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Summary.—When aerodynamic coefficients are calculated for tailplane flutter calculations it is usyal to neglect the
aerodynamic effect on the tailplane of the disturbance due to the wing and to assume that the tailplane oscillates in a
steady stream. In this report a two-dimensional theory, which includes the effect of the wing-tailplane aerodynamic
interaction, is developed for any wing and tailplane in the same horizontal plane.. To represent this effect the standard
derivatives are modified and additional derivatives are introduced. Calculations for a particular system show that the
change in the standard derivatives is small but that the additional derivatives are comparable in size with the standard
derivatives. The additional derivatives are used to investigate the effect of the wing motion on tailplane-elevator
flutter, and it is shown that the aerodynamic interaction has little effect on the flutter of the binary system considered.

1. Introduction.—It is a basic assumption in flutter theory that the aerodynamic forces on an
oscillating surface arise only from the disturbance in the flow due to the motion of the surface
itself. This assumption is valid when only one surface is oscillating in a steady stream, but it is
not valid when there are two such surfaces, each lying in the disturbed flow due to the other:.
The forces on each surface are then affected by the motion of the other surface; strictly speaking,
even the presence of a second surface at rest affects the forces on the first.

In this report an approximate evaluation is made of the aerodynamic forces which act on a
tailplane when it is oscillating in the wake of an oscillating wing. The effect of the tailplane on
the wing forces is also considered. For a complete attack on the problem we should need to deal
with a finite wing and a finite tailplane, but here the simpler two-dimensional problem of wing-
tailplane interaction is discussed. As an additional simplification the tailplane is assumed to lie
in the same horizontal plane as the wing. :

The method used is an extension of the method given by Lyon'. The vorticity distributions
over the wing and tailplane are assumed to be given by infinite series of trigonometric functions
with coefficients that are left as unknowns. The downwash over the wing and tailplane is
evaluated for each distribution. The boundary condition to be satisfied is that near the surface
the resultant airflow velocity must be tangential to the surface. From the wing and tailplane
boundary conditions we can find the unknown coefficients in the vorticity distributions and so
find the pressure distribution over each surface. The pressure on the tailplane is linearly depen-
dent on the degrees of freedom of the wing and tailplane, and the expressions for the aerodynamic
forces on the tailplane thus involve two sets of derivatives, one in respect of the wing motion
and the other in respect of the tailplane motion. Similarly there are two sets of derivatives for

the wing.

* R.A.E. Report Struct. 176, received 3rd August, 1955.
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The theory is developed for any wing and tailplane in the same horizontal plane. No general
formulae can be given for the derivatives, but tailplane derivatives are evaluated for one particu-
lar system, for which it is shown that the effect of the presence of the wing on the standard
tailplane derivatives is small, but that the additional derivatives, tailplane forces due to wing
motion, are of an appreciable size. These derivatives are used to assess the effect of the wing-
tailplane aerodynamic interaction on the binary elevator flutter of the system, the two degrees

of freedom being elevator rotation and the fundamental aircraft mode: the effect of the aero-
dynamic interaction is shown to be small.

2. Theory for one Surface—2.1. List of Symbols

\4 £=-1 = X
7 9=0 q - =r
14 Velocity of the undisturbed flow
¢ Chord
l Semi-chord
x = = —1IcosH
'Q% Frequency
o = pl/V = reduced frequency = % . frequency parameter = v
Clw) = K (iwf){l_;_(uzfg)fl o) where K,and K, are modiﬁed Bessel Functions of the second kind
VIe»  Bound vorticity
VE e Free vorticity
VW et Downwash velocity
17 et Downward displacement
P Air density

2.2. A Summary of Flutter Deyrivative Theory for One SWfaée.—Lc:t the bound vorticity
distribution over a wing be given by

anocot%+2ansin%6 .. .. .. . .. . (2.2.1)
1

and let the downwash over the wing induced by this vorticity be given by

W = > b, cos nf. . .. . ce . .. (229
0



If E is the free vorticity it can be shown that

E—=—io e—fwff e Tu) du ¢ < 1
-1
VI ,
____me—wff e Pluydu  E=1. .. .. .. .. (223)
-1

The downwash and the vorticity are connected by the equation

> I+ E

2l () =| T

du. O ¢

If we substitute for £ we get

+1 ‘ +1 — it u
27 (¢) = [ B g — o | = czungfu’v (v) do

. ) e—z'wu 41 .
— “"f duf e I'(v) dv
£ —u i

—1

and in Appendix II, section 1, it is shown that this can be reduced to the simpler form

+1 & . +1
2 (€) Zf_l ;"_(_”l% Ji— i e_iwgf_wefwx d"f_l %dy . ... (225)

We do not substitute the series (2.2.1) in this equation and integrate term by term, because we
cannot evaluate the integrals which occur, but we replace the series by a series of linear functions
of cot 46, sin #6 which give integrals that can be evaluated.

If we substitute Iy’ = 2[cosec § — (1 — C) cot 36], we get a value of W(&) which depends
only on w, and so by a suitable choice of the constant C(w) we get W' () = 0.

If we substitute

I'y" = 2[cot 36 — cosec § + 7w sin 0]

we get W, =1, .. .. .. .. .. .. .. .. .. (2.2.6)
and for Iy=1Ty + I')" = 2[C cot 16 + i sin 6] |
we gét W,=W, -+ Wp”‘ =1.
If I, = cot 30 — 2sin 6 + ‘w[sin 6 + 1 sin 26]
| W, =%+ cbse
and if I, = — 2sin 70 + tw [Sinén_:_l 1)6_ — sinyg%_—l 1)0] , n_>2

W, = cos #f.



The series (2.2.2) for W can now be written in terms of the quantities W,,,

W = boWo _I" bl(Wl — %Wo) _}‘2 ann

e — W) Wa DB W o e (227)
1

and so the vorticity distribution is

D= (by— b)) Iy +> 0, . .. . .. . . .. (2.28)

If we compare this equation with equation (2.2.1) we get the following relations between the
a and b coefficients: '

a, = 2Cby + (1 — C)b, ;
a, = Ziwby — 2B, — jwb,
0 = Yioby — %y — Yo, [ - (229

iw

)
a, = ;;Z bn—l_ zbn_ % bn+1 '

o

The boundary conditions are that the air-stream velocity adjacent to the wing must be tangential
to the wing and that there must be smooth flow at the trailing edge. The trailing-edge condition
is already satisfied because each I, is zero there, and the flow is tangential over the wing if

W:%—}—iwz. L 2210

From equation (2.2.10) we can find the & coefficients; equations (2.2.9) then give the a coefficients
and hence the pressure distribution p = pV'T.

3. Theory for a Wing and Tailplane.—3.1. Notation.—An extension of the method given in
section 2 is used to deal with the problem of wing-tailplane interaction. The same symbols will
be used for each surface, but those which belong to the wing will have a superscript © and those
which belong to the tailplane will have the superscript ®.. The superscript ™ will denote the
effect of the wing on the tailplane; for example W is the downwash which the wing vorticity

induces over the tailplane. Similarly the superscript ®® will denote the effect of the tailplane
on the wing. '

3.2. The Downwash Ahead of and Behind a Suyface.—The downwash which I'® (see equation
(2.2.8) ) induces in the wake of the wing can be written in the form

W:(bo—%bl)W0+§an,,, . . .. .. .. (821

where W, is the downwash induced by I,®, but W, no longer has the simple form giifen above.
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Expressions for the W, for & > 1 are derived in the Appendix and are

£ exp (i@ o)

1 § 1 @ ) '
o= 1= Coy() — e (e [ 0 SRRy aw

“uexp (tw® u)

+ (1 — Cw) V(= e TS (3.2.2)

1 . .
lew—_l){—s+x/(s — DMl —f 4/ =1 .. .. (323
W,={—¢+vE—-DF . .. L (324

When & lies in the range covered by the tailplane, each downwash function can be expressed as a
Fourier cosine series in the tailplane-chord parameter 6.

The series for W, will be

W,0.=> w,, cos md®. .- .. .. .. .. .. .. (8.2.5)
0

The downwash ahead of the tailplane due to I'® can be calculated by using the formulae

f 1 ) ' . [ texp (— i0® u

— (1 - C(Z))fl—é “ e}iﬁ)(f/;_ml(z; “) d%:l )

1 2 2
Wi=— ot ¢~ VE - Dl — ¢ —vE - 1),

W,={—§&— (& -1},

Over the wing each of these expressions can be replaced by a IFourier series in the wing-chord
parameter 6%

e}
W20 =2, cos mg® .
0

. It has not been possible to give analytical expressions for the w,, coefficients and so they have
been calculated numerically for a particular wing-tailplane system.

3.3. Boundary Conditions.—The boundary condition for the wing is

3Z%
S - 1e® Z0 = W 4 e, PR - - 5 §

~ 4.e., the combined velocity adjacent to the wing must be tangential to the wing. If we write

1 N
ggn + 1MW Z® —ZC W cos nfY, . . .. (8382

5



the boundary condition becomes

o ; W .@n @ W @y 2,
20,0 cosmh® 4 (B — $b,0) == 25 = =>C,P cos n®
0 1 0

w0

- 0 @ Lol
25, cos D 4 (b® — 15,9) > w,,® cos nd® 4> b, >w, O cos no®
0 1 0

0

© ,
:ZC,}” cos no®
- /

and so ' w
1 7 (2 2 21
bn() + (bo( ) — %bl( ))w()n( ) +2bm(2)wnm(2l) = Cn(l)
©
1 2
bn() + bO( )w0n(21) _'_ bl(Z) (wln(21) - %wﬂn(zl)) _|_;bm(2)wnm(21) == Cn(l) . .. (3-33)
1
If we put - %mn(zl) = Zerz(2 ) " # 1

21y _ 21 1 21
%ln( ) = wln( ) - ?wﬂn( )

3

equation (3.8.3) becomes : ® -
| B 4S5, O, @ — C0 ... (334

m =0

Let B® = [5,M], B® = [5,®], C® = [C,®] be infinite row matrices and let U® — [%,,%"] be an
infinite square matrix, then the boundary condition is

B® 4+ BOU® = C® .. .. .. .. (3.3.9)

Similarly by considering the boundary condition for the tailplane we get

B® 4 poyes —ce (3.3.6)
Therefore BO{ — U™U®) — c® _ coga .. (337
BO(I — UMDY = C® — cOyen N . X X))

where [ is the unit matrix.

Each U matrix may be regarded as an ‘ influence > matrix.

The coefficients #,,, tend rapidly to zero as m,n — oo and so the matrix [I — Uenya®] tends
to the form

P|o
[apgl

If for » > N the term u,, is unity and #,, u,,; are zero to the accuracy to which we are working,
we can take this finite square matrix of order N and the corresponding finite B and C matrices
and substitute these approximate matrices in the equation for B. We can then invert the
approximate matrix [ — U®U®)] and solve for B®, '

6



For small vibrations each term of the C® matrix will be a linear function of the co-ordinates
of the wing motion and each term of the C® matrix will be a linear function of the co-ordinates of
- the tailplane motion. Therefore B®, B® and so 4®, A® (the infinite row matrices [2,%], [4,®])
are each linear functions of the dlsplacements of both surfaces. The aerodynamic force on each
surface will thus involve two sets of derivatives, one in respect of the wing motion and the other
in respect of the tailplane motion.

If the action of the wing on the tailplane is neglected, the influence matrix U%? is zero; equation
(3.3.7) then becomes B® = C® and expresses the physically obvious fact that the forces on the
tailplane are those given by the standard tailplane derivatives.

If the action of the wing on the tailplane is considered but the action of the tallplane on the
wing is neglected, then U™ £ 0, U® = 0 and equatlon (8.8.7) becomes

B® —C® _coge . ... .. (339

This equation shows that the set of tailplane derivatives in respect of the tallplane motion 1s
the same as the set of standard derivatives, since they arise from the term C®; there is also the
-additional set of derivatives in respect of the wing motion, arising from the term COTE,

If the complete interaction between wing and tailplane is considered, that is, neither U nor
U® zero, the two sets of derivatives obtained from equation (3.3.7) will differ to some extent
from those given by equation (3.3.9). This effect may be regarded as due to the disturbance in
the flow caused by the presence of the wing, as distinct from the wing motion. However, since
the matrix [I — U®U™)] is approximately equal to the unit matrix I the. differences will be
small, and the two sets of derivatives given by equation (3.3.9) will be approximations to the
. correct derivatives as given by equation (8.3.7). Similar considerations apply to equation (3.3.8).

3.4. Numerical Methods.—The integrals
% ezwu

I = j\/ )d% J f\/%_l)du

are a little difficult to evaluate because of the singularity at # = 1. This difficulty can be over-
come by making the substitution # = cosh ¢. If £ = cosh « we now get

iwie
€

. I :f eiw co}sht dt’ ] Zf eiw cosh ¢ COSh t dt .
R 0 o

These integrals can be evaluated by the usual method of calculating the ordinates at evenly
distributed points and then using the standard integration formulae, but there are some dis-
advantages. The values of & for which we need to evaluate the integrals occupy a greater part
of the whole & range than the corresponding values of « do of the whole « range, and so to evaluate
the integrals to a certain number of decimal places we need about twice as many ordinates for
the « range as we do for the & range.

Another disadvantage is that while the values of £ are evenly 'spaced and can be made to be
ordinates for our integration formulae, the correspoinding values of « are not, and so if we take
a fixed set of evenly distributed ordinates most of the integrals we need will have to be found by
interpolation. In the numerical calculations (section 5) it was finally decided to divide the
£ range into two parts, (1~1-5) and (1-5-¢). Over the first part the integrals were evaluated in -
the second (#,«) form and over the second part they were integrated in the first (u,£) form*.

* Tt appeared later that little was gained by this device and the integrals might well have been evaluated using the
second form only.
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Schwarz® has given equations relating the integrals / and J to new functions He®, He® which
he has introduced and evaluated for some values of the parameters (see Appendix I, section 5).
However, since these values of the parameter were not sufficiently extensive, it was not possible to
obtain values of I and J from the relations of Schwarz (interpolation would not have given
sufficiently accurate results). It has been possible to evaluate one of each of the integrals 1
and / by both the numerical integration method and the Schwarz method; the results agree to
within two units in the third figure. The integrals used are correct to two figures and the error is
believed to be less than 1 per cent. : :

There are two possible methods of evaluating the Fourier coefficients w,,, in-the series (3.2.5)
for the downwash velocity. The first method is to express them as integrals, as in the theory of
Fourier series, and then to evaluate the integrals by numerical methods. The usual integration
formulae are, however, not very suitable because of the rapid oscillation of the function cos #x in
the integrand and a large number of stations is needed to give sufficient accuracy. '

In the second method the amount of computation needed for reasonable accuracy is much less.
This method is to assume a finite cosine series and to calculate the coefficients so that the series
gives the correct downwash velocities at certain points, which involves the solution of a set of -
simultaneous equations. This second method was used in the numerical calculations of section 5.

4. Formulae for Lift, Pitching Moment and Hinge Mowment.—
y = a, cot 10 —{—chan sin #6.

Lift.—The lift on an aerofoil is given by the formula
L= f pVEI dx

= szlfn I'sin 0 40,
0

L
vy 37 (a0 + $aa)

I

1o (0(2C - i) — b,C — Lwb,} .

Moment about the Leading Edge = M (nose-up positive)

M= _f(x L Dp VPl dx,

— ;%{/2 = ifﬂ (1 — cos 6) sin 0.'(9) 40,
0 -
= dn(a, + a, — La,)
= §7[20y(C + 10) — bi(1 + C + o) -+ by(l — tw) 4 bs w].
Elevator Moment—No Aevodynamic Balance.—I1f the hinge is at x, = — I cos 0, the elevator

hinge moment H, (positive nose-up) is given by

— H _—=fxt(x — x,)p V2T dx,
*k



H :fnsin ¢ (cos 0 — cos 0) I'(¢) s,

N PZZ,V2 0
H @
- p02V2 :;antm
where ty = Py,
ZL’1 — 11—3@4’
ly = %[@4 — @7];
_ o[ sin(n+4 20  2sinn sin (n — 2)0 :|
25"_16[(n+1)(n+2) it m—Tm=2) =3

ag = 2Cb, + (1 — C)by,
a; = Ziwb, — 2b, — iwb,

6l2 = %‘iwbl - 262 - %‘iwbg,

a, = ?2 (bn—-l - bn+l) - me

" n
@, = 2cos b (m —0) + (2/3) sin 6 (2 + cos®8),
Gy = (m — 0)(2cos 0 — 1) 4 sin 0 (2 — cos ),
G, = (n —0)(3 + 2cos0) + (1/6) sin 0 (8 + Scos® + 4 cos®* — 2 cos®6).

and

5. Results.—5.1. Geometry of this System.—The derivatives tabulated below are for a wing
and tailplane which lie in the same horizontal plane. The wing chord is twice the tailplane
chord and the distance between the mid-chords is three times the wing chord. The elevator
chord is 30 per cent of the tailplane chord.

5.2. Definition of the Derivatives.—The tailplane derivatives are defined by the equations:

L® @2 ® @ 22 2 @ @ pe
pc®V? =L, @D + Ly® «® + L, -® 4 L™ a® L,BZ A,
V@ ey e
_ 2 2)) (@ 2 2\, (2
— = — M@ 5@"‘ — M ®)a® L — M@ E(?)—'— — M,®)a

_l_ <_ Mﬁz(Z))ﬁ@) ,
(2) (1) ' (2)

T (_ Hm@))ﬁ(z) _
The wing derivatives are defined by:

L&

2® A2
—_—— 1 ) 1 1 1 P 1 5
Pc(l)Vz - Lz1() F) + Lal a® -+ ng( ) CTZ) + Laz() a® —+ Lﬂz( ) /3( ) ,

o .



M

G

®
— M.®)Z
z1 0(1

(Y (= 30,0 E 4 (— e+

_*_- (__ Mﬁz(1)>ﬁ(2)-

5.3, Waing Derivatives for Wing Frequency Pavameter v, = 0-6

Ut» £ 0 UeH £ 0 gen — o ve o
Lo + 0-056 + 1-27i 0+055 + 1-25
Lugy 220 -+ 0-86 220 + 0-85;
L 0-014 + 0-007 0
Lug +0-08 — 0-04i 0
— M — 0-059 - 0-32 —~0-057 + 031
— My +0-51 + 0-45i 0-51 + 0-45i
— My 0-003 - 0-002; 0
— My + 0-010 — 0-0073 0

The first column gives the derivative when the complete interaction, the action of the wing on
the tailplane and the action of the tailplane on the wing is considered. The second column gives
the derivative when the interaction is neglected, it gives the standard wing derivatives.

The additional derivatives given in the first column are small and the others differ little from
the standard derivatives. Since the effect of the tailplane pitch and vertical translation on the
wing derivatives is small, it is assumed that the effect of the elevator rotation will also be small,
though no calculations have been made for this case.

5.4. Tailplane Derivatives for Tailplane Frequency Payameter v, = 0-3; Comparison of the Two
Approximate Methods. '

Uan £ Uen £ 0 UE — 0 Ueh =0 Uun =0
Ly —0-67 -+ 0:50i —0-66 049 0
Loy +0-33 +1-5 +0-32 415 "0
Lea) ' 0-11 4 0-74¢ 0-11 4 0-73¢ 011 4073
Lo 4+2:6  +0-20i +2:5 40204 2:5 40204
— Mg ©—0-17 40-13i — 016 4012 0
— Moy +0-085 + 0-37 4-0-084 4 0-37 0
— My 0-0090 + 0-18; 0-0086 4 0-18; 0:0086 4 0-18;
— My +0:63 +0-17 ’ +0:62 +0-17 0-62 +0-17

Al‘()



». The first column gives the derivatives when the complete interaction is considered, the second
column gives the tailplane derivatives when the action of the tailplane on the wing is neglected,
and the third column gives the standard tailplane derivatives.

The change in the values of the standard derivatives is small. The action of the tailplane on
the wing seems to have little effect on the additional derivatives and so the derivatives for
v, = 0-5, 0-7 given in section 5-5 have been calculated on the assumption that this action can
be neglected. It is assumed that if the elevator derivatives were calculated by both methods
the conclusions would be the same.

5.5. Tailplane Derivatives in Respect of Wing Motion (using approximation U * = 0)

. Y2
0-3 ‘ 05 1R 0-7

L 066 -+ 0-49i 032 +1-71 950 +1-1i

Loy 1032 415 2:0 4095 263 -+ 1-0i
— My 016 L0 0-080 - 0-43; 0-62 - 0-27
— M 10-084 -+ 0-37 049 -+ 0-24¢ 0-66 — 0-25¢
— Hay — 0-0059 -+ 0-0046 ©0-0029 + 0-016: 0-022 - 0-0096i
— H,a ' 1 0-0032 - 0-013 0-018 - 0-0087; 0-024 — 0-0089;

6. Application to Elevator Flutter—6.1. Preliminary Remarks—To obtain some idea of the
importance of the additional derivatives which have been calculated, they have been used to
investigate the effect on elevator flutter of the aerodynamic interaction between the wing and
tailplane. The results of the investigation are given in a non-dimensional form, but the aircraft
considered has the proportions of a large transport aircraft (see Fig. 1). The calculations were
made with two degrees of freedom, elevator rotation and a normal mode of the whole aircraft
(see Fig. 2). The normal mode is made up of pitch, vertical translation, parabolic wing flexure
and parabolic fuselage flexure.

The wing is assumed to be rigid in torsion, so that its angle of incidence is constant over the
span and equal to the slope of the fuselage at the root of the wing mid-chord axis. The tailplane
1s assumed rigid in torsion and flexure and its angle of incidence is everywhere equal to the slope
of the fuselage at the root of the hinge line. The elevator is rigid in torsion and flexure.

The tailplane derivatives are two-dimensional derivatives appropriate to the 0-7-span position.
The additional derivatives in respect of the wing motion are then assumed to have the values
they would have, if at this section the wing and tailplane were part of a two-dimensional system.
The dimensions of the aircraft have been chosen so that this two-dimensional system is the one
considered earlier in the report, ¢.e., the wing chord is twice the tailplane chord and the distance
between the mid-chords is three times the wing chord.

6.2. Notation.—

s Unit of length
p Air density
Po “Air density at sea level

11



" = pos® = unit of mass

M Mass-balance/mass of elevator
Wing chord ‘

- Elevator chord

©

©

n Non-dimensional wing-span parameter
u Non-dimensional fuselage co-ordinate
Vo Unit of speed
= ws
vV Flutter speed
V, . Equivalent flutter speed
= V+/(p/pd)
w Natural frequency of normal mode in radn/unit time

6.3. Data.—The dimensions of the aircraft are shown in Fig. 1 in terms of a unit of length
s 1t, the distance from the wing root to the wing tip. The chord of the full-span elevator is 30 per
cent of the tailplane chord and there is no aerodynamic balance. :

Let the unit of mass be m = p,s®. If 5 is the usual non-dimensional wing spanwise co-ordinate
the mass per unit length of each wing is 3-0232 m(1 — 5)/s. The mass per unit length of each
elevator is 0-5176mc,[s?, where ¢, is the elevator chord. Let % be a non-dimensional fuselage
co-ordinate which is zero at the root of the wing mid-chord line and unity at the root of the tail-
plane mid-chord line. The mass per unit length of the fuselage is (4-904 — 8-734u)m/s for u < 0
and (4:904 — 4-414u)m/s for uw > 0. The mass of the tail unit excluding the elevators and mass-
balance is 0- 1040 and acts at the root of the tailplane mid-chord axis.

The inertia axis of the wing coincides with the mid-chord line and the radius of gyration of a
chordwise section of the wing about the mid-chord line is %¢c where ¢ is the wing chord. The
inertia axis of the elevator is one third of the elevator chord aft of the hinge line, i.e., ¥, = 1/3c,,
and the radius of gyration of a chordwise section of the elevator about the hinge line is
k, = +/(1-25)%, = 1/84/(1-25)c,. The mass-balance is evenly distributed at a distance 1/3c,
ahead of the hinge line.

The natural frequency of the normal mode is 3:2 c.p.s.

6.4. Results.—On Figs. 8, 4 and 5 flutter curves are given of V,/V, against the mass-balance
parameter }M, for sea level and heights of approximately 33,000 and 45,000 ft. The parameter M
1s unity for static balance. For each height two flutter curves are given, the one obtained when
the aerodynamic interaction between the wing and tailplane is considered and the other obtained
when this interaction is neglected.

The additional derivatives are only available for three frequency parameters, 0-3, 0-5 and 0-7.
With these derivatives we can only get a part of the sea-level curve. We can, however, investigate
the effect on various regions of the curve by carrying out the calculations for different heights.
The effect on the nose can be seen from the 33,000-ft curve and the effect on the lowest flutter
speeds can be seen from the 45,000-ft curve. ‘

In the binary flutter calculations for 33,000 ft and 45,000 ft, flutter occurred for large positive
mass-balance giving a second branch of the curve for both sets of derivatives. This second
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branch is not shown on the graphs because the mass-balance is so large as to be of no practical
importance. It is further believed that the aircraft mode used is not appropriate to large mass-
balance, which would induce a node nearer to itself, and that this second branch would disappear
if a suitable mode or if more aircraft modes were used.

The aerodynamic interaction between the wing and tailplane has little effect on the binary
system except on the upper part of the curve for low-frequency parameters, and this is unimpor-
tant from a practical point of view.

7. Conclustons.—Flutter derivatives have been calculated for a particular two-dimensional
wing-tailplane configuration oscillating in a steady stream. The changes in the values of the
standard derivatives due to the presence of the other surface is small. Additional derviatives
have been introduced to represent the forces on each surface due to the motion of the other. The
- additional tailplane derivatives are comparable in size to the standard derivatives representing
the effect of the tailplane motion, but the additional wing derivatives are small. This difference can
only in part be accounted for by the difference in size of the wing and the tailplane, and it would
seem that most of the change in pressure is due to the vortex wake of the wing and not to a
change in the strength of the bound vorticity. In practice the vortex wake will die out because
of the viscosity of the air. In the theory used, all viscosity effects have been neglected and the
wake persists undiminished in strength. The effect of the wake is thus overestimated and the
additional derivatives calculated on this theory are much larger than the derivatives which would
be given by a theory which included viscosity effects.

The use of these additional derivatives in flutter calculations will give only a qualitative
estimate of the change which the wing-tailplane interaction will induce in the critical flutter
speed of the system. When they are applied to a two-dimensional system the change will be
overestimated, for the reasons given above, but when the same derivatives are applied to a three-
dimensional system it cannot be said with any certainty whether the effect will be overestimated
or underestimated. An investigation into the three dimensional problem would be of interest
particularly if the rolling up of the wake were considered.

. The effect of the wing-tailplane aerodynamic interaction on the elevator flutter of the binary
system considered is small in those respects that are of practical importance.
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APPENDIX 1
‘Deteymmatz'on of Wo"(&), W, (&) for |&] > 1

1. Expression of the Downwash in Terms of a Baszc Integral.—The equation connectmg the
downwash with the bound and free vorticities is

o _(*T+E
27'6W(§) = “15 ﬁ u
WU”(S),
When I'y” = 2[cot 40 — cosec 6 + 7w sin 6],

we can show by using equation (2.2.3) that

E) = — 20 sin 9, u < 1

=0, - ' w> 1
Hence Iy + E,” = 2[cot 0 — cosec 6], 2 << 1
= 0. 2 > 1
wiey o7 cot 40 — cosecd .
2TV (&) = ZL L sing o,
" 7 cosf
aW," (&) Zfo o0 L E 40 = m — nto,’
i.e., W,"(&) =1 — &I,
. cos nh
where wl, JO Y 5
W (&)

In the same way it can be shown that

I+ E, = cot 6 — 25sin 6, o] < 1
= 0. w > 1
(ot 30 — 2sin 6 |
Therefore 27 W,(£) _fo cost T on 6 do,

f”cos § -+ cos 20 .

cosf + &
Wi(¢) = 3l + 1)




and so :
— 2 sin #6 sin 6
cos 8 + &

%W, = f " a,
0

a0,

_J‘"cos (n + 1) — cos (m — 1)0
e . cosOH¢&

Wn = '12“{]—11—!-'1 - In—-l}-

2. Evaluation of I,

#  cos nl
=| —/———— db
~l, focose—f—&d ’

L 73 einB d
=41 —_—
zf_,, cos@ 4+ ¢’

1 2"

=HFrm i

where C is the unit circle and z = €.

The integrand has simple poles at 2 = «, # where
v = — &+ /(e — 1),
f=—¢&—(E—1),

z

«

and

The residue at « is

o (—E A — D)

. 1 24/(&8* — 1)
and at g the residue is |
pr (=& — /(1))
1 24/(8* — 1) )
P =%

Since af = 1, one pole lies inside the unit circle and one lies outside, or both lie on the circle,
It &§ > 1, « lies inside C; if £ << — 1, g lies inside C; and if |£| < 1, both poles lie on C.

By Cauchy’s Theorem we get for & > 1

.1 {4+ 4/(E =1}
wl, = 2m1 = TE — 1) ,
ie, ;e — 1y
" V(e —1)
and similarly for é < — 1
;=g —vE -1k
” VE-1
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If |&] < 1, put § = — cos ¢; the poles are then at z = e** and the residues at these points are
e ind
= 2 sin ¢

We now integrate round the unit circle with small semi-circular indentations at e*®. As the
radii of these indentations tend to zero the integrals about them tend to

. e:l:z'nqS ]_ e:l:z'nqS
— i+ Zsmngl = T T 2sng
The sum of these integrals is :
. sin #¢
: o sin ¢
and so .
i e __sinng
Pf_,,cosﬁ + sdg - siné *
. __sin ng
1.€., I, = sm g
3. W,(&), W, (&) for |&] > 1
£ > 1.
&
Wo” — 1 o e,
RVGES)
1 2 2
Wi(§) = W@aj){— E+ /(8 —DHL — & 4+ /(8 — 1)},
W& ={—¢+ v — 1.
§< — 1
&
W(]” E — 1 -
(€) + E =T
- o _ _ L AN US R S 2

W) ={—&— /(& — 1.
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APPENDIX II
The Calculation of W,'(§) for |&] > 1

1. General Theory.—The downwash equation is

+1 +1 —iou 73 .
zmwp% ”WW—MJ e dd & ['(v) do
-1

—lé:—% _1~§——’I/b

o — fwu
e

+1 '
15_%mﬂf () dv

+ 1 iw( — v)
[T [
—1 E—%

where the iﬁtegral 1s taken over the area shaded in the Fig. 1.

— iw

¥

/A//

g=-—] . u=|

Fia. 1.

v=-1

If we make the substitution x = # — v — &, ¥ = v, the region is transformed into the region

shown in Fig. 2
- =1
x==§ o
/9/

Fic. 2.

y=—1I

and the double integral becomes

+1 —iw(x + &)
f dxf_l — I'(y) dy.
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The downwash equation is now

: +1 ‘ o +1
20 W (£) =f L) du — 1w e“"“’ff e tx dxf L) ay.
—¢

—1 E—u g — X —Y
If we write ‘
) L +1 T( )
6o = SLa
we get
W () = G(E) — i e f " eior G(— x) dx,
o [E )
= G(§) — 1w e"‘”ff e G(u) du.
When o
= 2{cosec 6 — (1 — C) cot 30},
n — (1 = 1
Gle) — ZJ cosec 6 COS(; — g) cot 19 sin 6 do,
C—(1-=20) cos 6
- ZJ st 1 & W
= —2(1 —Cn + 2z{C + (1 — C)&}d,.
If _
16 < 1 GE) = —2(1 =)=
E>1 = Z(I—C)n—l—sz—){C—Ff(l——C)}
~ 2
f< 1 = — 21 = O — gy (€ + £ = O

2. The Downwash W, (€) for |&| < 1.—The downwash equation is

. e
ZﬂW(f) = G(é’f) — tw e"”"ff giwn G(%) du.

-~ 0

G(u) is defined differently in the ranges (—oo, — 1), ( , 1) and so we shall consider the integrals

over these ranges separately. In the range ( 00,

(1—0)

Glu) = — 2n{(1 —0) + J&(
and so / R
c

)

+u (1 —C)

[ e an=—2] e{1—0)+

VE — 1) } a,

— — 2 [ emmmhe{(l — ) sinh £ + C — (1 —.C) cosh 8} d,
0
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= — x| emmeni [0 — (1= C) e~

[

o0

— zncf‘”e—{wcosht dt + 2n (1 - C)J. e iweosht—t gy
Q

0

The first integral is K,(iw). To evaluate the second integral, consider

=2}
I :f e—t—xcoshtdt}
0
where x is real and positive.

7= f “e-xeshe (cosh ¢ — sinh ) d,

. Kl(x) - l:__ 1 e—xcosh l:I

X 0

The integral
J‘oo e—t——zcosht dt
0 .

is uniformly convergent, and so is an analytic function of z, for R(z) > 0.

Ki(z) —

is analytic in the z plane cut from 0 to — co.

For z real, 2 > 0 we have

J‘ e—t—zcosht dt — Kl(Z) _ e;

0

and so by analytic continuation it must hold for z complex for R(z) > 0.

If we put z = 10 we get
© . . e—,z’w
—t—iwcosht — _—
y e it = Kyfio) — <.

In the range (— 1, 1) -
Gu) = — 2= (1 — C)

and so
&

3
( Gu) e du = — 2z (1 — C)f e du

v -1 -1

% (1 — C)

S C—— [eiﬂ)f - e—iw] X

w

19

The function



Therefore
(1-0)

1w

W) = — (1 — C) — i e_,-wg[_ (€ e} _ CE,(in) +

= C){Kl(m) _ e._i"’}]

10
= — iw € {(1 — C) Ky(in) — CK,(in)} .
W,/ (&) = 0if
(1 — C)K,(iw) — CK,(in) = 0,

i.e., .
c_ K, (io)
Ky(iw) + K, (i)
With this value of C
—1 ) e —iw
| e Gl an = — 20 (1 — 0%

3. W,/(¢) for & > 1

£
20 () = G(&) — i e[ o Glu) du

= Gle) — v emtfom (€ — 1) C

[ e Gl an+ [ e Gy au)

1 +1
f & Glu) du = 22(C — 1) [ e du
—1

-1

_zn(c_l)e“”—e““,

Tw

filem Glu) du — an {(c b J\F/(ZZ(L:)C)}W du

zzx(c—l)@-z—w—m)juzﬂaJrznu—C)]

where
I J‘ ezwu __jé % e
Ve R A RS

wy(e) = (€ — 1)+ <HEES0

— (C — 1){eiw—§T1 _ e—imf_?r_l}

_ (C . 1) g—iwE+ 1)

20



—(C — {1 — e*# = —{CI + (1 — C)JHw e~

CHel—0) T o
:W—{C1+(l C)Jhiw e,
" £
WO(E):I—\/—__(Ez_l)'

Therefore

Wie) = 1 — € |J(F5) — o e=HCT + (1 = O

4. Wy'(&) fore < — 1

3
2 W (£) = G(E) — i e~fwff e Glu) dus,

= G(&) — iw e~ wé{zn (C — 1); + e G(u) dw-} ;

—1

=G(&) — 27 (C — 1) e~ @049 — 4o e=™¢ f e G{u) du.
-1

Now A
e C 1—0O)
J‘+5ez’feu G(u) du = — 27zf [(1 —C) + ;*;(Zz(_ 5 )J e day.
-1 ] _1
¥ C—u(l—20C) L.
:2%[1{(1—6)—}— Vi — ) }e du,
where
g =—¢
:_2_76__—(];——@{_2‘“5 m}+2nCP‘—ZW(1—C)Q,
where » '
e iwu ue ion
: = a
P=| i 0=] yEmn
. Therefore 4 - e
Wy =—(1-—-C) — —\%2(——_1)) — (C.— 1) e~ ot +9

— (1 — C){e~®+8) _ g=intt +8) _ 4 ¢~ [CP — (1 — C)Q],

CHEM—C) . wvirp 1
- =T —twe @ {CP — (1 — C)Q},

" . E
W7(&) =1+ JE=I)
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W) =1— C\/@;—D — dw e~ [CP — (1 ~0)Q].

5. The wtegrals I, J, P, Q.—Scharz? has introduced two new functions

HeM (1,x) =JWHO(“ (Au) €™ du

0
He® (1,2) = | H (1) e du,
S

where H,®, H,® are Hankel functions of order zero, and using them he has been able to evaluate
the integrals I and J. He gives the following expressions for the integrals:

g  aE =1, ] 1
I = f‘\/x ——l)dx——_,_T .He‘)<g,w§> He“(E,af)
H ) H?(w)
+ Jolw) log {& 4 +/(£* — 1)}

x g _ ™A€ — 1) m(l ) (2)(1 )
7= fv ppdn = TV He(3, 08)  Heo(; , of

and

H, () H, ()
— if, (0) log {€ 4+ /(€2 — 1)},

where [,(o) is the Bessel function of order zero. .
The functions He® (1,x), He®™ (1,x) have been tabulated for x = 0(0-02)2(0-1)5 for 4 = 0(0- 1)1.
The integrals P and Q) can be found by calculating I and J and then taking the conjugate values.
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