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Summary.--The use of an electrical resistance analogne, for solving the problem of a thin two-dimensional wing 
oscillating in an incompressible ideal fluid, is considered; wings with and without flaps are investigated. The particulars 
of the design and construction of a special graded analogue are given. 

Experimental results are obtained for flat plates, with and without flaps, oscillating harmonically with small 
amplitudes in a steady air stream. These experimental results are in close agreement with theory. 

1. Introduction.--Electrical resistance analogues have been used successfully t o s o l v e  m a n y  
steady-flow problems for aerofoils in bo th  two and three dimensions, the  procedure involved being 
bo th  simple as well as rapid. 

The purpose of the present work was to invest igate the  practicabil i ty of using a resistance 
analogue to determine the  aerodynamic forces on a two-dimensional  oscillating aerofoil, with and 
wi thout  a flap. This is an appreciably more difficult problem than  the  steady-flow case, but  an 
electrolytic t ank  has been used with success for the  case of a flat plate  with no flap, by Landahi  
and Stark 1, and by Duquenne  2. The basic problems for the  resistance network are the  same as 
those for the  electrolytic tank,  but  the  practical problems are ra ther  different. 

T h e  techniques used by  Landahl  and Stark, and by  Duquenne,  differ from each other in so far 
as the  electrical potent ial  in the  analogue was not  equivalent  to the  same aerodynamic function 
in both cases. 

The procedure described in the present  paper  is similar to tha t  used by  Landahl  and Stark, 
but  here not  only is a resistance ne two ik  used instead of a tank, but  the  work is ex tended  to 
aerofoils wi th  flaps. 

In  all the  procedures referred to above, the  solution of tt~e oscillatory-flow problem is reduced 
to the  solution of some equivalent  steady-flow problems. 

2. Basic Mathematical Problem.--For the  case of a th in  two-dimensional wing oscillating in a 
s teady air s t ream ill an incompressible medium,  where the  oscillations are small, the  problem 
can be represented by Laplace's equation, which is satisfied by  both  the velocity potent ia l  # and  
the  acceleration potent ia l  $, i.e., 

~x ~ q- ~z ~ - -  0 

~x ~ q- ~z ~ 
where the  x axis i spara l le l  to the  air s t ream and the  z axis is normal  to it. 



The mean position for the aerofoil is taken as the x axis, and since the amplitude of the 
deflections are small, the corresponding boundary conditions are actually applied on this axis. 

If the oscillations are harmonic with frequency v, the above functions can be represented by 

¢(x ,  z, t) = ~(x ,  z) e %  

the velocity components due to the perturbation being obtainable in the usual way by 
differentiation. 

A third potential function satisfying Laplace's equation is 

1 f~=* = ~(~, ~) d ~ ,  
~(.,z) W ,=_~ 

where U is the free-stream velocity. This function was proposed by Landahl and Stark and used 
by them in the solution of the problem, whereas Duquenne used the velocity potential. 

Broadly speaking, the problem could be solved in terms of any one of these three functions, 
but  the practical problems are different for each case. The acceleration potential ~ would involve 
difficulties associated with singularities and also, as with steady-flow problems, the aerofoil 
incidence could not be determined prior to the experiment. The velocity potential q~ involves 
carrying out separate experiments for each value of the frequency, and also the boundary 
conditions are difficult; this procedure was used by Duquenne. The potential function w entails 
one set of experiments with simple boundary conditions independent of the frequency, but  the 
subsequent numerical work involves difficulties associated with the integration. However, this 
latter method is the one adopted by Landahl and Stark and also it is the one chosen by the present 
authors as being the most convenient. 

3. B o u n d a r y  C o n d i t i o n s . - - T h e  boundary conditions of the problem in terms of the potential 
function w, can be expressed very simply, except over the aerofoil. 

In the plane x, z, with the leading edge of the aerofoil at x = 0 and the trailing edge at x ---- c, 
these boundary conditions are as follows: 

(1) ~(x, z) is all odd function of z 
(2) W(x, 0) = 0 f o r x  ~ 0  
(3) ~ (x, 0) = ~ (c, 0) for x > c 

(4) W (x, z) - +  0 as x - +  -- on and z--+ + 0o 
(5) F o r  O < x < c; z - -  O 

y "f ~(x, O) ----U+~z~ i,, o ~(~) d~ + ~ -~ ~o. e"~/~ d~, 

in which 

where w is the velocity normal to the free air-stream direction, i.e., z = 0. Thus, if the wing 
position at any time t is given by z = f (x) e ~''~, then ~ = Uf, (x)  + i v f  (x). The boundary 
conditions referred to above are self-explanato W except for the last one, which gives the normal 
gradient to be applied over the wing. 

This condition can be written as 

where 
~(x ,  O) = ~ f~(x, O) + ,p~(~ 

~ ( x ,  O) = -~ + 



Now V, ll) can be evaluated, split into real and imaginary parts and the corresponding experiments 
carried out, yielding ~(1/. As a result of these experiments the first term in the expression for 
~o, (~/can be evaluated and then this expression becomes a linear one in ~0 I~/, where ~0/~/over the 
aerofoil is independen L of x. Here, generally speaking, by considering real and imaginary parts, 
one further experiment yields ~¢,/. Thus ~ can be determined everywhere. In actual fact, by  
suitably arranging the experiments to be done, three in number are sufficient for the flat plate, 
and one of these will yield ~o/~/for other aerofoils, when ~0 (~/has been determined. 

4. Resista~ce-A~alogd, e Arra~geme~t.--It was decided that,  in order to be able to set accurately 
the required variation of w, over the aerofoil, it would be necessaryto provide a fine mesh on the 
analogue, at least in the vicinity of the aerofoil. Representation of tile aerofoil by means of 
twenty discrete points seemed feasible, and these points correspond to the nodes (pins) of the 
resistance network. At the same time, the analogue field must be large so that  the edge effects 
are negligible. 

Thus, either a very large network with a very fine mesh separation would be required, or 
alternatively, a graded network could be used, the advantage of the latter being that  it is more 
economical to build. Several analogue network boards were available but  none was quite suitable 
and so a large graded analogue was devised and constructed using the technique developed by 
Redshaw 6. This large graded analogue actually consisted of eight separate networks which 
could be assembled together in a variety of ways to suit the individual applications. Some of 
these constituent net works were uniform, some graded in one direction and some in two 
directions. The overall result was that  in effect the aerofoil chords were represented by twenty 
ordinates in a total field measuring 26 × 21 aerofoil chords. The whole arrangement was very 
accurate and a photograph of the complete equipment is given in Fig. 1 and the diagrammatic 
set-up is shown in Fig. 2. 

Full details of the design and construction of the analogue are given in Appendix A. 

The electrical potential on the resistance board is analogous to the special potential function 
and is therefore proportional to it. Hence, when W itself was specified at the boundary, the 
proportional electrical potential was set. When v)z, the normal gradient, was specified, the 
corresponding electrical gradient was known. To set this value the boundary potential itself was 
adjusted and the gradient calculated from the boundary potential and the potentials at the next 
two positions inwards, normal to the boundary. The three-ordinate technique was used as 
described by Palmer and Redshaw a elsewhere. 

A good estimate of the likely accuracy achieved by means of this representation is given by 
the experiments recorded in Appendix B, where the accuracy of some simple steady-state solutions 
is considered; the error in the steady-state lift coefficient for a flat plate is only 1 per cent. 

5. Solutio~s.--Several examples have been evaluated, including aerofoils both with and 
without flaps, and the experimental results have been compared with theory. 

The first set of examples are concerned with a flat plate oscillating both in pitch and vertical 
translation2 These experimental results have been evaluated for a wide range of frequencies and 
the results compared with the values calculated by Minhinnick *' 5. Fig. 3 gives the results for 
pitch about the leading edge and Fig. 4 gives the results for vertical translation; the full line on 
the graphs being the theoretical values from Minhinnick. Both real and imaginary parts are 
plotted, so tha t  both amplitude and phase can be deduced if required. 

For aerofoils with flaps, the case of a flap oscillating about a hinge at its leading edge is 
considered. The experimental results together with the theoretical values are recorded in Figs. 
5 and 6. Fig. 5 gives the case of a flap of 25 per cent chord and Fig. 6 gives the case of a flap 
of 30 per cent chord. 

The pitching moments for the above cases are given in Figs. 7 to 10 inclusive. 
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In all examples it should be particularly noted that  the agreement between experiment and 
theory is good, even up to the relatively high frequencies consideredl 

It should be emphasised that  the discrepancy between the theoretical results and those deduced 
from the experiments, is certainly not all due to the inaccuracies of the board itself. Although 
some of this discrepancy will be associated with the 'fineness' of the mesh, it is considered that  
most of the discrepancy can be associated with the method of evaluation of the results 
from the experiments since this process involves approximations. I t  has been calculated that  
these approximations can be varied to some extent and hence slightly change the overall results. 
This aspect is not regarded as being particularly important  as the main object of this report is 
to show the manner in which a resistance analogue can be used to solve oscillatory-flow problems. 

Details of the procedure for calculating the relevant data from the experimental results are 
given in Appendix C. 

6. Conclusion.--This report shows how an electrical resistance analogue can be used to solve 
the problem of a thin two-dimensional wing, with and without a flap, oscillating in an ideal 
incompressible fluid. 

A resistance network with a fine mesh separation is required. 

Experiments have been carried out using the technique and equipment proposed and, for the 
cases considered, a good degree of accuracy was obtained. 
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FIG. 1. General view of electrical resistance analogue. 
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APPENDIX A 

The Graded Electrical Resistance Analogue.--Design a~d Construction 

1. I~troduction.---The immediate purpose of the graded electrical resistance analogue was to 
provide a potential analyser with a fine mesh in that  part  of the field where, for aerodynamic 
problems, the aerofoil would be represented. In  addition, it was desirable to have the graded 
parts of the nelcwork as standard items so that  they could also be readily adaptable for other 
types of problems. Generally; this means that  a graded network may be required to produce a 
finer mesh separation along one or more edges of a uniform network (as in the present problem), 
or alternatively, to provide a coarser mesh separation along one or more edges of a uniform network. 

The existing uniform network had a mesh separation of 1/64 by 1/48 and was composed of 
100-ohm high-tolerance resistance ribbon with a 200-ohm boundary, the construction being 
described elsewhere by Redshaw 1. Consequently the graded networks were designed to be used 
in conjunction with this existing network, and it  was decided that  it would be necessary to 
decrease the mesh separation to 1/8th of the uniform-network mesh size. 

2. The Resistance Grading.--Various types of resistance grading can be devised and used, but  
that  shown in Fig. A. la  was considered to be the most suitable. The desired characteristics were 
that  the graded network should give an accurate finite-difference representation of Laplace's 
equation and that  it should be simple to manufacture. In particular, it should be noted that  all 
the resistors required, in this chosen grading, are in fact either equal to one resistance value or 
to double this value. 

Other gradings, for finite-difference representation, have been devised by MacNeaP and by 
• Liebmann 8, but the grading given in this report is as accurate as any and has the advantage that  
it is readily adaptable to the constructional techniques developed by Redshaw 1' 4. In the present 
example, to make full use of this technique, the network is not built to a true physical scale but  
to a distorted scale as shown in Fig. A.lb. 

3. The Mathematical Accuracy of the Chosen Resistance Grading.--It is well known that  the 
relationship between the electrical potentials at the nodes of a square resistance grid, of side a 
with all resistances equal and axes x and z, is 

V~+.,~+ V~,~.~+ V . . . . .  + V . . . . .  -- 4V~,~ = O. 

Furthermore, the finite-difference representation of Laplace's equation 

on a similar grid is 

8~x ~- 8 ~ z = 0  
8x 2 8-~ 

provided that  terms involving fourth and higher-order differentials are neglected. 

These relationships show the harmonic function, contained in Laplace's equation, and the 
electrical potential, given by a potential analyser with uniform mesh and equal resistances, t o  
be analogous. 

Similar relationships for the nodes in a non-uniform, or graded, network exist but these will 
not necessarily be quite as accurate as those in a uniform network. However, the accuracy of the 
present network is sufficient and is in fact as high as can be achieved with such simple gradings. 
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With reference to Fig. A. la, the errors at the nodes, up to and including third-order differentials, 
are as given below: 

Node Error  

A 

B 

1 o2 a3( o3 o3 o3 a3 )1 
- a2 o-~-z +- ~ - g~x~ + ~ _ ox2 Oz + o_/~2 

- - 4  ox2 ~z2 - ~ ox2 o~z - 2 

aa Oa oa 

z~ 

D 0 

E t 

X~ 

In particular it should be noted tha t  the nodes B and E, which constitute the vast majori ty of 
nodes in a graded network, are self compensatory as regards the second-order errors. 

From the above Table there are no first-order differential errors. Hence, provided tha t  the 
potential gradient is approximately constant over the actual graded portion of the network, 
high accuracy can be achieved. 

4. The Method of Cons t ruc t ion . - -The  method of construction was basically that  described by 
Redshaw 1, except tha t  for graded networks the resistance ribbons were not placed diagonally 
but  were placed in both the x and z directions. To avoid electrical shorting, the resistance 
ribbons were placed between transparent insulation tape before assembly. 

The grading to 1/8th of the original mesh size was carried out in three stages and this meant 
that ,  by building tile units to the distorted scale shown ill Fig. A. lb, only eight different types of 
resistance ribbon were required. Some of these ribbons had lo0ps for soldering on both sides, 
some only on one side, and also the loop spacing varied. The resistance between consecutive 
loops was 100 ohms for some ribbons and 200 ohms for the others, with a maximum tolerance 
of -b 1 per cent. The advantage of the distorted scale was principally that  it permitted longer 
lengths of ribbon, with uniform resistance per unit length, to be assembled in one operation than 
would otherwise be possible. I t  should be remembered that  the resistance per unit  square of a 
conduct{ng sheet is independent of the size of the square ; similarly, the resistances in the 
uniform parts of a network are independent of the size of the mesh. 

Photographs of a graded resistance analogue are given in Figs. A.2a and A.2b. The first Figure 
shows the front view of the board and the second the rear view. In this case grading is carried 
out in both directions, the board forming a 'corner' graded resistance unit. 

As in the case of the uniform boards, the whole assembly is encapsulated in resin on completion. 

5. The Various Units  and the Possible Ar rangemen t s . - - I n  all, some eight boards constituted 
the units for making up the complete graded networks. Three of these were uniform, three graded 
in only one direction, and two graded in both directions. 
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The particulars of these boards are given below: 

B~ard Type Size Number  available 

A 

B 

C 

D 

E 

Uniform . . . . . .  

Uniform . . . . . .  

Graded in one direction 

Graded in one direction 

Graded in two directions 

64 × 48 units  . . . . . . . .  

5 × 20 uni ts  . . . . . . . .  

Graded from 8 to 64 units  . . . .  
Effectively 5 × 8 uni ts  (coarse units) 

Graded from 6 to 48 uni ts  . . . .  
Effectively 5 × 6 uni ts  (coarse units) 

Effectively 5 × 5 uni ts  (coarse units) 

1 

2 

1 

2 

2 

The details of the gradings used are given in Fig. A.3. These sketches are drawu to the distorted 
scale to which they were constructed. The effective scale is shown on the drawings. 

The two principal methods of joining these units together are shown in Fig. A.4. The first 
method gives a fine mesh along one side of the board over a limited region. This method is very 
useful for aerofoil applications and gives an effective mesh separation over the aerofoil of 1/424 
by 1/512. The second method gives a coarse grading over three sides of the board, so that  the 
effective size of the main board is increased and the mesh separation therefore effectively reduced 
to 1/144 by 1/88. 

Other methods of assembly for the various units can be devised but the two arrangements 
shown here serve to illustrate the technique• 

No. A uthor 

1 S.C.  Redshaw ..  

2 R . H .  MacNeal . . . .  

3 G. L iebmann  . . . .  

4 S.C.  Redshaw . .  

R E F E R E N C E S . - - A P P E N D I X  A 

Title, etc. 

•. A resistance network of novel construction for solving certain problems in 
elasticity. Actes des Journ~es Internat ionales  de Calcul Analogique, 
Bruxelles. pp. 406 to 409. 1955. 

•. An asymmetrical  finite difference network. Quart. App. Math. Vol. XI.  
No. 3. pp. 295 to 310. October, 1953. 

. .  Resistance-network analogues with unequal  meshes or sub-divided 
meshes• Brit. J. App. PlLvs. Vol. 5. No. 10. pp. 362 to 366. 
October, 1954. 

. .  A three-dimensional  electrical potent ia l  analyser. Brit. J. App. Phys. 
Vol. 2. No. 10. pp. 291 to 295. October, 1951. 
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A P P E N D I X  ]3 

The Accuracy of the Electrical Resistance Network 

1. Theory . - -A theoretical  solution ~ of the  non-oscil latory potent ia l  problem is derived, so tha t  
detailed comparisons between theory  and experiment  m a y  be made. This solution m a y  be used 
to give a theoretical  answer to the  oscil latory problem, which was first enunciated by  Glauert  5, 
and solved by  him in a different manner.  

Consider a two-dimensional  aerofoil, of chord c, whose equation is z = f (x) ,  moving parallel  
to the x axis with velocity U. The leading edge is t aken  as the  origin of co-ordinates and the 
z axis is vert ical ly upwards.  Making the usual assumptions of linearised theory,  the boundary  
conditions for the per turbat ion  velocity potent ia l  aS(x, z) are: 

(i) = 0 

(ii) #(x, z) = -- # ( x , -  z) 

(iii) ~(x, 0) ---- 0, x ~< 0 

(iv) 0) = 0) = K ,  x c 

( v ) ~ - ~ ( x , O ) = U ~ , O < x < ~ c  

(vi) ~(x,z) K 

where 

0~< 0 ~< =, tan  0 z 
X 

Let 
qS(x, z) = #l(x, z) + #~(x, z), where 

q~l(.~, 0) = ~(C, 0) and #.~(x, O) = O, x >~ c 

(x, 0)----0, a n d ~  #-32= Udd~fx 0 < x , <  c. ~z ~z ' " 

By  the Schwartz-Christoffel theorem1: 

~l(x, 0) = K K 2x -- c 
_ _  __  COS - I  

~: C 
w h e r e  

2 x  - -  c 
0 ~< cos - ~ - ~ < = .  

C 

#2(x,z) can be determined for the general aerofoil z = f (x) .  

z =  L x  + M x  ~ + N x  3, O-<_ x ~ c. 

Using Refs. 2 and 3, 0 ~< x ~< c, 

Therefore 

- - , O < x < c  

I t  is sufficient here to consider 

q)(-'x, o)~" = K K 2x  - -  c 
_ _  _ _  C O S  - 1  

C 

which gives theoretical  values for compiling Figs. B.2, B.3, and B.4. 

16 



By the Kutta-Joukouski condition 

I ~ -  3Mc2 15N£-] 
K = - - ~ U  + 4 + 16 j "  

Hence, for a flat plate in non-oscillatory flow 

(-~, O ) ,  ~ l e o N _  1 2 X -  C ~_ FX(C - -  X)~ 1/2 
- -  U L c  2 2 c k c ~ ' 

The acceleration potential ¢ (x, z) = U ~# (x, z) 

Therefore 

O < ~ x < ~ c .  

z L -  O x c ,  

which gives theoretical, values for compiling Fig. B.1. 

The total lift, z ---- 20 ¢(x, 0) dx 
0 

= 20 Ug,(c, O) 

z = - -  =Lp U~c for a flat plate. 
In the usual notation, L = -- tan ~ ----- -- ~ for small'incidence. 

2. General Cons idera t ions . - -Exper imenta l ly ,  it is convenient to denote the chord of an aerofoil 
by the number of nodes of the network (usually called pins) at which the potentials are individually 
adjusted to give the required gradient. For the acceleration potential analogy, n pins correspond 
to a chord of (n + ½) mesh lengths. For the velocity and oscillation potential analogies, n pins 
correspond to a chord of n mesh lengths. 

Two principal factors appeared to affect the experimental values obtained for the lift: 
(i) The number of pins in  the aerofoil 

(ii) The effective mesh separation along that  edge of the net in which the aerofoil was placed. 

3. Flat  Plates: Acceleration Po ten t ia l . - -The  method of calculating the incidence is given in 
Appendix C, and three aerofoils were chosen; two experiments of eight pins and twelve pins, 
were carried out on a net with a mesh separation of 1/64 × 1/48. The third, of twenty  pins, was 
on a net with an effective mesh separation of 1/512 × 1/424. .Fig. B.1 shows the resulting 
potential functions. The value obtained at the pin next to the leading edge was much too high 
in each case, and does not appear on the graph as drawn. I t  seems that  the twelve-pin aerofoil 
was too large for the net. Three methods of evaluating the lift were tried: 

(i) Trapezoid rule on experimental values 
(ii) As (i), making a correction, based on the value of ¢ at the pin next but one to the leadh~g 

edge for the square-root infinity at the leading edge 
(iii) As (ii), basing the correction on the value of ¢ at the pin next to the leading edge. 

The experimental values of z/(p U2ca) are shown below: 

Aerofoil: 

(i) 
(ii) 

(iii) 

8 pins 

3-258 
3.434 
4.482 

12 pins 

3.738 
3.942 
4.866 

20 pins 

2.798 
2.932 
3.442 

Since the theoretical value is z~, method (iii) is ruled out. Method (ii) seems slightly better than 
method (i), but  this is obviously rather an unsatisfactory analogy if one wished to know the lift 
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on an aerofoil. However, it yields reasonable pressure distributions directly. The velocity- 
potential analogy described below gives a very accurate value for the lift, but the pressure 
distribution can only be obtained by differentiation. The latter analogy seems more promising, 
and it alone has been used for twisted aerofoils. 

4. Flat Plates" Velocity Potential.--Four different aerofoils (5, 10, 15, 20 pins) and three 
different nets (effective mesh separation 1/48 x 1/64, 1/64 x 1/48 and 1/512 × 1/424) were 
chosen, and the twelve experimental values of z/(p U2c~) are tabulated below. 

Separation: (1/48 × 1/64) (1/64 X 1/48) (1/512 × 1/424) 

Aerofoil f l  5pinspins 
chord: ~ 15 pins 

• L'20 pins 

3.459 
3.319 
3.S09 
3.435 

3.409 
3.292 
3.270 
3.270 

3-394 
3-270 
3-21a  
3.194 

It appears that  if the aerofoil is less than 0.2 of the net, the number of pins in the aerofoil is 
the principal factor affecting the lift. Consequently, this should be as large as possible, but less 
than 0.2 of the edge of the net. The theoretical and experimental values of #(x, 0) over the 
aerofoil for 20 pins on the largest board are shown in Fig. B.2, where the solid line denotes the 
theoretical values• The value of the lift obtained in this case is only 1.6 per cent high which 
is as accurate as one could hope for. 

5. Oscillatory Flow. Flat Plate.--Comparing the boundary conditions for the oscillation 
potential given in the main part of the report with those for the steady-state velocity potential 
on the first page of this Appendix, we see that  the solution of this problem depends on the solution 
of the non-oscillatory velocity potential problems for the following aerofoils. 

x 
(i) z -- , 0 ~< x ~< c 

c 

(ii) z = - -  , 0 ~<x~<c 

(iii) z------ , 0 ~<x~< c. 

The theoretical and experimental values obtained are shown in Figs. B.2 to B.4, where the 
solid line denotes the theoretical values. The agreement is not as good for the twisted aerofoils 
as for the flat plate. 

No. Author  

1 E . T .  Copson . . . .  

2 H. Jeffreys and B. S. Jeffreys 

3 H. SShngen . . . .  

4 E . T .  Copson 

5 H. Glauert . .  

R E F E R E N C E S . - - A P P E N D I X  B 
Title, etc. 

. .  Funct ions  of  a Complex Variable. First  edition. 
vers i ty  Press• 1935. 

. .  Mathematical  Physics• Second edition• 
Univers i ty  Press. 1950. 

. .  Die L6sungen der Integralgleichung 
1 _ _ _  

g(x) = ~ f iof(*)~ d~undderen 
Anwendung in der Tragfliigeltheorie. 
Vol. XLIV.  pp. 245 to 266. 1939. 

. .  Solution of a certain potent ia l  problem. 

•. The force and moment  on an oscillatory aerofoil. 
1929• 

p. 198. Oxford Uni- 

Section 14, p. 111. Cambridge 

Die Mathematische Zeitschrift.  

(Unpublished.) 
R. & M. 1242. March, 
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APPENDIX C 

Some Details of the Procedure .for Evaluating the Experimental Results 

1. Introduction.--This Appendix considers various difficulties encountered in the course of the 
work and gives the methods finally selected as yielding the best results. In each case, the aerofoil 
is set in the centre of one edge of the net. 

2. Velocity Potential for Non-Oscillatory Flow.--The pins in the wake were kept at a potential 
equal to that  at the trailing edge, while the leading edge and the pins ahead of the aerofoil were 
kept at earth potential. The potentials over the aerofoil were adjusted so that  

az : 2a [ -  3#(X, O) + 4¢~(x, a) -- ¢(x, 2a)], 

where h is the distance between the pins. The equation of the aerofoil determines ac~/az(x, 0); 
the lift, moment and pressure on this aerofoil may then easily be calculated from #(x, 0). 

3. Acceleration Potential for Non-Oscillatory Flow (Flat Plates).--In this case, the potential 
function is infinite at the leading edge, and the best results were obtained by considering this as 
half-way between two pins. The pins outside the aerofoil and at the trailing edge were earthed. 
That pin on the aeroIoil next to the leading edge was kept at a constant potential, and 3¢/az 
(x, 0) disregarded. The potentials at the other pins on the aerofoil were adjusted so that  a¢/az 
(x, 0) = 0 at each. The pressure difference p(x, 0) = 2p¢(x, 0) over the aerofoil, where the 
incidence ~ is so far unknown. In the notation of Appendix B, L ~ -- ~ when ~ is small. 

u " ~ = -  ~ ( ~ ' 0 )  de'  0 < x < c  

3¢ 
- f" 3 ¢ ( ~ , O )  de  ---- - -  r a ~ (e,  O) 

J-a~ 3Z 
0 < x < c  

where x ---- -- 2c is the upstream edge of the board, and the sum extends from any pin on the 
aerofoil after the first overall upstream experimental values. From Appendix B, 

Therefore 

3¢ (~, o) U"c= 
3z - - ~ 2 Z  as x - +  -- oo . 

- -  UYa 
_ . ~  (~, o) d~ ~ 2~ 

Beginning with the experimental value for U"~, in this way a convergent series for its correct value 
can be obtained. 

4. Oscillatory Flow for Flat Plates.--Integrals of the form 

f o a~ e.~/~ dx (x, O) 
- o ~  

are required to determine completely tile oscillation potential function which is described in the 
main part of this report. From Appendix B, it can be deduced that  

a~ (x, O) ~ ( -  x) - in  as  x ~ 0  
3 Z  

3~  (x, 0) - K 
- -  ¢ ' ~ - -  a s  X - - > - - -  o 0  . 
3 Z  ~cX 
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f 
o 

Filon ~ considers integrals of the  form sin k x  ~(x)  dx  and gives the following formula: 

fb ~J(X) 7------- h{o~[~/J(a) c o s  - -  2p(b) c o s  kb I -Ji- fls2,, -Jr- ~$2,~,-1} s i n  k x  dx  ka  

where the interval  (a, b) is divided into an even number,  2n, of equal  parts  h and kh  = O. 

1 cos 0 sin 0 2 sin ~ 0 
= ~ + 02 0 ~ 

Then 

I cos 2 0 2 sin 0 cos 01 
fl ---- 2 1 + 02 03 

Also, 

y __ 
[ s i n 0  c o s 0 j  

4 k 0 ~ 0 ~ " 

~(x~,) sin kx~, - {[w(a) sin ka  + ~(b) sin kb] 
r=0 

s2,,_~ = ~ ~o(x~,_~)sin kx~,_~. 
r= l  

Filon adapts  this to the case of f *  ¢ (x_~) sin k x  dx  and this approach is easily extended to the type 
0 X 

of integral  required. For  small x, suppose ~w/~z (x, O) = ~o/,V / - -  x. This paper  is interested in 
comparat ively  small frequencies, where ~ is negligible. Fi lon 's  formula becomes 

where 

f vx fo sin v X / U d x  , 0 ~ (x, O) sin dx = ~o + h[~s2,~ + rs2._d 
_~ ~ K -~ V - x 

and 

Similarly 

where 

n. Si l l  (2~ 2)0 
s2._~ = ~ ~ _ 1  sin (2r --  1)0 --  ~o 

a--z ( -  rh, O) = / ~ .  

.x  ( °  cos ~x/U 
(0 ~ (x, 0) cos dx = ':o j dx + h[~s2. + rs2.-d 

J_~ az W _~ v /  - -  x 

~ cos 2tO cos 2nO 
s~,~ : ~=, /~2. cos 2rO - -  ½~2. cos 2n0  ~o .=, ~/(2rh) -¢- ~o 2~¢/(2nh ) 

= c o s  - 1 ) o  - c o s  - , ) 0  

.=, .=1 V{(2r  - ~)h}" 

If b is chosen such tha t  for x <~ - -  b, ~o /~z  (x, O) = - -  K/(z~x) to the  accuracy of tile experiments.  

f -b ~ (x, O) e ~'~/U dx  = e '~'*/v dx  
_ooY~ _~ ~ " 

f 
O e i v x / u  

The values of 
- - b V - -  X f -b'o e ivx/U dx  and. 

_ X 

- -  dx  may be found from Refs. 2 and 3. 
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5. Control Surfaces.--Much of the mathematics in the present treatment of oscillatory flow 
depends on the relationship 

l f"  ~(x, z) = U 6(#, z) e ~''(*-'~//v d#, 
- - c O  

which is not true when the aerofoil has a sharp corner, as for a control surface. I t  is true, however, 
if the corner is rounded off as in Fig. C. 1. 

In the notation of the Figure, 

0~<x~< b c o s ~ - - s t a n ~ c o s ~ ,  f(x) . . . .  h - - x t a n  

+ , /  

\2qW2 
+ ~  tan cos ~ + ~  sin s i n . )  / 

b c o s ~ + e t a n ~ c o s ( ~ + / ~ )  ~<x~< bcos~ + ( c - - b )  cos (~+ /~ )  

f (x) ----- -- h -- b sin ~ -- (x - -  b c o s ~ ) t a n ( ~  + / 3 ) .  

The experiments are arranged such that  the hinge lies on a pin, and e is taken to be so small that  
no other pin lies on the circular arc. 

Then for small ~, 

0 ~ < x  < b ,  

~!(x, 0 )=_~_U(h+2x~)+p hx+ + ~  
~Z co 

O~ODz (b, O) = -- o~ fi2 iv~ (h + 2ba). + ~ hb + + " -co ~-  

b < x  
"'I x,. I. bl,q 

D~O(x, 0) = - - ~ - - ¢ 3  i v [ h + 2 x ~ + 2 ( x _ b ) ~ ] + ~  h x + ~ - - +  
8z - -  U 2 

+ iv f~  8~ (x, O) ei~,/V dx 
U co~ 

R E F E R E N C E S . - - A P P E N D I X  C 

No. Author Title, etc. 

1 L . N . G .  Fi lon . . . . . .  On a quadra ture  formula for tr igonometric integrals. Proc. Roy. Soc. E. 
Vol. X L I X .  pp. 38 to 47. 1928/29. 

2 Anon . . . . . . . .  Tables of sine, cosine and exponential integrals. U.S.A. Work Projects 
Adminis t ra t ion  Pub.  1940 and 1942. 

3 Jahnke  and  Emde  . . . . . .  Tables of Higher Functions. 4th edition, pp. 35 to 36. Liepzig, 1948. 
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