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Summary.--When aerodynamic coefficients are calculated for tailplane flutter calculations it is usual to neglect the 
aerodynamic effect on the tailplane of the disturbance due to the wing and to assume that  the tailplane oscillates in a 
steady stream. In this report a two-dimensional theory, which includes the effect of the wing-tailplane aerodynamic 
interaction, is developed for any wing and tailplane in the same horizontal plane. To represent this effect tile standard 
derivatives are modified and additional derivatives are introduced. Calculations for a particular system show that  the 
change in the standard derivatives is small but  that  the additional derivatives are comparable in size with the standard 
derivatives. The additional derivatives are used to investigate the effect of the wing motion on tailplane-elevator 
flutter, and it is shown that the aerodynamic interaction has little effect on the flutter of the binary system considered. 

1. I~troductio~.--It is a basic assumption in flutter theory that  the aerodynamic forces on an 
oscillating surface arise only from the disturbance in the flow due to the motion of the surface 
itself. This assumption is valid when only one surface is oscillating in a s teady stream, but  it  is 
not valid when there are two Such surfaces, each lying in the disturbed flow due to the othen 
The forces on each surface are then affected by  the motion of the other surface; strictly speaking, 
even the presence of a second surface at rest affects the forces on the first. 

In this report an approximate evaluation is made of the aerodynamic forces which act on a 
tailplane when it is oscillating in the wake of an oscillating wing. The effect of the tailplane on 
the wing forces is also considered. For a complete at tack on the problem we should need to deal 
with a finite wing and a finite tailplane, but here the simpler two-dimensional problem of wing- 
tailplane interaction is discussed. As an additional simplification the tailplane is assumed to lie 
in the same horizontal plane as the wing. 

The method used is an extension of the method given by  Lyon 1. The vorticity distributions 
over the wing and tailplane are assumed to be given by infinite series of trig.onometric functions 
with coefficients tha t  are left as unknowns. Tile downwash over the wing and tailplane is 
evaluated for each distribution. The boundary condition to be satisfied is that  near the surface 
the resultant airflow velocity must be tangential  to the surface. From the wing and tailplane 
boundary conditions we can find the unknown coefficients in the vorticity distributions and so 
fmd the  pressure distribution over each surface. The pressure on the tailplane is linearly depen- 
dent on the degrees of freedom of the wing and tailplane, and the expressions for the aerodynamic 
forces on the tailplane thus involve two sets of derivatives, one in respect of the wing motion 
and the other in respect of the tailplane motion. Similarly there are two sets of derivatives for 
the wing. 

* R.A.E. Report Struct. 176, received 3rd August, 1955. 
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The theory is developed for any wing and tailplane in the same horizontal plane. No general 
formulae can be given for the derivatives, but tailplane derivatives are evaluated for one particu- 
lar system, for which it is shown that  the effect of the presence of the wing on the standard 
tailplane derivatives is small, but  that  the additional derivatives, tailplane forces due to wing 
motion, are of an appreciable size. These derivatives are used to assess the effect of the wing- 
tailplane aerodynamic interaction on the binary elevator flutter of the system, the two degrees 
of freedom being elevator rotation and the fundamental aircraft  mode;  the effect of the aero- 
dynamic interaction is shown to be small. 

2. Theory for one Surface . - -2 .1 .  Lis t  of Symbols 

V 

C 

1 

X 

2= 

C( o) = 

V F  e ip, 

V E  e ib~ 

V W  d p' 

I Z e ip~ 

:~V 
0=0 

~=I 

e=~ 
> x 

Velocity of the undisturbed flow 

Chord 

Semi-chord 

l~ = .  - -  1 cos 0 

Frequency 

p l / V  = reduced frequency = ½. frequency parameter  ½v 

Kl(ico) 
Ko(io) -k K1(ico) ' where K0 and K1 are modified Bessel Functions of the second kind 

Bound vorticity 

Free vorticity 

Downwash velocity 

Downward displacement 

Air density 

2.2. A Summary  of Flutter Derivative Theory for  One Sur face . - -Le t  the bound vorticity 
distribution over a wing be given by 

oo 

/1 ---- a0 cot ~ + ~ a. sin nO . . . . . . . .  

and let the downwash over the wing induced by this vorticity be given by 

.. (2.2.1 

W = ~ b. co s  n O  . . . . . . . . .  . . . . . .  (2 .2 .2  
0 
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I f  E is t he  free v o r t i c i t y  i t  can  be  s h o w n  t h a t  

E = - -  ico e -¢~'~ _ le  ~ F(u)  du 151 ~ 1 

f+l = - -  i~o e - i ~  e i~"/ ' (u)  du  2 > / 1  . . . . . . . . .  
- -1  

T h e  d o w n w a s h  a n d  t h e  v o r t i c i t y  are c o n n e c t e d  b y  t he  e q u a t i o n  

=f~ r + E 2~W(2) _f~--~--~ du.  . . . . . . . . . . . . . .  (2.2.4) 

I f  we  s u b s t i t u t e  for  E we ge t  

f+, e-;Ou f- 2~W(2) = d u  - -  io, d u  e io'~ r ( v )  d v  
--12 - - U  --12 --IIJ~. o--i 

- -  i~o du e ~ I~(v) dv 

a n d  in A p p e n d i x  I I ,  s ec t ion  1, i t  is s h o w n  t h a t  th i s  can  be  r e d u c e d  to  t he  s imp le r  f o r m  

2=W(2) =: - -  du - -  io) e - ' ~  e ~Èx dx  - -  dy . . . . .  (2.2.5) 
1 ~ - -  q//' --oo --1 X - - y  

W e  do n o t  s u b s t i t u t e  t h e  series (2.2.1) in  th i s  e q u a t i o n  a n d  i n t e g r a t e  t e r m  b y  t e r m ,  because  we  
c a n n o t  e v a l u a t e  t h e  in t eg ra l s  w h i c h  occur ,  b u t  we r ep lace  t h e  series b y  a series of l inear  f u n c t i o n s  
of co t  ½0, s in nO w h i c h  g ive  in t eg ra l s  t h a t  c an  be  e v a l u a t e d .  

I f  we  s u b s t i t u t e  /'0' = 2[cosec 0 - -  (1 - -  C) cot  ½01, we  ge t  a v a l u e  of W(2) w h i c h  d e p e n d s  
o n l y  on  co, a n d  so b y  a su i t ab le  choice  of t h e  c o n s t a n t  C(~o) we ge t  Wo'(2) = O. 

If we s u b s t i t u t e  

/ 'o" = 2[cot  ½0 - -  cosec 0 + ico sin 0 t 

we  ge t  Wo" = 1 , . . . . . . . . . . . . . . . . . .  (2.2.6) 

a n d  for  /'o = / ' o '  + / 7 o "  = 2[C co t  ½0 + ico sin 01 

we ge t  W0 = Wo' + W o " =  1 . 

I f  r~ = cot  ½0 - -  2 s in 0 + ico [sin 0 + ½ sin 20~ 

W~ = {- + cos 0 

[-sin (n + 1)0 sin (n - -  1)0] 
a n d  if E , = - - 2 s i n n 0  + i~o L n T l  - -  n - - - - l  A ' n >/ 2 

W, = cos nO. 
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The series (2.2.2) for W can now be written in terms of the quantities Wn, 
o~ 

w = boWo + b~(W~ -- Wo) + ~  <Wn 
"2 

co  

= (bo-  ½b~) Wo +~,  < v <  . .  . .  . , .  . .  
1 

and so the vorticity distribution is 

co 

/7 = ( b o -  1 ~+1) ro + ~  < r n .  . . . . . . . .  
1 

.. (2.2.7) 

. .  (2.2.8) 

If we compare this equation with equation (2.2.1) we get the following relations between the 
a and b coefficients: 

ao  = 2 C b o  + (1 - c)b,  ] 

] a~ = ½io)bl - -  2b~ - -  ½ioJb3 

an = n b , _ l - -  2bn - -  n b,+l 

(2.2.9) 

The boundary conditions are that  the air-stream velocity adjacent to the wing must be tangential 
to the wing and that  there must be smooth flow at the trailing edge. The trailing-edge condition 
is already satisfied because each F n is zero there, and the flow is tangential over the wing if 

OZ 
W - -  O~ 4- i~oZ . . . . . . . . . . . .  . .. (2.2.10) 

From equation (2.2.10) we can find the b coefficients; equations (2.2.9) then give the a coefficients 
and hence the pressure distribution p = p VF. 

3. Theory  for  a W i n g  and Ta i l p l ane . - -3 .1 .  N o t a t i o n . - - A n  extension of the method given in 
section 2 is used to deal with the problem of wing-tailplane interaction. The same symbols will 
be used for each surface, but those which belong to the wing will have a superscript (~) and those 
which belong to the tailplane will have the superscript (2). The superscript (12) will denote the 
effect of the wing on the tailplane; for example W (~ is the downwash which the wing vorticity 
induces over the tailplane. Similarly the superscript (2t) will denote the effect of the tailplane 
on the wing. 

3.2. The  D o w n w a s h  A h e a d  of  and B e h i n d  a S u r f a c e . - - T h e  downwash which _r'o) (see equation 
(2.2.8)) induces in the wake of the wing can be written in the form 

co  

w = (bo - ½bl)Wo + Z  < w ,  . . . . . . . . . . . .  (3.2.~) 
1 

where W, is the downwash induced b y / ,  (1), but W= no longer has the simple form given above. 
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Expressions for the  W, for ~ > 1 are derived in the  Appendix  and are 

W° = l - C < ' * / ( ~  - !~ - i~°(*'exp ( -  i*°(*' ~) [C(* ' f l exp  \~ + 1/ x / (u  ~ - ly du 

V/(u ~ -  l )  du . . . .  (3.2.2)  

1 
W~ = 2~¢/(~ _ 1) { -  ~ + v/(~2 -- 1 ) } { 1 - ,  + ~ / ( , 2  1)} . .  (3.2.3) 

W,, = { - - ~  + x / ( ~  ~ -  1)}" . . . . . . . . . .  . .  ( 3 . 2 . 4 )  

When ~ lies in the  range covered by the  tailplane, each downwash function can be expressed as a 
Fourier  cosine series in the  tai lplane-chord parameter  0 (2~. 

The  series for W~ will be 

oo 

Wn (12)" = ~  Wnm (12) COS 1~/40 (2). 
0 

. .  (3 .2 .5)  

The downwash ahead of the tai lplane due to/'(=) can be calculated by  using the  formulae 

W o =  1 - - C  <~) ~ ~ -  1 -- ico (~ )exp( - i~o  ~)~) C ~2) ~/(u ~ _  ]) du 

--  ( 1 - -  C(2)) f [ e u exp ( -  ic°(2) u) 2 -  1) du , 

1 
W1 -- . 2~/(#~ - 1) { -  ~ --  ~/(~2 _ 1)}{1 --  ~ --  ~ / (~  --  1)}, 

w ~  = < -  ~ - V ( ,  ~ -  i)},,. 

Over the  wing each of these expressions can be replaced by  a Fourier  series in the  wing-chord 
parameter  0m 

oo 

Wn (~l) ~ Wnm (2i) COS mO (1) . 
0 

I t  has not  been possible to give analytical  expressions for the w,,, coefficients and so they  have  
been calculated numerical ly  for a particular wing-tai lplane system. 

3.3. Boundary Condi t ions . - -The 'boundary  condit ion for the  wing is 

aZ m 
a#(~ ) + icoo) Z m = W(m -{- W(~), 

i.e., the  combined velocity adjacent  to the  wing must  be tangent ia l  to the  wing. 

8Z(~) _~ 
O~ (~) + ic°mZm --  o C. m cos nO% 
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the  b o u n d a r y  condi t ion  becomes  

o~ Wo(~n co W(21) 
~ b n  (1, COS q/LO (1, -A U (bo (2, - ½D1 ̀ 2,) ~ @ ~ b n  (2, V 

0 I, 

03 

- -  - - ~ C n  (1) COS ']{0 (1) 
0 

co - oa co ¢n 

~ b n  (1, COS ~ 0  (1) @ (DO (2, - -  l b l ( 2 ) ) ~ W O n ( 2 1 ) C O S  f/,O (1, -@~£bm(2'~7~Jmn (21, COS f/~O (1, 
0 {) 1 0 

a/ad so 

eo 

= ~ C n  (n COS ~tO (1) 
0 

oo 

b m + (bo(~) __ !a~,~{m~o,jwo,,(21) _F~b.(~)w,2~) = C,(~) 
1 

co 

<(i) + bo(~)wo (~1) + b1(2)(w,?~) _ ½wo°(~)) +~b,(2)w,,,o(~) = Of). 
2 

(3.3.3) 

If  we p u t  u., , ,  (~) = w. ,~  (2~) m ~ 1 

equa t ion  (3.3.3) becomes  

q/~ln(21) : ~.f]ln(91) 1__~ m (51) - 7  2 ¢x"On 

O9 

b,~ °)  + ~ b m ( 2 ) u , , , ,  (~) = C,[  ~) . . . . . . .  (3.3.4) 
m : O  

Let  B m = [b~O)], B (2) = [b,(2)], C (~) = [C,m] be infinite row mat r ices  and  let U ('~) = [u,,,,,( ~)] be an 
infini te square  ma t r ix ,  t h e n  the  b o u n d a r y  condi t ion  is 

Bm q- B ( 2 ) U  (2~) = C m . . . . . . . . .  (3.3.5 

Similar ly  b y  consider ing the  b o u n d a r y  condi t ion  for the  ta i lp lane  we get  

B(2) + B ( ~ ) U  (~) = C (2) . . . . . . . . .  (3.3.6 

Therefore  B ( 2 ) ( I  _ U(2~)U(~2)) = C (~) __ Co)U(12)  . . . . . .  (3.3.7 

B ( ! ) ( I  - -  U (~2) U (2~)) = C(~) - -  C (2) U(2~) , 

where  I is t he  un i t  mat r ix .  

E a c h  U m a t r i x  m a y  be r ega rded  as an ' inf luence ' ma t r ix .  

(3.3.s 

The  coefficients u ..... t e n d  rap id ly  to zero as m,n  -+ oo and  so the  m a t r i x  [I - -  U (21) U (12)] t ends  
to the  form 

[o 1° f z ]  
If for n ~> N the  t e r m  %n is u n i t y  and  uin, u~j are zero to the  accuracy  to which  we are working,  
we can t ake  this  finite square  m a t r i x  of order  N and  the  cor respond ing  finite B and  C mat r ices  
and  subs t i t u t e  these  a p p r o x i m a t e  mat r ices  i n  the  equa t ion  for B. We can t h e n  inver t  t he  
a p p r o x i m a t e  m a t r i x  [I - -  U(21)U (~2)] and  solve for B %  
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For small vibrations each term of the C (~ matrix will be a linear function of the co-ordinates 
of the wing motion and each term of the C ("/matrix will be a linear function of the co-ordinates of 
the tailplane motion. Therefore B (~), B (~) and so A (~), A (~) (the infinite row matrices [ a t ) ] ,  [a~(~)]) 
are each linear functions of the displacements of both surfaces. The aerodynamic force on each 
surface will thus involve two sets of derivatives, one in respect of the wing motion and the other 
in respect of the tailplane motion. 

If the action of the wing on the tailplane is neglected, the influence matrix U (~) is zero; equation 
(3.3.7) then becomes B (~) = C (~) and expresses the physically obvious fact that  the forces on the 
tailplane are those given by the  standard tailplane derivatives. 

If the action of the wing on the tailplane is considered but the action of the tailplane on the 
wing is neglected, then U (~) =/= 0, U (~) = 0 and equation (3.3.7) becomes 

B (~ = C (~ - -  C ( ~ U  ( ~  . . . . . . . . .  (3.3.9) 

This equation shows that the set of tailplane derivatives in respect of the tailplane motion is 
the same as the set of standard derivatives, since they arise from the term C("); there is also the 
additional set of derivatives in respect of the wing motion, arising from the term C (~) U C~. 

If the complete interaction between wing and tailplane is considered, that  is, neither U (~} nor 
U (2~) zero, the two sets of derivatives obtained from equation (3.3.7) will differ to some extent 
from those given by equation (8.3.9). This effect may be regarded as due to the disturbance in 
the flow caused by the presence of the wing, as distinct from the wing motion. However, since 
the matrix [I --  U ( ~ U  ~2~)] is approximately equal to the unit matrix I t h e  differences will be 
small, and the two sets of derivatives given by equation (3.3.9) will be approximations to the 
correct derivatives as given by equation (3.3.7). Similar considerations apply to equation (3.3.8). 

3.4. N u m e r i c a l  M e t h o d s . - - T h e  integrals 

(¢ e i~u (~ u e i~u 
I =J~.X/(~ 2- 1)du, J = j~V-~5  z. 1) d u  

are a little difficult to evaluate because of the singularity at u = 1. This difficulty can be over- 
come by making the substitution u = cosh t. If ~ = cosh ~ we now get 

f° I---- e~co~htdt, j =  e i . . . . .  h ,  c o s h t d t .  

0 0 

These integrals can be evaluated by t h e  usual method of calculating the ordinates at evenly 
distributed points and then using the standard integration formulae, but the~e are some dis- 
advantages. The values of ~ for which we need to evaluate the integrals occupy a greater part 
of the whole ~ range than the corresponding values of ~ do of the whole ~ range, and so to evaluate 
the integrals to a certain number of decimal places we need about twice as many ordinates for 
the ~ range as we do  for the ~ range. 

Another disadvantage is that  while the values of ~ are evenly spaced and can be made to be 
ordinates for our integration formulae, the corresp0inding values of ~ are not, and so if we take 
a fixed set of evenly distributed ordinates most of the integrals we need will have to be found by 
interpolation. In the numerical calculations (section 5) it was finally decided to divide the 

range into two parts, (1-1.5) and (1.5-~). Over the first part the integrals were evaluated i n  
the second (t,~) form and over the second part they were integrated in the first (u,~) form*. 

* It appeared later that little was gained by this device and the integrals might well have been evaluated using the 
second form only. 



Schwarz ~ has given equat ions relating the  integrals I and J to new functions He (~), He (~) which 
he has in t roduced and evaluated for some values of the  parameters  (see Appendix  II, section 5). 
However,  since these values of the parameter  were not  sufficiently extensive, it was not  possible to 
obtain values of I and J from the  relations of Schwarz (interpolation would not  have given 
sufficiently accurate results). I t  has been possible to evaluate one of each of the integrals I 
and J by  bo th  the  numerical  in tegrat ion me thod  and the Schwarz method;  the  results agree to 
within two uni ts  in the th i rd  figure. The integrals used are correct to two figures and the  error is 
believed to be less than  1 per cent. 

There are two possible methods  of evaluat ing the Fourier  coefficients w .... i n  the series (3.2.5) 
for the downwash velocity. The first me thod  is to express t hem as integrals, as in the  theory  of 
Fourier  series, and then to evaluate the  integrals by  numerical  methods.  The usual in tegrat ion 
formulae are, however, not  very  suitable because of the  rapid oscillation of the function cos nx in 
the  in tegrand and a large number  of stations is needed to give sufficient accuracy. 

In  the second method  the  amount  of computa t ion  needed for reasonable accuracy is much  less. 
This me thod  is to assume a finite cosine series and to calculate the coefficients so tha t  the  series 
gives the  correct downwash velocities at certain points, which involves the  solution of a set of, 
s imultaneous equations. This second me thod  was used in the numerical  calculations of section 5. 

4. Formulae for Lift, Pitchi~,g Moment  and Hinge Moment . - -  

co 

7 = a° cot ½0 +~a , ,  sin nO. 
1 

Li f t . - -The  lift on an aerofoil is given by  the formula 

L = ~o V ~F dx J 

L 
pcV ~ 

V2lJo/' sin0 dO, ~ p 

= ½ (a0 + ½al) 

= {b0(2C + i o )  - -  - -  ½i 0b }. 

Moment about the Leadiug Edge = M (nose-up positive) 

M = -- ~(x + l) p V~r dx, 
d 

M if 
P c ~ V 2 -  ~ o 

(1 --  cos 0) sin 0r(0) do, 

Elevator Momen t - -No  Aerodynamic Balance. - - I f  the hinge is at Xh = -- I COS O, the elevator 
hinge m o m e n t  H, (positive nose-up) is given by  ,. 

~ x t 

- H = ( x - -  xh)pV rdx, 
X h  
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f~ H = sin ¢ (cos 0 --  cos 0) V(¢)d¢,  
pI~.V = o 

co 

. H = ~ a = t , , ,  

= o 

where t o : ~ b s ,  

t l  : 1-!gCba, 

sin (n + 2)0 2 sin nO sin (n --  2__)2 1 
t,~-----~ ( n +  1) (n + 2) --  nZ -- 1 + ( n - -  1)(n ) , n / > 3  

a0 = 2Cb0 + (1 - -  C)b , 

a~ = 2icobo -- 2bl -- i~b~, 

and 

a n : 

~b 4 

~ 7  

½io~bl -- 2b~ -- ½icoba, 

i~ (b, b,~ ~ ) 2b~, --~ - - I  - -  + - -  

2 cos 0 (~ --  O) + (2/3) sin 0 (2 + cos ~ 0), 

(~ --  0)(2 cos 0 --  1) + sin 0 ( 2 - -  cosO), 

(~ --  O) (½ + 2 cos O) + (1/6) sin O (8 -k S cos O + 4 c o s  = O - 2 c o s  ~0). 

5. Results.--5.1. Geometry of this System.--The derivatives tabula ted  below are for a wing 
and tailplane which lie in the same horizontal  plane. The wing chord is twice the tailplane 
chord and tile distance between the mid,  chords is three times the wing chord. The elevator 
chord is 30 per cent of the tailplane chord. 

5.2. Definition of the Derivatives.--The tailplane derivatives are defined by  the equations: 

' L (2 )  z(1) z(  2 ) 
p c(=)V= = L=I(=) S)  + L~I(~) ~cl) + L==(2) j )  + L=c~) ~(=) + Le=(~l g(~), 

p{c(~)}~V2 -- ( -  M=1(2)) z(l) 

p{c(=)}=V2 ( - -  H=I(@ zm - -  ~-Cf) + ( - -  H~(=))~(~) + ( - -  H,~(2)) z'~) c~ + ( - -  H~=(=))~(=) 

-k ( - -  He=(2))g (=, . 

The wing derivatives are defined by: 

LO), z m z(=) 
oc(1)V -----= -- L~(1) -S) + L~(~) ~ -5 L=~m j~  + L~=(1) ~¢=) + L~=(~) ~¢=), 

9 -  



5.3. 

M p{c(1)}~VZ (-- Mzl(1)) z(1) -- -~) --[- ( -- Mal(1) )CZ 'I) -~ ( -- Mz2'I) ) '~(2, 

Wing Derivatives for Wing Frequency Parameter vl = O. 6 

L.(1) 

L~(I) 

Lz(~) 

L~(2) 

- -  M z ( 1 )  

- -  M~(1)  

- -  M~(2)  

- -  M~(~)  

U (12) ~ 0 U (21) -~ 0 U (12) ---- 0 U (21) =- 0 

+ 0-056 + 1.27i 

2- 20 + 0 . 8 6 i  

0.014 + 0.007i 

+ 0 . 0 3  - - 0 . 0 4 i  

--  0-059 + 0-32i 

+ 0-51 + 0.45i  

O. 003 + 0.002i 

+ 0.010 -- 0.007i 

0 ' 0 5 5 + 1 . 2 5 i  

2-20 + 0 . 8 5 i  

0 

0 

- - 0 . 0 5 7  + 

0.51 + 

0 

0 

0.31i  

0"45i 

The first column gives the derivative when the complete interaction, the action of the wing on 
the tailplane and the action of the tailplane on the wing is considered. The second column gives 
the derivative when the interaction is neglected, it gives the standard wing derivatives. 

The additional derivatives given in the first column are small and the others differ little from 
the standard derivatives. Since the effect of the tailplane pitch and vertical translation on the 
wing derivatives is small, it is assumed tha t  the effect of the elevator rotation will also be small, 
though no calculations have been made for this case. 

5.4. Tailplane Derivatives for Tailplane Frequency Parameter v2 = 0.3; Comparison of the Two 
Approximate Methods. 

Lzo) 
L~(1) 
L~.(~) 
L~(~) 

- -  Mz(1) 

- -  M a ( 1 )  

- M ~ ( ~ )  

- -  Mc~(~) 

U (1~) # 0 U (m) # 0 U(2~) : 0 U (~1) = 0 U (12) = 0 

- -  0 - 6 7  + O. 50i 

+ 0-33 + 1.5i  

0-11 -}- 0-74i 

+ 2 .6  + 0.20i  

- 0-17 -]- 0-13i 

+ 0 . 0 8 5  + 0 . 3 7 i  

O. 0090 + O. 18/ 

+ 0 .63 + 0.17i 

- -  O. 6 6  + 0 . 4 9 i  

+ 0 . 3 2  - t - l ' 5 i  

0.11 + 0.73i  

+ 2 .5  + 0.20i  

- -  0 . I 6  + 0 . 1 2 i "  

+ 0 . 0 8 4  + 0 . 3 7 i  

0 

0 

0.11 + 0.73i  

2-5 + 0.20i  

0 

0 

0-0086 -}- 0 .18/  

0 .62 -}- O- 17i 

0.0086 -}- 0"18i 

+ 0.62 -}- 0 .17i  
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The first column gives the derivatives when the complete interaction is considered, the second 
column gives the tailplane derivatives when the action of the tailplane on the wing is neglected, 
and the third column gives the standard tailplane derivatives. 

The change in the values of the standard derivatives is small. The action of the tailplane on 
the wing seems to have little effect on the additional derivatives and so the derivatives for 
v2 = 0-5, 0-7 given in section 5.5 have been calculated on the assumption tha t  this action can 
be neglected. I t  is assumed that  if the elevator derivatives were calculated by  both methods 
the conclusions would be the same. 

5.5. Tailplane Derivatives in Respect of Wing Motion (using approximation U 21 = O) 

Lz(1) 

L=(1) 

- -  M m )  

- -  M a ( 1 )  

- -  H ~ ( 1 )  

V2 

0.3 0.5 0.7 

0.66 + O" 49i 

+ 0.32 + 1.5i 

- -  0 " 1 6  + 0.12i 

+ 0"084 + 0"37i 

--  O" 0059 + O" 0046i 

+ 0-0032 + 0-013i 

0.32 + 1-71i 

2.0 + 0.95i 

0.080 + 0.43i 

0"49 + 0 ' 2 4 i  

0" 0029 + 0 '  016i 

0.018 + 0.0087i 

2-50 + 1.1i 

2-63 + l ' 0 i  

0-62 + 0 . 2 7 i  

0"66 -- 0-25i 

0"022 + 0-0096i 

0-024 -- 0" 0089i 

6. Application to Elevator Flutter.--6.1. Preliminary Remarks.--To obtain some idea of the 
importance of the additional derivatives which have been calculated, they have been used to 
investigate the effect on elevator flutter of the aerodynamic interaction between the wing and 
tailplane. The results of the investigation are given in a non-dimensional form, but  the aircraft 
considered has the proportions of a large transport  aircraft (see Fig. 1). The calculations were 
made with two degrees of freedom, elevator rotation and a normal mode of the whole aircraft 
(see Fig. 2). The normal mode is made up of pitch, vertical translation, parabolic wing flexure 
and parabolic fuselage flexure. 

The wing is assumed to be rigid in torsion, so tha t  its angle of incidence is constant over the 
span and equal to the slope of the fuselage at the root of the wing mid-chord axis. The tailplane 
is assumed rigid in torsion and flexure and its angle of incidence is everywhere equal to the slope 
of the fuselage at the root of the hinge line. The elevator is rigid in torsion and flexure. 

The tailplane derivatives are two-dimensional derivatives appropriate to the 0.7-span position. 
The additional derivatives in respect of the wing motion are then assumed to have the values 
they would have, if at this section the wing and tailplane were part  of a two-dimensional system. 
The dimensions of the aircraft have been chosen so that  this two-dimensional system is the one 
considered earlier in the report, i.e., the wing chord is twice the tailplane chord and the distance 
between the mid-chords is three times the wing chord. 

6.2. Notation.- / 
s Unit  of length 

o Air density 

P0 Air density at sea level 
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/4$ 

M 

C 

ge 

q~ 

Vo 

o0s ~ = unit of mass 

Mass-balance/mass of elevator 

Wing chord 

Elevator chord 

Non-dimensional wing-span parameter 

Non-dimensional fuselage co-ordinate 

Unit of speed 

o)S 

V 

Ve 

O) 

Flutter speed 

Equivalent flutter speed 

v /(Plpo) 
Natural frequency of normal mode in radn/unit time 

6.3. Data.--The dimensions of the aircraft are shown in Fig. 1 in terms of a unit of length 
s ft, the distance from the wing root to the wing tip. The chord of the full-span elevator is 30 per 
cent of the tailplane chord and there is no aerodynamic balance. 

Let tile unit of mass be m = p0s 3. If ~ is the usual non-dimensional wing spanwise co-ordinate 
the mass per unit length of each wing is 3. 0232 m(1 -- ~)/s. The mass per unit length of each 
elevator is 0.5176mcJs ~, where c, is the elevator chord. Let u be a non-dimensional fuselage 
co-ordinate which is zero at the root of the wing mid-chord line and unity at the root of the tail- 
plane mid-chord line. Tile mass per unit length of the fuselage is (4.904 -- 8.734u)m/s for u < 0 
and (4.904 -- 4.414u)m/s for u > 0. The mass of the tail unit excluding the elevators and mass- 
balance is 0-1040m and acts at the root of the tailplane mid-chord axis. 

The inertia axis of the wing coincides with the mid-chord line and the radius of gyration of a 
chordwise section of tile wing about the mid-chord line is }c where c is the wing chord. The 
inertia axis of the elevator is one third of the elevator chord aft of the hinge line, i.e., ~, = 1/3% 
and the radius of gyration oi a chordwise section of the elevator about the hinge line is 
k, = ~/(1.25)2, = 1/3%/(1.25)c,. The mass-balance is evenly distributed at a distance 1/3c, 
ahead of the hinge line. 

The natural frequency of the normal mode is 3.2 c.p.s. 

6.4. Results.--On Figs. 3, 4 and 5 flutter curves are given of Ve/Vo against the mass-balance 
parameter M, for sea level and heights of approximately 33,000 and 45,000 ft. The parameter M 
is unity for static balance. For each height two flutter curves are given, the one obtained when 
the aerodynamic interaction between the wing and tailplane is considered and the other obtained 
when this interaction is neglected. 

The additional derivatives are only available for three frequency parameters, 0.3, 0.5 and 0- 7. 
With these derivatives we can only get a part of the sea-level curve. We can, however, investigate 
the effect on various regions of the curve by carrying out the calculations for different heights. 
The effect on the nose can be seen from the 33,000-ft curve and the effect on the lowest flutter 
speeds can be seen from the 45,000-ft curve. 

In the binary flutter calculations for 33,000 ft and 45,000 ft, flutter occurred for large positive 
mass-balance giving a second branch of the curve for both sets of derivatives. This second 
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branch is not shown on the graphs because the mass-balance is so large as to be of no practical 
importance. I t  is further believed tha t  the aircraft mode used is not appropriate to large mass- 
balance, which would induce a node nearer to itself, and that  this second branch would disappear 
if a suitable mode or if more aircraft modes were used. 

The aerodynamic interaction between the wing and tailplane has littJe effect on the binary 
system except on the upper part  of the curve for low-frequency parameters, and this is unimpor- 
tant  from a practical point of view. 

7. Conclusions.--Flutter derivatives have been calculated for a particular two-dimensional 
wing-tailplane configuration oscillating in a steady stream. The changes.in the values of the 
standard derivatives due to the presence of the other surface is small. Additional derviatives 
have been introduced to represent the forces on each surface due to the motion of the other. The 
additional tailplane derivatives are comparable in size to the standard derivatives representing 
the effect of the tailplane motion, but  the additional wing derivatives are small. This difference can 
only in part  be accounted for by  tile difference in size of the wing and the tailplane, and it would 
seem that  most of the change in pressure is due to the vortex wake of the wing and not to a 
change in the strength of the bound vorticity. In practice the vortex wake will die out because 
of the viscosity of the air. In the theory used, all viscosity effects have been neglected and tile 
wake persists undiminished in strength. The effect of the wake is thus overestimated and the 
additional derivatives calculated on this theory are much larger than the derivatives which would 
be given by a theory which included viscosity effects. 

The use of these additional derivatives in flutter calculations will give only a qualitative 
estimate of tile change which the wing-tailplane interaction will induce in the critical flutter 
speed of the system. When they are applied to a two-dimensional system the change will be 
overestimated, for the reasons given above, but  when the same derivatives are applied to a three- 
dimensional system it cannot be said with any certainty whether the effect will be overestimated 
or underestimated. An investigation into t he  three dimensional problem would be of interest 
particularly if the rolling up of the wake were considered. 

The effect of the wing-tailplane aerodynamic interaction on the elevator flutter of the binary 
sys tem considered is small in those respects tha t  are of practical importance. 

No. Author 

1 H.M. Lyon .. 

2 L. Schwarz .. 

R E F E R E N C E S  

Title, etc. 

Aerodynamical derivatives of flexural-torsional flutter derivatives of a w i n g  
of finite span. R. &. M. 1900. July, 1939. 

Untersuchung einiger mit den Zylinderfunktionen nullter Ordnung ver- 
wandter Funktionen. L.F.F. 20, pp. 341 to 372. 1943. A.R.C. 8699. 
June, 1945. 
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o 
d o w n w a s h  w i t h  t h e  b o u n d  a n d  free vor t ic i t i es  is 

A P P E N D I X  I 

• Determination of Wo"(~), W~(~) for 1~1 > 1 

Expression of the Downwash in Terms of a Basic Integral.--The e q u a t i o n  c o n n e c t i n g  t h e  

w0"(~). 

W h e n  

we can  show b y  us ing  e q u a t i o n  (2.2.3) t h a t  

P0" = 2[cot  ½0 - -  cosec 0 + ico sin OJ, 

H e n c e  

E0" = - -  2ico sin O, 

~ 0 .  

Po" + Eo" ---- 2[cot  ½0 - - c o s e c  0J, 

~ 0 .  

2~Wo"(~) = 2 cot  ½0 - -  cosec 0 
cos 0 + 

~Wo"(~)=ff cos0 dO=~- -~Io ,  
oCOS0 + 

Wo"(~) = 1 - -  ~_ro, 

~'~ cos nO dO 
:7"gi n 

J oCOS0 + 

i . e . )  

w h e r e  

w1(~) 

I n  t h e  s a m e  w a y  it can  be  shown  t h a t  

]71 -t-- E1 = co t  ½0 - -  2 sin 0, 

= 0 .  

2xW~($) = [ ' c ° t  ½0 - -  2 sin 0 
• Jo cos 0 + 

f~cos  0 + cos 20 

= J o  c & ~  + 

= 1 I~). w~(~) ~(I1 + 

dO. 

T h e r e f o r e  

W~($) n / >  2 

sin 0 dO, 

sin 0 dO, 

/ ~  -¢- E,, = - -  2 sin nO, 
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a n d  so 

2~W.  ---- - -  2 sin nO sin 0 dO, 
o cos 0 + 

= ( =  c o s  (n  + 1)o - c o s  (n  - 1)0 
dO, 

J 0 cos 0 + 

Wn ~{I,, + 1 In ,}. 

2. Evaluation of I ,  

f = COS n 0  
dO, 

_ if" d=° - -  ~ _ = c o s  0 -4- ~ dO, 

1 f 2 zn 
= ~ cz + 2~z + l dZ ' 

w h e r e  C is t h e  un i t  circle a n d  z = e i°. 

T h e  i n t e g r a n d  has  s imple  poles a t  z = ~,/~ w h e r e  

= -  ~ + V ( t  ~ - 1), 

a n d  

T h e  res idue  at  ~ is 

a n d  at /5 t h e  res idue  is 

= - ~ - V ( t  = - 1), 

1 
o¢ 

(X n = { - ~  + V ( t  ~ _ 1)}o 

1 2V/(~  " -  1) 

{ -  ~ - V ( t ~ _  1)} o 
1 2 V ( t  ~ -  1) 

fl - - - -  

Since ~ ----- 1, one  pole lies inside t h e  un i t  circle a n d  one  lies outs ide ,  or  b o t h  lie on  the  circle. 
I f  t > 1, ~ lies inside C; if ~ < - -  1,/~ l ies ins ide  C; a n d  if [t] < 1, b o t h  poles lie on C. 

B y  C a u c h y ' s  T h e o r e m  we ge t  for ~ > 1 

z~I, = 2~i 
1 { - t  + V ( t  " -  1)} n 
--7" 

2 V ( t  ~ -  1) 

i , e , j  

a n d  s imi la r ly  for  ~ < - -  1 

L = ( -  t + V ( t ' -  1)} '~ 
V ( t  ~ - 1) 

= - - { - - ~ - -  ~v/(~ 2 -  1)} . 
V(t  ' ~ -  1) 
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I f  t~] < 1, p u t  8 = - -  cos ~; t h e  poles  are  t h e n  a t  z = e 4-i* and  t he  res idues  a t  t he se  p o i n t s  a re  

e ±~'* 

± 2i sin ~ " 

W e  n o w  i n t e g r a t e  r o u n d  t h e  un i t  circle w i t h  smal l  semi-c i rcu la r  i n d e n t a t i o n s  a t  e ±;*. As t he  
radi i  of t hese  i n d e n t a t i o n s  t e n d  to  zero t he  in tegra l s  a b o u t  t h e m  t e n d  to  

The  s u m  of t h e s e  in tegra l s  is 

a n d  so 

e 4- ins 

- -  =i 4- 2i sin 

• sin n~ 
sin 

f ~_ e i"° sin n¢ 
P d O  = ~ - -  . 

cos 0 + ~ sin ¢ 

95J 2 sin ~ " 

i . e . ,  I ,  - -  sin n$ 
sin 

a. Wo"(~), w°(~) for  I~l > 1 

~ > 1 .  

W o " ( ~ )  = 1 
~/(8 ~ -  15 ' 

1 
W~(~) - -  2 V ( ~ 2  1) ( -  ~ + V ( ~  - -  1)}{1 - -  ~ + V(~  2 -  1)3, 

~ <  - - 1 .  

W~(~) = {--  ~ + ~ / ( ~  - -  1)} ~ . 

Wo"(~) = 1 + .V/(~ - 1 ) '  

w ~ ( ~ )  - 
7g 

2~/(~ ~ - -  1) { -  F - -  V ( F = - -  1)}(1 - -  F - -  %/(F= - -  1)3,  

w°(,) - -  { -  ~ - V ( ~  ~ - 1 ) } , , .  
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. 

A P P E N D I X  I I  

The Calculation of Wo'($) for  I$l > 1 

General Theory . - -The  d o w n w a s h  e q u a t i o n  is 

f+,~(u) du f+,  e '°° 2~W(~) = i~ 

f oo e -  iCou 

ic°J 1 ~ --  u 

, . ' ,  

- -  duF_  le i'ov P(v) dv 

- -  duf~ie'~Vr(v) dv 

f f e -  ioa(u - v) 
f + ' r ( u )  du io, ~(v) du dv, 

= J _ ~  -~ ~ u Jds ~ -- u 

where  t h e  in t eg ra l  is t a k e n  ove r  t h e  a rea  s h a d e d  in t he  Fig. 1. 

u=-I u=l 

FIG. I, 

v=[ 

V-----'I 

I f  we m a k e  t h e  s u b s t i t u t i o n  x = u - -  v - -  ~, y = v, t h e  reg ion  is t r a n s f o r m e d  in to  t he  reg ion  
shown  in Fig.  2 

Y 

a n d  t h e  double  in tegra l  becomes  

FIG. 2. 

1 e -  ico(x + ~) 

1 - - : g - - Y  
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The  d o w n w a s h  equa t ion  is now 

If  we wr i te  

we get  

2~W(~) du - -  io) e -~°'~ e -¢~ dx 
--I ~ - -  ~ , v _ ~  1 

f + '  r ( u )  du, ~ ( ~ )  = } _ ~  
--1 

F 2 ~ w ( ~ )  = c ( ~ )  - ¢~  e - ~ '  e - ~ ° ~ G ( -  ~) d~ ,  

- -  y d y .  

W h e n  
f 

~ 
---- G(~)  - -  ico e - i~* e io" G ( u )  d g .  

- -  co 

t o '  = 2{cosec 0 - (! - C) cot  ½0}, 

f ' c o s e c  0 - -  (1 - -  C) cot  10 
G(~) = 2 s i n  0 dO, 

~,, c o s  0 + 

= 2f lC--cos(1--C)o + ,c°sO dO, 

If 
I~l < 1 

= - 2 (1 - c ) ~  + 2 ~ { c  + (1 - c ) ~ } L .  

G ( ~ )  = - 2 ( 1  - c ) ~  

27g 
= - -  2(1 - -  C)u + C ' ~  ~ - ~  1) {C + ~(1 - -  C)} 

8 <  - - 1  = - -  2 ( 1  - -  C ) ~  
2 ~  

2. The  D o w n w a s h  Wo'(*) for I$I < 1 . - - T h e  d o w n w a s h  equa t ion  is 

= G(~)  - -  i ~  e - i ° ~ (  ~ e io'. G(~ )  du. 
4 ]  - -  CO 

G(u) is def ined di f ferent ly  in the  ranges  (--  co, - -  1), ( --  1, 1) and  so we shall  consider  the  in tegra ls  
over  these  ranges  separate ly .  In  the  range  (--  co, - -  l )  

G(u) = - -  2 ~ { ( 1  - -  C )  _t_ 
C + U (1 C) t 

7 / ( ~  ~ - - i )  J 

a n d  so 

e ~" G ( ~ )  d ~  = - -  2 ~  (1 - -  C) + C + ~ (1 - -  C) 
V(u 2 -  1) d~, 

F - -  2~ e -~ ..... h , { ( l _ C )  s i n h t + C _  (1 - - ,C)  cosh t}d t ,  
0 
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= - -  2 ~ f f  e - ' ' ' ' : ° ' h t  [ C  - -  (1  -:-- C ) e - ' ]  dt; 

= _ 2 ~ c f f  e- ,  . . . .  h ,  d t  + 2~ (l _C)f~e-~Oco,~,- ,  dt. 

The first in tegral  is Ko(iCo). To evaluate  the second integral,  consider 

fez) 
I = e - t  . . . . .  h t d t  ' 

o 

where  x is real and  positive. 

I = e-X co~h~ (cosh t --  sinh t) dt, 
0 

1 e _  x cosh t 
= Kl(x)  - -  - -  x o 

e - X  ~ / x , 

- -  ~l ,X, , ,  - -  
X 

The integral  
f oo _ t - z ~ o ~  t dt e 

o 

is un i formly  convergent ,  and  so is an analyt ic  funct ion of z, for R(z) ) 0. The  funct ion 

e m ~  

K l ( z )  
Z 

is analy t ic  in the  z plane cut  from 0 to  --  ~ .  

For  z real, z > / 0  we have  

foo  e - Z  e - '  . . . . .  h, dt = Kl(z) 
o Z 

and so by  analy t ic  cont inua t ion  it mus t  hold for z complex for R(z) >/O. 

If we pu t  z = i,o we get 

In  the range (--  1, 1) 

f ¢o e = i~o 

" o ~ o )  

6 ( ~ )  = - 2~ (1  - c )  

and so 

I ~ G,(u) e i°~uduz  - - 2 ~ ( 1 - - c ) f  ~_ ei~'du 
- - 1  l 

2 ~  (1 - c )  Ve,.~ _ e _ ; ~ ]  . 
¢,co 
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T h e r e f o r e  

W o ' ( * )  = - -  (1 - -  C) - -  i~o e - ~ [ - -  (2 - -  C )  {e;~ ~ _ e_~O } _ CKo(ia~) + 

+ (2 - -  C){K,(ico) e-~ 

---- - -  i~, e;~'e{(1 - -  C) Kdico ) - -  CKo(io,)} . 

W o ' ( # )  = 0 i f  

i.e., 

W i t h  t h i s  v a l u e  o f  C 

C = 

(1 - c ) K , ( i . )  - C K 0 ( i o )  = O, 

K , ( ~ o ~ )  

Ko(iOa) + Kdico  ) " 

f 7 1  )e-G~ i~ o~ ei~ g (u )  du  = - -  2 =  (2 - -  C i " 

3 .  W o ' ( * )  f o r ,  > 1 

f 
~ 

2 = , w ( ~ )  = G(e)  - io, e -~o'' e ~o~ G ( ~ ) d u  
- -  03 

= G ( ~ )  - -  io ,  e - ~ *  2 =  (C - -  2) i--~ + e ~ G(u)  clu + e ~ G(u)  d u  , 
v - - I  1 

f + 1 f +  I e ~ G(u )  d u  = 2=(C  - -  1) e ~ d u  
--1 --1 

e ia~ - -  e - i~ 

= 2=  (C - -  2) i~o ' 

* e 'ouG(u) d u = 2 =  ( C - -  2) + g ( u  = 2) e ' ~ u d u  
+ I  ~ 1  x 

w h e r e  

----- 2 =  (C - -  2) (e;~e - -  e ' )  io~ " + 2=CI  + 2 =  (1 - -  C)J,  

I = f 8  ei~Ou 
1 v ' ( u  ~ - 2) ~ '  

f ~ ~ e wm 
J = ~ v ; ( u  ~ - 1 ) d u .  

w 0 ' ( ~ )  = ( c  - 1) + c + ~ (1 - c )  _ ( c  - 1) e - " <  ~ + "  
x/(~"  - 1) 

- -  ( C -  1 ) { e  ~ - ~ + ~  - e - i ° ' e + l }  

2 0  



T h e r e f o r e  

- -  (C - -  1){1 - -  e +;° ' ' -e} - -  { C I  + (1 - -  C)J}i~o e "~'~ 

_ c + ~ (1 - C) _ { c I  + (1 - c ) y } i~o  e -~o~. 
- x / ( e  ~ - 1) 

Wo"(#) = 1 
V ( ~  ~ -  1)"  

- ,) 
Wo(~)  = 1 - -  C ~ - -  ico e - - ~  { C I  -4- (1 - -  C ) J } .  

4. Wo'(~) for  ~ < - -  1 

f~ 2 = w ( e )  = G(e)  - -  io, e -~o~ e ~" G(u)  du,  
- -  o o  

Now 

= G(Q - -  2:~ (C - - 1 )  e - i< '+*)  - -  i o  e -i`o'~ e i~uG(u)  d u .  
1 

f f+°{ +~e~" G(u)  d u  = - -  2 ~  (1 - -  C) + 
- - I  - - 1  

C -t- u (1 - -  C)} d.,u du ,  
V ( ~  ~ - 1) 

w h e r e  

= 2 =  (1 - c )  + 
o 1 \ 

C - u (1 - -  C)} &.  du ,  
, / ( ~  - 1) 

where 

T h e r e f o r e  

2 =  ( 1  - c )  { e - , ~ e  _ e -~}  + 2 ~ c P  - 2~(1 - c) O ,  

f + ~" e - i . , u  
P =  

+ ,  V ( ~  7 1) 
d u ,  " f 

~' ~ e -  iota 

O =  + ,  V ( ~  ~ - 1) 
du .  

C + $ 1 - - C )  _ ( C - -  1) e- i~u+~) 
W o ' ( ~ )  = - (1 - c )  - ~ / ( ~  _ 1) 

- -  (1 - -  C){e - i<e + ~') - -  e -i'-(' + ~)} - -  its e - i ~ t  [ C P  - -  (1 - -  C)Q], 

c + ~ ( 1  - c )  

, , , / ( t~ - 1) 
- i ~  e -`~'~ { c p  ( 1  - c ) Q } ,  

W"0(~) = 1  + v ~ " ~ - -  
1 ) '  
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. 

Wo(~) = 1 - -  C J ( ,  - -  l~ _ i~o e - ' ~ * [ C P -  (1 ' C)Q] 
~¢ k~ + 1] 

The  integrals I ,  J ,  P ,  Q . - - S c h a r z  ~ has in t roduced two new functions 

j )x 
He('> (~,x) = H0 (~) (,~u) e i~ du 0 

x 
He (2> (~,x) = H o <2> (~u) e i" du, 

0 

where Ho% Ho ~2> are Hanke l  functions of order zero, and using them he has been able to evaluate  
the  integrals  I and J .  He gives the  following expressions for the  integrals:  

__ f ~ e i 'x  
z _ j ,  ~ / ( y -  1) 

g .  = __ = v ' ( ~  ~ -  1) 
4~  

ae(1)(~, o)~) He(2)(~ , (.o~) 

Ho°)(o) Ho(~)(~o) 

and 

f ~ X e i°'x 
J = , V ( ~  ~ - 1) 

dx, 

+ J0(~,) log {~ -4v ~ ( ~  - 1)} 

4~  

H0m'(co) n0<2Y(~) 

- q 0 ' ( o )  l o g  { ,  + ~ / ( , ~  - 1 ) } ,  

where J0(o~) is the  Bessel funct ion of order zero. 

The functions He °) (~,x), He  (2> (~,x) have been t abu la ted  for x = 0(0.02)2(0.1)5 for ,~ = 0(0.1)1. 

The integrals  P and Q can be found by  calculat ing I and J and then  tak ing  the conjugate  values. 
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