o+ halzs + hz»] -+ b,

On comparison of equations (4.14), (4.15), . . . (4.25) with equations (4.2), (4.3), . . . (4.13) the
R,s and R;’s are found as functions of the P, ¢, R, S, T integrals which are given in Appendices
B, C, D, E and F. It is easily seen that the R,’s and R/’s are functions of m, = 8s/(c, — ¢c;),
X; = ¢o/p¢ and X, = (¢, — ¢;)/B¢ only, so that for a given wing the derivatives are functions

of Mach number and % only.

The aerodynamic derivatives for a plunging motion of the wing are defined in terms of the
corresponding aerodynamic coefficients by

i
U= — 28,2 — 22, (U)
(Co)y = 2z 2m<§—§> L 43y
Cy = 2z + 2, (%f)

J

where z denotes the complex downward displacement of the wing from its mean position and the
moment in the second equation is taken about the pitching axis through ¥ = 4¢. On comparison
with the coefficients in (4.29), (4.30) and (4.31), it is easily seen that

= m,=h, =0 .. . .. .. .. .. .. .. (4.36)

and
Zé:Za,mz'-:ma,hz':hm. . .. B .o .. . .. (437)
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It will be remembered that the derivatives (4.34) are given approximately only, because an
approximation was made in calculating the loading over region C (section 4). This approxima-
tion was the replacement of the term (s — s,) '/? in the integrands of (3.18) and (3.47) by the
first two terms on the right-hand side of (3.19). However, (3.18) and (3.47) in general make only
a small contribution to the loading in region C and consequently to the derivatives in (4.34).
It can readily be shown from (3.33), (3.34), (3.53), (3.58) that 7,(m,), o,(m,) are of order
k* =1 — m;® and that z,(m,), o,(m,) are of order A* as m, — 1. Thus we may consider the
following three approximations:

(a) A first approximation to the derivatives is obtained by omitting the contributions
arising from (3.18) and (3.47) (this is equivalent to formally putting «,(m,), 7,(m,),
o1(m,y), o5(m,) zero in (4.34) )

(b) A second approximation is obtained by retaining only the first term in the right-hand
side of (3.19) in place of the term (s — s,)"'/* (this is equivalent to formally putting
74(my), and o,(m,) zero in (4.34) )

(¢) A third approximation is obtained by retaining only the first two terms in the right-hand
side of (3.19) (this is equivalent to (4.34) as it stands).

Furthermore, the contribution arising from (3.18) and (3.47) is the contribution arising from
region S; (Fig. 4). Consequently, as the subsonic leading edges of the wing approach sonic
leading edges, this contribution tends to zero, so that, as the Mach number increases, the above
three approximations tend to each other and to the exact value.

For the particular wing of aspect ratio 1-8 and taper ratio 1/7, the derivatives — z,,
—.2, . .. — h, are tabulated in Table 1 for the special pitching axis # = 0, and the values of
these derivatives for any given pitching axis then follow from (4.34).

5. Discussion of Results.—Of the three types of approximation defined at the end of section 4.2,
the second approximations to the derivatives in (4.34) and (4.38) for the pitching axis at the apex
of the wing (4 = 0) are tabulated against Mach number for a cropped delta wing (Fig. 1) of aspect
ratio 1-8 and taper ratio 1/7. For most practical cropped delta plan-forms this second approxi-
mation is sufficient. In Table 1 the third approximations to the derivatives are given for the
Mach number M = 1-1; even at this unfavourably low Mach number, they are seen to differ
little from the second approximation. The derivatives for pitching axes other than that through
the apex can be found from (4.34) and (4.38).

The ﬁrst and second approximations to the derivatives for the pitching axes given by 4 ==
and & = 1 are plotted for this wing against Mach number and shown in I'igs. 5, 6,7, 8. The thlrd
approximations for M = 1-1, are also shown. It is seen from these figures that the derivatives
are given sufficiently accurately by their first approximations for a Mach-number range from
about M — 1-3 to M = 1-944 at which the leading edges are sonic. From M = 1-1to 1-3
the derlvatwes are seen to be given sufficiently accurately by thelr second approximations.
The quasl steady values of — z, and — m, for M = 1 from Mangler’s® (1955) theory are shown
in Figs. 5 and 6 for comparison.

6. Acknowledgement.—The computation, the results of which are given in the table and
figures, was carried out by Miss S. W. Skan.
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4, B,C

e

I(m,)
E(k), K(k)

E($, k), F($, k)

LIST OF SYMBOLS

Speed of sound ,
Areas of integration (Fig. 3)
Root chord

Control chord

tip chord

Mean chord

(¢ + <)

Complex hinge-moment coefficient
H{kpoUS;¢s

Complex lift coefficient

Li3p,US

Complex pitching-moment coefficient
M [5p,USE

Defined by equation (3.38)

Complete elliptic integrals of the first and second kinds with
modulus &
Corresponding incomplete elliptic integrals of argument
( X Yz)l/z
kX
Complex non-dimensional loading (equation (2.9) )

¢ = sin!

Complex non-dimensional loading for constant incidence, pitch case
(equations (3.2) and (3.3) )

Streamwise distance from apex to axis of oscillation
Streamwise distance from apex to hinge line (¢, — ¢;)

Stiffness, damping derivative ‘of hinge moment due to pitching
(equation (4.32) )

Stiffness, damping derivative of hinge moment due to plunging
(equation (4.35) )

Complex hinge moment

(1 — my®)'*

Complex lift

Function obtainable from equation (3.16)

Non-dimensional tangent of semi-apex angle (see Fig. 3)
Bs/(Co — &)

Direct stiffness, damping derivative of pitching moment (equation
(4.32) )
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M

M (v)

myn

Sl) 52

w. W,

LIST OF SYMBOLS—countinued

Stiffness, damping derivative of pitching moment due to plunging
(equation (4.35) )

Mach number of free stream

Ula

IFFunction obtainable from equation (3.45)

Complex pitching moment about pitching axis through apex (nose up)

Complex pressure difference across wing
(equation (2.8) )

Integrals evaluated in Appendix B

iv{a}fU(Zﬁ +- %)

Integrals evaluated in Appendix C

Axes parallel to Mach lines (equation (3.9) ) (Fig. 4)

Variables of integration in (7, s)-plane

Integrals evaluated in Appendix D

Real parts of right-hand sides of equations (4.2), . . . (4.13)
Imaginary parts of right-hand sides of equations (4.2), . . . (4.13)
Semi-span of wing

Surface area of wing
2s¢

Surface area of full-span flap
2sc;

Integrals evaluated in Appendix E
Areas of integration shown in Fig. 4
Time

Non-dimensional time

Utlé

Integrals evaluated in Appendix F
Function defined by equation (3.12)
Speed of free stream
(S0 — 70)/(Se -+ 70)

Complex upward component of velocity
(00[22), .

(equation (3.14) )  Variable of integration

Complex upward component of velocity associated with constant
incidence, pitch case
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X, v, 2
X, Y Z
XO: Xl
zou Zd
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&

-

5

v

Po
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K. W. Mangler

LIST OF SYMBOLS —continued

Rectangular Cartesian co-ordinates defined by Fig. 1.

Non-dimensional co-ordinates defined by equation (2.2)

Non=dimensional lengths shown in Fig. 3
(Co - Cf)/ﬂé: Co/ﬁc_
Stiffness, damping derivative of lift due to pitching (equation

(4.32) )

Stiffness, damping derivative of lift due to plunging (equation
(4.35) ) ‘

Complex angle of incidence
%o eiwt

V(M —1)

Complex upward displacement (see Fig. 2)

Frequency parameter based on mean chord

wélU

Density of free stream

Functions defined by equations (3.53), {3.58)

Functions defined by equations (3.33), (3.34

—~—

Perturbation-velocity potential

Time-independent complex perturbation-velocity potential on upper
surface of wing

Corresponding perturbation-velocity potential for uniform incidence

Corresponding perturbation-velocity potential for uniform pitching

27 (frequency of oscillation of wing)
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APPENDIX A

Integrals requived in section 4.1

In order to calculate the aerodynamic coefficients the integrals (4.1) must be evaluated. The
first four integrals in (4.1), namely, the integrals of F,, F,, XF,, XF, over the region 4 + B,
where I, F, are given by (3.7) and (3.40), reduce to a linear combination of the integrals
JLHB (mlg)(dgx—di;)”z’ where x takes the forms X, X? X? (m,?X® — Y?) and X(m,’X* — Y?).
The values of these integrals are given in Appendix B as P,, P,, . . . P;. The next four integrals
in (4.1), namely, the integrals of F,, F,, XF, XF, over region C, where F,, F, are given by
(3.36) and (3.62), reduce to a linear combination of three sets of integrals:

H X"V sinh ' dX dY, where (m, n) take the values (0, 0), (0, 1), (1, 0), (1, 1), (2, 0);
.

4SO

R, —” (X L Y)u? (1 - w7 dX dY, R, :U X(mX + Y)ur (1 4 u)'?dX dY;
« (&}

Sm,n :J‘f (leO . 17> (2m + 1) /2 (X + Y) @n+1)/2 dX dY,
C

where # is defined in equation (3.12). The first set of integrals may be found from Appendix C
as Q,, Q,, . .. Q; the integrals R, and R, are given in Appendix D and the integrals S, , in
Appendix E. Finally, the last four integrals in (4.1) correspond to the first four integrals in (4.1)
integrated over region A in place of region A4 + B; these are given in Appendix I as
T, T, ... Ts

APPENDIX B

Integrals P,, P,, ... P;

These are readily evaluated by writing the double integral over the region 4 -- B in Fig. 3
as the sum of two repeated integrals

Xo(l +my) — X3 X1 m1Xg PXo(l ) — Y
” dXdY:f dyf dX+f ay | iX.
J A+B 0 Y/iny

Xo(l +my) — X1 Yim
Then, if
¢ Xl tn@_xl,n:%1{1~%(1_m1)‘} R 0 B
4 E_ij_.—%%;: Xp{oos ™y — (1 — ;5 .. (B2
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X*dX dy L
P :‘[JA+B (m12X2 _ Y2)1/2 = 3 X {Sln tEe oL %5(1 _ 52)1/2}

(14 m)'™ (2 + m)’)

3 —1
+ 80 — " XZicos™ty
ml( _[_m1)12 31 21/2[ 1 — m, Xl:l. <
— S =y L =) == | (B
X2dXdY 1 g .
Py - JJA+B mX? — YY) 2 12 X, H{3sin "t & 4 £(1 + 28%) (1 — £%)'7%}

+ 2_54'1(:5’@)_)7 X'[8(2 + 3m,®) cos ™' n — {16m, + (2 + 7 m*)y

— 16my® + (4 + 2mAn%} (1 — D)) 4 - W

P, :JJ. (m2X? _ YAHrgX dy = émlzXls (sin-tE + 28(1 — g9
A+B

T cos - e LI 1 —

)3/2 ( m1)5/2
x[l—%l?{l—(l——my%}]; .. .. .. .. .. (85
P, :”A+3 X(meXt — Y2 dX 4y — 214 meEX A3 sint & + &(5 — 26 (1 — e
n M Xt {8costy —n(5— 207 (L — ). .. .. .. (B
APPENDIX C

Integrals Qh, Qs, . . . Qs

The integrals over the region C in Fig. 3 are evaluated by expressing the double integrals as
repeated integrals

m1Xo X1
f f dX dY = f f X
Xo(l + my) — X Xo(l +mp) — Y

and then reducing them to a combination of subsidiary single integrals which are listed at the
end of this Appendix. In terms of u = {(1 — m,) (m, X, — Y)}/(m, X + Y),

8m1

Q1 foc sinh™* #'?dX dY = 2m,(1 — m,)X (X, + X,)*1;® — XJ3®, .. (C.1)
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Q. :ffc Ysinh=t 42 dX dY = 2m*(1 — m,)*(X, + X,)*1,*®

16m,*

2 -
B R G

X[ (C2)

T = )
Q3v”FXﬂm1umm¥ﬂ%:w%{h+émdl—mf@%+XfUm
. ‘ 1
8 d ™
—ET@@JWﬂ U (O )
Q4:f(_XYsmhlquXdYE:AﬂlJf Visinh 'w'?dX dY +
Je wmy J e
+_%_m12 (1 . m1)4(X(, + X1)4I5(3) .
o 1 2 _ 3 3r 3 ___ _1_§ _WZ}_Z__ 4 (3)
gml (1 ml) XI(XO + Xl) ]4 3 (1 _ ml)z XUJSK JV
8 (1
+§%%{%%&m@.. R (o)
Qo= [ xsinhrwraxay = — L[| yrsinhowraxay — 2o,
c Wy C wy
2 , 32
+E%u-mma+&ww—ﬁaggmmmw N (oF-)

The integrals ), and Q5 involve the subsidiary double integral
ffWﬁm‘wmﬂdY:mMU—mf@ﬁdm%@—ywﬂ~mm&mfﬁ&Wﬁ
«

< 3 4
4 2m13(1 . ml)zXlz(XO + X1)2[3(2) _ M ]5(2> +
(1 — my)®
) 32m*(1 + m,)
(1 — m,)®

8m (1 + m,)?

- (1 — my)?®

Xt P — X f® .. (C.6)

Subsidiary single integrals.—The quantities @y, Q,, . . . J; are evaluated with the aid of the
I’s and J’s given below:

(1 —m) (X, — X T
ImKnL&_mem&+Xﬂ U (o'}

Since ", << 1, X, << X, and, by the condition (2.15), m, > (X, — Xo)/XO then K is real.
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YN | N— RN —
0

T —m + 09 (1 + o972 (n— 1) omi!

1 an 1
- (n — 1)1 ami— P L

n > 1),

where K is treated as a constant in the differentiation and where

B ) - m 1/2 K
Il(l) = m, 1/2 (1 — ml) 172 tan~! [(1 _lml) (1 _§_ K2)1/2:| .

Let JO — f - il - £ nEl i () G (n=1)
~ n 0 (1 + 7)2) @n+1)/2 (1 + KZ)I/Z P 27, + + Kz = ’
where (";!) is a binomial coefficient.
In terms of these results, by integration by parts we obtain
1o _ fK visinh~' v 4 o(1 4 v*)/*}dv B {sinh ' K + K(1 + K*'*}
=) (I — my + v¥)" - 2(m— 1)1 — m, + KA
1
W ) .
—I—(%—"l) [I 2—| mlln 1:': (7’L>3),
Jo — J‘K v{sinh™ v + o(l + ¢*)'jdv __ {sinh* K + K(1 + K*)'/*} i
" 0 (1 + %" 2(n — 1) (1 + K*¥"!
511-)-2 > (; .
+ (n—:T) L (n = u),
7O _ J" W3 sinh™ v + v(1 4+ v?)%% — 3v¥(1 4 )%} dv
n 0 (1 — Wy + U2)n
’ . -1 N3/2 3 2\1/2
__ {38sinh 'K 4 K(1 + K?) 3K2(1_1+K) L Y
2m — 1) (1 — my, + K¥" (n — 1)

+ (8 — dm)I, + my(3 — 2m)IDY, (n = 4);

@ _ f" o{8 sinh ™ v 4 v(1 + v*)** — 3v*(1 + »*)'/} dv
]71 1y (1 + 7)2)"
__ {3sinh 'K o K(1+ K — 8K*(1+ K9} | 2 o
- 20 — ) (T + Ky =1

+ 3JiL.), (n = 4);
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10 J"‘ v{15 sinh 'v |- v(8v* — 4v® 4 3) (1 -+ v?)'*} dv
e (1 — m, + 7)2)"

_ {I5sinh ' K + K(8K' — 4K* 4 3) (1 4+ K*)'/*} 3
o — 1) (T — my + K T =1

{m, (15 — 20m, +

S 8m) IV, (15 — 40m, + 24mAT0, — 4(5 — 6m)I0, + 810}, (n=5); (C.15)

@ f Ky{15sinh ' v + (80" — 4v* + 3) (1 + v*)'/%} dv

n 0 (1 J- 'UZ)"
 {I15sinh 'K + K(8K' — 4K* + 3) (1 + K%'/3) 3 ery ongm
T 2 — 1) (1 + K pl e R e
+8J0), (n=5). R (o 1)

APPENDIX D
Integrals R,, R,

These integrals are evaluated in the same way as the integrals Q,, . .. (Q; of Appendix C.
The double integral over region C is expressed as the same repeated integral. In terms of

u = {(1 — my) (m X, — Y)}/(mX + YY)

R, — ”( (X 4 V) (1 4 w)' 2 dX dY — §m12(1 ) (X - X2)°G, —
16 m? s
~F T X . . (D)

R, — f f X(mX A Yt (1w dX dY = gmm — ) X2 (X - X,)°Gy —

4
— et (1= m)* (X, + X,)'G, —

16 m,* X,

~ B U0 £ (1 —m)H, . (DY)
where v
2 K |
= s e (D3)
2 K
B=sa TRy (D.4)
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G, = 21—4 my 3% (1 — my) =330 — sin 6 cos 6 (3 — 14 sin®* 0 + 8 sin* 4)], .. .. (D.5)

Gy, = ﬁlﬁ my (1 — my) 7156 — sin 6 cos 6 (15 — 118sin®6 -+ 136 sin* 0 — 48 sin’6)}, (D.6)
my  \'/* K

f — tan-lRl _1m1> T Kﬁ)l/z}’ O ¢ )

where K is given by (C.7) of Appendix C.

APPENDIX E
Integrals S

myn

Again the double integral over region C is expressed as the repeated integral in Appendix C
and

Sin ::J‘f (m, Xy — Y)n1+1/2 (X + V) dx dy N N (E.1)
c
is found to reduce to

Sm,n =

¢
2 i_ 3) (m, Xy + Xl)’"””fo sin®*2 g cos™** 0 do

4(1 + ml)n+3/z X nt3r2 (X1 — Xo)m-(—S/’z Eo
B @m 1 3) (21 + 3) R

where

_ 1/2
X1 = X ) (E.3)

e a1
¢ = s <m1X0 + X,

and the integral on the right-hand side of (E.2) may be evaluated by means of the reduction
formulae

sin**'6 cos™ 1@ m — 1
I — + < ) [n,m~2

i (n + m) n -+ m
(E.4)
sin®”"'f9 cos?t' 0 n—1
In,m - E (% + WL) + <1’L _f__ m) In72,m
where
I, — fsinn beos"0do. .. .. .. .. .. .. (ES5)
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APPENDIX F
“ Integrals T,, T, . .. T

These are evaluated by expressing the double integral over region A in Fig. 3 as a repeated

integral:

Xo m1 X
” dXdY:J de iy.
A 0 0

Then it is easily found that

' X
Tl = JJ‘A (m12X2 — Y2)1/2 ax dy = % on C

L - Xz fend 7 3.
[‘2 ff‘l (’I/}’le)f2 - Y2)1/2 dX dY == _6 X“ :

—_ " X3 U T 4.
T, = fJA (m12X2 — Yz>1/2 dX dy = §X0 ;
To=[[ tmeXe — yyrax ay = 2 mex

T, = ”A X(m2X? — Y2 dX dY = —m? X, .

16
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TABLE 1

Second Approximation to Devivatives for the Delta Wing
of Aspect Ratio 1-8 and Taper Ratio 1/7
with Subsonic Leading Edges

M By = — % — 2 — My, = — W — My — By = — hs — A
1-1# 1-536 1-774 1-676 2-305 0-3880 2724
1-1 1-537 1-762 1-678 2-285 0-3905 2382
1-15 1-508 1-763 1-656 2-282 0-4208 -2142
1-2 1-478 1-734 1-629 2-243 0-4358 -1871
1-3 1-417 1-644 1-570 2-128 0-4469 -1264
1-4 1-361 1-546 1-513 2-001 ()-4482 0655
1-5 1-309 1-453 1-457 1-882 0-4428 -0030
1-6 1-260 1-367 1-405 1-771 0-4350 -9487
1:9447 1-116 1-125 1-249 1-460 0-4027 7923

* Indicates that the third approximations to the derivatives are given.

t Indicates the Mach number at which the wing has sonic leading edges.

The pitching axis is taken at the apex of the wing.
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Mean chord, € =% (Co + ¢f)
Area of wing, S =2s ¢
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