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In the design of mall models of aircraft or tolssiles for testing 
in supersonic tunnels, it may be desrred to represent Jet engine nacelles 
by means of' simple hollow pipes. The note sets out the principal 
characteristics of compressible flow in such pipes at zero yaw and gives a 
theory for calculating the effect of the boundary lsyer. This is checked 
agarnst the results of tests with a series of pipes of varying size, at 
Mach numbers from 1.x to 2.41. 

Curves are presented for detenwning the maximumlength/rtrdius 
ratio of a parallel pz.pe which will permit supersomc internal flow, in 
terms of the Mach number of the stream .snd Reynolds number of the pipe: 
the curves are given for both laminar and turbulent interna.l boundary 
layers. 

The effect of inclinatmn of the pipe to the stream is discussed 
briefly, on the basm of results at one Mach number (1.86). 
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I Intrcduction 

In the design of mall scale models of aircraft or missiles for 
testing in supersonic tunnels, It 1s sometimes desired to represent jet 
engine nacelles by means of simple hollow pipes allowing a free fl.0~ 
through the msde. Such a flow may be either subsonic or supersonic, 
depending on the Kach snci Reynolds nmbers and the mternal taper of the 
pipe. It is desirable to be able to predut whxh type of flav will be 
obtaued, primarily in order to determine whether or not the front external 
shock wave will be attached to the lip of the pipe. The nature and posltjon 
of this shock will,in general, have some effect on the pressure dutribu- 
tlon of the wing or other surfaces in proximity to the nacelle. 

The princlpsl characteristics of compressible flow through a short 
straz@t px~e iLnnersed xn a stream at zero angls of yaw are set out in the 
present note. The effect of an xnternsl boundary layer is calculated on the 
assumption that the radius of the pipe at any point 1s reduced by an 
amount equal to the displacement thxkness. With thu assumption a 
relationship is &u-~~ved g1vin.g the free stream &ach numbrr at wlxoh the flow 
UI the pipe Just becomes supersonic,xn terms of the Reynolds number 
and dimensions of the pipe. The relationship is given for both 1amins.r and 
turbulent internal layers. The tneory is supported by the results of a 
series of suple tests on parallel pipes of various diameters and length/ 
radius ratios, at Mach numbers from 1.X to 2.41. 

The effect of ~clinat~on of the pipe to the streanl du-ectlon is 
discussed brx?fly, on the basis of results of a few tests at one Nach 
nurber (1.86). 

2 Theory 

Some characteristics of the flw of a non-viscous, compressible fluid 
through a straight tapered pipe at zero yaw are set out in Appetiix I. 
Thus shows the variation of mass flow coefficient with Mach number and. 
the relationship between free strearntube ares. of the through-flow, A,, 
snd the entry and exit areas of the pipe, A2 and A3 respectively. The 
Mach number ranges in which the urternal flow is respectlvdy subsonw and 
supersonx are defined, 

It 1s shown that, il the case of a contracting pipe (A3 < A2), the 
minimum value of area ratio $( = AgA2), which will allow supersonic flow 
to be established through the pope, is given in terms of the free stream 
Dtich number 1$(> 1) by the relationship:- 

The relationship is determined by the conditron that when a normal 
shock dads across the entry to the pope, the flow at exit iS Just SoniC. 
For all exit areas greater than the lsrmtlng value so defmed, the normal 
shock is capable of passing through the pipe if a slightly greater 
pressure drop is applied, as for exsmple by a small increase in free 
stream Hach number. The internal flow is then supersonIc throughout. It 
is important to note that the condition necessary for the establishment of 
supersonic rnternal flow actually relates to the state of subsonic urted 
flow behind a normal shock. 

-4- 



Equation (1) was given previously by Ltiasiewice' (in algebraically 
dif'ferent form) in a discussion of the flow in supersonic diffusers. The 
relatxonship 3.5 plotted 111 P'ig.1. 

The effect of viscosity is to increase the apparent contraction of the 
pipe - i.e. to decrease the effectrve exit area - because of a deficiency of 
mass flow in the boudary layer. It is assumed that the radius of the pipe is 
effectively reduced. by an smourit equal to the boundary l;i;yer displacement 
thickness. Thus if r3 is the geometric exit radius and 6* the duqlacement 
thichess at exit, the effective exit area is 

(A3)eff, = A3 1 - ii2 ( > 

The effective area ratio is 

$ eff. 
= (A3)eff. _ 3 

A2 
- A2 1-$2 

( > 

(2) 

It is further assumed that axial pressure gradients resultzng from the 
rotatlonsl symmetry and effective taper of the pipe have a negligible effect 
on the boundary layer characterxstics; 
uniform flow over a flat plate. 

so that S*/r3 may be evaluated as for 

We now consiaer the cases of 1-m and turbulent boundary layers in 
turn. 

2.1 Lsmuu3.r layer 

For a 1srmlns.r layer, the velocity profile in incompressible flow is 
assumed to take the form:- 

The thickness ratio (Goldstein, ref.2) is then 

6. 
1 -4 
45 = 4.8R 

(4) 

(5) 

and the displacement thickness ratio is 

6? 
1 
6i 

= 0.363 (6) 

For the variation of displacement thichess with Mach number, we use Howsrth's 
restid, which is 



[This results from an increase in thickness by a factor 1 + 0.06 I2 coupled 
with a change in profile in the sense of bewmmg &we nearly linear as 
the %imch number is increased]. Writrng 

6’ 6’ 6; 6. 
.-.-A.- 

-=-g 6. p. r” 
r3 1 3 

equation (3) becomes, for the lminar layer, 

% [ ,- 
2 

* eff. =5i 1.74 (I + 0.227 2) R -&*A r3 1 

(8) 

(9) 

where 8 is the length of the pipe. 

To determine the critical area. ratio given by equation (I), it is 
necesssuy to insert into ewatiofi (9) values of M wd R appropriate to 
the state of subsonic internal. flow at the critical point. A close 
approdnation is obtained by mug mean values of M and R between these 
at the entry, where the condxtlons are those behind a ncmml shock at 
free stream Mach number, end those at the exit, where the Mach number is 
Why. The relationstips between these mean values E ad R and the free 
stream values are shown plotted in Plg.2. We write 

This function has been calculated for a stagnation temperature of 20%, 
ad is strictly unique only on the assumption that viscosity is directly 
proportional to teinperature. This assumption has slresdy been invoked m 
using equation (7) above and m the present context is certainly &equate 
m view of the use of mean Reynolds numbers in a field of vsxyrng velocity. 

The effeotlve area ratlo of the p?-pe may now be wntten in the form 

The critical free stream Mach number, or rmniwm Mach number for 
supersonic internal flow, is obtsined by equatuy the right-hsnd sides of 
equations (1) and. (11). It is seen that the critical Mach number is a 
function of the geometric area ratio of the pipe, the length/radius ratlo 
and the Reynolds number based on pipe length and free stream velocity. 
Otherwise put, with a oomrpletely lominer internal boundary layer, the 
condition for supersonic internal flow is:- 
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2.2 fCurbulent layer 

For the case in whioh the internal lsyer is fully turbulent, It is assumed 
that the velocity profile in incompressible flow takes the form 

and that in the range 0 c M 6 1.0 there is no change of thickness or of profile 
with Mach number . The displacement thxkness variation is then as given by 
Cope4 and may be approximated by the formu.la:- 

6* 
q= 0.128 (1 + 0.219 2) 

Usk-q for the thichess ratio in incompressible flow the formula 

6 
-+ -'/5 0.37 R 

equation (3) becomes, m this case, 

Q eff. =z 1 
[ 

- 0.0474 (1 + 0.219 iz2) E -'I5 e 2 

r3 1 
The mean internal Mach number and Reynolds number are the same e.s for the 
lamirrar case. Writing 

(this function is plotted xn F~g.2), we have 

dr effe =z [1 - .ygf (I + 0.219 G2) . Ry . t] 

(15) 

(16) 

(17) 

(48) 

The condition for supersonic internal flow is therefore 

-l/5 4 21.1 f2(M,) 
R1 *-< 

r3 

(19) 



The relationships (12) and (IV) msy be used to determine the m 
length/radius ratlo for superson~.o internal flow in terms of the free 
stream Mach snd Reynolds numbers. Results of such cslculatlons for the 
psrtuxiL.ar case of a parallel pipe (A3 = %) are given in Fig.16 (Bee 
Appendix II). 

3 Gomparison with experiment 

3.1 Details of tests 

In connection with a proposal to represent engine nacelles on a 
-1 scale model of a supersonic alrcrsft by means of straight psrsllel 
pipes, a brief series of tests was made to explore the lower limits of 
size which would allow supersonic internal flow at various free stream 
Mach nwnbers. The results are compared with the theory of the preceding 
section. 

Straight parallel pipes (Ad% = 1.0) of various sizes were mounted 
in succession on a strut in 8. sr&Ll supersonic tunnel (* x &) and the 
nature of the internal flow (i.e. subsonic or supersonrc) mas determined 
both by schlieren observation of the external shock pattern and also - a 
more conclusive check - by rneasuranent of the xdxrnal static pressure at 
a single point halfway along the length of the tube. 

The pipes were made of thin-walled, drawn, brass or steel tubing. 
The leading edge of eaoh pipe was sharpened on the outsCle to a 3O wedge. 
The reside surface was cylidrical throughout and was Riven a reasonably 
smooth finish by polishing. 

l?ourteen pipes were tested in all. The lengths ranged fmm 0.41 in. 
to 3.75 in. ad the internzil radii fmm 0.043 111. to 0.375 XII. The 
dimensions are tabulated in Fig.3, which shows the relative placing of the 
pipes on scales of the appropriate parameters for lsminar and turbulent 
flow. 

The values of Reynolds number, based on pipe length, were In rmst 
oases below one million. Thus it was reasonable to expect, with the swath 
pipes, a completely 1-r lntemal boundary layer, except for the longest 
pipes at the lowest Mach numbers. For same of the tests, a turbulent 
layer was obtillnedby applying a narmw transition strip of th3n tape 
round the inslde circuderence a short distance in fmmthe entry. It was 
possible to use this technique only vdth the pipes of larger diameter but 
the number of tests made in thx way was sufficient to give sdditiondt 
support to the theory (see Section 3.2). 

The tests were made at Mach nuders 1.34, 1.53, 1.86 and 2.41. In 
addition, a few tests were made at M = 1.86 with the pipes inclined at 
various angles ta the flow (Section 4). 

3.2 Results at zero yaw 

Results for the smooth pipes at zero yaw are plotteC!,m Figs.4,5. 
In the upper half of Fig,&, the internal pressure ratio PJp,, 1s plotted 
against the parameter R-F x c/r for each of the test Mach nurders. I Each 
curve shows + jump where the internal flow changes from supersonx to 
subsomc (Ry x 4/r increasing). 

& 
The lower half of the d&gram shows the 

correspond. internal Mach n&tiers. These are calculated on the aswnption 
that before the jump occurs the total pressure in the tube (outside the 
boundary lwer) is ewal to that in the free stream, whde after the JUT 
the total pressure is that behind a nomal shock at the free stream Mach 
number. 
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: Fig. 5 shows for each test Mach number the range of values of R;- x .8/r 
covered by the pipes tested. The nature of the symbol indicates whether the 
internal flow was subsonic or supersonic (as deduced from the pressure measure- 
merits). The curve from equation (IZ), defining the theoretical boundary for 
wholly laminar flow is plotted and,on the whole the experimental results conform 
well to tnis boundary. At the two lowest iviach numbers, some cases of subsonic 
flow occurred at values of RT" x 6/r below the theoretical critical value. These 
results were ob ained with some of the largest pipes, having a Reynolds number 
greater tnsn 2 10 , and the probable explanation is that in these cases the 
boundary layer becsme turbulent before the exit. 

It is concluded. that the results su;qzort the theory of section 2. 

As a further point of interest, It may be shown from equation (11) that 
after the normal shock is swallowed, changing the mternalflow from subsonic 
to supersonic, the lsminar boundary layer actually thickens because the effect 
of increase of Mach number outweighs that of the Reynolds number change. The 
supersonic flow therefore sustains a degree of contraction greater then that 
which just allows the normal shock to pass. This is confirmed by the pressure 
readings, from which it canbe shown that even halfway along the tube the 
Illach number (Fig.&) in supersonic flow near the critical point is lower than that 
corresponding to the critiaal area ratio. 

Rigs. 6, 7 show the results obtained with transition strips inside the 
tubes. 
q/5 

The basis of plotting is the parameter for wholly turbulent flow, 
x 4/r. The number of experimental points is smsll owing to the difficulty 

of applying the turbulence strip technique to the tubes of smdller dismeter but 
on the whole the results give further support to the theory. There is a 
suggestion that the experimental boundary is displaced from the theoretical one 
in a direction restricting the development of supersonic flow. This may be 
either because the transition strips gave the effect of turbulent layers of 
length somewhat greater than the actual pipe lengths or because theory under 
estimates the urcrease of displaoement thickness with Mach nun&er in the case 
of the turbulent layer. The former explanation seems the more likely. 

In one ease at 16, = 1.34, both the supersonx and subsonic xrternal flow 
states were observed at different times during the run. It is seen that this 
cast lies close to the theoretical boundary line. Care is clearly necessary in 
using the theoretical curve outside the rsnge in whoh it is supported by the 
practical results, i.e. beyond M = 2. 

In Figs. 8-11 scKlieren pictures are presented showing the tv.o types of 
flow, with lsainar boundary layer, at M = 1.34, 1.53 and 1.86 respectively, and 
also two cases where the addition of a transition strip caused a change from 
s-ilpasonic to subsonic flow. 

The difference in external shock pattern, according as the internal flow 1 
is supersonic or subsonic, becomes less obvious as the free stream Mach number 
is increased. 

4 Flow in inclaned pipes 

At one Mach number (M, = 1.86), a few tests were made to determine the 
effect of inclining the pipe at an angle to the stream. In Figs.l2(a) and (b) 
the internal Mach number, calculated as before from the single static pressure 
measurement midway along the pipe is plotted as a function of sngle of 
inolination, or yaw, p. Fig.i2(aj appl' les to pipes in which the boundary 
layer at eero yaw is lsminar, Fig.l2(b) to those in wnich It is turbulent. 
Two features of the curves are to be noted:- 
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(1) In each set ~8 tests the order in which the jumps occur with 
increase of p correspo 
lent flow parameter R;% 

s to the order of placing on a scale of the turbu- 
x &/r, as shown in Fig.3. From this it is 

iderred that when, at zero yaw, the internal. boundary layer is laminar 
and the internal flow supersonic, the effect of the first few degrees of 
yaw is to bring transition forw.rd up the pips, as a result of distur- 
bances JUSt xnsu%? the entry. Thereafter the yaw effect is qualitatively 
simdar to that for a pipe starting with a turbulent layer at zero yaw. 

(2) The velocity at the spectiied point inside the pipe is not 
necessnrily subsonic after the jump, but becomes increasingly supersor~c 
with zncrease of p. It is presumed that the flow separates from the sharp 
leading edge of the inclined pipe, forming a throat further downstream 
inside the pipe. The velocity at this throat becomes sonic and the throat 
is then followed by a supersonic expansion exteting some further &stance 
davn the pipe. Hence the measured internal pressure may correspond to a 
supersonic velocity even though a detached shock is present at the entry. 
Further mcrease of the angle of inclination would cause the sonic throat 
to contract progressively until, at or near 90 degrees yaw, the mass flow 
in the pipe became zero. 

Two comparisons of external flow patterns on opposite SU%S of the 
hump are shown in Flg.11. In the first comparison, pipe No. 4 is &own 
at O" and 12&O yaw. The difference m extend. shock formation at the two 
s&es can be detected but is fairly small. It should be noted that the 
plane of yaw is at right s.ng,es to the plane of the photograph; bigger 
differences than those shown may exist III the plane of yaw. The p1w.e of 
the photograph is however the mere appropriate for indicating the degree 
of interference of, say, a nacelle at pitching mctience on a h?ng. 

The second comparison shows tvm shock fonantlons obtmned under 
nominally tie&l&t ccnditions witn pipe No. 7. At the critloal angle 
of 6' it was observed that over R pemod of the order of a minute the flow 
stsrtlng from the superson~ ccnfiguration, grew slowly m3re subsonic 
(urternsl ~essure rising, external bow wave wCiening) and then, having 
reached a limit went quickly supersonic again. It appears, therefore, 
that peridic fluctuations are liable to occur near the changeover corriltion. 

From inspection a~' the results, It 1s deduced that for pipes starting 
with a completely lominar layer, about 70 of yaw is required to make the 
layer fully turbulent. If the value of RT'/5 . d/r 1s greater than the 

value of R;ji5 . 
critioal,the entry flow will by this time have become subsonic. If the 

e/r 1s less than the critical, the change of flow will 
occur at wme higher s.n@e, determined by the value of this turbylent flow 
parsmeter rather than that of the parameter for laminar flow, R;2 . &/e/r. 
Thus, as a first approximation, a single pitting of s.U the results m 
terms of the turbulent flow parameter 1s ossible. This IS shown E Fig. 
13. For each test made, the value of R,l -7 5 . P/r of the pipe is plotted 
aganst (B - &,), where Bt is deflned as the angle for which the internal 
boundary layer first becomes mmpletely turbulent. @t is zero for the 
pipes with transition strip and is taken to be 7“ for the smooth pipes. 
A single boundary canbe defined between the cases giving supersonic 
mternal flow and those for nhlch tne flow at entry is subsonic. 

As a suggestion for the form of the boundnry curve, if it is assumed 
that the curve is symmetrwsl about the ax~.s (p - p,) = 0, s.d that when 
8/r is zero (i.e. when the pipe becomes a thin rz.ng) the critical angle 
is x/2*, then an appropriate formal relatlonstip is:- 

* Strictly, when &, = 70t the critical angle for d/r = 0 is p-pt = 7t/2-70 
but this correction is untilprtsnt in relation to the moderate angles cf 
yaw under consideration. 
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2 L? Z- e -k t&P-Pt) 

where 2 is written for the parameter R, 'I'5 . 4/r and & is the critical 
value for turbulent flow at p = 0 and the partxcular Ieach number, given by 
equation (19). A curve with k = 7 provides a good fit to the few results 
obtained. 

5 Conclusions 

Straight open pipes may be used to provide maple representation of jet 
engine nacelles on supersonic wind tunnel models. The conditions that the flow 
through should be unchoked have been determined theoretmslly and checked 
experimmtslly, with good general agreaent. 

The effect of yaw has been considered briefly. 
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APPXXDIXI 

Note on the characterlstxcs of non-viscous, compressible flow - 
in straight plres of monotonic tawr 

1 Notation 

P = pressure 

T = temperature 

M = &chnmiber 

a = sonic velocity 

A = cross-sectlon.31 area 

m 

Y 

t 

Jr 

( 10 
( 4 
( )2 
( )3 

( 1’ 

= rate of mass flow 

= ratio of specific heats 

e T/To 

= "34 
refers to stagnatmn conditions 

,I I! ccnditlons in the free stream 

1, ,I II at the pipe entry 

,I t, II II 11 11 exit 

4, II n behind a normal. shock 

2 Parallel pipe 

In a straight parallel pipe, mth sharp leading edge, the internal 
Mach nmiber is always equal to the free stream Mach number*. The mass 
flow enclosed by the pope is given by the equation:- 

m a_ v (y+l)/2(y-I) 

A2 PO 
= rM,t, 

Thu is plotted for air (y = 1.4) in Fig.14 (curve (1)). The mass flow is 
a maxumun at M 1 = 1.0, when 

ma (r+3)/2(y-1) 

= 0.810 ( 22; 

* Clearly, if the wall is infinitely thin, the presence of a parallel 
pipe creates no disturbarfie in the flav, either z.nternally or externally. 
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The free stream tube area, A,, 
Mach numbers. 

is equal to the entry area, A2, at all 
At supersonic speeds, the condition A, = A2 is usually termed 

"full l7mss flow". 

3 Expanding pipe 

Corresponding characteristics of the flow through an expanding pipe are 
shown by curve (2) of Fig.14. At low subsonic speeds the flow is governed by ' 
the oondlticn that the internal static pressure attains the free stream value 
at the exit, Hence the exit Mach number IS eptal to M,, the free stream tube 
area is equal to and the mass flow ooefficient is greater than that for the 
parallel pipe in 
ewation (22) 

The value of mass flow coefficaent given by 
reached at some value of' M below unity. 

Here the entry chokes (En2 = 1.0) and betvfeen this Maoh number &K?. unity the 
mss flow reraains oonstsnt while the free stresmtube ares. decreases from the 
value A3 to the value A2. 

Above the ohcklng Mach number, a normal shock travels along the pipe as 
MI is inorensed, and at some higher value, whlchmay be either subsonic or super- 
sonic, the shock reaches the exit. From this point onwards the internal flow 
is completely supersonic and the pressure difference at exit is resolved through 
a train of shock waves snd expansions, beginning with shocks. 

These points are ilLustratedfurther in Fig.15, where theoretical curves 
are shown for the choking boundary and the Mach number at which the internal 
flow becomes completely superscnic. 

Above M, = 1.0 the entry is at "full mass flow'! (61 = A2) and this mass 
flow 1s the same as for a pareJl,el pipe having the same entry si-ea. 

4 Contracting pipe 

Curve (3) of Fig.14 illustrates the flow through a contracting pipe. At 
subsonic speeds, the condition that the static pressure at exit has the free 
stream value implies that the exit &oh number 1s equal tc Ml, the free stream 
tube area is equal to A3 ard therefore the mass flow coefflclent is lower than 
that for the parallel pipe in the ratlo A3/A2. Consequently U-I this case the 
value of mass flow given by equation (22), correspotiing to ohoking of the 
entry is never attained. At Ml = 1.0 however, the exit chokes (M3 = 1.0). 

This condition then extends into the supersonic range. Svlce the exit 
is choked, the flow remains subsonic throughout the pipe: hesrce a normal shook 
is famed in the free stream ahead cf the entry. The mass flow is deterrmned 
by the conditions at the exit, namely, that M3 = 1.0 and the total pressure is 
that behind a normal shock at the free stream Mach number. We may therefore 
formtintesnexpression for mass flow sirmlar to that of equation (22) for the 
entry choke. We have, then 

In terms of the entry area and free stream total pressure, this becomes 

ma 
PA 

0 = y.$p. 
2 (Y+l)/(y-I) 

A2 PC 0 ( > 
r+l 

(23) 

(UC) 



where $ = AdA2 and pvpo 1s the total pressure ratio across a normal 
shock at Mach nuder M,, given by 

I 5 -YAP-1 1 -‘/y-1 
PO = L- s+ I x 2-L 2 - ti y+l 1 Y+l 1 (25) 

This mass flow coeffxient is plotted 12 Fig.14 for the Mach number rsnge 
corresponding to exxt choke. Jn the same rmge the free strem tube arez, 
which at M - 1.0 is equal to A3, 
the value 1 - 

rncrenses with increase of IL, tmards 

2' The normal shock moves downstream towards the entry. 

A value of MA is reached at which the mass flow coefficxent given by 
eqxdron (24) is equal to that of curve (1) for supersonic internal flow. 
At this point, the free stream tube area is equal to A2 and the nomml 
shock lies across the plane of the entry. Above this point, the condition 
of choked exit and subsonic internal flow would give a greater mass flow 
than is obtained with supersonic internal flow. The former condition 
would require the free stream tube areato be greater than A2, with a 
detached normal shock followed by subsonic accoleratlon into the entry. 
This is not a stable solution. Instead, at the critical Mach number, the 
shock 1s swallowed ad the condition of supersonu: internal flow 1s 
obtained as with the parallel snd expanding pipes. The entry 1s at "full 

the mass flow 1s given by equation (21), and a 
at exit is resolved by means of n shock- 

expansion train beglnning with expansions. 

The crItica Mach nuder, corresponding to swallowing of the shock, 
IS obtained in terms of the area ratio of the pl e by equntlng the two 
expressions for mass flow given by ewat.tlons (217 and (24). This leads to 
the relationship:- 

+ 
$= $$+ L (Yc:, q IN 2$ - y-1 '/(Y-l 1 

(y+l) g 1 
which is equation (I) of the present report. 

- 75 - 





APPBYDIX II 

Crltxal length/radius ratlo for pamllel p=.pes 
ln viscous flow 

Equations (12) and (19) def'me the relationships between the Mach 
nqer at tiich the internal flow becomes supersonic and. the parameters 

-3 
RI * e/r and R -'/5 

4 
. L/r for lam' mar md turbulent boundary layers 

respsctlvely. or a parallel pipe (A3 = A2), the relationships become:- 

-ii 
Rl - 

0.575 f, @,I 
A/r cc - 

(1 + 0.227 M-') 
(1 - {$I 

for a laninar layer, and 

R;'/5 . A/r = 
21.1 f,(M,) 

(I + 0.219 i;i2) 
(1 - J$) 

(-4 

(194 

for a turbulent layer, where $ is defined by equation (I). 

From these equations, the crltxal length/rs&us ratio of a parallel 
pipe has been calculated for various Mach numbers from 1.0 to 3-O snd various 
Reynolds nunibers between Id+ and 107. The results are plotted in Figs.l6(a) 
and (b) - for lsmlnar and turbulent lsyers respectively - in the form of 
curves of a/r ageinst log R, at constant M,. 

Lt B, = I& the crlt1cs.l ratlo is somer?hat greater for a turbulent 
layer than for a 1smina.r layer. lit R, = 105 the values are much the same 
m the two cases. At R, = 106 the values for the l&war lsyer are about 
5@ greater thw those for the turbulent lsyer. 

We note that since E < 1.0, the denormnators of the right hand sides 
of equations (12s.) snd (lye.) are the sa!ne to vylthln 1%. Equating these 
expressions leads to the folkwing approximat8 result for the rntro of 
oritxal values. Writing h for the crdlosl value of 4/r, with appropriate 
suffix for lminar or turbulent flow, we have 

“y-s 0.575 f,(“,).R$ 0.575 (ii,+ 
% 21.1 f2(M,) R;'5 

= 
21.1 (iq”5 

= 0.02725 (ff)o-3 

when F = IO6 this has the value 1.72. In general therefore, the rat.tro is 

2 = , 72 ‘-,obg~-6) ” 
lt 

. L 
- 16 - 



or, since lOoa * 2.0, 

%. 

7 
$ q,72 x 2(log z - 6) (27) 
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FIG. I. MINIMUM AREA RATIO OF A PIPE 
FOR SUPERSONIC INTERNAL FLOW. 



Mt - MACH NUMBER BEHIND NORMAL SHOCK 
- M, - FREE STREAM MACH NUMBER 

R, - REYNOLDS NUMBER IN FREE STREAM 
CONDITIONS 

E = REYNOLDS NUMBER Al MACH NUMBER fi 
BEHIND NORMAL SHOCK 

- STAGNATION TEMPERATURE = ZO’C 

3.0 

FIG.2. INTERNAL MACH AND REYNOLDS 
NUMBERS AS FUNCTIONS OF FREE 

STREAM M,. 



. 

PARAMETER 

PARAMETER 
FOR 

LAMINAR 
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NP 

FIG.3. DETAILS OF MODEL PIPES SHOWING 
ORDER OF PLACING ON SCALES OF 
PARAMETERS FOR LAMINAR & TURBULENT 

FLOW. 
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M, = I.34 
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p+: INTERNAL STATIC PRESSURE AT A POINT MIDWAY ALONq 
M,= CORRESPONDING MACH NUMBER ASSUMING ISENTROPIC 

TOTAL PRESSURE BEFORE THE JUMP IN THE CURVES 
AND NORMAL SHOCK RECOVERY AFTER THE &MP 

j,, = FREE STREAM TOTAL PRESSURE 
tvj’ FREE STREAM MACH NUMBER 

-r 
PIPE 

I I I I I I 
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PIPE PARAMETER FOR LAMINAR FLOW R-I”. ‘l+ 

FIG.4. STATIC PRESSURE AND MACH 
NUMBER IN SMOOTH PARALLEL PIPES. 
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FIG.5 CHARACTER OF FLOW IN SMOOTH 

PARALLEL PIPES. 
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PIPE PARAMETER FOR TURBULENT FLOW, R-‘? e/Y 

FIG. 6. STATIC PRESSURE AND MACH 
NUMBER IN PARALLEL PIPES WITH 

TRANSITION STRIP. 



EXPERIMENTAL RESULTS :- 
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FLOW (EQN. 19) 
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FIG. 7. CHARACTER OF FLOW IN PARALLEL 
PIPES WITH TRANSITION STRIP. 



TUBE NU.12 iSMGGTHI 
-et’, = 10.0: R = 1.58 x IO6 

INTERNAL FLOW SUBSONIC. 

TUEE NO.14 (SMOOTH) 
4/r = 5.39; R = 8.44 x 105 
INTERNAL FLOW SUPERSONIC. 

TUBE NO.14 WITH 
TURBULENCE STRIP. 
*1/i- = 5.39; R = 8.44 x lo5 
INTERNAL FLOW SUBSONIC. 
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mm ~0.7 ISMPOTH) 
e/r = 10.0: R = 5.02 x IQ5 

INTERNAL FLOW SUPERSONIC 

TUBE ~0.4 lsM00~~) 
ur = 20.0; R = 1.26 x 100 
INTERNAL FLOW SUBSONIC 

Fl S AT M = I,53 



TUBE NO.3 ~S~OOT~) 
b'r = 29.8; R = 4.11 x lo5 
INTERNAL FLOW SU 

TUNE ~0.4 [~~00T~l 
@r = 20.0; R = 1.15 x ia* 
INTERVAL FLOW SU~~SONI&. 

TUBE NO.4 WITH 
T~B~ENCE STRIP 
I~T~NAL FLOW SUBSONIC. 



TUBE No.4 (SMOOTH) 
&/I- = 20.0; R = 1. i5 x lo6 

TUBE NO.7 WITH 

ANGLE OF YAW, B = 0' 
TURBU~NCE STRIP L&r = 10.0; 
R=4.5Qx105) fl=60 

ENTRY FLOW SUPERSONIC* ENTRY FLOW SUBSONIC. 

TUBE ~0.4 (SMOOTH) TUBE NO.7 WITH 
d/r = 20.0: R = 1.15 x 10' TURBULENCE STRIP te./, = 10.0; 
p = 12.5O R = 4.59 x 105) 8 = 13~ 
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PIPE NUMBERS FROM FIG 3. 

0 IO P' 2 

(a) PIPES WITH LAMINAR FLOW AT ZERO YAW. 

FIGURES APPENDED TO CURVES ARE 
PIPE NUMBERS FROM FIG 3. 

W PIPES WITH TURBULENT FLOW AT ZERO’YAW. 

FIG. 12 (a&b) INTERNAL MACH NUMBER OF 
INCLINED PIPES AT M, = 1.86. 



,B = ANGLE OF YAW 
&= AN&E FOR WHICH INTERNAL BOUNDARY 

LAYER FIRST BECOMES FULLY TURBULENT 
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FIG.13. VARIATION OF CRITICAL VALUE OF 

R;? e/, WITH ANGLE OF YAW. 
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3 :-PARAiLEL E PIPE, is/A2 = I-o+ 
2 :-EXPANDING P\PE, As/AZ= I-2 
3 :-CONTRACTING PIPE, A3 /A, z O-8 I 
A,: AREA OF FREE STREAM TUBE CAPTURED BY PIPE 
A; ENTRY AREA 

- 

Ass EXIT AREA 
T-C: RATE OF MASS FLOW IN PIPE 

;,a,% STAG,NATION PRESSURE & SONIC VELOCITY 
I I I I 

5 I.0 I.5 Z-0 z.5 3 
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FREE STREAM MACH NUMBER, M, 

FIG. 14. COMPRESSIBLE FLOW IN FRICTIONLESS 
PIPES WITH MONOTONIC TAPER. 
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EXIT i e INTERNAL FLOW 
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FIG. 15. COM ‘RESSIBLE FLOW IN EXPANDING 
PIPE: TRAl’ ,SlTlON FROM SUBSONIC TO 

SUPI :RSONIC INTERNAL FLOW. 
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FIG. 16 (Q rib) CRITICAL LENGTH/RADIUS RATIO 
FOR PARALLEL PIPES WITH LAMINAR OR 
TURBULENT BOUNDARY LAYERS AS FUNCTION 
OF REYNOLDS AND MACH NUMBERS. 
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