
R©?A!_ ~. . . . . . . . . . . . . . . . . . .  
• . ;  iL  - 2 ~  - : , ~ "  F 

M I N I S T R Y  O F  S U P P L Y  

R. & M. No. 3061 
(18,481) 

A.R.C. Technical Report 

AERONAUTICAL RESEARCH COUNCIL 

REPORTS AND MEMORANDA 

Note on the Convergence of 

Numerical Solutions of the 

Navier-Stokes Equations 

A. THOM and C. J. APELT 

Crown Copyright Reserved 

LONDON: H E R  MAJESTY'S STATIONERY OFFICE 

1958 

P l a i c e  3s. 6d. ~ E T  



Note on the 

of the 

Convergence of Numerical Solutions 

Navier-Stokes Equations 
By 

A. T~oM- and  C. J. APELT 

Reports and Memoranda No. 3 0 6  I 

June, 1956 

Summary.--A criterion is given for the convergence of numerical solutions of the Navier-Stokes equations in two 
dimensions under steady conditions. The criterion applies to all cases, of steady viscous flow in two dimensions and 
shows that if the local ' mesh Reynolds number ', based on the size of the mesh used in the solution, exceeds a certain 
fixed value, the numerical solution will not converge. 

1. Introduction.--Although it is of considerable impor tance  to have  solutions to the  Navier-  
Stokes equat ions  in par t icu lar  cases other  t han  the  few which  can be deal t  wi th  analyt ical ly,  ve ry  
li t t le a t t en t ion  has been given to this m a t t e r  unt i l  recently.  In  1933 Thorn publ ished a numer ica l  
solution of the  viscous flow past  a circular cyl inder  at Reynolds  numbers  of 10 and  201. Recent ly ,  
K a w a g u t i  has publ ished a solution for the  same problem at Reynolds  n u m b e r  402 and  Alien and  
Southwel l  have  publ ished solutions at  Reynolds  numbers  1, 10, 100 and  1000 ~. 

I t  is impor t an t  in such numer ica l  solutions of the  Navier-Stokes  equat ions  to consider the  
convergence of the  process. Apar t  f rom the s t a t emen t  of Thorn in Ref. 4 t ha t  the process m a y  
not  be convergent  if the distance be tween  po in t s  of the mesh on which  the solution is calcula ted 
exceeds some l imit ing figure, the  authors  are not  aware  of any  publ ished cri terion for convergence.  

2. Navier-Stokes Equations.--The Navier-Stokes  equat ions  for the two-dimensional  flow of a 
viscous fluid unde r  condit ions invar ian t  wi th  t ime can be wr i t ten  as 

v ~  - - ~  . . . . . . . . . . . . . . . . . .  (1) 

V2~. = l ( a ~  a~" cn~ 0~') ; ~ ay ay ~ ' • . . . . . . . . . . .  (2) 

where  v is the k inemat ic  viscosity, ~o is the  s t ream funct ion and  ~ is the vort ici ty.  For  the  
numer ica l  solution of these equat ions  the  field Of flow is replaced by  a rec tangular  mesh at the  
discrete points of which  Values of ~ and  ~ are calcula ted by  finite difference approximat ions  to 
the  equat ions  (1) and  (2). 

In  this invest igat ion the approx imate  equat ions used were 

Vo = ~ - F ¢o . . . . . . . . . . . . . . .  (3)  

1 
~o = ~,~ 16~ [(~ - -  c ) ( B  - -  D)  + ( b . -  d)(C - -  A)I ,  . .  . .  (4) 



where ~0 is the value of ~o at the centre of a square of side 2~, recalculated from the corner values, 
and ~o~ is the mean of these corner values. In equat ion (4) the small letters represent ¢ values 
and capital letters w values at the mesh points, as shewn in Fig. 1. The method of solution is one 
of reiteration. Assumed values of ~0 and ¢ are placed at the discrete points of the mesh and 
these values are then progressively improved at each point in turn by recalculation from values 
at surrounding points by the useof  equations (3) and (4). 

The convergence of this process was examined for general, two-dimensional viscous flow. The 
method employed was as follows. A finite disturbance was applied at a point in the steady flow 
such as point 0 in Fig. 2. At the outer points E,  L ,  F . . .  K ,  the values of ~o and ¢ were assumed 
to remain fixed at the settled values and at points A, B, C, D new values of these functions were 
calculated using equations (3) and (4). From these disturbed values at A ,  B,  C, D,  ~p and ¢ were 
recalculated at O. If the new value of ¢ is nearer the correct value than the original disturbed 
one, the process is convergent. Further details of the analysis are given in Appendix I. 

The criterion for convergence of the numerical solutions was found to be: 

1 
2(E--,G) ~ - t - 2 ( F - H )  ~ + (E - G + F - H ) ( L  - N )  4- (E - G - F - H ) ( K  - M )  < 1280 

V 2 

where capital letters, as before, represent ~0 values at the points .  This criterion can be expressed 
with good approximation (see Appendix I) as 

R, 2 < 9.0 

where R,, the local ' mesh Reynolds number ', is defined by R, = (qn)/~, q being the local velocity 
of flow and 2n the distance between adjacent points of the mesh. 

The analysis of convergence has been based on a simplified representation of the numerical 
process, in that  a finite disturbance was applied at only one point in the settled field and its effect 
was allowed to spread over only four squares of the mesh. Nevertheless, in actual solutions the 
criterion derived above has been found to predict quite closely the areas in which the routine 
numerical process failed to converge. 

• These investigations are a development and extension of some considerably earlier work of the 
senior author, who had examined the convergence of the numerical process when applied to the 
particular case of Plane Poiseuille Motion s. 

3. B o u n d a r y  C o n d i t i o ~ s . - - A t  solid boundaries ~ is usually known. On the other hand ¢ at 
the boundary must be calculated from the pattern of the flow in the vicinity of the boundary. 
The method of solution is to calculate the values of ~0 and ¢ in the flow for certain assumed values 
of ~ on the boundary. Boundary values of ¢ are then recalculated from these new values of ~0 
and ~ in the flow and the sequence is continued until the boundary values repeat themselves to 
the desired degree of accuracy. 

Several formulae for recalculation of boundary values of ¢ have been suggested. Of these, 
the ones most frequently used by the authors are: 

Co 2(~ol - -  ~po) - r n  . . . . . . . . . . . . . .  ( 5 )  

CO 3(~/ )1-  ~/)O) ~1 (6). 
~7¢ "~ 9 .  ' . . . . . . . . . . . . . .  

where t0 is the boundary value and ~o,, ~,, are values at a point in the flow distant m from the 
boundary (Fig. 3). (For the derivation of these formulae see Refs. 5 and 6). 
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The convergence of this process was examined by. a method similar to that  described in the 
preceding section. I t  was found tha t  under certain conditions this process, too, will fail to 
converge. The criterion for convergence depends on which equation, (5) or (6), is used for 
recalculation of ~ on the boundary. I ts  magnitude depends also on whether the component, v, 
of the local velocity normal to the boundary is directed away from or towards the boundary. 
If equation (5) is used the criterion is 

the boundary and 

7 

< 9.9 when v is directed away from 

< 12.7 when v is directed towards 

the boundary. If equation (6) is used the corresponding criteria are 

< 3.1 and 

< 5.9 respectively. 

n is as shown in Fig. 3. 

In practice the authors have found tha t  even when these criteria are satisfied it is often 
necessary to employ a technique similar to that  described in Appendix II  to achieve a reasonable 
rate of convergence. This consists in applying to the boundary values of ¢ only part  of the 
movement indicated b y  the cycle of calculations. 

4. Co~clusions.--The investigation described above showed that  the convergence of the 
numerical solution of the Navier-Stokes equations depends on the local 'mesh  Reynolds 
number '. I t  was found also tha t  convergence of the solution at a solid boundary is governed 
by  a similar criterion. In particular cases experience shows that  a mesh size of order one-half 
tha t  indicated by these criteria will certainly give convergence, but if the mesh is made larger 
than this while still being less than the critical size, the solution, though it probably converges, 
approaches the final values only slowly. 

The critical size of mesh will depend on the actual finite difference approximations to equations 
(1) and (2) which are used and also on the sequence of calculation (see Appendix II). What  is 
significant is tha t  a critical size of mesh does exist for each problem; provided the mesh is made 
small enough a solution can be obtained for the Navier-Stokes equations for steady viscous flow 
at any value of Reynolds number. There is, of course, the practical consideration that  if the 
critical size of mesh in a problem is very small, the labour involved in a solution by desk compu- 
tat ion may be prohibitive. 

I t  should be noted tha t  these considerations do not have bearing on the questions of hydro- 
dynamic stabil i ty and turbulence; all derivatives with respect to time have been omitted a s  
steady flow was postulated. 
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A P P E N D I X  I 

For the sake of conciseness the method of examining the convergence of numerical solutions 
of the Navier-Stokes equations was described only in outline in the body of this paper. The 
method is treated in greater detail below. 

In Fig. 2, which represents part of a field of general two-dimensional viscous flow, the values 
of ~ and C at all points were assumed to be, initially, the settled values. At 0 a finite disturbance 
was applied to the flow; the value of C at 0 was changed from C0 to Co + 6, the value of ~o being 
unaltered. The values of ~0 and C at the outer points E, L, F . . .  K were assumed to remain 
unchanged from the settled values and at points A, B, C, D equations (4)and (3) were used.:to 
obtain new (i.e., disturbed) values of C and ~, in that  order. From these disturbed values o~ ~ 
and ~o, a new value of C at 0 was obtained from equation (4); 

¢ o ' = ~ o + ~ - -  1024v212(E--G) ~ + 2 ( F - H )  ~ +  (E --  G + F --  H) ( L - - N )  

+ (E -- G -- F -- H) (K -- M)~, 

where capital letters signify the values of ~v at the points. 
was ¢0 + d and hence for convergence 

The first disturbed value of ¢ at 0 

4 1024v~ [2(E -- G) 2 + 2(F -- H) ~ + (E -- G + F -- H ) ( L  -- N) 

+ (E -- G -- F -- /-/') (K -- M)] t < 6 .  

The second term of the left-hand side of this inequality is itself always positive and the 
condition for convergence can be expressed as 

lv ~ [2(E -- G) ~ + 2(F -- H) 2 + (E . . . . . . .  G + F H) (L N) + (E G F H) (K M)] < 1280. 

Provided the mesh is not too coarse this can be written, with sufficient accuracy, as 

4 
[ ( E - - G )  ~ +  ( F - - H )  ~]<  1280. 

The accuracy of this approximation was tested by application to a large number of points in the  
field of flow past a circular cylinder at Reynolds number 40. In every case, even where the 
mesh was of such size that  convergence would not be obtained, the approximation differed from 
the exact expression by less than 10 per cent. This is considered of sufficient accuracy for 
defining the limiting size of a mesh because in actual solutions when the field is being sub-divided 
the mesh size is always reduced by a factor of 1/~/2 or ½. 

Now / ; - - H  
4n 

and E -- G 
4~t -- v, 

where u and v are the magnitudes of the average velocity at right angles to F H  and EG in Fig. 2, 
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respectively. Hence the criterion for convergence can be expressed as 

q2T/,2 
v~. < 20, 

i . e . ,  R~ ~ < 20, 

where  q (given by q~ = u 2 + v ~) is the average velocity of flow through the mesh in Fig. 2. 

The analysis above has been described as applying to calculations performed in the physical 
plane. When the solution is to be obtained in a transformed plane, say the ,~-plane, the Navier- 
Stokes equations take the form1: 

v 3 ~  - M ~ . . . . . . . . . . . . . . . . . .  ( l a )  

1 f8~ O~ 
V ~2 ~ a~  a ¢ )  . .  (2a) 

aft ~ ' " . . . . . . . . .  

Where M is the modulus of transformation. 
a r e  

~po = ~f ., 2 M  2 

The corresponding finite difference approximations 

(3~)  

1 
g° = g~ 16v E(a - -  c ) ( B -  D )  + (b - -  d ) (C  - -  A)] . . . . .  (4a) 

The convergence of numerical solutions of these equations is governed by  a similar criterion to 
tha t  for solutions in the physical plane. In fact, if the criterion is expressed in terms of up values 
it is exactly the same as tha t  for the physical plane, i .e . ,  

4 
7,. [ (E - -  G) ~ + ( F  - -  H)~I < 1280.  

If this is expressed in terms of the ' mesh Reynolds number' it becomes 

q2y~2 
- -  < 20M ~ 

where n is one-half the size of the mesh in the aft-plane. 

It should be noted that the criteria for convergence given in this paper are criteria for 
convergence of ~. However, since up is obtained from ~ by equation (I) or (la), if ~ is convergent 
so should be ~. This has been the experience in actual problems. While it has not been.possible 
to demonstrate the validity of this deduction in a theoretical analysis of general two-dinlensional 
viscous flow, convergence of the numerical process whell the finite disturbance is applied as a 
change of value of ~0 has been examined for two particular cases; Plane Poiseuille Motion and 
Plane Shear Motion. In each case the criterion was found to be less stringent than the one 
obtained above by considering the convergence of ~. 
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A P P E N D I X  I I  

In  this paper  the  analysis of convergence  has been made  on the  assumpt ion  t ha t  the  
re-calcula ted  value  of C at  0 ob ta ined  b y  tile sequence described in Appendix  I is t aken  as the  
new value to be used in the  next  cycle of calculations. 

Thus  ¢0 ini t ial  --  Co + 

d 
Co new = Co if- 4 256~ ~ [(E --  G) ~ q- (F  --  H)~]. 

However ,  the  new value  of C at 0 m a y  be t aken  as in te rmedia te  be tween  these two: 

1 1 i} 
¢o n e w = ~ o - + - ( a +  1 i a q - 4  256~,~ [(E --  G) ~ - ? ( F - H )  2 , 

where  the  two values of ¢ have  been combined  in the  propor t ion  of a • 1. 

If the  cri terion of convergence is obtained,  using this  revised value of ¢0, it reduces to 

1 
v--a [(E --  G) ~ + (F  --  H) 2] < 512a -]- 320 

~42q 2 
or 7 < 32a -}- 20. 

I t  has been assumed t h a t  only posi t ive values of a are admis s ib l e .  Since a can be chosen to 
have  any  posit ive value  it follows tha t  convergence  can be ob ta ined  in this w a y  for a lmost  a n y  
value  of R,. The proviso should be made  t ha t  if ~q/v is ve ry  great  the  ra te  of convergence  is 
l ikely to be too slow for pract ica l  purposes. Fur the r ,  there  is an upper  l imit  to the  value of 
which  m a y  be used, because if n is made  too great  tile neglected terms in the finite difference 
approximat ions  will become significant and  serious t runca t ion  errors ' will be int roduced.  
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