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Summary.--Following flight experience of a particular aircraft, the effect of including a bob-weight and feel spring 
in the circuit of a power-operated longitudinal control on the dynamic stability of the aircraft is investigated. 

The main findings of the investigation, which are given in the Introduction and fully set out in the discussion and 
conclusions at the end of the paper, can be summarised briefly as follows: 

(a) With such .a control system, instability of the aircraft short-period oscillatory mode can result. In these 
circumstances damping of this oscillatory mode deteriorates progressively with increase of speed. 

(b) Friction in the control circuit is an important factor affecting the characteristics of the aircraft stability. 
(c) It is considered that by care in design, particularly as regards positioning of the bob-weight, and choice of 

gearing, such instability can be avoided. Each case, however, requires examination on its own merits, on 
the lines of the analysis given here. 

(d) For setting up the equations of motion, the transfer function of the power unit is required. In the present 
calculations a simple approximation is used, which raises the degree of the characteristic equation from a 
quartic to a sextic. 

(e) Some consideration was given to the effect of changes in the moreimportant design parameters, but it is found 
that apart from the gearing and position .of the bob-weight mentioned above, they may have (within 
reasonable limits) only a mild palliative effect. 

The main investigation was done by means of the usual mathematical analysis, with friction represented by an 
equivalent viscous damping. Additional results are obtained by the use of the Nyquist presentation and of the Philbrick 
Electronic Analog Computor. 

1. I~troductio~.--On a i rc ra f t  f i t t ed  w i t h  p o w e r e d  controls ,  it  is n e c e s s a r y  to  p r o v i d e  some  
' f e e l '  for  t he  p i lo t ;  t he  Simples t  w a y  Of do ing  th is  is to  i n t r o d u c e  some  fo rm o f  spr ing  in t h e  
e l e v a t o r  circuit .  A b o b - w e i g h t  is o f t en  a d d e d  to  t he  con t ro l  c i rcui t  w i t h  t he  o b j e c t  of m a k i n g  
t h e  s t ick  force  per  g less d e p e n d e n t  on speed,  and  w i t h  the  hope  of res t r i c t ing  the  a m o u n t  o f  
n o r m a l  acce le ra t ion  w h i c h  can  b e  i m p o s e d  b y  t h e  pi lo t  (or b y  a gust) .  A con t ro l  s y s t e m  con ta in ing  
t he se  t w o  fea tu res  of spr ing  a n d  b o b - w e i g h t  is i tself  an osc i l l a to ry  s y s t e m  and  is sens i t ive  to  t he  
s y m m e t r i c a l  d i s t u r b a n c e s  of t he  a i rcraf t  t h r o u g h  n o r m a l  acce le ra t ions  b e c a u s e  t he  a i rcraf t ,  
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elevator, power unit, and spring and bob-weight, form a closed loop. Thus, if the aircraft were 
subjected to any accidental disturbance involving normal acceleration, the bob-weight would be 
displaced and would move the control so that  the oscillations might be augmented. In other 
words, there are the two oscillatory systems: (a) the control circuit and (b) the aircraft, which 
are coupled. This coupling may act in such a way as to reduce the damping of one of the 
oscillatory modes to a point where it becomes dangerous. 

That this is so, is borne out by recent flight tests on an aircraft with these features. During 
the tests, the aircraft developed short-period oscillations in which the damping was inadequate 
and decreased as the aircraft speed increased. 

This report discusses this kind of motion and shows that,  in order to predict the behaviour of 
the aircraft with any accuracy, it is necessary to study its stick-free dynamic stability, taking 
into account the effect of friction in the control circuit and the effect of time constants of the 
power unit (which means treating the power unit as an additional oscillatory system). An at tempt  
had been made originally to investigate the problem by considering the power unit as a simple 
proportional gear. This led, however, to the surprising result that,  for zero friction, when the 
aircraft and bob-weight modes were linked by this gear, the aircraft damping improved but  the 
bob-weight mode became unstable. This seemed to indicate that  the oversimplified assumption 
as to the properties of the power unit may have led to serious errors although, with positive 
friction, reversed and more plausible results could be obtained. Accordingly, in this paper the 
characteristic equation of the power unit, as quoted by the manufacturers, has been included in 
the system of equations of motion, which have been derived in Section 2. 

The equations in this form are difficult to discuss analytically, and they have been simplified 
for most of the analysis by substituting an equivalent viscous damping for the solid friction in 
the control circuit. Tile interpretation of this substitution is discussed in Section 3. 

Three methods have been used to investigate these equations: 
(a) Normal analytical method for linear differential equations with constant coefficients, 

discussed in Section 2 
(b) Computation by an electronic analogue machine, discussed in Section 5 

(c) The method of Nyquist diagrams, discussed in Section 6. 

Various numerical examples have been examined using one or other of these methods. Details 
of the data are given in Tables 1 to 5. 

When using the analogue computor it is possible to solve the equations witl~ a true representation 
of solid friction. The accuracy of solution is poor but  the results confirm qualitatively the 
deductions by the approximate method. 

Analysis on these lines explains, generally, most of the. features observed in the flight tests. 
In the tests, however, trailing-edge strips were fitted to the tail in an at tempt  to cure the oscilla- 
tion. These did effect a little improvement by slightly increasing the speed at which the 
oscillations became dangerous. This improvement cannot be explained within the limitations 
of the above theory. In order to explain this, it is necessary to take into account the elasticity 
of the control circuit between the power unit and the tail surface. This is discussed in Section 4. 

The main conclusions from this investigation are as follows: 
(i) Inertia weight(s) included in the circuit of power-operated control, however irreversible, 

may lead to a dangerous dynamic instability in the form of steady or divergent 
oscillations, increasing with speed. No such systems should b e  included without a 
most careful numerical analysis for which the present paper gives a ready scheme, 
down to the computational stage. 

(ii) Servo-units supplied for power-operated controls should be provided with their proper 
transfer functions and the numerical values of their respective time constants, to be 
used in assessing tile aircraft dynamic characteristics, such as stability and response. 
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(iii) Friction plays an important  part  in the stick-free dynamic instabilKy described here, 
and its increase, within usual limits, makes matters worse. The present method of 
estimating its effects is qualitatively correct, but  requires further research to get more 
reliable numerical results, No doubts as to the reliability of the general results arise 
in the meantime. 

(iv) The power-unit time constants (if in the range comparable with those used here) and the 
aircraft c.g. position do not affect appreciably the dynamic instability caused by weights  
and springs. The trailing-edge strips (or alternative devices increasing the hinge- 
moment coefficients of the elevator or all-moving tail) may  help only a little, through 
the medium of elastic distortion of the rear part  of the circuit, but  this may  only 
reduce the danger slightly and delay it to a somewhat higher range of speeds. The 
increase of the aircraft 's own rotary damping, i.e., (mq 4- m~) derivative, is somewhat 
more helpful, although again only in the delaying sense, unless tile usual values of this 
derivative are strongly magnified by some special artificial auto-control• 

(v) Decreasing the elevator-to-bob-weight gear ratio, G, may  reduce or even eliminate the 
instability but, if accompanied (as would usually be the case) by an increase in the 
bob-weight-to-stick gear ratio, F, it would result in difficulties with the stick-force- 
per-g characteristics• A reasonable solution may  sometimes be sought this way, but  
only if combined with a careful modification of all relevant design parameters. 

(vi) The detrimental effect of the bob-weight and spring on dynamic stability decreases and 
may disappear when the bob-weight is moved forward. However, in view of the large 
number of parameters involved, the calculation is still required, even with a well 
forward position. 

The standard nomenclature of Ref. 1 is used, together with the additional notation of Refs. 
2 and 3. 

2. Derivation of the Equations.--As the oscillations were of quite short period, the effect of 
change of forward speed has been neglected. The motion of the aircraft alone in level flight is 
then represented by:  

(D + la )~  _ 4 = 0 } (2.1) 
• o o , . • • • • 

(xD -4- co.)zO + (D --1- ~,)~ 4- c~V -~ 0 

If the displacement of the bob-weight is y (positive down), the equation of motion of the 
bob-weight is given by :  

(M1 4- M~)~ -T F 4- K~y --- M ~ { ( n -  1 ) g -  r~}, . .  . .  (2.2a) 

where F is the effective frictional force reduced to the bob-weight (the ~z sign is' to indicate tha t  
the friction always opposes the motion, i.e., the sign is opposite to that  of Y), and 

M1 ---- effective mass of the control system less bob-weight at the bob-weight (slugs) 

M2 = mass of bob-weight (slugs) 

Ky = effective spring rate (force on the bob-weight per foot of static deflection) 

r = distance of bob-weight aft of the aircraft c.g. 

Now, if the frictional force is replaced, in the usual way (see Refs. 4 and 5 and Section 3 below), 
by an equivalent viscous friction proportional to the velocity of the bob-weight, /he equation 
of motion of the bob:weight becomes : 

(M1 4- M~)y 4- K~.~ 4- Kyy ---- M ~ { ( n -  1 ) g -  r~}, . .  . .  (2.2b) 

K~ being the appropriate derivative of equivalent viscous friction. 
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The incremental  normal  acceleration of the aircraft°c.g, is: 

(n --  1)g- -  aA~½pV2S 1 ^ V 
W g = f l a w - [  . . . . .  

S u b s t i t u t i n g  in equations (2.2a) and (2.2b), and reducing to non-dimensional  units,  we have 

F~ 2 
- -  kz~ + sD~ + (D ~ ~- c)¢ T l(M~ + M2) - -  . .  

o r  

- -  kz~ -t- sD~ + (D 2 + bD -}- c)¢ = O; . . . . . . . .  
where 

¢ = y/z 

(2.3) 

s - -  
M1 + M~ 1 

. .  (2.4a) 

. .  (2.45) 

= ~ a M1 + M2 

~K, ~ (2.5) 1 = tail  arm b --  M~ + M~ . . . . . . . .  

C =  

The characteristic equat ion of the  power unit ,  quoted by  t he  manufacturers  as represent ing 
its dynamic  properties with sufficient accuracy, is" 

T1roOo + T~Oo + 00 = 0 ~ ,  . . . . . . . . . .  ( 2 . 6 )  

where T1, T v are t ime constants ;  0~ and 0o are the input  and output ,  being, in this case, propor- 
t ional  to the  bob-weight displacement ~ and the control angle ~, respectively, thus" 0i = Kd~, 
Oo = Ko~]. 

Equa t ion  (2.6) may  be rewriLten • 

Z ~ K°D2~] + T  KoD~ + Ko~ = K~y,  

o r  

D2~ + M D ~  + N~ = GN:~ ; 
where 

(2.7) 

(2.7a) 

N _ - -  ( 2 . s )  

TIT~ l . . . . . . . . .  K~ 
G = Ko 

G is the non-dimensional  elevator-to-bob-weight gear ratio. This is seen from (2.7a) where, 
if the  bob-weight is displaced and held, the  first and second derivatives of v soon disappear and 
then  V = G)~ which gives the  gear ratio of V • :~ as G. 

The complete set of equations of mot ion of the oscillating system is given by  equations (2.1), 
(2.4b) and (2.7a) and may  be wri t ten (by el iminating q) " 

{D 2 + (½a ~- ~ + x)D -[- (½a~ + co)}z~ -t- ~ = 0]  

(D 2 + M D  + N)i] GN¢ = 001 . (2.9) 
--  {k --  ½asD -- sD~}~O -t- (D 2 + bD + c)¢ = 
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The stability sextic in D is of the form" 

(D ~ -t- (la -}- v + x)D + (½av -¢- co)}(D ~ + M D  -}- N ) ( D  ~ + bD + c) + dGN(k --  ½asD -- sD ~) 

where" 

= D ~ + B ~ D  5 + C~D ~ + D~D 3 + E~D ~ + .F~D + G~ - -  O ,  . . . . . .  (2.10) 

BI -:- 

D 1 = 

F_~ 1 

F I = 

(la + ~ + x + M )  + b 

{c + ~-a~ + ~ + M(}a + ~ + x) + N } +  b(~a + ~ + x + M) 

(c(~a + ~ + x + M ) +  M(~a~ + ~) + X(~a + ~ + x)} 
+ b{la~ + ~ + M(la + ~ + x) + N} 

> - .  

[c{}a~ + ~ + M(½a + ~ + x) + N} + N(la~ + ~)--  ~CsNI ( 
+ b{X({a~ + ~o) + N(}a  + ~, + x)} I 
[4M(~a~ + o~) + N(½a + ~ + x)} - ~aOGs~ + b(~a~ + ~o)N i 

l c(}a~, + o~)N + kOGN 

(2.11) 

3. Interpretation of Results in the Basic Case.--There are three oscillatory modes coupled 
together in the stability equation (2.10): the short-period aircraft mode, tile mode of the spring 
and bob-weight system, and that  of the power unit. Individually, all these three modes are 
well damped (the latter two may even become aperiodic under certain circumstances) but, when 
they are coupled together, the damping ,may become inadequate or even negative, the aircraft 
mode being particularly vulnerable. The resultant sextic may be factorized into three quadratic 
factors, each of which is recognizable as being a modified form of one of the original modes because 
the coupling does not alter drastically the constant terms of the quadratics. 

The results of the calculations for various cases are given in Table 6 (1 to 5), and it is seen that  
the spring and bob-weight mode and the power-unit motion are always very well damped but that ,  
for the aircraft mode, the damping is generally small and varies from positive to negative values, 
depending on the speed and the equivalent viscous damping coefficient b. This damping factor R 
(where the roots are represented as --  R ± i f )  is always positive for low speeds whatever the 
value of b ; as the speed increases, however, the damping deteriorates. For a constant speed, as 
b is increased, R at first decreases and then increases again for larger values of b. 

Let us now find the factors upon which the equivalent viscous damping coefficient b depends. 
The equivalent viscous friction is found by assuming that  there is one oscillatory mode (that 
with low damping) and tha t  the work done in each quarter of a cycle by the equivalent viscous 
friction is the same as that  corresponding to the solid one, i.e., 

f i°K~9 ay = Fyo, . . . . . . . . . . . . . .  (3.1) 

where yo is the amplitude of the oscillations of the bob-weight. 

It is sufficient to assume that the motion is simple harmonic of non-dimensional frequency J 
(which means that our formulae will apply well only for R = O, but there should be only small 
discrepancies for small positive or negative R). We put therefore" 

Y = Y0 sin ./'~ 

J (3. 2) 
:9 -= yo ~- cos J~ 

i 
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and then the work done in a quarter of a cycle by the viscous friction is: 

f l m l K  "2~  1- ~y yo cos "~ Jr  d r , .  . . . . .  

and hence: 

and 

where 

F:Vo = f K J y o  , 

. . . .  (3.3) 

. . . .  ( 3 . 4 )  

4 F l  
= ; . . . . . . . . . . . . . .  ( 3 . S )  

The equation (3.5) is completely analogousto  equation (36) of Ref. 5. From the expression 
for b in equation (2.5) we now obtain: 

4FP  
b = ~(M1 + M~)ZgoJ . . . . . . . . . . . . .  (3.6) 

I t  is seen that  b increases in proportion to the solid friction F but, in addition, it depends on 
the amplitude 90 and on the frequency J ,  decreasing in inverse proportion to either. I t  is 
impossible to determine the value of b, unless Y0 and J are known in addition to F. The formula 
(3.6) can only be used in such a way tha t  the stabili ty sextic is factorised for varying b, the 
frequency J becoming determined as a function of b. This function, as seen from Table 6 (1 to 5), 
is always a decreasing one but  the rate of decrease is low enough for the product bJ to increase 
with b. Writing (3.6) in the form: 

4F~ 
9o = ~(MI  + M~)lbJ'  " . . . . . . . . . . .  (3.7) 

we see tha t  the amplitude Y0 always decreases when b increases and vice versa. 

The case of mid-weight c.g. position with trailing-edge strips on the tail has been taken as the 
basic case, and solutions of the stabili ty sextic found for a range of values of b for different fo rward  
speeds. Table 1 gives the values of the derivatives assumed for the calculations for this case and 
Table 6 (1 to 5) full solutions of the sextics for a range of forward speed V. 

Fig. 2 shows the variation of the damping factor of the aircraft mode, R, with the equivalent 
viscous damping coefficient b for varying speeds, still for the basic case. I t  will be seen that  the 
damping factor falls as b increases from zero, reaches a minimum value and then rises. At 
200 kt the damping is always positive but it deteriorates with increasing speed until, at a value 
just below 300 kt there will be a curve which touches the b axis and for any further increase of 
speed the damping is negative over a part of the range of b. For speeds greater than about 
400 kt the damping is negative even when b = 0, but  all curves must  eventually, for large values 
of b, give positive damping factors (tending to the stick-fixed value) for, in the limiting case, there 
is no bob-weight displacement. 

I t  follows, therefore, tha t  for intermediate speeds there are two points at which there is zero 
damping. The point corresponding to the lower value of b gives the conditions for steady 
oscillations, as shown by the following reasoning. If the bob-weight originally oscillates with an 
amplitude corresponding to a certain b between the two zero damping values there will be negative 
damping, the amplitude will increase, i.e., the value of b will decrease, until  the zero damping 
point is reached when the amplitude will remain constant and steady oscillations will result. 
The reverse happens ° if the original amplitude is greater than tha t  corresponding to the lower 
zero da~n~ping value of b, and the amplitude Will settle down to-the steady oscillations as before. 
These oscillations are therefore stable. 
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On the other hand, if the amplitude of.the displacement is less than tha t  corresponding to the 
second zero damping point (for the higher value of b) then the damping is positive and the motion 
dies out and so this point is associated with an unstable position. I t  gives the 'm in imum 
conditions* for steady oscillations to develop, and any amplitude less than tha t  represented by 
this point will die out. 

For higher speeds, the damping factor is negative for b = 0 and we reach a state of divergent 
oscillations, the minimum conditions on which these depend being still defined by the intersection 
of the curve with the b-axis. 

The amplitude of the control deflection at the two points of zero damping can now be evaluated. 
The two roots of the sextic corresponding to the aircraft mode are then purely imaginary 
(D = ± / J ) ,  and we find from (2.7)" 

GN¢0 GX¢o 
~o = [D ~ _+_ M D  + N I = i N - -  f f  + ¢MJ]  

o r  

GN¢o 
~o--= { ( N -  ff)~ + M~ff} 1/~" 

The amplitude ~0 is found from equation (3.7). 

. . . . . .  (3.8) 

Similarly, the amplitude of the normal acceleration experienced at these two points may be 
found: we obtain from equation (2.1): 

a~o . . . .  (3.9) 
~o= [co + ½a~,_ f f  + ij(~, + x + ½a) [, "" "" 

and from equation (2.3): 
Va ~o . . . . .  (3.10) 

( ~ 0 -  1 ) =  2g--~((co + ~ - y ) ~  + (~ + x + ½~)U~) ~/~ 

Figs. 8, 9 and 10 show the variation of the amplitudes of normal acceleration, control angle and 
bob-weight displacement, respectively, with speed, for the basic case and for different values of 
friction F. The basic value of F is taken as 10.15 lb and values of 50 per cent and 150 pet- cent 
of this value are also taken. 

The validity Of the approximation to solid friction by taking an equivalent viscous damping 
may be checked in the following way. In conditions of zero damping (i.e., at R = 0) every 
variable (such as z~, q, ~, Y) is a simple harmonic function of time, and the motion of the bob- 
weight (equation (2.4b) may be regarded as a forced oscillation, the forcing function being: 

- k~ + sD~ . . . . . . . . . . .  (3.11) 

Substituting for z~ and D~ from equation (2.1), expression (3.11) becomes: 

{ k  - s D ( D  + ~a)} ~7 (3.12) 
co + ½,~,, _ j2  + U(,,  + x + ½a) . . . .  " " 

If we assume as before tha t  this function is a simple harmonic one of time, its amplitude Xo is 
given by : 

I (k + s j2) ~ + la~s2j~ ~1/2 Xo = a~o _(-  + ½~ _ y)2 + (~ + x + ½~)U2J . . . . . . . . . .  (3.13) 

or, if we substitute the value of ~o given by equation (3.7): 

~GN I (k + s ff)~ + ¼a~s~J ~ 11/2 = ~ 2 ~ ~o. .. ( 3 . 1 4 )  
X0 { ( N -  ff)= + M~ff) 1/~ (co + ½av --ff)2 +(v  + x + ~a)J 
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Replacing the solid friction by  an equivalent viscous friction is shown by Timoshenko in Ref. 6 
to be valid if the ratio of the frictional force to the amplitude of the forcing function is less than 
a/4. Taking the non-dimensional forms of these quantities, the frictional force is found by 
equation (2.4a) and the amplitude of the forcing function is given by equation (3.14): Hence for 
the approximation to be val id the following inequality must hold: 

F~ ~ 
l(M1 + Ms) < X0 . . . . .  . . . . .  (a.15) 

This inequality has been checked in several cases and found to be well satisfied at the points 
corresponding to steady oscillations. At those for minimum conditions the inequality only just 
holds and this, of course, .means a reduction in the accuracy. However, accuracy is not very 
important  at these points where the amplitude is so small. 

4. Effect of the Elasticity of the Rear Part of the Cor~trol Circuit.--Let k~ be the elastic constant 
for the part of the control circuit between the power unit and the control. Then, in the equilibrium 
state : 

A~ = ~ H ,  . . . . . . . . . . . . . .  (4.1) 

where H is the hinge moment on the tail. 

If there were no distortion the hinge moment would be (taking bl ---- b2 in this case of an all- 
moving tail): 

I - z  = ½PV S,c,b (   ' + , . . . . . . . . . .  ( 4 2 )  

where A~' is the incremental incidence of the undeflected tailplane and ~ is the deflection (from 
equilibrium position). 

If the distortion of the circuit takes place then ~ must be replaced by  (~ -[- A~q), and if we now 
write: 

( 2  = K , ½ p W S , c A ,  . .  . .  . . . . . . . .  (4.3) 
we have 

Q Ac~'+ Q (4.4) 
- 9  1 - ( 2  7 . . . . . . . . .  

From this equation it will be seen that,  for an all-moving tail, we may interpret the elasticity of 
the control circuit as a change in ~' and ~7 in the ratio {1 -[- Q/(1 - Q)}, i.e., 1/(1 - Q). As both 
angles are effectively changed in the same ratio this may be further interpreted as a change in 
tailplane area by  a factor 1/(1 -- Q). 

This means tha t  we reduce all tailplane contributions to the derivatives by  this ratio. The 
derivatives affected are m~, re,o, m, and mq. The effect of the addition of the strips is shown by the 
change in b~ which they bring about. 

The values estimated for the derivatives for all cases considered are given in Tables 1 to 5. 
They include the effect of control-circuit elasticity. 

5. Numerical Solutior~s of Alternative Cases by Electro~,@ Computatiora.--As the solution of the 
stabil i ty sextics by  manual computation was rather onerous, additional cases to the basic one 
were investigated with the aid of the Philbrick Electronic Analog Computor. This machine is 
described in some detail in Ref. 8. The resultant motion of the system is displayed on a cathode- 
ray oscilloscope and made it possible to obtain, with reasonable accuracy, the points of zero 
damping and also to measure the damping and frequency of the coupled aircraft mode for any 
value of b, as the other two modesare  rapidly damped out. 



The electronic-computer results are shown in Figs. 3, 4, 5, 6 and 7. The basic case was repeated 
and the Philbrick results are given in Fig. 3; it will be seen tha t  the agreement between Figs. 2 
and 3 is very good. Another four cases were investigated on the Philbrick, namely, 

(a) Mid-weight c.g. position with trailing-edge strips on the tail but  with a change of the time 
constant T1 of the power-unit equation. This now becomes T1 = 0.01 sec. 

(b) Mid-weight c.g. position without trailing-edge strips on the tail but  with T~ = 0.02 see 
as for the basic case. 

(c) Forward c.g. position with trailing-edge strips on the tail, and 2"1 = 0.02 sec. 

(d) As for the basic case but  with increased aircraft damping obtained by doubling the values 
of ~ and x. 

The results for these conditions are shown in Figs. 4 to 7, respectively, and it is clear from 
these tha t  changing the time constant, T1, has little effect on the damping of the aircraft mode. 
The presence of the trailing-edge strips does improve the stabi l i ty as was found in the flight tests, 
but the effect is not very large; the movement of the aircraft e.g. to its forward position also 
improves the damping to some extent. The most marked improvement, however, comes with the 
doubling of the values of v and X, but even so the trouble is not eliminated, and there are still 
regions of negative damping at the higher speeds. 

I t  is possible to represent solid friction on the Philbrick by the use of the so-called ' Bounding 
Component '  (see Ref. 8), and some calculations on these lines were done, although it was 
appreciated tha t  the Philbrick would only give low numerical accuracy in the critical cases 
considered. The results confirmed qualitatively all those found using the concept of equivalent 
viscous friction, but  appreciable numerical differences existed in amplitudes of the steady oscilla- 
tions in particular. A discussion of the reasons underlying this is given in Section 7. 

I t  may be interesting to compare the periods of the steady oscillations for various values of 
Speed and for all the cases considered. These values are given in Table 8 for the stick-free case, 
and the period of the well damped stick-fixed aircraft mode i s  also given for comparison. 

6. The Method of  Nyquis t  Diagrams . - - I t  was considered worth while to make a different 
approach to the problem in view of the time involved in manual computation and in even the 
electronic computation. This alternative was to employ the method of the Nyquist  diagram or 
harmonic response locus ~, 10,11, which does not involve solving the stabili ty equation but  indicates 
whether the resultant motion is positively or negatively damped. This method also has the 
advantage of rapidly demonstrating the effect of varying different parameters, especially of the 
gearing factor G. 

We are going to use the simpiest form of Nyquist  criterion, applicable whenever all particular 
elements of the system are by themselves stable and it is required to find out whether the coupled 
system is also stable. The complete proof of the Nyquist  criterion is rather long and complicated ; 
it may  be found in Ref. 13, In the given case, the dements  of the system are tile aircraft, the 
power unit, and the circuit with bob-weight and spring, and each of them is stable by  itself. 

We may write equation (2.10) in the form" 

where" 

dGN(k --  ½asD --  sD 2) 
Y(D)  = (D ~ + A D  + B) (D 2 Jr- M D  + N ) ( D  ~ + ()D - / c )  

A = ½ a + ~ , + x  

= -  1 . .  ( 6 . 1 )  

. .  ( s . 2 )  



For the case of zero damping, D = if, and hence" 

Y( i J )=  Bc t(  1 1j~)  + i A j l l (  1 1 j 2  ) + i M j l l (  1 1j2 ) + i~J] " 

Thus 

where 

kdG 

p c  '~ 

p a~ 2 

pp2 : 

(k + 3+ 

B ~ AJ 
(B -- j,)2 + AV2, tan ~, - B -- J2 '  

N 2 MJ 
(N -- j~)2 + M~j~, tan ~p -- N -- J~ '  

c ~ bJ 
(c - j~)2 -b b2J ~' tan ~0 b = c - f~" pb 2 = 

.. (6.3) 

. .  (6.4) 

. .  ( 6 . s )  

If Y(iJ) according to equation (6.4) is plotted on polar graph paper and if the curve passes 
through the point (-- 1, 0) then, by  virtue of equation (6.1), the damping is zero. Further, the 
Nyquist  criterion states tha t  if the curve as it approaches the origin leaves this point on the left, 
then the damping is positive ; if on the right, it is negative. 

I t  will be seen tha t  it is quite a speedy procedure to change one of the parameters at a time as 
it only involves re-calculating the appropriate p and % while leaving all other p's and ~'s un- 
changed. Figs. 11 and 12 are two Nyquist  diagrams, both for 450 kt. Fig. 11 gives the curves 
for the assumed values of the derivatives in the previous calculations (basic case) and for three 
values of b; it is seen tha t  the value of b giving zero damping (b = 965) agrees with the value 
already obtained from the calculations. The damping is negative for the other two values of b. 

An enlargement of the part  of Fig. 11 indicated by the circle is shown in Fig. 12 together with 
additional curves showing the effect of neglecting the power unit mode and of moving the bob- 
weight forward to the c.g. of the aircraft (s = 0), thus reducing the inertia term r~ of equation 
(2.2a) to z e r o .  This latter greatly improves the stabili ty for the three values of b considered. 
The curve showing the effect of neglecting the power-unit mode bears out the results previously 
obtained, as it is clear from this diagram tha t  there is an instabili ty in the high-frequency mode. 

The effect of varying the gear ratio G is quickly demonstrated in all cases, as it only means 
changing the scale of the curves, i.e., it merely changes the position of the critical point on the 
original diagram. For instance, if G were halved in value the critical point would be at double 
its present distance from the origin, the curves remaining unaltered. Thus it is clear that  the 
general stabil i ty can be vast ly improved by this means if other Conditions made it possible. 

7. Discussion of Results and Conclusions.--While in normal conditions no case of stick-free 
instabili ty arises for an aircraft with irreversible power operated controls, it is clear from the 
preceding analysis tha t  the introduction of inertia weight(s) in the elevator circuit leads to a 
grave danger of large-amplitude steady oscillations, or even strongly divergent oscillations, in the 
vulnerable short-period mode*. I t  is a firm belief of the present writers tha t  t h i s  sort of 

* I t  can be shown tha t  having a bob-weight  in ti le circuit  wi thout  a feel-spring leads to an even more violent  dynamic  
ins tabi l i ty ,  bu t  this  case has, of course, no prac t ica l  impor tance .  The presence of a spr ing wi thout  bob-weight  Call 
lead  to no harm,  as t i le  a i rcraf t  mot ion  m a y  be coupled to the  power-uni t  mot ion  only th rough  the bob-weight .  
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instability was a primary cause of the aircraft behaviour referred to in the Introduction to this 
paper. This particular matter  is discussed in detail elsewhere, but  whatever the final opinion 
may be, one point seems to be beyond doubt:  the danger of inserting inertia weight(s) in the 
circuit of power-operated controls, without a proper investigation and careful analysis, seems to 
have been conclusively proved. Hence: 

Conclusion 1.--Inert ia  weight(s) included in the circuit of power-operated controls, however 
irreversible, m a y  lead to a dangerous dynamic instability in the form of steady or divergent 
oscillations, increasing with speed. No such systems should be included without a most careful 
numerical analysis, for which the present paper gives a ready scheme, down to the computational 
stage. 

I t  is shown tha t  the power unit  must not be treated as a simple (proportional) gear but  as a 
' complex exponential de lay '  unit, with its own differential characteristics (transfer function) 
and its own time constants (see equation (2.6)). I t  is fortunate tha t  the transfer function may be 
treated as linear with sufficient approximation and so fits, with no very serious difficulties, into 
the general framework of the usual theory of aircraft dynamic stability. I t  may be hoped tha t  
similar simple transfer functions will apply for other power units, and then the appropriate time 
constants are all tha t  need to be estimated for each unit. I t  must be mentioned, however, tha t  
the practice in aircraft firms has been (and too often still is) to treat, in all problems of aircraft 
dynamics, the power unit as a proportional gear, and aircraft firms usually do not ask for or 
receive the information about the transfer function from the manufacturers of power units. This 
may be quite all right, if only static properties of the aircraft are concerned but, in all dynamic 
considerations, such as dynamic stability of the sort described in this paper, and especially 
response problems, the proper transfer function must be known. Hence : 

Conclusion 2.--Servo-units supplied for power operated controls should be provided with their 
proper transfer functions and the numerical values of the respective time constants, to be used 
in assessing the aircraft dynamic characteristics, such as stability and response. 

I t  should be repeated once more that ,  neglecting the delay characteristics of the power unit, 
and hence omitting the corresponding ' power-unit mode ' in the dynamic stability calculation, 
may lead to erroneous results. A particularly striking example was found in the present case, 
when friction was assumed to be absent. The calculations actually done by the interested firm 
on these lines and repeated for a check by the Royal Aircraft Establishment (also by using 
Nyquist diagram (see Section 6 and Fig. 12)), have shown the surprising and unrealistic negative 
damping in the ' bob-weight mode ' of very high frequency, instead of the opposite behaviour 
shown by our calculations described above. I t  is true that,  with increasing friction, the results 
obtained by neglecting the delay characteristics of the power unit become qualitatively correct 
and comparable to the more exact ones, as shown in Appendix II  and Fig. 14. Even then, 
however, the quanti tat ive discrepancies are very considerable, and the simplification should never 
be considered as permissible. 

The effect of friction has been investigated in detail and shown to play an important  part  in 
the phenomenon of dynamic instabili ty under consideration. As a result of this detailed investiga- 
tion we are in a position to determine not merely whether or not instability occurs. We gain in 
fact a much fuller knowledge of the aircraft behaviour, inasmuch as we can decide what is the 
minimum initial disturbance required for the instability to become operative and calculate the 
amplitude of the dangerous steady oscillations and finally, the limit for definitely divergent 
oscillations to occur. 

The anal~ftical treatment of friction was based consistently on the approximate theory of 
• equivalent viscous friction ', as commonly used hitherto, and expressed by the formula (3.6). 
Some doubts have been put forward as to the reliability of this approximation. Now, an at tempt 
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to improve it, and to work out an exact theory has been made by Den Hartog 1~ (1931) in con- 
nection with the simple problem of forced oscillations of systems with one degree of freedom and 
with solid friction. A preliminary survey of this method made by one of the present writers has 
shown that  : 

(a) Den Hartog's theory is not complete and fails to provide information required in the case 
(most important in our particular problem) of the forced frequency being considerably 
lower than the natural  one. 

(b) Nevertheless, the structure of the formula (3.6) is valid in all cases including those not 
solved by Den Hartog, so that  our qualitative results are confirmed and only some 
(not negligible) modifications in the value of the numerical constant invoiced may take 
place. This constant is 4/= ~ 1.27 in (3.6), while its actual value may be considerably 
lower or higher. If the ratio of forced to natural  frequency is greater than 1, the 
constant may be somewhat greater but the corrections are small. In the opposite 
case, relevant for the present application, the constant may be about 1 (hence only 
slightly less than 4/=) when the FIX approaches its upper limit 1 ; hence no appreciable 
errors may be expected as to the amplitudes at minimum conditions. If, however, the 
ratio FIX is small (as relevant for the amplitudes of the steady oscillations), the 
constant may sometimes assume much higher values. This explains why there were 
practically no discrepancies between our computed values of minimum amplitudes by 
using both the equivalent viscous damping and the solid friction, but there were more 
serious differences as regards the steady oscillations. 

The entire matter  is irrelevant as to the validity of all our conclusions, and as to the 
entire qualitative contents of th i s  report, but some caution is advisable as regards 
the final numerical results depending on friction. This is not important at this stage 
as, in view of the great number of derivatives involved (each only approximately 
known), the numerical values obtained should be treated with caution. 

(c) Even adopting the most cautious and distrustful att i tude towards the present treatment 
of frictional effects, the theory presented in this paper is valid, as the decrease of air- 
craft damping with rising speed and dangerous instabili ty at high speed has been 
ascertained even in the absence of friction, and the detrimental effect of increasing 
friction (within reasonable limits) has been conclusively proved, irrespective of detailed 
numerical values. 

(d) As the effects of friction are likely to be important in many analogous practical problems 
in the near future, a further enquiry into the dynamic problems with solid friction, 
with a view to obtaining exact solutions, is recommended. 

All this leads to: 

Conclusion 3.--Friction plays an important part in the stick-free dynamic instabili ty described 
here, and its increase, within ~{sual limits, makes matters worse. The present method of estimating 
its effects is qualitatively correct, but requires further research to get more reliable numerical 
results. No doubts as to the reliability of the general results arise in the meantime. 

Furthermore, efforts have been made to show the influence of various derivatives and design 
data on the onset of the unstable phenomenon considered, and to find ways to prevent this 
instabili ty while not absolutely precluding inertia weight(s) and spring(s) in the control circuit. 
I t  is not claimed that  all the many relevant variables have been tested, but probably the most 
important ones have, and the results have been presented in Sections 5 and 6. Several variables 
have been shown to have little or no effect, as summarized in: 

Conclusion 4.--The power-unit time constants (if in the range comparable with those used here) 
and the aircraft c.g. position do not affect appreciably the dynamic instabili ty caused by weights 
and springs. The trailing-edge strips ,(or alternative devices increasing the hinge-moment co- 
efficients of the elevator or all-moving t a i l )may  help only a little, through the medimn of elastic 
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distortion of the rear part  of the circuit, but this may only reduce the danger slightly and delay 
it to a somewhat higher range of speeds. The increase of the aircraft's own rotary damping, 
i.e., (m~ + m,~) derivative, is somewhat more helpful, although again only in the delaying sense, 
unless the usual values of this derivative are strongly magnified by some special artificial auto- 
control. 

Finally, two parameters have been found which affect the results very considerably, viz. 

Firstly, th e elevator-to-bob-weight gear ratio G plays a very great part in the stability 
characteristics. The instability becomes gradually stronger and more dangerous as G increases 
(@ Section 6). I t  might appear, therefore, tha t  if this ratio is kept low, the instability could be 
avoided altogether (in our case halving the original value of G prevents instability up to 450 kt 
speed). However, it should be kept in mind that  the inertia weight has been introduced to serve 
a useful purpose as a g-restrictor, and to ensure advantageous or at least tolerable stick-force-per-g 
characteristics t h rough  the speed range. The latter effect is clearly seen in the following 
manoeuvrability formula (stick force per g) as derived in Appendix I :  

- r  _M g (7.1) 
n 1 ' . . . . .  

where P is the stick force, (n -- 1) the number of g's produced by an elevator deflection in the 
ensuing steady circle, H,,~ denotes the usual manoeuvre margin, g is the standard mean chord, 
and/7 t he '  bob-weight-to-stick ' gear ratio. The meaning of the other symbols is as defined before. 
The second term in equation (7.1) shows the effect of the feel spring (through its constant Ky) 
and, owing mainly to the factor CL, decreases uncomfortably with increasing speed, while the 
first term represents the effect of the bob-weight mass, which is constant, and not only increases 
the stick force per g but also keeps it ' more constant ' at varying speeds. The product/~G being 
the full 'e levator- to-s t ick '  gear ratio, it must be kept within appropriate limits. Hence, 
decreasing G drastically, requires increasing F in the inverse ratio, which may result in impossible 

• manoeuvrabili ty characteristics. I t  is seen that  the matter  is not simple at all, and further 
modifications will be required, such as a suitable decrease of M~ and Ky. The effect of such 
changes on the stability characteristics has not been examined, so we are not able to assess the 
effect of a combined change in Ky, M2 and G so as to keep the stick-force-per-g characteristics 
more or less unaltered. 

Conclusion 5.--Decreasing the gear ratio G may reduce or even eliminate the instability but, 
if accompanied (as would usually be the case) by an increase i n / '  it would result in difficulties 
with the stick-force-per-g characteristics. A reasonable solution may sometimes be sought this 

• way, but  only if combined with a careful modification of all relevant design parameters involved. 

The other factor which basically affects the problem, is the longitudinal position of the bob- 
weight. In the given case, the weight was placed well aft of the centre of gravity, 'and the aircraft  
was subject to dangerous instability as described. Moving this bob-weight right to the aircraft 
c.g. was investigated by means of the Nyquist diagram, as described in Section 6, and the aircraft 
became stable up to the highest speed considered (450 kt). When investigating other g-restrictors 
and, more recently, in a particular case examined by a designer in an aircraft factory, similar 
beneficial effects have been noted, so there are good grounds for believing that  this behaviour 
is general. This does not mean, however, at this stage, that  a designer may simply put a bob- 
weight near to t h e  aircraft centre of gravity and dispense with a calculation indicated by 
Conclusion 1. Hence : 

Conclusion 6.--The detrimental effect of bob-weight and spring on dynamic stability decreases 
and may disappear when the bob-weight is moved forward: However, in view of the large 
number of parameters involved, the calculation is still required, even with a well forward position. 
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LIST OFSYMBOLS 

Coefficients of the short period mode of the aircraft (see (6.2)) 

Coefficients of the stability equation (see (2.10) and (2.11)) 

Coefficients of the equation of motion of the bob-weight (see (2.4a), 
(2.4b) and (2.5)) 

aCv,/ao~' Rate of change of hinge moment coefficient with tail 
incidence 

aCn/a~ Rate of change of hinge moment coefficient with control 
angle 

Mean wing chord (ft) 

Mean chord of tailplane (It) 

d/dr Differential operator 

Effective frictional force reduced to bob-weight (lb) 

Non-dimensional elevator-to-bobweight gear ratio (see (2.8)) 

Hinge moment of tailplane (lb ft) 

Manoeuvre margin 

Inertia coefficient about y-axis 

Non-dimensional frequency of aircraft mode 

Effective spring rate (force in pounds per foot of static displacement) 

Derivative of equivalent viscous friction (replacing solid friction) 

Non-dimensional parameter (see (2.4a), (2.4b) and (2.5)) 

Constant (see (2.6)) 

Constant (see 2.6)) 

Elastic constant for rear part of control circuit (see (4.1)) 

Tail arm (It) 

Coefficients of equation of motion of power unit (see (2.7a)and (2.8)) 

Effective mass of control system less bob-weight, reduced to bob- 
weight (slugs) 

Mass of bob-weight (slugs) 

Rotary damping derivative in pitch, dimensionless 

Pitching-moment derivative due to w, dimensionless 

Pitching-moment derivative due to rate of change of w, dimensionless 

Pitching-moment derivative due to tailplane deflection, dimensionless 

Load factor as shown by the accelerometer (so that (n -- 1)g is the 
true normal acceleration in disturbed flight) 

Stick force (lb) 
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LIST OF SYMBOLS--con t inued  

Q Portmanteau symbol (see (4.3)) 

= q~ Non-dimensional rate of pitch 

r Distance of bob-weight aft of aircraft c.g. (ft) 

R Damping factor of aircraft mode (non-dimensional) 

S Wing area 

St Tailplane area 

s Non-dimensional parameter (see 2.5) 

T1, T~ Time constants in power unit equation (see (2.6)) 

Z --  W Unit of aerodynamic time (sec) 
gpSV 

V Forward speed of aircraft (ft/sec in text, knots in Tables) 

W Weight of aircraft (lb) 

z~ = w / V  Increment of incidence in disturbed flight 

Xo Amplitude of forcing function (see (3.13)) 

y Displacement of bob-weight, positive down (ft) 

¢ Non-dimensional form of y (see (2.5)) 

~' Incidence of the nndeflected tailplane 

/~ Bob-weight-to-stick gear ratio, dimensionless 

= _ ~m~ Compound pitching moment derivative due to tailplane 
iB displacement, dimensionless 

Deflection of tailplane 

0i Input  to power unit (see (2.6)) 

0o Output from power unit (see (2.6)) 

W 
t~ gpS1 Relative density of aircraft 

mq Compound rotary damping derivative in pitch, dimensionless 

o~, o~, pc, p~ Moduli of various factors in (6.3) 

= t/~ Non-dimensional time 

#m~ Compound pitching moment derivative due to rate of change 
X - -  ~B of w, dimensionless 

~ ,  ~b, ~oc, ~0p Arguments of various factors in (6.3) 

Cm~ Compound pitchingzmoment derivative due to w, dimension- 
iB less 

The suffix (0) indicates the amplitud e of the respective quantity. 
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A P P E N D I X  I 

Evaluation of the Stick Force per g 

I t  is evident from the Nyquist  diagrams of Figs. 11 and 12 tha t  the value of the elevator-to- 
bob-weight gear ratio, G, will have a profound effect on the aircraft stabili ty characteristics. 
Any reduction in the value of G will, however, in addition to affording a marked improvement 
of the stability, affect manoeuvrability, viz., the stick-force-per-g characteristics of the control. 
These characteristics, for all aircraft with irreversible power-operated elevator control, do not 
depend on the hinge-moment derivatives (apart from small corrections connected with elasticity, 
cf. Section 4). They can be derived, however, in a similar manner to tha t  used in orthodox 
manoeuvrabil i ty theory, that  is, considering the asymptotic behaviour after a s tep deflection of 
the elevator, when the aircraft is supposed to describe a ' s t eady '  circle at constant speed, and 
neglecting variations of the weight component relative to the moving axes 1~. Following this 
procedure, we ignore the initial transient variations, thus disregarding any overshooting. 
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The equations of motion will then be similar to equation (2.9), except that  now all t e rms  
involving derivatives with respect to time disappear as the aircraft is assumed to be flying in a 
' s t eady '  vertical turn. There will, of course, be an additional term in the bob-weight equation 
due to the applied stick force. The equations are thus:  

(½a~ + ~)~ + ~ = 0 ) 
cP ~ '  " . . . . . . .  (1.1) 

- k ~  + c¢ - r l K ,  ) 
where _P is the bob-weight-to-stick gear ratio (strictly: ratio of bobLweight displacement to the 
corresponding stick travel), so tha t  the overall elevator-to-stick non-dimensional gear ratio will 
be _FG. Friction has not been included here, but  its effect may be easily taken into account, as 
shown at the end of this appendix. 

Solving equations (I.1) for z0, we obtain- 

P 
= rlKy{k/c + (~ + ½a,.)/G~} ' " . . . . . . . . .  (I.2) 

we have, however, from equation (2.5)" 

k/c = aM2g 
l~LKy' "" 

and hence 
zO = P/ I '  

aM2g co + ½av" 
C~ + lKy G~ 

The normal acceleration will be expressed by 

a P / r  

cL 1Ky M~g + -a  

and hence, using the relationships 3,14: 

Go 

(1.3) 

(1.4) 

( i . s )  

= ~ ~ 

the stick force per g becomes 

n ~  - -  _r M2g 

iB . . . . . . . . . . .  (I.6), 

C~eH, oKq 
/ . . . . . . . . . . .  (I.7), 

The first term in equation (I.7) represents the effect of the bob-weight inertia, the second that  
of the feel spring*. The latter being proportional to CL, varies considerably through the speed 
range, while the former is independent of speed and is a constant positive addition to the stick 
force per g throughout. The contribution of the bob-weight tends to result in a more uniform 
stick force per g. 

The problem now is whether it is possible to improve the dynamic stability of the aircraft b y  
reducing the value of G quite considerably, but  at the same time to avoid ally detrimental 
effects on tile stick-force-per-g characteristics. 

* It may be mentioned that, m n being essentially negative, this second term will be positive. 
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One important  factor is that  the overall elevator-to-stick gear ratio FG must remain within 
reasonable limits, and so any reduction in G must be accompanied by an appropriate increase 
of / ' .  If this is done whilst still keeping the other components of equation (I.7) unchanged, the 
stick force per g will become very much larger and will a lsovary to a much greater extent through 
the speed range. I t  might perhaps be possible to offsetthese adverse results by suitably reducing 
Ms and particularly Ky, but of course these must not become unreasonably small. Also such 
changes Would necessarily affect a number of derixratives in the stability sextic (see equations 

2.5, 2.9, 2.10), and the ultimate outcome as regards stability cannot be predicted without another  
very considerable computational effort. All this seems to offer scope to the designer's ingenuity, 

b u t  it appears that  the simple expedient of moving the bob-weight forward offers •greater promise 
of a satisfactory solution. 

The effect of friction has not been included in formula (I.7), but this merely means an additional 
term in it. Thus" 

P = / ~  ( n - -  1) M~g--  ~ - I T  , . . . . . .  (I.8) 

where F is still the equivalent frictional force at the bob-weight, and the -T sign depends on which 
way the control is moving. 

APPENDIX II 

The Effect of Neglecting the Power-Unit Transfer Function 

If we had treated the power unit as a simple gear and had, therefore, neglected its transfer 
function, the characteristic stability equation (2.10) would reduce to" 

(D ~ + A D  + B)(D 2 + bD + c) + ~G(k --  ½asD -- sD ~) = 0 . . . . . .  (11.1) 
• o r  

D ~ + B~D 3 + CID ~ + D~D + E~ = 0 , .  . . . . .  (11.2) 
where 

B I = A + b  ) 

CI B + Ab + c -- aGs 

D~ = Ac + Bb -- ½aGas 

E1 = Bc + dGk 

. . . .  . .  (11.3) 

In order that  all modes should be positively damped, all coefficients should be positive, and 
-this leads to two conditions for complete stability (from the equations for C1 and D1 above)" 

oG < B + Ab + c (11.4) 
j • ¢ • • • • . . . . . .  • , 

S 

~6 < Ac + Bb . . . . . . . .  (II .5)  
C g S  , " . . . . .  

I n  addition to these two conditions, the Routh's descriminant must also be positive, that  is" 

(II.6) C1D1 B1E1 Dl~ - B - 7 >  0 .  
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This becomes, after substitution of the relationships (11.3) • 

where" 
rno(dG) ~ + m~(dG) + m, > 0,  . . . . . .  (11.7) 

m o =  ½as~b + -~as2(2A - -  a) . 

ml  = - -  (k + s B  + ½aAs)b ~ + [½as(B - -  A 2 - - c )  - -  s A ( B  - / c )  

- 2kA b - -  A (k + s c )  - -  ½ a A s ( B  - -  c ) -  . (I1.8) 

rn~ = A B b  3 + A~(B + c)b 2 + AE(B + c) ~ + A2c]b. 

Let us now consider a particular case and substitute numerical values. For the basic case at a 
forward speed of 450 kt, the inequalities (II.4), (!I.5) and (II.7) become 

OG < 2210 • 41 + 16. 142b "~ 

OG < 3460.96 + 17.265b 

(0-0433b + 0.0418)(~G) 2 -  (20.838b ~ + 348.595b + 280. 573) (dG) 

-t- 11.2837b a + 2448.67b ' + 341638b > 0 

. .  (11.9) 

The first two of these conditions will always be satisfied, whatever the value of b, for all practical 
values of the gear ratio. I t  can be shown more generally, that  the condition (II.7) always over- 
rides the other two (II.4) and (II.5). 

We can solve this tlaird condition (I1.7) for dG for a range of values of b" 

0 
0.1 
0.5 
1.0 
5 

10 
15 
20 
30 
40 
50 

100 
150 
200 
400 
600 
800 

~G 

0 6712 
110 
394 
572 
753 9117 
663 
583 
522 16647 
441 
390 
356 Larger 
288 values 
277 
283 
360 
457 
560 

The inequali ty is satisfied if ~G is greater than the larger values or less than the smaller ones. 
Obviously ~G will never exceed the larger values given in the Table above, and so the question 
of whether the two modes represented by (II.2) are both positively damped reduces to deter- 
mining whether dG is less than the lower values given in the Table. 

The limiting curve for complete stabil i ty is given in Fig. 13. I t  will be seen tha t  for dG = 553.4 
(as taken in the calculations), the damping is positive for a very narrow region of small values 
of b, and thus for all larger values there is always a negative damping in one of the modes, until  
b becomes very large when both modes again become stable. 
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To obtain a direct comparison with the results obtained by including the power-unit transfer 
function, the quartic has been solved for a range of value of b for this case. The results obtained 
are given in the following Table • 

0 
10 
35 

100 
200 
400 
600 
800 

Coupled aircraft mode 

Roots Period 
(sec) 

- - 1 . 8 3 3 4 ` 6 - 8 2 0 i  0.689 

Time to 
halve 

ampli tude 
(seo) 

+ 0.283 

Coupled bob-weigllt mode 

Roots Period 
(seo) 

+ 0 . 5 2 5 4 -  15.037i 0.313 

Time to halve 
ampli tude 

(sec) 

- -0 .987  
- - 0 . 4 2 3 4 - 7 . 2 7 3 i  
4 0 . 5 0 7 4 - 5 - 7 7 6 i  
4 0 . 6 1 7 4 - 4 . 3 4 2 i  
4 0 . 4 7 8 4 - 3 . 5 2 1 i  
4 0 .  256 4- 2. 839i 
4 0 . 1 0 6  4- 2 .502i  
- -0 .006  4- 2.288/ 

0.646 
0.814 
1.082 
1.335 
1-655 
1-878 
2.054 

+ 1.226 
- -  1.022 
- -  0.840 

- -  1.085 
- -  2.025 

- -  4-891 
4 8 6 - 4 0 0  

- -  5"8854-  14.032i 
- -16.561 - -  22.069' 
- -  6-568 - -  97.282 
- -  4.899 - -198.672 
- -  3,787 - -399-339 
--  3.267 - -599.560 
--  2.934 - -799.670 

0.335 
0.031 
0.079 
0.106 
0-137 
0.159 
0.177 

0.888 
0.023 
0.0053 
0.0026 
0-0013 
0.0009 

i o.ooo6 

Negative time to halve amplitude means time to double amplitude. 

These results are plotted in Fig. 14, where it is seen that  the curve of R vs. b is of the same- 
form as that  found by including the power-unit transfer function but that the results found by 
solving the quartic are very much too optimistic. The peculiar result for b = 0 where the in- 
stability appears in the bob-weight mode is shown but is apparently only so for values of b very 
near to zero. 

It seems clear from these results thatneglecting the power-unit transfer function would give 
very misleading results and the power unit should not be treated as a simple gear in calculations 
of this kind. 
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(a) 

T A B L E  1 

Constants and Derivatives for the Basic Case (Mid-Weight c.g. Position, 
with Trailing-Edge Strips on Tail," Time Constant T1 = 0.02 sac) 

Constants Independent of Speed. 
Eleva tor - to -bob-weight  gear  ra t io  (non-dimensional) ,  G = 33.4  

Pa rame te r  s (cf. equat ion (2.5)) = 0. 162 

Sta t ic  value  of fr ict ional  force of control  circuit,  F (measured at  bob-weight)  = 10.15 Ib 

Tai l  arm,  l = 17.3 It  

Mass of bob-weight ,  Ms = 0.451 slugs 

Equ iva len t  mass of control  circuit  less bob-weight ,  M1 (referred to bob-weight)  = 0.805 slugs 

T ime cons tan t  T~ of power  uni t  = 0 .05 sec 

(b) Derivatives for Various Speeds. 

V 
(kt) 

a 

z 
~0 

M 
N 

C 

k 

Q 

+ 

200 

8 .93  
0.870 
0.195 
5.251 

17.231 
84.16 

2833.16 
1808.14 

23.157 

+ 1.683 
- -  0.0257 

300 

+ 3 .60  
0-855 
0-155 
3.938 

17.066 
56.10 

1258.88 
797.379 

21.210 

+ 1.122 
- -  0.0578 

350 

+ 3 .45  
0.850 
0"150 
3.610 

16-902 
48-10 

925.444 
589.611 

20.328 

+ 0.962 
- -  0"0786 

400 

+ 3"37 
0"835 
0.145 
3"282 

16.902 
42.10 

708"964 
449.227 

19.860 

+ 0-842 
0.1027 

450 

+ 3-30 
0.825 
0" 140 
2.954 

16.574 
37.40 

559.50 
353.772 

19.44 

+ 0"748 
- -  0.1310 

T A B L E  2 

Constants and Derivatives for Mid-Weight c.g. Position, with Trailing-Edge Strips on Tail. 
Time Constant T1 = 0.01 sac 

(a) Constants Independent of Speed. 
As in Table  1. 

(b) Derivatives for Various Speeds. 
As in Table  1 bu t  wi th  values of M and  N doubled.  
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TABLE 3 

Constants and Derivatives for Mid-Weight e.g. Position, without Trailing-Edge Strips on Tail. 
Time Constant T~ = O. 02 sec 

(a) Constants Independent of Speed. 
As in Table  1. 

(b) Derivatives for Various Speeds. 
As in Table  1 except  as follows: 

V 
(kt) 200 300 350 400 450 

,p 

z 
(.,0 

Q 

+ 0"875 
0.195 
5.415 

+ 1 7 . 3 9 5  
- -  0.0190 

+ 0.865 
O- 160 
4.103 

+ 17- 395 
- -  O. 0428 

+ 0 . 8 5 0  
0.150 
3.610 

+ 1 7 . 2 3 1  
- -  0.0762 

+ 0.840 
0.145 
3.282 

+ 1 7 . 2 3 1  
- - 0 . 0 9 6 4  

TABLE 4 

Constants and Derivatives for Forward c.g. Position, with Trailing-Edge Strips on Tail. 
Time Constant TI = O. 02 sec 

(a) Constants Independent of Speed. 
As in Table  1 bu t  wi th  value  of s changed : 

s = 0.169. 

(b) Derivatives for Various Speeds. 
As in Table  1 except  as follows: 

V 
(kt) 200 300 350 400 450 

Z 
(,0 

M 
N 

C 

k 

i 

0"20 
12.320 
18.748 
91.56 

3353.29 
2138.43 

25.260 

1.832 

0-16 
10-356 
18-569 
61"045 

1490.60 
947.02 

23-080 

1"221 

O" 145 
9. 106 

18. 391 
45- 78 

838- 32 
531" 55 

21- 670 

0"916 

O" 14 
8"749 

18- 034 
40" 69 

662.28 
421" 58 

21. 157 

0"814 

TABLE 5 

Constants and Derivatives for Mid-Weight c.g. Position, with Trailing-Edge Strips on Tail. 
Time Constant T1 = O. 02 sec. Increased Aircraft Damping 

(a) Constants Independent of Sped& 
As in Table  1. 

(b) Derivatives for Various Speeds. 
As in Table  1 bu t  wi th  v and  X doubled.  
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. Solutions for  200  knots. 

(a) Coefficients of the Sextic. 

T A B L E  6 

Solutions for  the Basic Case 

b B 1 C 1 D i E 1 F 1 G 1 

0 
20 

250 
400 
600 
700 
800 
900 

87.19 
107.19 
337-19 
487.19 
687.19 
787.19 
887.19 
987.19 

4903.27 
6647.07 

26700.8 
39779.3 
57217.3 
65936.3 
74655.3 
83374.3 

166823 
228726 
940606 

1404875 
2023901 
2333414 
2642927 
2952440 

5352005 
5535411 
7644583 
9020129 

10854191 
11771222 
12688253 
13605284 

16062159 
16454592 
20992567 
23950811 
27895137 
29867300 
31839463 
33811626 

73417587 
73417587 
73417587 
73417587 
73417587 
73417587 
73417587 
73417587 

(b) Stability Roots. 

Aircraft mode 

Uncoupled 
(with fixed tail) 

Power-unit mode 

Uncoupled 

--1"515 4- 2. 160i - -42.08 4- 32-595i Bob-weight mode 

b CoupIed (--  R 4- i J)  Coupled Coupled Uncoupled 

0 
20 

250 
400 
600 
700 
800 
900 

- - 1 . 4 1 9 - t - 3 . 6 2 3 i  
- - 1 . 3 6 6 + 3 . 6 3 6 i  
- - 0 " 8 3 6 4 - 3 . 4 5 1 i  
- - 0 . 689 : J : 3 . 228 i  
- - 0 . 6 2 1 4 - 2 . 9 8 2 i  
- - 0 . 6 1 3 - t - 2 . 8 8 2 i  
- -0 .613-1-2 .796 i  
- - 0 . 6 2 0 4 - 2 . 7 1 9 i  

--41.282 4- 31.785i 
--40.881 4- 31.514i 
--42. 298 4- 32. 946i 
--42.206 :J: 32.787i 
--42.161 -4- 32.714i 
--42.148 4- 32. 695i 
--42.139 4- 32.682i 
--42.132 4- 32. 671i 

- -  0-895-4-42.257/  
- -11 .349- t -41 .204 i  

- -8.352 --242.572 
--5.967 --395.433 
--4.655 --596.973 
--4.261 --697.409 
--3.951 --797.735 
--3.699 --897.987 

0 ± 4 2 . 5 2 2 i  
- - 1 0 4 - 4 1 . 3 3 0 i  

--7.455 --242.545 
--4-573 --395.427 
--3-029 --596.971 
--2.593 --697.407 
--2.267 --797.733 
--2.014 --897.986 
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T A B L E  6 - - c o n t i n u e d  

(c) Periods and Times to Halve Amplitude (200 kt). 

Aircraft mode Power-unit mode 

Uncoupled 
(with tail fixed) Uncoupled 

Period 
( ec) 

Time to 
halve 

amplitude 
(sec) 

Time to 
Period halve 

(see) amplitude 
(sec) 

0.324 0.028 4.896 0.770 Bob-weight inode 

Coupled Coupled Coupled Uncoupled 

Time to 
halve 

amplitude 
(see) 

Period 
(sec) 

Time to 
Period halve 

(sec) amplitude 
( ec) 

Period 
( ec) 

Time to halve 
amplitude 

(sec) 

Period 
(seo) 

Time to halve 
amplitude 

(sec) 

0 
20 

250 
400 
600 
700 
800 
900 

2.919 
2.909 
3.065 
3.276 
3.547 
3.670 
3.783 
3.890 

0.822 
0.854 
1.395 
1.693 
1.878 
1.903 
1.903 
1.881 

0.333 
0.336 
0.321 
0.323 
0.323 
0.323 
0.324 
0.324 

0.028 
0.029 
0.028 
0.028 
O. 028 
O. 028 
O. 028 
O" 028 

0.250 
0.257 

1.303 
0.103 

0.140 0.0048 
0.195 0.0029 

0 -2 5 1  0.0020 
0.274 0-0017 
0.295 0"0015 
0.315 0.0013 

0.250 
0.256 0.117 

0.156 0.0048 
0.255 0.0029 
0.385 0.0020 
0.450 0.0017 
0.515 0.0015 
0.579 0.0013 
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. So lu t ions  f o r  V = 300 knots.  

(a) Coe~cients of the Sextic. 

T A B L E  6 - - c o n t i n u e d  

b B1 C1 D1 E1 -F1 G1 

0 
20 

100 
190 

(st. osc.) 
340 

(min. cond.) 
500 
900 

58.91 
78.91 

158.91 
248.91 

398.91 

558.91 
958.91 

2219.38 
3397.58 
8110.38 

13412.3 

22248.8 

31674.4 
55238.4 

50818.3 
82655-9 

193018 
320998 

i 534298 

761818 
! 1330618 

1024522 
1101416 
1408993 
1755017 

2331723 

2946877 
4484761 

2856450 
2994348 
3545939 
4166479 

5200713 

6303895 
9061851 

20717440 
20717440 
20717440 
20717440 

20717440 

20717440 
20717440 

(b) Stability Roots. 

Aircraft mode 

Uncoupled 
(with tail fixed) 

Power-unit mode 

Uncoupled 

--1.41 4. 1.87i --28.05 4. 21.73i Bob-weight mode 

b Coupled (-- R 4- i J) Coupled Coupled Uncoupled 

0 
20 

100 
190 

(st. osc.) 
340 

(min. cond.) 
500 
90O 

--1.016&4.733i  
--0.7384-4.686i 
--0.1434.4.121i 

0 -~3.626i 

0 + 3.131i 

--0.0604.2.820i  
--0.2194.2.388i  

--26.896±20.377i  
--25.7344. 19.249i 
--28-5674.22.915i 
--28-3004.22.175i 

--28. 182 4. 21.944i 

--28.137±21-871i 
--28.097±21-802i 

-- 1.539-4-27.819i 
- -12.984!26-889i  

--9.919 
--6.588 

--4.906 

--4-115 
--3.168 

- -  91.569 
--185.731 

--337.644 

--498.401 
--899.121 

04-28.238i 
--10q-26.408i 

--8-737 
--4.294 

--2. 362 

--1.600 
--0-887 

- -  91.263 
--185.706 

--337.638 

-- 498.400 

--899. 113 
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T A B L E  6--continued 

(c) Periods and Times to Halve Amfllitude (300 kt)." 

Aircraft mode Power-unit mode 

Uncoupled 
(with tail fixed) Uncoupled 

Time to 
Period halve 

(sec) amplitude 
(sec) 

Time to 
Period halve 

(sec) amplitude 
• (see) 

3.766 0.551 0. 324 0. 028 Bob-weight mode 

Coupled Coupled Coupled Uncoupled 

0 
20 

100 
190 
340 
500 
900 

Period 
(sec) 

1.490 
1.504 
1.711 
1.944 
2-252 
2.500 
2.952 

Time to 
halve 

amplitude 
(see) 

0-765 
1.054 
5.438 

12.960 
3.551 

Period 
(sec) 

0.346 
0.366 
0.308 
0.318 
0.321 
0.322 
0.323 

Time to 
halve 

amplitude 
(see) 

0.029 
0.030 
0.027 
0.027 
0.028 
0.028 
0.028 

Period 
(sec) 

0 . 2 5 3  
0-262 

Time to halve 
amplitude 

(sec) 

0.505 
0.060 

0.078 0.0085 
0.118 0.0042 
0.158 0.0023 
0.189 0-0016 
0.245 0.0009 

Period 
(sec) 

0.250 
0.267 

Time to halve 
amplitude 

(sec) 

0.078 
0.089 0.0085 
0.181 0.0042 
0.329 0.0023 
0.486 0.0016 
0.877 0.0009 
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3. Solutions for 350 knots. 

(a) Coefficients of the Sextic. 

T A B L E  6~continued 

b BI C1 D1 E1 F1 . . . .  G1 

0 
37" i 

(st. osc.) 
100 
200 
400 
600 
647 

(min. cond.) 
80O 

50-825 
87.925 

150.825 
250.825 
450.825 
650.825 
697.825 

850.825 

1651.20 
3536-81 

6733-70 
11816.2 
21981.2 
32146.2 
34535.0 

42311.2 

32733.0 
72118.0 

138892 
245051 
457369 
669687 
719582 

882005 

545988 
648606 

822587 
1099186 
1652384 
2205582 
2335584 

2758780 

1484863 
1659142 

1954618 
2424373 
3363883 
4303393 
4524178 

5242903 

13389846 
13389846 

13389846 
13389846 
13389846 
13389846 
13389846 

• 13389846 

(b) Stability Roots. 

Aircraft mode Power-unit mode 

Uncoupled 
(with taft fixed) Uncoupled 

- -  1-36 4- 1.79i --24.05 =L 18.63i Bob-weight mode 

b Coupied (-- R 4- i J)  Coupled Coupled Uncoupled 

--0-692 4- 5.348i --22.786 4- 16-944i - -  1,935 4- 23.819i 0 4- 24.282i 0 
37.1 

(st. ose.) 
100 
2OO 
400 
600 
647 

(rain. cond.) 
80O 

0 4- 4.867/ 

+0 .278  4- 4. 122i 
+0 .284  4- 3-487/ 
+0 -148  4- 2-885i 
+ 0 , 0 2 6  4- 2.570i 

0 4- 2.515i 

- -0.076 4- 2.366i 

- -22 .5004-  6.301i 

- -24 .5204-  19.683i 
- -24 .2664-  19-031i 
- -24 .1524-  18.807/ 
- -24 .1174-  18.743i 
- -24 .1124-  18.734i 

- -24 .0994 -  18.714i 

--21-46: 

--8.452 
--5.838 
--4.298 
--3.626 
--3.514 

--3.211 

4-23 .976i  

- -  93.892 
--197.022 
--398.522 
--599.016 
--646.088 

--799.263 

- - 1 8 . 5 5 4 -  15.669i 

- -6.292 
--2.993 
--1-479 
--0.984 
--0.913 

--0.738 

- -  93-708 
--197.007 
--398.521 
--599.016 
--646.087 

--799.262 
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T A B L E  6- -con t inued  

(c) Periods and Times to Halve Amplitudes (350 kt). 

Aircraft mode Power-unit mode 

Uncoupled 
(with tail fixed) Uncoupled 

Period 
(sec) 

Time to 
halve 

amplitude 
(sec) 

0.490 

Time to 
Period halve 

(sec) amplitude 
(sec) 

0.324 0.028 3.369 Bob-weight mode 

Coupled Coupled Coupled Uncoupled 

Time to 
halve 

amplitude 
(sec) 

Period 
(sec) 

Time to 
Period halve 
(sec) amplitude 

(sec) 

Period 
(sec) . 

Time to hMve 
amplitude 

(sec) 
Period 

(see) 
Time to halve 

amplitude 
(sec) 

0 
37" 1 

100 
200 
400 
600 
647 
800 

1.130 
1.242 
1.466 
1.102 
2.095 
2.352 
2.403 
2.555 

+ 0.963 

- -  2.398 
- -  2.348 
-- 4.505 
--25.642 

+ 8.772 

0.357 
0.959 
0.307 
0-318 
0.321 
0.322 
0-323 
0.323 

O" 029 
O" 030 
O" 027 
O" 027 
O" 028 
O" 028 
O- 028 
O" 028 

0.254 
0.252 

0.079 
0.114 
O. 155 
O. 184 
O" 190 
0.208 

0.345 
0.031 

0.0071 
0.0034 
0.0017 
0.0011 
0-0010 
0.0008 

0.250 
0.386 0.036 

0.106 0.0071 
0.223 0.0034 
0.451 0-0017 
0.678 0.0011 
0"730 0"0010 
0.903 0.0008 

Negative time to halve amplitude means time to double amplitude. 
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4. Solutions for  V = 400  knots. 

(a) Coetficients of the Sextic. 

T A B L E  6--cont inued 

b B 1 C1 D~ E 1 F1 G~ 

0 
4.1 

(st. osc.) 
40 
70 

100 
200 
400 
834 

(min. cond.) 

44.765 
48.865 

84.765 
114.765 
144.765 
244.765 
444.765 
878.765 

1275.08 
1458-62 

3065.68 
4408.63 
5751.58 

10228.t 
19181.1 
38609.1 

22196.4  
25582.4 

55230.4 
80005.9 

104781 
187366 
352536 
710955 

309482 
318038 

392954 
455558 
518162 
726842 

1144202 
2049873 

828197 
841827 

961170 
1060900 
1160630 
1493063 
2157929 
3600688 

9441930 
9441930 

9441930 
9441930 
9441930 
9441930 
9441930 
9441930 

(b) Stability Roots. 

Aircraft mode 

Uncoupled 
(with fixed tail ) 

Power-unit mode 

Uncoupled 

- -1 .33  4. 1.71i --21.05 4. 16-30i Bob-weight mode 

b Coupled (-- R 4- i J) Coupled Coupled Uncoupled 

0 
4.1 

(st. osc.) 
40 
70 

100 
200 
400 
834 

(rain. cond.) 

--0.175 --P 6.051i 
0 4. 5.938/ 

+ 0 . 5 8 3 4 . 4 . 9 4 2 i  
+ 0 . 6 4 4 : : k 4 . 4 2 3 i  
+ 0 . 6 3 1 4 . 4 - 0 7 0 i  
+ O" 505 4. 3- 397i 
+0-287  4- 2.795i 

0 :]: 2.257/ 

- - 1 9 . 7 2 2 4 .  14.201i 
- - 1 9 - 5 3 2 ±  13.864i 

- - 2 0 . 3 6 7 4 . 2 0 - 9 3 3 i  
- - 2 1 . 6 3 2 ±  18-053i 
- -21 .4744-  17.287/ 
- - 2 1 . 2 4 7 1  16.701i 
- - 2 1 . 1 4 4 4 .  16.485i 
- - 2 1 . 0 9 4 !  16.388i 

- - 2 . 4 8 5 ± 2 0 . 7 3 7 i  
- -4 .899-4-21 .043i  

--14.618 
- -  9.388 
- -  7.675 
- -  5.543 
- -  4.170 
- -  3.116 

- -  30.578 
- -  63-402 
- -  95-408 
--197.739 
--398.876 
--833.460 

0 ± 2 1 . 1 9 5 i  
- -2 .05 + 2 1 . 0 9 6 i  

- -20.0  
- -7 .  147 
--4.715 
--2.272 
- -  1 .  126 
--0.539 

+ 7.016i 
- -  62.853 
- -  95-285 
--197-728 
--398.874 
--833.461 

(73169) 
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T A B L E  6--continued 

(c) Periods and Times to Halve Amplitude (400 kt). 

0 
4.1 

40 
70 

100 
200 
400 
834 

Aircraft mode Power-unit mode 

Uncoupled 
(with tail fixed) Uncoupled 

I 

Time to 
Period halve 

(sec) amplitude 
(sec) 

3.099 0.439 

Time to 
Period halve 
' (sec) amplitude 

(see) 

O. 324 O. 028 Bob-weight mode 

Coupled Coupled Coupled Uncoupled 

Period 
(sec) 

0-874 
0-891 
1"070 
1"196 
1"300 
1"557 
1"893 
2-344 

Time to 
halve 

amplitude 
(sec) 

0.334 

--1"001 

Period 
(sec) 

0.373 
0-382 
0.253 

Time to 
halve 

amplitude 
(sec) 

0.030 
0.030 
0-029 

Period 
(sec) 

0.255 
0.251 

Time to halve 
amplitude 

(sec) 

0.235 
0.119 

0.040 0"019 

Period 
(sec) 

0.250 
0-251 
0-754 

--0.906 
--0.925 
--1.155 
--2.033 

Time to halve 
amplitude 

(sec) 

0.293 
0.306 
0.317 
0.321 
0.323 

0.027 
0.027 
0.027 
0.028 
0.028 

0.062 0.0092 
0-076 0-0061 
0.105 0-0030 
0.140 0.0015 
0.187 0.0007 

0-285 
0-029 

0.082 0-0093 
0.124 0.0061 
0.257 0.0030 
0.518 0.0015 
1.083 0.0007 

Negat ive  time to halve amplitude means time to double amplitude. 
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5.  Solutions for V : 450 knots. 

(a) Coeffcients of the Sextic. 

TABLE 6--continued 

b B 1 C~ D 1 E 1 F1 G1 

0 
20 

100 
200 
400 
600 
800 
965 

(rain. cond.) 

40.015 
60.015 

140.015 
240.015 
440.015 
640.015 
840.015 

1005-015 

1015.39 
1815.69 
5016.89 
9018-39 

17021.4 
25024.4 
33027:4 
39629-9 

15780.7 
29013.0 
81942.3 

148104 
280427 

412750 
545073 
654240 

186300 
218789 
348747 
511194 
836088 

1160982 
1485876 
1753914 

491904 
540189 
733328 
974752 

1457600 
1940448 
2423296 
2821646 

6875112 
6875112 
6875112 
6875112 
6785112 
6875112 
6875112 
6875112 

(b) Stability Roots. 

Aircraft mode 

Uncoupled 
(with fixed tail) 

Power-unit mode 

Uncoupled 

--1.308 4- 1.61i - -18.7  :J: 14.48i Bob-weight mode 

b Coupled (-- R :k  i J) Coupled Coupled Uncoupled 

0 
20 

100 
200 
400 
600 
800 
965 

rain. cond.) 

+0 -520 : :k6"582 i  
+ 0 . 9 7 4 = ~ 5 . 5 1 9 i  

--17.456-4- 11.965i 
- - 1 7 - 5 8 9 ±  7.667i 

-- 3 . 0 7 2 ~  18.513i 
- - 1 3 . 3 9 2 ± 2 0 . 3 7 6 i  

0 =~ 18.809i 
--10 ± 15.930i 

40"874  :J= 3.964i 
40"653  ::k 3.290i 
+ O" 378 ::k 2. 699i 
40"205 -~ 2.397i 
+ O" 082 4- 2.202i 

0 ± 2-084i 

--19-074::k 15.407i 
- - 1 8 . 8 7 7 ±  14.871i 
- - 1 8 . 7 8 5 ±  14.663i 
- - 1 8 . 7 5 6 ±  14-600i 
--18.741 ::k 14-571i 
--18.735-4- 14.555i 

--7.200 
--5-339 
--4.083 
--3-507 
--3.141 
--2.915 

- -  96.412 
--198.219 
--399.119 
--599.413 
--799.559 
--964.635 

--3.673 
--1-785 
--0-886 
--0-590 
--0.442 
--0.367 

96-327 
--198-215 
--399-114 
--599"410 
--799'558 
--964"633 

3 1  ¸ 
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TABLE 

(c) Periods and Times to Halve Amplitude (450 kt). 

Aircraft mode Power-unit mode 

Uncoupled 
(with tail fixed) Uncoupled 

Period 
(sec) 

Time to 
halve 

amplitude 
(see) 

Time to 
Period halve 

(sec) amplitude 
(see) 

6--continued 

2.912 0.396 

Coupled 

Time to 
Period halve 
(sec) amplitude 

(sec) 

0.324 0.028 

Coupled 

Time to 
Period halve 

(sec) amplitude 
(sec) 

Period 
(sec) 

Bob-weight mode 

Coupled 

Time to halve 
amplitude 

(sec) 
Period 

(sec) 

Uncoupled 

Time to halve 
a m p l i t u d e  

(see) 

2 o 

100 
200 
400 
600 
800 
965 

0-714 
0"852 
1"186 
1.429 
1"741 
1.961 
2"134 
2.255 

--0"997 
--0.532 
--0.593 
--0-794 
--1-371 
--2"529 
--6.322 

0 '393 
0 '613 
0"305 
0"316 
0"321 
0 '322 
0"323 
0"323 

0.030 
0.029 
0.027 
0.027 
0.028 
0.028 
0.028 
0.028 

0.254 
0.231 

0.169 
0.039 

0.072 0.0054 
0.097 0.0026 
0.127 0.0013 
0.148 0.0009 
0.165 0-0006 
0.178 0.0005 

0.250 
0.295 0 . 0 5 2  

0"141 0"0054 
0.290 0.0026 
0"585 0"0013 
0.879 0.0009 
1.173 0.0006 
1.413 0'0005 

Negative time to halve amplitude means time to double amplitude. 
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TABLE 7 

values of the Amplitudes of Oscillation of the Control Angle, Bob-Weight 
Displacement and Normal Acceleration at the Steady Oscillations and 

Minimum Conditions for Various Speeds 

V 
(kt) 300 350 400 450 

0.118 0-242 (n o - -  1) s t2ady OSC. 
F 

(n o - -  1) min. cond. 
F 

*/°~° s teady osc. 
F 

~°~° min. cond. 
F 

Y°(in') s teady  osc. 
F 

Y°(in') min. Cond. 
F 

0.099 

0-205 

0.132 

O. 023 

0.0143 

0-089 

0.570 

0.064 

0.062 

0.0069 

1.153 

0.087 

3 .22 

0.042 

0-355 

0.0046 

O. 086 

0"031 

0.0033 
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TABLE 8 

(a) Values of the Periods of Steady Oscillations for All Cases Considered 

Period (sec) of the steady oscillations 

Desk 
calculations 

Philbrick results 

V 
(kt) 

200 
300 
350 
400 
450 

Basic case 

None 
1.944 
1-242 
0-891 
d iv .  

Basic case 

None 
1-890 

0.925 
div. 

Change of 
time constant 

T 1 = 0"01 (sec) 

None 
1-905 

0-883 
div. 

Without 
trailing- edge 

strips 

None 
1-849 

0.872 
div. 

Forward 
position 
of c.g. 

None 
None 

0.863 
div. 

Increased 
aircraft damping 
(v and x doubled) 

None 
None 

0.976 
0.696 

(b) Values of Periods of Aircraft Mode, Stick Fixed, for All Cases Considered 

Period (sec) of stick-fixed aircraft mode 

V 
(kt) 

200 
300 
350 
400 
450 

Basic case 

4.896 
3. 766 
3.369 
3. 099 
2.912 

Change of 
time constant 
T I = 0.01 sec 

Without 
trailing-edge 

strips 

Forward 
c.g. 

position 

4.896 
3.766 
3.369 
3. 099 
2.912 

4.814 
3.683 

2.941 
2. 745 

3.359 
2- 437 

1. 942 
1. 763 

Increased 
airdraft damping 
(v and Z doubled) 

4 .998  
3.842 
3.448 
3.177 
2.990 
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FIG. 1. Diagram of longitudinal control system. 
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[ FIG. 2. Variat ion of damping  factor  R with equivalent  viscous damping  coefficient b for vary ing  forward 
• " speed V (Mid-weight c~g. position, with strips. T 1 = 0 .02 sec). 
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FIG 3. Variation of damping factor R. with equivalent viscous damping coefficient b for yarying f0r~.ward 
speed V (Philbrick results. Mid-weight c.g. position, with strips. T 1 ----- 0.02 sec). 
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FIG. 4. Variation of damping factor R with equivalent viscous damping coefficient b for varying forward 
speed V (Philbrick results. Mid-weight c.g. position, with strips. T 1 = 0.01 sec). 
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FIG. 5. Variation of damping factor R with equivalent viscous damping coefficient b for varying forward 
speed V (Philbrick results. Mid-weight c.g. position, without strips. T1 = 0.02 sec). 
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FIG. 6. Variation of damping factor R with equivalent viscous damping coefficient b for varying forward 
speed V (Philbrick results. Forward c.g. position, with strips. T 1 = 0-02 sec). 
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~IG. 7. Variation of damping factor R wit h equivalent viscous damping coefficient b for varying forward 
speed V (Philbrick results. Mid-weight c.g. position, with strips. T 1 = 0.02 sec; v and X doubled). 
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FIG. 8. Variation of the amplitude of the normal acceleration 
(n o - -  1) for the steady oscillations and at minimum conditions 

with speed, for varying friction F (Basic case). 

FIG. 9. Variation o5 the amplitude of the control angle ~0 
with speed V, for different values of friction F (Basic case). 
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FIG. 10. Variation of the amplitude of the bob-weight displace- 
ment Yo (in.) with speed V, for different values of friction F 

(Basic case). 

40 



9.~X 

THIS CiR 

FIG. 11. 

illO ~ ~ ~ I~__~~._ ~'7 X POINT OF ZF..RO OAHPlNG. 
NUMBF..~S ALQN~ EURVF..S INDWATr. 

~ ' - - " ' - - ~ 9 0  . THE. VALUES (3F THE F'RE.QUE.Nr.Y J. 

Nyquist diagram for V = 450 kt  for basic case of mid-weight c.g. position, with trailing-edge strips on tail 
(T~ = O. 02 see). 
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Enlargement from Nyquist diagram for 450 kt, basic case, with additional curves showing effect of neglecting 
power unit at b = 0 and the effect of putting bob-weight at aircraft c.g. for the three values of b. 
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Stability boundary for ~G for varying values of equivalent viscous damping coefficient b, 
transfer function of power unit neglected (Basic case; V = 450 kt). 
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FIG. 14. Variation of aircraft damping R and bob-weight damping with the equivalent viscous damping 
coefficient b, for the basic case, at a forward speed V ---- 450 kt, transfer function of power unit neglected. 
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