

© Crown copyright 1959

LONDON: HER MAJESTY'S STATIONERY OFFICE

1959 PRICE £1 75.6d.NET

Drag Reduction of Thin Wings at Supersonic Speeds, by the Use of Camber and Twist

By

G. M. ROPER, M.A., Ph.D.

COMMUNICATED BY THE DIRECTOR-GENERAL SCIENTIFIC RESEARCH (AIR), MINISTRY OF SUPPLY

> Reports and Memoranda No. 3132* July, 1957

Summary.—Camber and twist is applied to the problem of reducing the drag due to incidence, of thin triangular or swept-back wings, at supersonic speeds, with subsonic leading edges and supersonic or sonic trailing edges. Two cases are considered: (i) with leading-edge suction forces ignored, (ii) with leading-edge suction forces included. It is found that twist, especially towards the wing tips, is more effective in reducing drag, for given lift, for the larger values of tan $\gamma/\tan \mu$, where γ is the semi-apex-angle and μ is the Mach angle, and that camber is more effective for the smaller values, though, in general, the best results are obtained by a suitable combination of camber and twist. For triangular wings, with suction ignored, the maximum percentage drag reduction varies from about 10 per cent (for very slender plan-forms) and, if suction forces are included, from zero (for very slender plan-forms) to about 10 per cent (when the leading edges are sonic). The effect of the swept-back trailing edge is, in general, to increase the maximum percentage drag reduction for given lift if suction forces are ignored; but to decrease the maximum reduction for smaller values of tan $\gamma/\tan \mu$, and to increase the maximum reduction for values of tan $\gamma/\tan \mu$ near to one, if suction forces are included.

1. Introduction.—In Ref. 1, the effect of camber and twist on the pressure distribution and drag on some triangular wings of zero thickness, at supersonic speeds but with subsonic leading edges, is investigated. The shapes of some cambered and twisted wings are found such that the thrust loading on the leading edges is removed or modified, while certain requirements with respect to camber and twist, or aerodynamic properties, are satisfied. The effect of additional incidence is also calculated. In Ref. 2, Part II, the effect of a change of Mach number on the aerodynamic characteristics of a wing with given camber and twist is calculated.

In these investigations, no particular attention was paid to the problem of obtaining a wing of minimum drag, but it was found that for some wings (mainly those with twist towards the wing tips), with modified pressure singularities of strength P on the leading edges, there was a certain range of positions of P = 0 for which the drag was less than that on the flat wing. For wings with no leading-edge singularities, the drag was found to be greater than that for the corresponding flat wing.

For a wing with given plan-form and given lift, in incompressible or subsonic flow, elliptic spanwise distribution of chord load gives minimum lift-dependent drag. In supersonic flow, wave drag appears, and it is necessary to consider the distribution of load over the whole wing.

^{*} R.A.E. Report Aero. 2585, received 6th March, 1958.

In this report, the use of camber and twist is applied to the problem of reducing the drag due to incidence, camber and twist, for given lift of :

(a) triangular wings with subsonic leading edges, and unswept trailing edges

(b) swept-back wings with subsonic leading edges, and straight supersonic or sonic trailing edges.

Unless a special effort is made, an infinite suction (corresponding to a singularity) will occur (theoretically) on the infinitely thin leading edge, giving rise to a finite thrust locally. This infinite suction will not occur in practice, neither is the practical wing infinitely thin. In incompressible flow, it is well known that the equivalent thrust at the leading edge does appear (at least, when there is no leading-edge separation). It is not yet known, in the cases now considered, how much suction will occur; therefore two cases are considered*:

(i) with leading-edge suction forces included in the optimising process,

(ii) with leading-edge suction forces ignored in the optimising process.

Physically we are assuming, in the latter case, that the effect on the rest of the pressure distribution, of the presence or absence of the suction force, is insignificant. It is known that this is not always true, but it may well give useful results in some cases.

In Ref. 1, the surfaces corresponding to certain basic velocity potentials, and in Ref. 2, the velocity potentials corresponding to certain cambered and twisted surfaces, are given. In this report, the velocity potentials for three further (higher order) camber and twist solutions are found using the results of Ref. 2, Part II, Appendix III.

The load distributions on the nine[†] separate surfaces $z = -\delta x^{n-2s} y^{2s} (n(>2s) = 1, 2, 3, 4, 5; s = 0, 1, 2)$ are found, where δ is a small arbitrary constant, x is measured downstream from the apex, y is measured to starboard, and z is measured vertically upwards, and general formulae for the total lift, drag and pitching moments for the separate camber and twist solutions, for both triangular wings and swept-back wings with subsonic leading edges, and straight supersonic or sonic trailing edges are deduced.

In the numerical examples worked, one, two, three or four of the basic camber and twist solutions are combined with that of the flat plate (n = 1, s = 0), so as to obtain the maximum reduction of drag for given type of plan-form and given lift. The choice of surfaces is not entirely arbitrary. It is possible, from a study of the grouping, etc., of the simplest combinations, to choose the camber and twist distributions most likely to give optimum results.

The results obtained are optimum for the number of surfaces, from those available, which are combined. The method can be extended to include a greater number of surfaces, but there are already signs of convergence. Some general formulae (which could be used for more extensive calculations on an electronic computor), will be given in a further report.

It is also shown how the position of the centre of pressure (at given lift) can be fixed in any desired position, with a (generally) slight increase in the value of the corresponding minimum drag.

2. Mathematical Analysis of the Problem.—2.1. Formulae for the Calculation of the Minimum Drag for Given Wing Combinations.—In the linearised theory of supersonic inviscid flow, the drag due to incidence, camber and twist, for a wing with subsonic leading edges, is given by

T = D - S, (1)

where D is the drag component of the pressure integral, and S is the component in the free stream direction of the suction force, which is determined by the strength of the singularities in the pressure on the leading edges of the wing.

^{*} Deliberate design of wings with no leading-edge singularities, but still of low drag, is also possible, and further work on this is in hand.

[†] Further higher order camber and twist solutions have been worked out and used since this report was written, and will be given in further reports.

If α_r is the local surface slope in the negative streamwise direction, and p_r the load per unit area, at any point of the surface given by $z_r = F(x, y)$, the local surface slope and load per unit area for a surface given by

$$z = \sum_{r=1}^{n} (A_r z_r)$$
, where the A_r are constants, ... (2)

are (using linear theory):

and

Hence the lift L, and the pressure integral D, are given by:

$$L = \int_{S} (A_{1}p_{1} + A_{2}p_{2} + \ldots + A_{n}p_{n}) dS \equiv \sum_{r=1}^{n} (A_{r}L_{r}), \ldots \ldots \ldots (5)$$
$$D = \int_{S} (A_{1}p_{1} + A_{2}p_{2} + \ldots + A_{n}p_{n}) (A_{1}\alpha_{1} + A_{2}\alpha_{2} + \ldots + A_{n}\alpha_{n}) dS$$

$$= \sum (A_r^2 D_r) + \sum (A_r A_s D_{r,s}) \qquad (r = 1, 2, \dots, n; s = 2, 3, \dots, n; r < s), \qquad (6)$$

integration being over the plan-form of the wing, and where

$$L_r = \int_{S} p_r \, dS ,$$
$$D_r = \int_{S} p_r \alpha_r \, dS ,$$

are the total lift and pressure integral respectively for surface z_r , and

$$D_{r,s}(\equiv D_{s,r}) = \int (p_r \alpha_s + p_s \alpha_r) \, dS$$

is the 'interference' pressure integral for surfaces z_{s} , z_{s} (from the pressure distribution of one surface acting on the surface slope of the other).

If P, is the strength of the singularity in the x component, u, of the perturbation velocity on the leading edge of the surface z_n , the strength, P, of the singularity for the surface z is given by

$$P = \sum_{r=1}^{n} (A_r P_r)$$
, ... (7)

A 2

and the component, in the free-stream direction, of the suction force due to the leading-edge singularity is (equation (140), Ref. 1):

$$S = 2\pi\rho \varkappa \int_{0}^{x_{1}} P^{2} dx = 2\pi\rho \varkappa \int_{0}^{x_{1}} (A_{1}P_{1} + A_{2}P_{2} + \ldots + A_{n}P_{n})^{2} dx$$

= $\sum_{n} (A_{r}^{2}S_{r}) + \sum_{n} (A_{r}A_{s}S_{r,s}) \qquad (r = 1, 2, \ldots n; s = 2, 3, \ldots n; r < s), \qquad \ldots \qquad (8)$

where $S_r = 2\pi\rho\varkappa \int_0^{x_1} P_r^2 dx$ is the suction force for surface z_r , $S_{r,s}(\equiv S_{s,r}) = 2\pi\rho\varkappa \int_0^{x_1} (2P_rP_s) dx$ is the 'interference' suction force for surfaces z_r and z_s , $x = x_1$ at the wing tips, and $\varkappa^2 = 1 - (\tan \gamma / \tan \mu)^2$.

The total drag is

3

(76072)

For surfaces z_r , z_s of the same given plan-form, it can be shown that D_r , S_r and $D_{r,s}$, $S_{r,s}$ are proportional to L_r^2 and (L_rL_s) respectively. Hence, writing $D_r/L_r^2 = d_r$, $D_{r,s}/(L_rL_s) = d_{r,s}$, $S_r/L_r^2 = s_r$, $S_{r,s}/(L_rL_s) = s_{r,s}$, and $A_rL_r = a_r$, formulae (5), (6), (8) and (9) can be written $(d_r, d_{r,s}, s_r, s_r, s_r, s_r, s_r, s_r)$ depend on \varkappa and the types of surfaces z_r, z_s):

$$D = \sum (a_{r}^{2}d_{r}) + \sum (a_{r}a_{s}d_{r,s}), \qquad \dots \qquad \dots \qquad \dots \qquad (11)$$

$$S = \sum (a_r^2 s_r) + \sum (a_r a_s s_{r,s}), \qquad \dots \qquad \dots \qquad \dots \qquad (12)$$

$$T = \sum (a_r^2 t_r) + \sum (a_r a_s t_r) \qquad \dots \qquad \dots \qquad \dots \qquad (13)$$

$$I = \sum (a_r^2 t_r) + \sum (a_r a_s t_{r,s}), \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (13)$$

where $t_r = d_r - s_r$, $t_{r,s} = d_{r,s} - s_{r,s}$. Hence

where $d = D/L^2$, $s = S/L^2$, the summation in each case being for r = 1, 2, ..., n; s = 2, 3, ..., n; r < s.

For minimum d,

$$\frac{1}{D}\frac{\partial D}{\partial a_r} - \frac{2}{L}\frac{\partial L}{\partial a_r} = 0 \text{, for } r = 1, 2, \dots n \text{,} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (15a)$$

and for minimum t,

The *n* equations (15*a*) or (15*b*) determine the coefficients a_1, a_2, \ldots, a_n .

Formulae giving the values of a, and minimum $d \ (\equiv d_{opt})$ are given in equations (16) to (26). For minimum $t \ (\equiv t_{opt})$, d, and $d_{r,s}$ are replaced by t, and $t_{r,s}$ respectively, and d_{opt} by t_{opt} in these formulae. Combining two surfaces given by r = 1, 2, it can be shown that

Hence the optimum d is given by

For the combination of three surfaces given by r = 1, 2, 3:

$$\frac{a_1}{\Delta_1} = \frac{a_2}{\Delta_2} = \frac{a_3}{\Delta_3} = \frac{2L(d)_{\text{opt}}}{\Delta_{\text{III}}} = \frac{L}{\Delta_1 + \Delta_2 + \Delta_3}, \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (19)$$

where

 $\Delta_{\rm III}$

$$= \begin{vmatrix} 2d_{1} & d_{1,2} & d_{1,3} \\ d_{2,1} & 2d_{2} & d_{2,3} \\ d_{3,1} & d_{3,2} & 2d_{3} \end{vmatrix} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (20)$$

and

$$\begin{array}{l} \mathcal{A}_{1} = d_{2,3}d_{1,2} + d_{2,3}d_{1,3} + 4d_{2}d_{3} - 2d_{3}d_{1,2} - 2d_{2}d_{1,3} - d_{2,3}^{2} \\ \mathcal{A}_{2} = d_{3,1}d_{2,3} + d_{3,1}d_{2,1} + 4d_{3}d_{1} - 2d_{1}d_{2,3} - 2d_{3}d_{2,1} - d_{3,1}^{2} \\ \mathcal{A}_{3} = d_{1,2}d_{3,1} + d_{1,2}d_{3,2} + 4d_{1}d_{2} - 2d_{2}d_{3,1} - 2d_{1}d_{3,2} - d_{1,2}^{2} \end{array} \right\}$$

$$(21)$$

Hence

$$\begin{aligned} (d)_{\text{opt}} &= \frac{1}{2} \varDelta_{\text{III}} / (\varDelta_1 + \varDelta_2 + \varDelta_3) \\ &= (4d_1 d_2 d_3 - d_1 d_{2,3}^2 - d_2 d_{3,1}^2 - d_3 d_{1,2}^2 + d_{1,2} d_{2,3} d_{3,1}) / \\ &\{ 4(d_1 d_2 + d_2 d_3 + d_3 d_1) - (d_{1,2}^2 + d_{2,3}^2 + d_{3,1}^2) - 4(d_1 d_{2,3} + d_2 d_{3,1} + d_3 d_{1,2}) \\ &+ 2(d_{1,2} d_{2,3} + d_{2,3} d_{3,1} + d_{3,1} d_{1,2}) \} . \qquad (22) \end{aligned}$$

For the combination of four surfaces given by r = 1, 2, 3, 4:

where

$$\Delta_{1V} = \begin{vmatrix} 2d_1 & d_{1,2} & d_{1,3} & d_{1,4} \\ d_{2,1} & 2d_2 & d_{2,3} & d_{2,4} \\ d_{3,1} & d_{3,2} & 2d_3 & d_{3,4} \\ d_{4,1} & d_{4,2} & d_{4,3} & 2d_4 \end{vmatrix} \qquad \dots \dots \dots \dots \dots \dots \dots \dots (24)$$

and

with corresponding formulae for Δ_2 , Δ_3 , Δ_4 . Hence

$$\begin{split} (d)_{\text{opt}} &= \frac{1}{2} \varDelta_{\text{IV}} / (\varDelta_1 + \varDelta_2 + \varDelta_3 + \varDelta_4) \\ &= \Big\{ 8d_1 d_2 d_3 d_4 + 2 \sum_{4'} (d_1 d_{2,3} d_{3,4} d_{2,4}) + \frac{1}{2} \sum_{3} (d_{1,2}^2 d_{3,4}^2) \\ &- 2 \sum_{6} (d_1 d_2 d_{3,4}^2) - \sum_{3} (d_{1,2} d_{2,3} d_{3,4} d_{4,1}) \Big\} / \Big[8 \sum_{4} (d_2 d_3 d_4) \\ &+ 2 \sum_{4} (d_{2,3} d_{3,4} d_{4,2}) + 4 \sum_{4} \{ d_1 (d_{2,3} d_{3,4} + d_{3,4} d_{4,2} + d_{4,2} d_{2,3}) \} \\ &- 2 \sum_{3} \{ (d_{1,2} + d_{3,4}) (d_{1,3} d_{2,4} + d_{1,4} d_{2,3} - d_{1,2} d_{3,4}) \} \\ &- 2 \sum_{4} \{ d_1 (d_{2,3}^2 + d_{3,4}^2 + d_{4,2}^2) \} - 8 \sum_{6} (d_1 d_2 d_{3,4}) \Big] \end{split}$$

(The number under the summation sign denotes the number of terms in the sum.)

For the combination of *n* surfaces given by r = 1, 2, ..., n:

where Δ_N is of the same form as Δ_{III} , Δ_{IV} , but with N rows and columns, and Δ_r (r = 1, 2, ..., n) is equal to Δ_N with each term in the *r*th column replaced by 1.

The formulae given above are quite general, and do not depend on the type of camber and twist used, suffixes $_{1, 2, 3, 4}, \ldots$ referring to arbitrary surfaces. The formulae giving minimum d can also be used for thin wings with supersonic leading edges, or for symmetrical wings at zero incidence.

For orthogonal loadings, that is, loadings for which $d_{r,s} = 0$ for all values of r and s, the above formulae for d_{opt} reduce to those obtained by Graham⁹. For example, the formula for the combination of orthogonal loadings given by r = 1, 2, 3, 4 would reduce to:

$$\frac{1}{d_{\text{opt}}} = \frac{1}{d_1} + \frac{1}{d_2} + \frac{1}{d_3} + \frac{1}{d_4}, \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (26a)$$

but to form these (unknown) orthogonal loadings, it would be necessary to combine known camber and twist solutions, given by r = 1, a, b, c (say), and d_2 , d_3 , d_4 would be functions of the ten quantities d_r , $d_{r,s}$ (r = 1, a, b, c; s = a, b, c; r < s), so that the result (26a) could be expressed in the same form as (24) with a, b, c in place of 2, 3, 4.

2.2. Formulae for the Calculation of the Minimum Drag for Given Wing Combinations when the Centre of Pressure is Fixed (at Design C_L).—The distance of the centre of pressure of the wing from the apex is given by

$$\frac{\bar{x}}{c} = \frac{\int px \, dS}{c \int p \, dS} = \frac{\bar{M}}{cL} \equiv \nu , \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (27)$$

where \overline{M} is the pitching moment about the apex, and c is the length of the root chord.

For the surface given by equation (2),

$$\bar{M} = \sum_{r=1}^{n} (A_r M_r) = \sum_{r=1}^{n} \left(a_r \frac{M_r}{L_r} \right) = c \sum_{r=1}^{n} (a_r \nu_r) , \qquad \dots \qquad (28)$$

where $M_r = \int p_r x \, dS$ is the pitching moment about the apex of the surface given by z_r , and $M_r/cL_r = v_r$.

If v is a given constant, the conditions for minimum d are the n equations (15a) and the additional condition

Hence it can be shown that

$$\frac{a_r}{\Delta_r} = \frac{2L(d)_{\text{opt}}}{\Delta_{N-1}} = \frac{(\nu_n - \nu)L}{\sum\limits_{r=1}^{n-1} (\nu_n - \nu_r)\Delta_r} = \frac{-(\nu_n - \nu)a_n}{\sum\limits_{r=1}^{n-1} (\nu_r - \nu)\Delta_r} \qquad r = 1, 2, \dots (n-1), \dots (30)$$

where, in this case,

 Δ_r is here equal to Δ_{N-1} with each term of the *r*th column replaced by 1, and

$$a_{r,r} = 2 \left[d_r (\nu_n - \nu)^2 - d_{n,r} (\nu_n - \nu) (\nu_r - \nu) + d_n (\nu_r - \nu)^2 \right] / \left[(\nu_n - \nu) (\nu_n - \nu_r) \right]$$
(32)

$$(\nu_n - \nu_r) a_{r,s} = \left[d_{r,s} (\nu_n - \nu)^2 - d_{n,s} (\nu_r - \nu) (\nu_n - \nu) - d_{n,r} (\nu_s - \nu) (\nu_n - \nu) + 2 d_n (\nu_r - \nu) (\nu_s - \nu) \right] / (\nu_n - \nu)$$
(32)

 $= (\nu_n - \nu_s)a_{s,r}, \ldots (33)$ remembering that $d_{s,r} = d_{r,s}$.

For numerical calculations, a limiting process is avoided, if suffix *n* is chosen to denote a surface for which $v_n \neq v$.

If suction forces are included, d_r , $d_{r,s}$, d_{opt} are replaced by t_r , $t_{r,s}$, t_{opt} respectively in formulae (30) to (33).

2.3. Variation of C_D with C_L (or with Incidence) for a Given Wing.—The shape of the final wing is given by an equation of the form

$$z = \sum_{r=1}^{n} (A_r z_r) = C_{L0} f(x, k^2 y^2) ,$$

where $k = \cot \gamma$, C_{L0} is the design lift coefficient, and $f(x, k^2y^2)$ is a rational algebraic function of x and k^2y^2 , whose coefficients are functions of $\varkappa = \{1 - (\tan \gamma / \tan \mu)^2\}^{1/2}$. The wing is designed to give optimum results with respect to the drag for given plan-form, given design lift and given Mach number, though the optimum value of d, or t, and the percentage decrease when compared with the corresponding flat wing, depend only on the value of \varkappa (for the triangular wing). The addition of a small arbitrary function of y to the equation of the wing does not alter the pressure distribution or local surface slope, according to the linear theory used in this report.

The drag on a given wing can be expressed in terms of the design lift coefficient, C_{L0} , and the total lift coefficient, C_L ; or in terms of the drag at any lift \overline{C}_{L0} and the additional incidence, α . A formula for C_D in terms of C_{L0} and ΔC_L , the additional lift, is given in Ref. 1, for the types of wings considered in that paper. The general formula, using the notation of the previous paragraphs, for the drag coefficient can be written in the form:

$$C_{D} = \frac{kE(\varkappa)}{2\pi} \left[t_{0}C_{L0}^{2} + t_{1,0}C_{L0} \cdot \Delta C_{L} + t_{1}(\Delta C_{L})^{2} \right] \qquad \dots \qquad \dots \qquad \dots \qquad (34)$$

$$=\frac{kE(\varkappa)}{2\pi}\left[t_{1}C_{L}^{2}+(t_{1,0}-2t_{1})C_{L}C_{L,0}+(t_{1}+t_{0}-t_{1,0})C_{L,0}^{2}\right] \qquad (35)$$

where

and t_0 is written for t_{opt} .

$$\frac{RE(\varkappa)}{2\pi} t_0 C_{L0}^2 = C_{D0}, \quad \text{the drag coefficient at design lift } C_{L0};$$

$$\frac{kE(\varkappa)}{2\pi} t_{1,0} C_{L0} \Delta C_L = C_{D1,0}, \quad \text{the 'interference' drag coefficient of the given wing}$$

$$\frac{kE(\varkappa)}{2\pi} t_1 (\Delta C_L)^2 = \Delta C_{D1}, \quad \text{the drag coefficient for the flat wing at lift } \Delta C_L$$
(37)

(For a given wing, and design lift coefficient C_{L0} , the coefficients of ΔC_L and $(\Delta C_L)^2$ in (34), or of C_L and C_L^2 in (35) depend only on the plan-form and Mach number.)

When the suction forces are ignored, t_0 , $t_{1,0}$, t_1 are replaced by d_0 , $d_{1,0}$, d_1 respectively in formulae (34) to (37).

Formula (34) can also be written in the form

, where \bar{C}_{D0} is the drag coefficient at any arbitrary lift \bar{C}_{L0} , α is the additional incidence, and

$$\bar{C}_{1} = \bar{C}_{L0} + \frac{4}{kE(x)} \int \frac{x\alpha_{0}}{(x^{2} - k^{2}y^{2})^{1/2}} dS - \frac{8\pi\varkappa}{VkE(x)} \int_{0}^{x_{1}} \left(\frac{x}{2}\right)^{1/2} P_{0} dx \qquad ..$$
(39)

 α_0 , P_0 being the local surface slope and strength of leading edge singularity respectively of the wing at lift \bar{C}_{L0} .

If \bar{C}_{L0} is taken as zero, formula (38) gives the drag coefficient at any small incidence, α (measured from the position of zero lift), \bar{C}_{D0} being the drag coefficient of the cambered and twisted wing at zero lift (in this case the equation of the surface is of the form

$$z = C_{Lo}f(x, k^2y^2) + \alpha_0 x$$
,

where $2\pi/\{kE(\varkappa)\}$. $\alpha_0 = C_{L0}$, and C_{L0} is the design lift coefficient).

Formula (38) also gives the total drag of a wing with thickness, if the wave drag due to thickness is included in the term \bar{C}_{D0} .

For a triangular wing of zero thickness, for small $A\sqrt{M^2-1}$, where A is the aspect ratio, $\tan \gamma/\tan \mu \to 0$ and $\varkappa \to 1$, and it can be shown that

$$\bar{C}_{1} = \bar{C}_{L0} + 0 \left\{ \left(\frac{\tan \gamma}{\tan \mu} \right)^{3} \right\}$$
$$\bar{C}_{2} \rightarrow \frac{\pi}{kE(\kappa)} = \frac{1}{2} \frac{\partial C_{L}}{\partial \alpha},$$

since

Therefore, in this case,

$$C_{D} = \bar{C}_{D0} + \left[\bar{C}_{L0} + 0\left\{\left(\frac{\tan\gamma}{\tan\mu}\right)^{3}\right\}\right] \alpha + \frac{1}{2}\frac{\partial C_{L}}{\partial\alpha}\alpha^{2}$$
$$= \bar{C}_{D0} + \frac{1}{2}\frac{\partial C_{L}}{\partial\alpha}\alpha^{2} \text{, approximately, if } \bar{C}_{L0} = 0. \qquad \dots \qquad \dots \qquad (42)$$

Ward³⁶ gives the formula $C_D = \tilde{C}_{D0} + \frac{1}{2}(\partial C_L/\partial \alpha)\alpha^2 + 0(t^4 \log^2 t)$ for slender bodies of thickness t, at incidence α . It has been verified that the terms $0\{(\tan \gamma/\tan \mu)^3\alpha\}$ (= 0 $(t^3\alpha)$ in this case), would come from the integral neglected by Ward.

When $\varkappa \to 1$, $t_{1,r} = 1$ for all surfaces z_r , and $t_1 = \frac{1}{2}$ (see Appendix VII), and therefore

$$t_{1,0} = \frac{\sum_{i=1}^{n} (2a_i t_1)}{L} = 2t_1$$

Hence formula (35) becomes

For cambered wings (*i.e.*, wings for which the local surface slope is a function of x only), $t_1 + t_0 - t_{1,0} = 0$ when $\varkappa \to 1$ (see Appendix VII), and $C_D = C_{D1}$, i.e., no reduction is possible in the total lift-dependent drag.

This result for $\varkappa \to 1$ agrees with the result recently obtained by Mangler⁴³, using slender-wing theory.

3. The Load Distributions on the Basic Cambered and Twisted Surfaces.—In Ref. 1, the linearised supersonic-flow equation is solved by the method of hyperboloido-conal co-ordinates³, the velocity potential being obtained in terms of two kinds of Lamé functions, which are such that solutions can be applied to the required swept-back plan-form and the boundary conditions on the Mach cone of the apex are satisfied. The shapes of the corresponding cambered and twisted surfaces are found, it being assumed that the surfaces all lie close to the plane z = 0.

For our present purpose, it is convenient to separate the basic surfaces given by equations of the form $z = -\delta x^{n-2s} y^{2s}$ (n > 2s), and to find their corresponding pressure distributions.

In Ref. 2, formulae for the velocity potentials of the surfaces up to n = 4 are given, and also the shapes of surfaces with velocity potentials proportional to x^4X , $k^2y^2x^2X$, k^4y^4X , where $\cot^{-1}k = \gamma$, the apex semi-angle, and $X = (x^2 - k^2y^2)^{1/2}$. Hence it can be shown that the velocity potentials for the surfaces given by n = 5 are as follows:

TABLE 1

Surface	Velocity potential, ϕ , on the surface
$z = -\frac{\delta}{c^4} x^5$	$\left[\frac{V\delta F_3}{c^4 k E(\varkappa)} \left[f_{14} x^4 + f_{15} k^2 y^2 x^2 + f_{16} k^4 y^4 \right] X\right]$
$z = -\frac{\delta}{c^4} k^2 y^2 x^3$	$\left \frac{-V\delta F_3}{c^4 k E(\varkappa)} \left[f_{17} x^4 + f_{18} k^2 y^2 x^2 + f_{19} k^4 y^4 \right] X \right $
$z = -\frac{\delta}{c^4} k^4 y^4 x$	$\left[\frac{V \delta F_3}{c^4 k E(\varkappa)} \left[f_{20} x^4 + f_{21} k^2 y^2 x^2 + f_{22} k^4 y^4 \right] X \right]$

where V is the free-stream velocity, $\varkappa^2 = 1 - \tan^2 \gamma / \tan^2 \mu$, μ is the Mach angle, $E(\varkappa)$ is the complete elliptic integral of the second kind of modulus \varkappa , and $f_{14}, f_{15}, \ldots, f_{22}$, F_3 are functions of \varkappa which are calculated in Appendix II of this report. The complete list of velocity potentials for n = 1 to 5 is given in Appendix IV, from which the pressure distributions can be calculated.

Henceforth all forces are normalised by dividing by $(\pi \rho V^2 c^2)/(k^2 E(\varkappa))$.

Formulae for the local surface slope, α_n , and the load per unit area, p_n , on the basic cambered and twisted surfaces, z_n are given in Table 2 below:

γ	Ζ,	$\alpha_r = -\frac{\partial z_r}{\partial x}$	$\left(rac{\pi c^2}{2k} ight)p_r$
1	$-\delta x$	δ	$\frac{\delta x}{\overline{X}}$
2	$-\frac{\delta}{c}x^2$	$\frac{2\delta}{c}x$	$\frac{\delta}{cf_1} \left(\frac{x^2}{\overline{X}} + X \right)$
3	$-\frac{\delta}{c^2}x^3$	$\frac{3\delta}{c^2}x^2$	$\frac{3\delta}{c^2} F_1 \left[f_5 \left(\frac{x^3}{\overline{X}} + 2x\overline{X} \right) - f_7(3x\overline{X}) \right]$
4	$-rac{\delta}{c^3}x^4$	$\frac{4\delta}{c^3}x^3$	$\left \frac{4\delta}{c^3} F_2 \left[f_{11} \left(\frac{x^4}{\overline{X}} + 3x^2 X \right) - f_{13} (4x^2 - k^2 y^2) X \right] \right $
5	$-rac{\delta}{c^2}k^2y^2x$	${\delta\over c^2}k^2y^2$	$\left[rac{3\delta}{c^2} F_1\left[f_4\left(rac{x^3}{\overline{X}}+2xX ight) - f_6(xX) ight] ight]$
6	$-rac{\delta}{c^3}k^2y^2x^2$	${2\delta\over c^3} k^2 y^2 x$	$\left[\frac{2\delta}{c^{3}}F_{2}\left[f_{10}\left(\frac{x^{4}}{\overline{X}}+3x^{2}X\right)-f_{12}(4x^{2}-k^{2}y^{2})X\right]\right]$
7	$-rac{\delta}{c^2}(f_4x^3-f_5k^2y^2x)$	${\delta \over c^2} (3 f_4 x^2 - \dot{f_5} k^2 y^2)$	$\frac{\delta}{c^2}$ (3xX)
	$\equiv f_4 z_3 - f_5 z_5$		
8	$-rac{\delta}{c^4}x^5$	$\frac{5\delta}{c^4} x^4$	$\frac{\delta}{c^4} F_3 \left[f_{14} \left(\frac{x^5}{\overline{X}} + 4x^3 \overline{X} \right) + f_{15} k^2 y^2 \left(\frac{x^3}{\overline{X}} + 2x \overline{X} \right) + f_{16} k^4 y^4 \left(\frac{x}{\overline{X}} \right) \right]$
9	$-rac{\delta}{c^4}k^2y^2x^3$	$\frac{3\delta}{c^4} k^2 y^2 x^2$	$-\frac{\delta}{c^4}F_3\left[f_{17}\left(\frac{x^5}{\overline{X}}+4x^3\overline{X}\right)+f_{18}k^2y^2\left(\frac{x^3}{\overline{X}}+2x\overline{X}\right)+f_{19}k^4y^4\left(\frac{x}{\overline{X}}\right)\right]$
10	$-\frac{\delta}{c^4}k^4y^4x$	$rac{\delta}{c^4} k^4 y^4$	$\left \frac{\delta}{c^4} F_3 \left[f_{20} \left(\frac{x^5}{\overline{X}} + 4x^3 \overline{X} \right) + f_{21} k^2 y^2 \left(\frac{x^3}{\overline{X}} + 2x \overline{X} \right) + f_{22} k^4 y^4 \left(\frac{x}{\overline{X}} \right) \right] \right $

TABLE 2

The surface z_7 , which is a combination of surfaces z_3 , z_5 , is the simplest surface of this type with no pressure singularities on the leading edges. Other such surfaces can be found by the combination of surfaces z_4 , z_6 or of surfaces z_8 , z_9 , z_{10} .

The functions $f_1, f_4, \ldots f_{13}, F_1, F_2$ are functions of \varkappa , which are given in Appendix I. Some numerical values are given in Appendix III.

4. The Lift, Drag and Interference Drags of the Basic Cambered and Twisted Surfaces.—As stated in Section 2, for a surface given by z_r :

$$L_r = \int p_r \, dS; \qquad \dots \qquad (44)$$

the pressure integral

the lift is

and the suction force is $S_r = 2\pi \rho \varkappa \int_0^{x_1} P_r^2 dx \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (46)$

The interference pressure integral of two surfaces given by z_r , z_s is

$$D_{r,s} = D_{s,r} = \int \left(p_r \alpha_s + p_s \alpha_r \right) dS; \qquad \dots \qquad \dots \qquad \dots \qquad (47)$$

and the 'interference' suction force is

Using the load distributions given in Section 3, it can be shown that the integrals in formulae (44) to (48) are the sum of integrals of the form

$$\int_{0}^{c/k} \int_{ky}^{c} \frac{k^{2m} y^{2m} x^{n}}{(x^{2} - k^{2} y^{2})^{1/2}} dx dy \equiv \frac{c^{2m+n+1}}{k} T_{2m,n} \text{ for the triangular wing,}$$

and

$$\int_{0}^{c/(k-h)} \int_{ky}^{c+hy} \frac{k^{2m} y^{2m} x^{n}}{(x^{2} - k^{2} y^{2})^{1/2}} dx dy \equiv I_{2m,n} \text{ for the swept-back wing,}$$

with straight supersonic or sonic trailing edges, where m, n are positive integers, and $\cot^{-1} h$ is the apex semi-angle of the trailing edge.

In Appendix V, it is shown that, for all values of m, n,

$$T_{2m,n} = \frac{\pi(2m)!}{2^{2m+1}(2m+n+1)(m!)^2}, \qquad \dots \qquad \dots \qquad (49)$$

and a Table of numerical values is given.

In Appendix VI, it is shown that $I_{2m,n}^*$ is the sum of terms of the form

and terms of the form

$$\int_{0}^{c/(k-h)} (ky)^{2N} \cosh^{-1} \frac{c+hy}{ky} \, dy \equiv H_{2N} = \frac{c}{2N+1} J_{2N,0} \,, \qquad \dots \qquad (51)$$

where *m*, *M*, *N* are integers, and $Z = \{(c + hy)^2 - k^2y^2\}^{1/2}$. The integrated formulae for $J_{2m,M}(2m + M = 1, 2, ..., 10)$, as functions of λ are also given, where $\lambda^2 = 1 - h^2/k^2$.

^{*} Recurrence formulae for $I_{N,n}$, $J_{N,n}$, which have been programmed for an electronic computor, and some tables of values will be given in a later paper.

Formulae for L_{r} , D_{r} , $S_{r,D_{r,s}}$, $S_{r,s}$ for triangular wings, and for swept-back wings, are given in Tables 3 to 12 (at the end of the report).

Formulae in terms of $I_{2m,n}$ will be given in a later paper.

Some general formulae, and relations between lift and drag (which are useful for checking), are given in Appendix VII.

5. The Pitching Moment and Position of the Centre of Pressure.—The pitching moment, about an axis through the apex, of the wing given by $z = \sum_{i=1}^{n} (A_i z_i)$ is

$$\bar{M} = \sum_{r=1}^{n} (A_r M_r)$$
, ... (28)

where M, is the pitching moment for the surface given by z_r . The distance of the centre of pressure of the wing from the apex is given by

The centre of pressure, G, of the flat triangular wing is at two-thirds the root chord from the apex. The pitching-moment coefficient, C_{M0} , about this chordwise position is given by

The distance, h, of the centre of pressure upstream of G is given by

$$\frac{\bar{h}}{c} = \frac{1}{2} \frac{C_{M0}}{C_L} = \frac{2}{3} - \frac{\bar{M}}{cL}.$$
(53)

 C_{M0} is unaltered by a change in C_L (and hence it is the pitching-moment coefficient at zero lift), but the centre of pressure moves towards or away from G for an increase or decrease respectively in C_L . It is shown in Section 2.2 that the centre of pressure can be fixed, for design lift, in any position. If fixed at G, it would (theoretically) remain fixed for all C_L . The same remarks apply to the swept-back wing if C_{M0} is taken about G, the centre of pressure of the corresponding flat wing.

Formulae for M, for the triangular wing and for the swept-back wing, are given in Tables 13 and 14. General formulae are given in Appendix VII.

6. Numerical Results.—Some numerical results are given for triangular wings, and comparison is made with a few results for swept-back wings. Further results for swept-back wings will be published later.

It is shown in Section 2 that the minimum values of drag/(lift)², $(d_{opt} \text{ or } t_{opt})$, and the corresponding coefficients a_r/L , for the combination of given cambered and twisted surfaces, are functions of the drag/(lift)² of the separate surfaces, $(d_r \text{ or } t_r)$, and the corresponding interference quantities, $(d_{r,s} \text{ or } t_{r,s})$. All forces were normalised by dividing by $\pi \rho V^2 c^2/(k^2 E(\kappa))$, but the percentage decrease in each case, when compared with the corresponding flat wing, with or without suction, is independent of the normalising factor.

The equation of the final surface is

where C_{L0} is the design lift coefficient, based on the area of the plan-form, and F(y) is a small arbitrary function of y.

Numerical values of d_r , $d_{r,s}$; t_r , $t_{r,s}$, for $\tan \gamma/\tan \mu = 1$, 0.7338, 0.7, 0.3577, 0.1184, 0 are given in Appendix X, where the equations of the surfaces z_r (r = 1, 2, ..., 10) are also given.

In Table 15, which is given below, the maximum decrease in drag/(lift)², with or without suction, for different combinations of the basic surfaces, is expressed as a percentage of the corresponding quantity for the flat wing (*i.e.*, with or without suction respectively). Two examples of wings with centre of pressure fixed are given. It is found that twist (local surface slope a function of y only) is, on the whole, more effective in reducing drag for given lift for the larger values of tan $\gamma/\tan \mu$, and that camber (local surface slope a function of x only), is more effective for the smaller values, though, in general, the best results are obtained by a combination of camber and twist.

In the limiting cases when:

- (i) $\frac{\tan \gamma / \tan \mu}{10} = 1$, that is, for a wing with sonic leading edges, there is no drag reduction for any combination of camber only, but there is a reduction (of not more than about 10 per cent) by the use of twist only, or certain combinations of camber and twist.
- (ii) $\frac{\tan \gamma/\tan \mu \to 0}{\pi}$, that is, the effective aspect ratio $\sqrt{(M^2 1)A}$ tends to zero, no drag reduction is possible if suction forces are included, but a reduction, arbitrarily near to 50 per cent can be obtained by the use of camber only, or a combination of camber and twist, if suction forces are ignored; that is, the lowest drag of a cambered wing is equal to the drag of the uncambered wing with full suction (in this case, the theoretical suction force on the cambered wing vanishes, whether or not it is included in the optimising process).

The relation between the drag on the flat triangular wing with suction, and without suction, is given by:

The ratio s_1/d_1 varies from $\frac{1}{2}$ to 0 as $\tan \gamma/\tan \mu$ increases from 0 to 1.

Fig. 5b shows the estimated drag reductions due to camber and twist, with or without suction, and the theoretical drag reduction on the uncambered wing due to suction. In each case, the reduction is compared with the drag of the flat wing without suction.

Some of the results, the variation of C_D , C_{M0} , and the position of the centre of pressure are discussed after Table 15.

6.1. Detailed Results.—Some diagrams showing the maximum percentage drag reduction for triangular wings, with or without suction, for different surface combinations, are shown in Figs. 1 to 3.

Some of the best results for triangular wings shown in Table 15 are now discussed. The shapes of the wings are given, the variation of C_D , C_{M0} , and the position of the centre of pressure are shown. In the equation of the wing surface, all lengths are now measured in root-chord lengths, and a (small) function of y, which does not affect the load distribution and local surface slope, is added so that z = 0 on the leading edges. C_{M0} is the pitching-moment coefficient about the two-thirds chord position, G, and h is the distance of the centre of pressure from G, measured towards the apex.

$\Delta d \equiv d_1 - d_2 = d_1 - d_1 - d_2$ (Suction omitt	d ed)			$\Delta t \equiv (Suction$	$t_1 - t$ included)
(1) $\tan \gamma / \tan \mu \rightarrow$	- 0 (' slender ' wi	 ngs)			
	Surface combinations r	Optimum $(\Delta d/d_1)$ (per cent)		Surface combinations r	Optimum $(\Delta t/t_1)$ (per cent)
$n = 2$ $n = 3$ $n = 4$ $n = 5$ $z_n = -\frac{\delta x^n}{c^{n-1}}$	1, 2 1, 3 1, 4 1, 8 1, <i>n</i>	$ \begin{array}{r} 33 \cdot 3 \\ 37 \cdot 5 \\ 40 \cdot 0 \\ 41 \cdot 7 \\ 50n/(n+1) \\ \rightarrow 50 \end{array} $	$ \begin{bmatrix} Camber (surface slope a function of x only) \end{bmatrix} $	1, 12	0
N = 1	1, 5	0	Twist (surface slope a function of y only)	1, 5	0
$N = 2$ $N = 3$ $N = 11$ $Sum V h^2 u$	1, 6 1, 9 1, 11	2.7 6.3 12.0			
$Z_N = -\frac{ox^2 R^2 y}{c^{N+1}}$	- 1, N	$\rightarrow 25$	Camber and twist	1, N	0
	$\begin{array}{c} 1, 2, 3 \\ 1, n_1, n_2 \\ 1, N, n \end{array}$	$\rightarrow 50$ $\rightarrow 50$		1, n ₁ , n ₂	0
(2) $\tan \gamma / \tan \mu =$	= 0·1184				
r	Optimum $(\Delta d/d_1)$ (per cent)			r	Optimum $(\Delta t/t_1)$ (per cent)
1, 2 1, 3 1, 4	$ \begin{array}{c} 27 \cdot 8 \\ 29 \cdot 4 \\ 29 \cdot 4 \end{array} $	Camber	{	1, 2 1, 3 1, 4	$1 \cdot 9 \\ 1 \cdot 7 \\ 1 \cdot 6$
1, 5	0.3	Twist		1, 5	$0 \cdot 1$
1, 6	0.6	Camber and tw	ist	1, 6	$0\cdot 2$
1, 2, 3	29.6	Camber	{	1, 2, 3 1, 2, 4	$2 \cdot 0$ $2 \cdot 0$
1, 2, 5 1, 3, 5 1, 4, 5	$35 \cdot 4$ $36 \cdot 0$ $35 \cdot 0$			1, 2, 5	1.9
1, 2, 6 1, 3, 6 1, 4, 6	$33 \cdot 4$ $35 \cdot 0$ $34 \cdot 3$	Camber and tw	ist	1, 2, 6	1.9
1, 5, 6	32.8			1, 5, 6	$1 \cdot 2$
1, 2, 5 (c.p. fixed at G)	20.6				

TABLE 15
(The shapes of surfaces $r = 1, 2,$ 10 are given in Table 3, and in Appendix IV.)
Optimum Results for Reduction of Drag on a Triangular Wing

TABLE 15—continued

(3) $\tan \gamma / \tan \mu =$	$\stackrel{ }{=} 0 \cdot 2$			
Ŷ	Optimum $(\Delta d/d_1)$ (par cent)			
1, 2 1, 4	$\begin{array}{c} 22 \cdot 0 \\ 20 \cdot 7 \end{array}$	Camber		
(4) $\tan \gamma / \tan \mu =$	= 0.3577			
r	Optimum $(\Delta d/d_1)$ (per cent)		r	Optimum $(\Delta t/t_1)$ (per cent)
1, 2 1, 3 1, 4	$ \begin{array}{r} 12 \cdot 1 \\ 10 \cdot 7 \\ 9 \cdot 2 \end{array} $	Camber {	1, 2 1, 3 1, 4	$5 \cdot 1$ $4 \cdot 2$ $3 \cdot 6$
1, 5	3.4	Twist	1, 5	1.2
1, 6	0.9	Camber and twist	1, 6	1.4
		Camber	$1, 2, 3 \\1, 2, 4 \\1, 3, 4$	$ \begin{array}{c} 6 \cdot 1 \\ 6 \cdot 0 \\ 5 \cdot 5 \end{array} $
1, 2, 5 1, 3, 5	$21 \cdot 7$ 19 \cdot 7		1, 2, 5	$5 \cdot 2$
1, 2, 6	19.7			
1, 5, 6	21.6	Comber and twist	1, 5, 6	2.1
1, 2, 5, 6 1, 2, 3, 5	$\begin{array}{c} 25 \cdot 1 \\ 22 \cdot 3 \end{array}$		1, 2, 5, 6	5.3
1, 2, 5, 6 (c.p. fixed at <i>G</i>)	21.8		1, 2, 3, 6	6.3
(5) $\tan \gamma / \tan \mu =$	= 0.5			
Ÿ	Optimum $(\varDelta d/\jmath_1)$ (per cent)		Ÿ	Optimum $(\Delta t/t_1)$ (per cent)
1, 2	6.1	Cambon	1, 2	5.3
1, 4	4 · 1		1, 4	$3 \cdot 4$
1, 5	4.9	Twist		

(6) $\tan \gamma / \tan \mu =$	= 0.7			
Ŷ	Optimum $(\Delta d/d_1)$ (per cent)		¥	Optimum $(\Delta t/t_1)$ (per cent)
1, 2 1, 3 1, 4 1, 8	1.7 1.2 0.95 0.81	Camber {	1, 2 1, 3 1, 4 1, 8	$3 \cdot 9$ 2 \cdot 9 2 \cdot 4 1 \cdot 9
1, 5 1, 10	$5 \cdot 8$ $5 \cdot 1$	Twist {	1, 5 1, 10	$2.5 \\ 2.0$
1, 6 1, 9	$3 \cdot 4$ $2 \cdot 2$	Camber and twist	1, 6 1, 9	$2 \cdot 6 \\ 2 \cdot 45$
1, 2, 3 1, 2, 4 1, 3, 4	$2 \cdot 4 \\ 2 \cdot 3 \\ 2 \cdot 0$	Camber {	1, 2, 3 1, 2, 4 1, 3, 4	$5 \cdot 5$ $5 \cdot 4$ $6 \cdot 7$
1, 2, 5 1, 3, 5 1, 4, 5	$ \begin{array}{r} 10 \cdot 9 \\ 9 \cdot 6 \\ 9 \cdot 2 \end{array} $		1, 3, 5 1, 4, 5	3∙4 3∙5
1, 2, 10 1, 3, 10	$\begin{array}{c} 8\cdot 45\\ 8\cdot 1\end{array}$	Camber and twist		
1, 2, 6 1, 3, 6 1, 4, 6	7·9 7·4 7·3		1, 2, 6 1, 3, 6 1, 4, 6	$4 \cdot 6 \\ 3 \cdot 8 \\ 3 \cdot 4$
1, 5, 6	$9 \cdot 2$		1, 5, 6	2.6
1, 5, 10	$5 \cdot 9$	Twist		
1, 2, 5, 6	14.0	Camber and twist		
1, 2, 5, 10	10.7			
(7) $\tan \gamma / \tan \mu =$	= 0 ·7338			
Ŷ	Optimum $(\varDelta d/d_1)$ (per cent)		r	Optimum $(\Delta t/t_1)$ (per cent)
1, 2 1, 3 1, 4	$1 \cdot 3 \\ 0 \cdot 9 \\ 0 \cdot 7$	$\left \right\} Camber \qquad \left\{ \right.$	1, 2 1, 3 1, 4	$3 \cdot 6 \\ 2 \cdot 7 \\ 2 \cdot 2$
1, 5	$5 \cdot 9$	Twist	1, 5	2.6
1, 6	3.6	Camber and twist	1, 6	2.7
		Camber	1, 2, 3 1, 2, 4 1, 3, 4	$4 \cdot 9 \\ 4 \cdot 6 \\ 3 \cdot 9$

TABLE 15—continued

(7) $\tan \gamma/\tan \mu =$	= 0 ·7338 —contin	med		
Ÿ	Optimum $(\Delta d/d_1)$ (per cent)		r	Optimum $(\Delta t/t_1)$ (per cent)
1, 2, 5 1, 3, 5	$9 \cdot 4 \\9 \cdot 0$		1, 2, 5	4.6
1, 2, 6 1, 3, 6	$7 \cdot 5$ $7 \cdot 2$	Camber and twist		
1, 5, 6	13.1		1, 5, 6	2.7
1, 2, 5, 6	13.2		1, 2, 5, 6	$4 \cdot 8$
(8) $\tan \gamma / \tan \mu =$	= 1. In this cas	e $s_r = 0$, and thus $\Delta d/d_1 = \Delta t/t_1$		
			Ÿ	Optimum $(\Delta t/t_1)$ (per cent)
$z_n = -$	$\frac{\delta x^n}{c^{n-1}}$	Camber	1, n 1, n ₁ , n ₂	0 0
		Twist	1, 5	$5 \cdot 9$
		Camber and twist	1, 6 1, 5, 6	$\begin{array}{c} 4\cdot 1\\ 8\cdot 1\end{array}$

TABLE 15-continued

Examples 1: $\tan \gamma / \tan \mu = 0.7338$.

(a) The surfaces given by r = 1, 5, 6 are combined to give optimum d. The percentage decrease in $d (= D/L^2)$, when compared with the corresponding flat wing (with suction omitted) is given by:

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 13 \cdot 1 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -3.0$ per cent.

If only half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +6\cdot 2 \text{ per cent}.$

The shape of the wing is given by

$$z = -rac{kE(m{x})}{2\pi}C_{L\,0}, \{(1\cdot 4225 - 10\cdot 2017k^2y^2)(x - ky) + 4\cdot 6640k^2y^2(x^2 - k^2y^2)\}.$$

At design C_{L0} , $C_{M0}/C_{L0} = 0.0255$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.12$, is given below:

C_L	0.08	0.10	0.17	0.14	0.10
\bar{h}/c	0.0191	$0 \cdot 0153$	$0 \cdot 0127$	$0 \cdot 0109$	0.0096

Fig. 6 shows the shape of the wing for semi-apex-angle $\gamma = 18$ deg, $M = 2 \cdot 47$.

(b) The surfaces given by r = 1, 2, 5, 6 are combined to give optimum d.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 13 \cdot 2 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -4 \cdot 0$ per cent.

If only half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +5.8 \text{ per cent.}$

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi}C_{L_0}\{(1\cdot 3011x - 9\cdot 5164k^2y^2)(x - ky) + (0\cdot 0816 + 4\cdot 2626k^2y^2)(x^2 - k^2y^2)\}.$$

At design C_{L0} , $C_{M0}/C_{L0} = 0.0124$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.12$, is given below:

C_L	0.08	$0 \cdot 10$	$0 \cdot 12$	$0 \cdot 14$	$0 \cdot 16$
$\bar{h} c$	0.0093	$0 \cdot 0074$	$0 \cdot 0062$	0.0053	$0 \cdot 0046$

Fig. 7a shows the shape of the wing for $\gamma = 18$ deg, $M = 2 \cdot 47$.

(c) Surfaces given by r = 1, 2, 5, 6 are combined, to give optimum t. The percentage decrease in $t (\equiv T/L^2)$, when compared with the corresponding flat wing (with suction), is given by:

$$\left(\frac{\Delta t}{t_1}\right)_{\text{optimum}} = 4.8 \text{ per cent.}$$

The effect on the pressure integral is given by

$$\frac{\Delta d}{d_1} = -0.4 \text{ per cent.}$$

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi}C_{L_0}\{(1\cdot7224 - 2\cdot8113k^2y^2)(x - ky) - (0\cdot3907 - 1\cdot1349k^2y^2)(x^2 - k^2y^2)\}.$$

At design C_{L0} , $C_{M0}/C_{L0} = 0.1150$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.12$, is given below:

C_L	0.08	0.10	0.12	0.14	0.10
$ar{h}/c$	0.0863	0.0690	$0 \cdot 0575$	0.0493	0.0431

Fig. 8 shows the shape of the wing for $\gamma = 18 \text{ deg}$, $M = 2 \cdot 47$.

Examples 2: $\tan \gamma / \tan \mu = 0.3577$.

(a) Surfaces given by r = 1, 2, 5, 6 are combined to give optimum d.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 25 \cdot 1 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -18 \cdot 1$ per cent.

If only half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +9 \cdot 1$ per cent.

17

в

(76072)

The shape of the wing is given by

$$z = -\frac{kE(\varkappa)}{2\pi} C_{L0} \{ (0.6456 - 10.1298k^2y^2)(x - ky) + (0.5079 + 4.2681k^2y^2)(x^2 - k^2y^2) \}.$$

At design C_{L0} , $C_{M0}/C_{L0} = -0.1049$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.1$, is given below:

$$C_L = 0.06 = 0.08 = 0.10 = 0.12 = 0.14$$

 $\bar{h}/c = -0.0874 = -0.0656 = -0.0524 = -0.0437 = -0.0375$

$$h/c = -0.0874 = -0.0656 = -0.0524 = -0.0437 = -0.037$$

Fig. 9a shows the shape of the wing for $\gamma = 9$ deg, $M = 2 \cdot 47$.

(b) Surfaces given by r = 1, 2, 3, 5 are combined to give optimum d.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 22 \cdot 3 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -18.5$ per cent.

If only half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +7 \cdot 2 \text{ per cent.}$

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi}C_{L_0}\{-(0.4517 + 2.1406k^2y^2)(x - ky) + 1.5910(x^2 - k^2y^2) - 0.3864(x^3 - k^3y^3)\}.$$

The local incidence at the apex is negative in this case. At design C_{L0} , $C_{M0}/C_{L0} = -0.1161$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.1$ is given below:

$$\bar{h}/c = -0.0967 = -0.0725 = -0.0580 = -0.0484 = -0.0415$$

Fig. 10 shows the shape of the wing for $\gamma = 9 \deg$, $M = 2 \cdot 47$.

(c) Surfaces given by r = 1, 2, 3, 6 are combined to give optimum t.

$$\left(\frac{\Delta t}{t_1}\right)_{\text{optimum}} = 6 \cdot 3 \text{ per cent.}$$

The effect on the pressure integral is given by

$$\frac{\Delta d}{d_1} = -5 \cdot 1 \text{ per cent.}$$

The shape of the wing is given by

$$z = -\frac{kE(z)}{2\pi}C_{L_0}\{3\cdot 1438(x-ky) - (2\cdot 1233 + 0\cdot 1427k^2y^2)(x^2 - k^2y^2) + 0\cdot 6973(x^3 - k^3y^3)\}.$$

At design C_{L0} , $C_{M0}/C_{L0} = 0.2132$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.1$, is given below:

$$C_L = 0.06 = 0.08 = 0.10 = 0.12 = 0.14$$

 $h/c = 0.1777 = 0.1332 = 0.1066 = 0.0888 = 0.0761$

Fig. 11a shows the shape of the wing for $\gamma = 9$ deg, $M = 2 \cdot 47$.

(d) Surfaces given by r = 1, 2, 5, 6 are combined to give optimum d. The centre of pressure is fixed at the two-thirds chord position, G.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 21 \cdot 8 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -11 \cdot 4$ per cent.

If half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +9.5 \text{ per cent.}$

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi}C_{L_0}\{(1\cdot 3491 - 12\cdot 3324k^2y^2)(x - ky) + (0\cdot 1519 + 5\cdot 2376k^2y^2)(x^2 - k^2y^2)\}.$$

 $C_{M0} = 0$, and the centre of pressure remains at G for all C_L (linear theory). Fig. 12 shows the shape of the wing for $\gamma = 9 \text{ deg}$, M = 2.47.

Examples 3: $\tan \gamma / \tan \mu = 0.1184$

(a) Surfaces given by r = 1, 3, 5 are combined to give optimum d.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 36 \cdot 0 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -16 \cdot 4$ per cent.

If half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = + 18 \cdot 2 \text{ per cent.}$

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi} C_{L_0} \{ -(0.0600 + 1.8726k^2y^2)(x - ky) + 0.5390(x^3 - k^3y^3) \}.$$

The local incidence at the apex is negative in this case. At design C_{L0} , $C_{M0}/C_{L0} = -0.2827$.

The variation of the position of the centre of pressure with C_L , for design $C_{L0} = 0.05$, is given below:

$$\bar{L}_L = 0.03 = 0.04 = 0.05 = 0.06 = 0.07 = 0.10$$

 $\bar{h}/c = -0.2356 = -0.1767 = -0.1413 = -0.1178 = -0.1010 = -0.0707$

Fig. 13a shows the shape of the wing for $\gamma = 3$ deg, $M = 2 \cdot 47$.

(b) Surfaces given by r = 1, 2, 5 are combined to give optimum d. The centre of pressure is fixed at G.

$$\left(\frac{\Delta d}{d_1}\right)_{\text{optimum}} = 20 \cdot 6 \text{ per cent.}$$

If full suction is realised, the corresponding $\Delta t/t_1 = -19.9$ per cent.

If half suction is realised, the corresponding $(\Delta t/t_1)_{1/2 \text{ suction}} = +6.9$ per cent.

The shape of the wing is given by

$$z = -\frac{kE(x)}{2\pi}C_{L_0}\{(0.5646 - 5.1086k^2y^2)(x - ky) + 0.6010(x^2 - k^2y^2)\}.$$

 $C_{M0} = 0$, and the centre of pressure remains at G for all C_L (linear theory). Fig. 14 shows the shape of the wing for $\gamma = 3$ deg, M = 2.47.

For this low value of $\tan \gamma/\tan \mu$, very little drag reduction is possible if suction forces are included (see Table 15). But if suction forces are omitted, larger percentage decreases (< 50 per cent) can be obtained by combining four or more surfaces.

(76072)

В2

In the limiting case, when $\tan \gamma/\tan \mu \to 0$, that is for very slender wings, for which the effective aspect ratio $\sqrt{(M^2 - 1)A} \to 0$, it is shown in Appendix X that no drag reduction is possible if suction forces are included. This is in agreement with the results of slender wing theory^{13, 14, 26, 27}. But if suction forces are omitted, a drag reduction arbitrarily near to 50 per cent can be obtained; that is, when the order of the camber is very large, the drag of the cambered wing without suction tends to that of the flat wing with suction, for the same lift. This result agrees with a similar result obtained by S. H. Tsien³³, using conical camber, which is a special combination of chordwise and spanwise camber and twist.

In Fig. 4, the maximum percentage drag reductions for triangular wings (with or without suction), are plotted against $\tan \gamma/\tan \mu$ for the simplest camber or twist combinations. The effect of adding camber to any combination is: to increase $(\Delta d/d_1)_{opt}$ towards a limit of 50 per cent for $\tan \gamma/\tan \mu = 0$, and to decrease $(\Delta d/d_1)_{opt}$ and $(\Delta t/t_1)_{opt}$ towards zero for $\tan \gamma/\tan \mu = 1$, with corresponding changes for values of $\tan \gamma/\tan \mu < 1$. The effect of adding twist to any combination is: to decrease $(\Delta d/d_1)_{opt}$ towards zero for $\tan \gamma/\tan \mu = 0$, and to increase $(\Delta d/d_1)_{opt}$ and $(\Delta t/t_1)_{opt}$ towards a limit of about 10 per cent for $\tan \gamma/\tan \mu = 1$, with corresponding changes for values of $\tan \gamma/\tan \mu < 1$. The estimated (probable) optimum results for the best combinations of both camber and twist are shown in Fig. 5.

The relation between the drag coefficient C_D and any C_L is given by equation (35) in Section 2. The variation of C_D and of C_{DP} (the coefficient for the pressure integral only), with C_L , for Examples 1(b), 2(a), 2(c), 3(a) is shown in Figs. 7b, 9b, 11b, 13b.

For a swept-back wing, with supersonic or sonic trailing edges, as the angle of sweepback $\pi/2 - \sigma$, of the trailing edges is increased:

- (i) if suction forces are ignored, the maximum percentage reduction in drag for given lift, when compared with the corresponding flat wing, in general, increases, the greatest percentage reduction being 50 per cent (as for the triangular wing) for very slender wings;
- (ii) if suction forces are included, the maximum percentage drag reduction, in general, decreases for the smaller values of $\tan \gamma/\tan \mu$, but increases for values of $\tan \gamma/\tan \mu$ near to one, with no reduction possible for very slender wings.

The possible reductions for a wing with sonic leading edges, for a few simple camber and twist combinations are compared with those for the corresponding triangular wing.

Swept-h	back wing			Triangu	lar wing
$\gamma = \mu$	$\sigma > \mu$	-		γ =	= μ
r	Optimum $(\Delta t/t_1)$ (per cent)			¥	Optimum $(\Delta t/t_1)$ (per cent)
	as $\sigma \rightarrow \mu$		_		
1, 2 1, 3 1, 4	$ \begin{array}{c} \rightarrow 16 \cdot 7 \\ \rightarrow 15 \cdot 0 \\ \rightarrow 13 \cdot 6 \end{array} $	Camber	{	1, 2 1, 3 1, 4	0 0 0
1, 5	$\rightarrow 1 \cdot 1$	Twist		1, 5	5.7
1, 6	$\rightarrow 0.6$	Camber and twist	{	1, 6 1, 5, 6	4·1 8·1

Further calculations for the swept-back wing will be published later.

6.2. Leading-Edge Suction.—Graphs showing the variation of the suction force along the leading edges of some triangular wings (1(a), 2(a); 1(c), 2(c)) designed for $(\Delta d/d_1)_{opt}$, or $(\Delta t/t_1)_{opt}$, are shown in Fig. 15.

The suction force per unit length of leading edge is $2\pi\rho \varkappa P^2$, where P is the strength of the singularity in the perturbation velocity, u. Hence, writing

(suction force per unit length of edge) $/(\frac{1}{2}\rho V^2 c) \equiv C_s$,

and measuring x, y in root-chord lengths,

for wing 1(a):

 $2\pi (C_s/C_{L0^2}) = 0.6793x (1.4225 - 5.1008x^2 + 5.1706x^3)^2;$

for wing 2(a):

 $2\pi (C_S/C_{L0}^2) = 0.9338x (0.6456 + 0.8652x - 4.8021x^2 + 3.8065x^3)^2;$

for wing 1(c):

 $2\pi (C_s/C_{L0^2}) = 0.6793x (1.7224 - 0.5638x - 1.4056x^2 + 1.0148x^3)^2;$

for wing 2(c):

 $2\pi (C_s/C_{L_0}^2) = 0.9338 x (3.1438 - 3.6172x + 1.5425x^2 - 0.1273x^3)^2.$

The suction force vanishes, with that on the corresponding flat plate, when $\tan \gamma / \tan \mu = 1$.

When $\tan \gamma/\tan \mu$ is small, the leading-edge suction force on the minimum-drag wing, designed for optimum *d*, is small, and tends to vanish as $(\Delta d/d_1)_{\text{opt}} \rightarrow 0.5$ for $\tan \gamma/\tan \mu \rightarrow 0$, so that, for small effective aspect ratio, the pressure integral tends to become the total lift-dependent drag, and is equal to the drag of the corresponding flat wing with suction forces included. The (theoretical) optimum shape of a very slender wing is given by $z = \{-2C_{L0}/(\pi A)\}x^n$ (that is, camber near the tip), where *n* is large, *A* is the aspect ratio, C_{L0} is the design lift coefficient, and *x*, *z* are measured in root-chord lengths.

7. Discussion and Conclusion.—It has been shown, using linear theory, how camber and twist can be used to reduce the drag due to incidence, on a triangular or swept-back wing, with subsonic leading edges and supersonic or sonic trailing edges. The percentage drag reduction, when compared with the drag of the corresponding flat wing having the same lift, depends only on the value of $\tan \gamma/\tan \mu$ (where γ is the semi-apex-angle, and μ is the Mach angle), for the triangular wing, and on $\tan \gamma/\tan \mu$ and $\tan \gamma/\tan \sigma$ (where σ is the trailing edge semi-apex angle), for the swept-back wing; but in each case, the wing must be designed for given plan-form, given Mach number, and given design lift coefficient.

It is found that, on the whole, twist (surface slope a function of y only), especially towards the wing tips, is more effective in reducing drag, for given lift, for the larger values of $\tan \gamma/\tan \mu$, and that camber (surface slope a function of x only) is more effective for the smaller values, though, in general, the best results are obtained by a combination of camber and twist. For the triangular wing, if suction forces are ignored, the maximum percentage drag reduction varies from about 10 per cent (for sonic leading edges) to 50 per cent (for very slender wings); and if suction forces are included, from zero (for very slender wings) to about 10 per cent (when the leading edges are sonic). Graphs showing the probable optimum results, with or without suction, are shown in Fig. 5.

The statements 'assuming no suction', 'assuming $\frac{1}{2}$ -suction', etc. (also used by previous writers), may be misleading. It is known that linear theory works fairly well away from the leading edges, but that it breaks down at the leading edges, and that singularities, which appear because of the linear-theory approximations, do not really exist. Camber and twist may be chosen so that these singularities do not occur theoretically; it is plausible then to expect that linear theory will give good agreement over the whole aerofoil. Further work is in hand on optimisation of camber and twist with this restriction on their choice. In the present work, it has been assumed when necessary that, physically, the presence or absence of the leading-edge suction force, predicted theoretically, will not affect the remainder of the pressures.

In this report, camber and twist is chosen so that either 'part', or the whole of C_D is a minimum for given C_L . The statements 'minimum drag assuming (1) no suction, or (2) $\frac{1}{2}$ -suction, or (3) some fraction of the suction, or (4) full suction', mean that suitable camber and twist is found which modifies the leading-edge singularities, and the whole pressure distribution, so that, for given C_L , (1) C_{D_P} , or (2) $C_{D_P} - \frac{1}{2}C_{DS}$, or (3) $C_{D_P} - (\text{some fraction of } C_{DS})$, or (4) $C_D = C_{D_P} - C_{DS}$, is a minimum. The values of C_D , C_{D_P} , etc., so obtained can then be compared with the corresponding quantities for the flat wing, or with the total theoretical C_D (*i.e.*, with full suction), of the flat wing in each case.

The 'part' not 'optimised' could be considered as a partial guess at the part due to overestimation of the effect of the singularities.

Experiments with different wings, of the same plan-form and section, should give some indication as to which kind of camber and twist will give the best results.

It has been shown that the centre of pressure can be fixed in any position, with a corresponding (slight, for larger values of $\tan \gamma/\tan \mu$) decrease in percentage drag reduction. If fixed at the centre of pressure of the corresponding flat wing, it remains fixed for all C_L (according to linear theory). The positions of the centre of pressure at design lift coefficient, C_{L0} , and of the centre of pressure, G, of the flat wing, are shown in Figs. 6 to 14. The variation of the positions of the centre of pressure with C_L are given in Section 6.

For a swept-back wing with supersonic or sonic trailing edges, as the angle of sweepback of the trailing edges is increased, the maximum percentage drag reduction, for given lift, when compared with the drag of the corresponding flat swept-back wing, increases when $\tan \gamma/\tan \mu$ is near to one (to at least 16 per cent when $\tan \gamma/\tan \mu = 1$), or when suction forces are omitted, but decreases for the smaller values of $\tan \gamma/\tan \mu$ when suction is included.

The same methods could be applied to a wing with swept-forward (supersonic or sonic) trailing edges, when the percentage drag reductions would be less than those for the triangular wing, except when full suction is included, when they would, in general, be greater for the smaller values of $\tan \gamma/\tan \mu$.

The optimum results for the triangular wing, obtained by superimposing 1, 2 or 3 types of camber and/or twist on the flat plate, are shown in Figs. 1 to 4. Further reductions could be obtained by combining a large number of surfaces, but, in most cases, the results seem to be converging. The combination of four surfaces with the flat plate, in a few cases, was found to give scarcely any improvement on the results already obtained with three surfaces and the flat plate.

If further results are required, it might be simpler to combine some of the 'optimum' surfaces already found rather than to start again with a larger number of basic surfaces.

The variation of the suction force along the leading edge, for wings designed for minimum drag, is shown in Fig. 15, and is compared with that for the corresponding flat wing. For wings designed with camber and twist to give no (theoretical) leading-edge singularities, the results will, in general, be less favourable than for designs with full freedom of camber and twist, but some calculations, which will be reported later, show that, by including some higher-order solutions, results more favourable than at first expected can be obtained.

Tsien³³ has made use of conical camber to reduce the drag, for given lift, of some triangular wings with subsonic leading edges. He obtained an appreciable reduction when suction forces were ignored, but scarcely any reduction when suction forces were included, except for values of $\tan \gamma/\tan \mu$ close to one.

Conical camber can be derived from the chordwise and spanwise camber and twist used in this report, with the restriction that the load distribution is that of a cone field. It thus seems that higher percentage drag reductions are likely to be predicted by the use of suitable chordwise and spanwise camber and twist than by the use of conical camber. This is certainly the case when full suction forces are included.

Acknowledgement.—Acknowledgement is due to Mrs. J. Turner for the help she has given with the computation, and for her careful preparation of most of the drawings.

LIST OF SYMBOLS

A Aspect ratio A_{1}, A_{2}, A_{3} Coefficients depending on \varkappa (see Appendix II) Α, Constant coefficients (cf. equations (2), etc.) Lamé function coefficient (see Appendix II) a_m $A_{r}L_{r}$ a, Constant coefficients (cf. equations (30) to (33)) $a_{r,r}, a_{r,s}$ h|kа ___ B1, B2, B3 Coefficients depending on \varkappa (see Appendix II) Lamé function coefficient (see Appendix II) b_m $\sum c_r$ b., $(r = 0, 1, \dots, R/2; \text{ or } r = 0, 1, \dots, (R - 1)/2)$ \bar{C}_1, \bar{C}_2 cf. equation (38) C_{1}, C_{2}, C_{3} Coefficients depending on \varkappa (see Appendix II) C_D Drag coefficient (suction included) C_{Dp} Drag coefficient (suction ignored) \bar{C}_{D0} Drag coefficient at lift coefficient \tilde{C}_{L_0} (cf. equation (38)) C_L Lift coefficient C_{L0} Design lift coefficient \bar{C}_{L0} Any arbitrary lift coefficient (cf. equation (38)) C_{M0} Pitching-moment coefficient (at zero lift) C_{\flat} Pressure coefficient C_{s} (suction force per unit length of leading edge)/ $(\frac{1}{2}\rho V^2 c)$ Length of root chord С Coefficients in load distribution formula (cf. equation (VII.1)) C_r D(Normalised) pressure integral D_r (Normalised) pressure integral of surface z_r $D_{r,s} = D_{s,r}$ (Normalised) 'interference' pressure integral of surfaces z_r , z_s D/L^2 d ____ D_r/L^2 d_r = $d_{r,s} = D_{r,s}/(L_rL_s)$ $E(\varkappa)$ Complete elliptic integral of the second kind of modulus \varkappa f_1, f_4, \dots, f_{13} F_1, F_2 Functions of z, given in Appendix I $f_{14}, \ldots f_{22}$ F_3 Functions of \varkappa , given in Appendix II $H_{2N} = \int_{0}^{c/(k-h)} (ky)^{2N} \cosh^{-1} \frac{c+hy}{ky} \, dy$ $h = \cot \sigma$

LIST OF SYMBOLS—continued

$ar{h}$		Distance of centre of pressure of triangular wing from the two-thirds chord position
I 2m, n		$\int_{0}^{c/(k-h)} \int_{ky}^{c+hy} \frac{(ky)^{2m} x^{n}}{(x^{2} - k^{2} y^{2})^{1/2}} dx dy$
$J_{^{2m,M}}$		$\int_{0}^{c/(k-h)} \frac{(c+hy)^{M}(ky)^{2m}}{Z} dy$
$K(\varkappa)$		Complete elliptic integral of the first kind of modulus \varkappa
k	<u> </u>	$\cot \gamma$
L		(Normalised) lift
Ζ,		(Normalised) lift for surface z_r
$ar{M}$		(Normalised) pitching moment about the apex
M_r		(Normalised) pitching moment of surface z , about the apex
M		Free-stream Mach number
P		Strength of leading-edge pressure singularity
P_r		Strength of leading-edge pressure singularity of surface z_r
Þ		(Normalised) load per unit area
<i>₽</i> ,		(Normalised) load per unit area of surface z_r
Q		2M + N (in Appendix VII)
R_{\perp}		2m + n (in Appendix VII)
S		(Normalised) suction force (cf. equation (1))
S_r		(Normalised) suction force for surface z_r
$S_{r,s} = S_{s,r}$		(Normalised) 'interference' suction force for surfaces z_r , z_s
S _r		S_r/L_r^2
S _{r, s}	==	$S_{r,s}/(L,L_s)$
T		(Normalised) drag due to incidence, camber and twist $= D - S$
$T_{2m,n}$		$[kI_{2m,n}/c^{2m+n+1}]_{h=0}$
t		$T/L^2 = (D-S)/L^2$
t_r	Constant and	$d_r - s_r = (D_r - S_r)/L_r^2$
t	—	$d_{r,s} - s_{r,s} = (D_{r,s} - S_{r,s})/L_r L_s)$
и		Perturbation velocity in the free-stream direction
V		Free-stream velocity
X		$(x^2 - k^2 y^2)^{1/2}$
$ ilde{x}$		Distance of centre of pressure from apex of wing
X		Chordwise co-ordinate (measured downstream from the apex)
У		Spanwise co-ordinate (positive to starboard)
z		Normal co-ordinate (positive upwards)

LIST OF SYMBOLS—continued

 $[(c + hy)^2 - k^2y^2]^{1/2}$ Ζ ___ Local surface slope $\left(=-\frac{\partial z}{\partial x}\right)$ (measured in radians) α Local surface slope of surface z_r α, $(M^2 - 1)^{1/2}$ β ___ Apex semi-angle γ See Appendix II Δ cf. equations (20) and (24) $\Delta_{\rm III}, \Delta_{\rm IV}$ Δ, cf. equations (26) and (31) Δ_N cf. equation (26) cf. equation (31) Δ_{N-1} ∆d $d_1 - d$ _ Δt $t_1 - t$ ___ Small dimensionless constant δ $(\pi/2) + \cos^{-1} \lambda$ (θ) _ $(1 - \tan^2 \gamma / \tan^2 \mu)^{1/2}$ κ ____ $(1 - h^2/k^2)^{1/2}$ λ _ Coefficients depending on * (see Appendix II) λ_m Mach angle μ $\overline{M}/(cL)$ v ____ $M_r/(cL_r)$ v. = Free-stream density ρ Apex semi-angle of the trailing edge (of a swept-back wing) σ

 ϕ Velocity potential

REFERENCES

Title, etc.

No.	Aut	hor			Title, etc.
1	G. M. Roper	••	••		Calculation of the effect of camber and twist on the pressure distribution and drag on some curved plates at supersonic speeds. R. & M. 2794. September, 1950.
2	G. M. Roper	••	• •	••	Some applications of the Lamé function solutions of the linearised supersonic-flow equations. R. & M. 2865. August, 1951.
3	A. Robinson	•••	••	••	Aerofoil theory of a flat delta wing at supersonic speeds. R. & M. 2548. September, 1946.
4	A. Robinson			•••	Rotary derivatives of a delta wing at supersonic speeds. J.R.Ae. Soc. November, 1948.
5	E. W. Hobson		••		Spherical and Ellipsoidal Harmonics. Cambridge University Press.
6	M. M. Munk			•••	The minimum induced drag of aerofoils. N.A.C.A. Report 121. 1921.
7	R. T. Jones				The minimum drag of thin wings in frictionless flow. J. Ac. Sci. Vol. 18. 2. February, 1951.
8	R. T. Jones	••	••	••	Theoretical determination of the minimum drag of airfoils at supersonic speeds. J. Ae. Sci. Vol. 19. 12. December, 1952.
9	E. W. Graham	••	••	••	 A drag-reduction method for wings of fixed plan-form. Douglas Report S.M.14441. July, 1952. J. Ae. Sci. Vol. 19. 12. December, 1952.
10	K. Walker	••	••	••	Examples of drag reduction for rectangular wings. Douglas Report S.M.14446. January, 1953.
11	Beverly J. Beane	••	••	•••	Examples of drag reduction for delta wings. Douglas Report S.M.14447. January, 1953.
12	A. M. Rodriguez, I and E. W. Graf	P. A. La nam	agerstro	om	Theorems concerning the drag reduction of wings of fixed plan-form. Douglas Report S.M.14445. March, 1953. J. Ae. Sci. Vol. 21. 1. January, 1954.
13	Mac C. Adams and	d W. R	. Sears	••	On an extension of slender-wing theory. J. Ae. Sci. Vol. 19. 6. June, 1952.
14	Mac C. Adams and	1 W. R	. Sears	••	Slender-body theory: Reviews and extensions. J. Ac. Sci. Vol. 20. 2. February, 1953.
15	B. S. Baldwin, Jr.				Triangular wings cambered and twisted to support specified distribution of lift at supersonic speeds. N.A.C.A. Tech. Note 1816. February, 1949.
16	Beverly J. Beane	••		•••	The effect of plan-form on the lift to drag ratio of wing-body combinations at supersonic speeds. Douglas Report S.M.14454. July, 1952.
17	Beverly J. Beane	••		•••	Drag reduction due to wing incidence on twist for wing-body combinations. Douglas Report S.M.14740. March, 1953.
18	Clinton E. Brown	••	•••		The reversibility theorem for thin airfoils in subsonic and supersonic flow. N.A.C.A. Tech. Note 1944. September, 1949.
19	A. Busemann		••	• •	Infinitesimal conical supersonic flow. N.A.C.A. Tech. Memo. 1100. 1947.
20	A. H. Flax			•••	Relations between the characteristics of a wing and its reverse in super- sonic flow. J. Ae. Sci. Vol. 16. 8. August, 1949.
21	A. H. Flax	•••	••	•••	General reverse flow and variational theorems in lifting-surface theory. J. Ac. Sci. Vol. 19. 6. June, 1952.
22	P. Germain	••		•••	General theory of conical flows and its application to supersonic aero- dynamics. N.A.C.A. Tech. Memo. 1354. January, 1955. O.N.E.R.A. Rap. 1/1155A, 1948.

.

				Г	KEFERENCES—continued
No.	Aut	thor			Title, etc.
23	M. E. Graham	••	••	•••	Effect of linear symmetric twist on drag of rectangular wing in supersonic flow. Douglas Report S.M.13303. June, 1948.
24	S. Harmon	••	•••	••	Theoretical relations between the stability derivatives of a wing in direct and in reverse supersonic flow. N.A.C.A. Tech. Note 1943. September, 1949.
25	W. D. Hayes	••	••	••	Reversed-flow theorems in supersonic aerodynamics. North American Aviation Inc. Report AL.755. August, 1948.
26	R. T. Jones			••	Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. N.A.C.A. Report 835. 1946.
27	R. T. Jones		••		Estimated lift-drag ratios at supersonic speeds. N.A.C.A. Tech. Note. 1350. July, 1947
28	Th. von Kármán	••		••	Supersonic aerodynamics—Principles and applications. J. Ae. Sci. Vol. 14. 7. July, 1947.
29	R. T. Jones	••	••	••	Theory of wing-body drag at supersonic speeds. N.A.C.A. Research Memo. A53H18a. TIB 3890. September, 1953.
30	H. Lomax and M	. A. H	leaslet	••	Generalised conical-flow fields in supersonic wing theory. N.A.C.A. Tech. Note 2497. September, 1951.
31	M. M. Munk		•••	••	The reversal theorem of linearised supersonic airfoil theory. J. App. Phys. Vol. 21. 2. February, 1950.
32	R. Sedney	••	••	••	On Jones's criterion for thin wings of minimum drag. J. Ac. Sci. Vol. 21. 9. September, 1954.
33	S. H. Tsien	••	••	••	The supersonic conical wing of minimum drag. Grad. Sch. of Aero. Eng., Cornell University, June, 1953.
34	F. Ursell and G.	N. Wa	rd	••	On some general theorems in the linearised theory of compressible flow. Quart. J. Mech. App. Math. Vol. III. Part 3. September, 1950.
35	M. D. Van Dyke	••	••	•••	Subsonic edges in thin-wing and slender-body theory. N.A.C.A. Tech. Note 3343. November, 1954.
36	G. N. Ward	••	••	••	Supersonic flow past slender pointed bodies. Quart. J. Mech. App. Math. Vol. 2. 1. March, 1949.
37	C. F. Hall	••	• •	••	Lift, drag and pitching moment of low-aspect-ratio wings at subsonic and supersonic speeds. N.A.C.A. Research Memo. A53A30. NACA/TIB/3646. April, 1953.
38	L. H. Jorgensen	••	••	••	Nose shapes for minimum pressure drag at supersonic Mach numbers. J. Ae. Sci. Vol. 21. 4. April, 1954.
39	K. W. Mangler	•••	••	••	Calculation of the load distribution over a wing with arbitrary camber and twist at sonic speed. A.R.C. 17262. April, 1954.
40	N. Rott	••	••	••	Minimum-drag cambered rectangular wing for supersonic speeds. J. Ae. Sci. Vol. 20. 9. September, 1953.
41	M. D. Van Dyke		•••	• •	The second-order compressibility rule for airfoils. J. Ae. Sci. Vol. 21. 9. September, 1954.
42	M. D. Van Dyke	••	•••	•••	Second-order subsonic airfoil-section theory and its practical application. N.A.C.A. Tech. Note 3390. March, 1955.
43	K. W. Mangler	•••	••	••	Applications of slender-wing theory in wing design. A.R.C. 18504. November, 1955.

APPENDIX I

The Functions $f_1, f_4, \ldots f_{13}, F_1, F_2$

$$\begin{split} f_1 &= f_4 = \{(2x^2 - 1)E(x) + (1 - x^2)K(x)\}/(2x^2E(x)) \\ f_5 &= 3\{(1 + x^2)E(x) - (1 - x^2)K(x)\}/(2x^2E(x)) \\ f_6 &= \{(2 + x^2 - 3x^4)K(x) - (2 + 2x^2 - 6x^4)E(x)\}/(2x^4E(x)) \\ f_7 &= \{(2 - 3x^2 + x^4)E(x) - (2 - 4x^2 + 2x^4)K(x)\}/(2x^4E(x)) \\ f_{10} &= \{(2 + 2x^2 - 4x^4)K(x) - (2 + 3x^2 - 8x^4)E(x)\}/(2x^4E(x)) \\ f_{11} &= 3\{(2 - 2x^2 + 2x^4)E(x) - (2 - 3x^2 + x^4)K(x)\}/(2x^4E(x)) \\ f_{12} &= \{(8 - x^2 + 5x^4 - 12x^6)K(x) - (8 + 3x^4 + 7x^4 - 24x^6)E(x)\}/(6x^6E(x)) \\ f_{13} &= \{(8 - 11x^2 + x^4 + 2x^6)E(x) - (8 - 15x^2 + 6x^4 + x^6)K(x)\}/(2x^6E(x)) \\ F_1 &= 1/(f_5f_6 - 3f_4f_7) \\ F_2 &= 1/(f_{11}f_{12} - f_{10}f_{13}) \,. \end{split}$$

APPENDIX II

Calculation of the Functions $f_{14}, f_{15}, \ldots, f_{22}, F_3$

Solutions of the linearised supersonic-flow equation, in terms of the Lamé functions of the 'M' class of degree n = 5, are given in Ref. 2, Part II, Appendix III.

It is shown that there are three solutions for the velocity potential, and that the shapes of the corresponding surfaces are given by: (m = 1, 2, 3)

$$z_{m} = \frac{\delta(1-\varkappa^{2})}{E(\varkappa)} \left(1-a_{m}+b_{m}\right)(k^{11}I_{m}) \left[\frac{1}{5}(\varkappa^{4}-a_{m}\varkappa^{2}+b_{m})\varkappa^{5} + \frac{1}{3}(1-\varkappa^{2})(a_{m}\varkappa^{2}-2b_{m})k^{2}y^{2}\varkappa^{3} + (1-\varkappa^{2})^{2}b_{m}k^{4}y^{4}\varkappa\right] + f(y), \quad \dots \quad (\text{II.1})$$

all lengths being measured in root-chord lengths. δ is a small arbitrary constant, f(y) is a (small) arbitrary function of y, and

$$k^{11}I_{m} = \frac{1}{a_{m}^{2} - 4b_{m}} \left[\frac{1}{2} \left\{ \frac{a_{m}}{\varkappa^{2}b_{m}} + \frac{2\varkappa^{2} - a_{m}}{(1 - \varkappa^{2})^{2}\varkappa^{2}(\varkappa^{4} - a_{m}\varkappa^{2} + b_{m})} - 3\left(\frac{2 - 2a_{m} + a_{m}^{2} - 2b_{m}}{(1 - \varkappa^{2})(1 - a_{m} + b_{m})^{2}} \right) + \frac{\varkappa^{2} - 2}{(1 - \varkappa^{2})^{2}} \left(\frac{2 - a_{m}}{1 - a_{m} + b_{m}} \right) + \frac{4}{(1 - \varkappa^{2})(1 - a_{m} + b_{m})} \right\} E(\varkappa) - \left\{ 2\left(\frac{a_{m} - 1}{b_{m}(1 - a_{m} + b_{m})}\right) + \frac{1}{2[a_{m}^{2} - 2b_{m} - 2a_{m}(a_{m}^{2} - b_{m}) + a_{m}^{4} + 4a_{m}^{2}b_{m} - 14b_{m}^{2} - 4a_{m}b_{m}(a_{m}^{2} - 3b_{m})]}{b_{m}^{2}(1 - a_{m} + b_{m})^{2}} \right\} K(\varkappa) \right], \quad (\text{II.2})$$

where a_m are the roots of the equation

$$27a_m^3 - (60\varkappa^2 + 42)a_m^2 + (32\varkappa^4 + 68\varkappa^2 + 16)a_m - 2\varkappa^2(12\varkappa^2 + 8) = 0, \qquad \dots \qquad (II.3)$$

$$b_m = \varkappa^2 a_m / (12 \varkappa^2 + 8 - 9 a_m)$$
, (II.4)

 $\varkappa^2 = 1 - \tan^2 \gamma / \tan^2 \mu$, and $E(\varkappa)$, $K(\varkappa)$ are complete elliptic integrals of the second and first kind respectively, of modulus \varkappa .

The shapes of the surfaces corresponding to velocity potentials proportional to x^4X , $k^2y^2x^2X$, k^4y^4X are given by:

$$z' = \sum_{m=1}^{3} \left[k^4 \lambda_m' (1 - a_m + b_m) z_m \right] = -\delta (A_1 x^5 - B_1 k^2 y^2 x^3 + C_1 k^4 y^4 x) , \qquad \dots \quad (\text{II.5})$$

$$z'' = \sum_{m=1}^{3} \left[k^{8} \lambda_{m}'' (1 - a_{m} + b_{m}) z_{m} \right] \equiv \delta (A_{2} x^{5} - B_{2} k^{2} y^{2} x^{3} + C_{2} k^{4} y^{4} x) , \qquad \dots \qquad (II.6)$$

$$z''' = \sum_{m=1}^{3} \left[k^8 \lambda_m''' (1 - a_m + b_m) z_m \right] = -\delta (A_3 x^5 - B_3 k^2 y^2 x^3 + C_3 k^4 y^4 x) , \qquad \dots \quad (\text{II.7})$$

respectively, where (writing $a_2b_3 - a_3b_2 + a_3b_1 - a_1b_3 + a_1b_2 - a_2b_1 \equiv \Delta$),

$$egin{aligned} &k^4 \lambda_1{}' = rac{1}{arkappa^4 arDeta} \left(a_2 b_3 - a_3 b_2
ight) , \ &k^4 \lambda_2{}' = rac{1}{arkappa^4 arDeta} \left(a_3 b_1 - a_1 b_3
ight) , \ &k^4 \lambda_3{}' = rac{1}{arkappa^4 arDeta} \left(a_1 b_2 - a_2 b_1
ight) ; \end{aligned}$$

$$\begin{split} k^{8}\lambda_{1}^{\ \prime\prime} &= \frac{1}{\varkappa^{2}(1-\varkappa^{2})\varDelta} \left[b_{2} - b_{3} + \frac{1}{\varkappa^{2}} \left(a_{2}b_{3} - a_{3}b_{2} \right) \right], \\ k^{6}\lambda_{2}^{\ \prime\prime} &= \frac{1}{\varkappa^{2}(1-\varkappa^{2})\varDelta} \left[b_{3} - b_{1} + \frac{1}{\varkappa^{2}} \left(a_{3}b_{1} - a_{1}b_{3} \right) \right], \\ k^{6}\lambda_{3}^{\ \prime\prime} &= \frac{1}{\varkappa^{2}(1-\varkappa^{2})\varDelta} \left[b_{1} - b_{2} + \frac{1}{\varkappa^{2}} \left(a_{1}b_{2} - a_{2}b_{1} \right) \right]; \\ k^{8}\lambda_{1}^{\ \prime\prime\prime} &= \frac{1}{(1-\varkappa^{2})^{2}\varDelta} \left[\frac{1}{\varkappa^{4}} \left(a_{2}b_{3} - a_{3}b_{2} \right) + \frac{2}{\varkappa^{2}} \left(b_{2} - b_{3} \right) - \left(a_{2} - a_{3} \right) \right], \\ k^{8}\lambda_{2}^{\ \prime\prime\prime} &= \frac{1}{(1-\varkappa^{2})^{2}\varDelta} \left[\frac{1}{\varkappa^{4}} \left(a_{3}b_{1} - a_{1}b_{3} \right) + \frac{2}{\varkappa^{2}} \left(b_{3} - b_{1} \right) - \left(a_{3} - a_{1} \right) \right], \\ k^{8}\lambda_{3}^{\ \prime\prime\prime} &= \frac{1}{(1-\varkappa^{2})^{2}\varDelta} \left[\frac{1}{\varkappa^{4}} \left(a_{1}b_{2} - a_{2}b_{1} \right) + \frac{2}{\varkappa^{2}} \left(b_{1} - b_{2} \right) - \left(a_{1} - a_{2} \right) \right]. \end{split}$$

Hence the three basic camber and twist solutions are obtained:

$$z = -\delta x^{5} \equiv \delta F_{3}(f_{14}z' + f_{15}z'' + f_{16}z'''), \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (II.8)$$

$$z = - \delta k^2 y^2 x^3 \equiv - \delta F_3(f_{17} z' + f_{18} z'' + f_{19} z'''), \qquad \dots \qquad \dots \qquad \dots \qquad (\text{II.9})$$

$$z = - \delta k^4 y^4 x \equiv \delta F_3(f_{20} z' + f_{21} z'' + f_{22} z'''), \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{II.10})$$

$$\begin{split} f_{14} &= B_2 C_3 - B_3 C_2 , \qquad f_{15} = B_1 C_3 - B_3 C_1 , \qquad f_{16} = B_1 C_2 - B_2 C_1 ; \\ f_{17} &= C_2 A_3 - C_3 A_2 , \qquad f_{18} = C_1 A_3 - C_3 A_1 , \qquad f_{19} = C_1 A_2 - C_2 A_1 ; \\ f_{20} &= A_2 B_3 - A_3 B_2 , \qquad f_{21} = A_1 B_3 - A_3 B_1 , \qquad f_{22} = A_1 B_2 - A_2 B_1 ; \\ F_3 &= 1/(A_1 f_{14} - A_2 f_{15} + A_3 f_{16}) \\ &= 1/(B_1 f_{17} - B_2 f_{18} + B_3 f_{19}) \\ &= 1/(C_1 f_{20} - C_2 f_{21} + C_3 f_{22}) . \end{split}$$

Numerical values of a_m ; λ_m' , λ_m'' , λ_m''' are given in Appendices VIII and IX. Some numerical values of $f_{14}, \ldots f_{22}$, F_3 are given in Appendix III.

APPENDIX III

Numerical Values of the Functions $f_1, f_4, \ldots, f_{13}; f_{14}, \ldots, f_{22}; F_1, F_2, F_3$

		4 -							
$\frac{\tan \gamma}{\tan \mu}$	\varkappa^2	$f_1 = f_4$	f_5	f_6	<i>f</i> ₇	f ₁₀	f_{11}	f_{12}	f_{13}
$0 \\ 0 \cdot 1 \\ 0 \cdot 1184 \\ 0 \cdot 2 \\ 0 \cdot 3$	$ \begin{array}{c} 1 \\ 0.99 \\ 0.9860 \\ 0.96 \\ 0.91 \end{array} $	$\begin{array}{c} 0.5 \\ 0.5135 \\ 0.5176 \\ 0.5390 \\ 0.5690 \end{array}$	$3 \cdot 0$ $2 \cdot 9600$ $2 \cdot 9470$ $2 \cdot 8831$ $2 \cdot 7929$	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 0624 \\ 1 \cdot 0816 \\ 1 \cdot 1774 \\ 1 \cdot 3093 \end{array} $	$\begin{array}{c} 0 \\ 0 \cdot 0048 \\ 0 \cdot 0066 \\ 0 \cdot 0176 \\ 0 \cdot 0359 \end{array}$	1.5 1.5751 1.5993 1.7163 1.8786	$3 \cdot 0$ 2 · 9744 2 · 9669 2 · 9358 2 · 9002	$1 \cdot 0$ $1 \cdot 1040$ $1 \cdot 1370$ $1 \cdot 2929$ $1 \cdot 5044$	$0 \\ 0 \cdot 0142 \\ 0 \cdot 0194 \\ 0 \cdot 0508 \\ 0 \cdot 1010$
0.3577 0.4 0.5 0.6 0.6140	$\begin{array}{c} 0.8721 \\ 0.84 \\ 0.75 \\ 0.64 \\ 0.6231 \end{array}$	$\begin{array}{c} 0.5870 \\ 0.6000 \\ 0.6300 \\ 0.6585 \\ 0.6622 \end{array}$	$\begin{array}{c} 2 \cdot 7391 \\ 2 \cdot 6999 \\ 2 \cdot 6097 \\ 2 \cdot 5247 \\ 2 \cdot 5134 \end{array}$	$ \begin{array}{r} 1 \cdot 3870 \\ 1 \cdot 4429 \\ 1 \cdot 5703 \\ 1 \cdot 6894 \\ 1 \cdot 7048 \end{array} $	$\begin{array}{c} 0 \cdot 0478 \\ 0 \cdot 0571 \\ 0 \cdot 0799 \\ 0 \cdot 1030 \\ 0 \cdot 1062 \end{array}$	$ \begin{array}{r} 1 \cdot 9740 \\ 2 \cdot 0430 \\ 2 \cdot 2007 \\ 2 \cdot 3476 \\ 2 \cdot 3670 \\ \end{array} $	$2 \cdot 8826$ $2 \cdot 8713$ $2 \cdot 8495$ $2 \cdot 8338$ $2 \cdot 8321$	$ \begin{array}{r} 1 \cdot 6267 \\ 1 \cdot 7143 \\ 1 \cdot 9123 \\ 2 \cdot 0944 \\ 2 \cdot 1182 \end{array} $	0.1333 0.1578 0.2163 0.2735 0.2813
0·6873 0·7 0·7112 0·7141	0.5276 0.51 0.4942 0.49	0.6814 0.6845 0.6874 0.6881	$2 \cdot 4558$ $2 \cdot 4463$ $2 \cdot 4378$ $2 \cdot 4357$	$1 \cdot 7842$ $1 \cdot 7969$ $1 \cdot 8086$ $1 \cdot 8116$	$\begin{array}{c} 0 \cdot 1228 \\ 0 \cdot 1257 \\ 0 \cdot 1282 \\ 0 \cdot 1289 \end{array}$	$2 \cdot 4656$ $2 \cdot 4817$ $2 \cdot 4960$ $2 \cdot 4997$	$2 \cdot 8243$ $2 \cdot 8235$ $2 \cdot 8225$ $2 \cdot 8223$	$2 \cdot 2390$ $2 \cdot 2583$ $2 \cdot 2757$ $2 \cdot 2802$	$0.3212 \\ 0.3284 \\ 0.3342 \\ 0.3358$
0.7338 0.8 0.9 1.0	$0.4615 \\ 0.36 \\ 0.19 \\ 0$	0.6930 0.7085 0.7300 0.7500	$2 \cdot 4211$ $2 \cdot 3743$ $2 \cdot 3093$ $2 \cdot 2500$	$ \begin{array}{r} 1 \cdot 8317 \\ 1 \cdot 8952 \\ 1 \cdot 9820 \\ 2 \cdot 0625 \\ \end{array} $	$\begin{array}{c} 0 \cdot 1331 \\ 0 \cdot 1473 \\ 0 \cdot 1685 \\ 0 \cdot 1875 \end{array}$	$ \begin{array}{r} 2 \cdot 5246 \\ 2 \cdot 6038 \\ 2 \cdot 7125 \\ 2 \cdot 8125 \\ \end{array} $	$2 \cdot 8205$ $2 \cdot 8167$ $2 \cdot 8146$ $2 \cdot 8125$	$2 \cdot 3109$ $2 \cdot 4066$ $2 \cdot 5365$ $2 \cdot 65625$	$\begin{array}{c} 0.3453 \\ 0.3786 \\ 0.4306 \\ 0.46875 \end{array}$
$\frac{\tan \gamma}{\tan \mu}$	f_{14}	f_{15}	f_{16}	f ₁₇	f ₁₈	f ₁₉	f_{20}	f_{21}	f_{22}
0·6140 0·7	$3 \cdot 4980 \\ 3 \cdot 4050$	$0.6358 \\ 0.7320$	$0.0156 \\ 0.0224$	-0.1688 -0.1495	$-1.9562 \\ -2.0586$	$ \begin{array}{c} -0.0340 \\ -0.4520 \end{array} $	$0.0229 \\ 0.0195$	$0.1688 \\ 0.1844$	$0.4616 \\ 0.4914$
$\frac{\tan \gamma}{\tan \mu}$	F_1	F_2	F_{3}						
0.1184 0.3577 0.5 0.6140 0.7 0.7338	$\begin{array}{c} 0.3147 \\ 0.2692 \\ 0.2534 \\ 0.2455 \\ 0.2417 \\ 0.2405 \end{array}$	$\begin{array}{c} 0 \cdot 2992 \\ 0 \cdot 2259 \\ 0 \cdot 2011 \\ 0 \cdot 1875 \\ 0 \cdot 1798 \\ 0 \cdot 1771 \end{array}$	0 • 5687 0 • 5454						
				<u>l</u>					

APPENDIX IV

Velocity	Potentials	of the	Basic	Cambered	and	Twisted	Surfaces
		X	$\equiv (x^2)$	$-k^2 y^2)^{1/2}$			ı

Ŷ	z _r	$(\varkappa E(\varkappa)/V)\phi_r$	
1	$-\delta x$	δΧ	
2	$\frac{\delta}{c}x^2$	$\frac{\delta}{cf_1} xX$	
3	$-\frac{\delta}{c^2}x^3$	$3F_1 \frac{\delta}{c^2} [f_5 x^2 - f_7 (x^2 - k^2 y^2)] X$	Camber
4	$-\frac{\delta}{c^3}x^4$	$3F_2 \frac{\delta}{c^3} [f_{11}x^3 - f_{13}(x^3 - k^2y^2x)]X$	
5	$-rac{\delta}{c^2}k^2y^2x$	$F_{1}\frac{\delta}{c^{2}}[3f_{4}x^{2}-f_{6}(x^{2}-k^{2}y^{2})]X$	Twist
6	$-rac{\delta}{c^3}k^2y^2x^2$	$2F_2 \frac{\delta}{c^3} [f_{10}x^3 - f_{12}(x^3 - k^2y^2x)]X$	Combon and twist
7	$f_4 z_3 - f_5 z_5$	$\frac{\delta}{c^2} \left(x^2 - k^2 y^2 \right) X$	
8	$-\frac{\delta}{c^4} x^5$	$\frac{\delta}{c^4} F_3(f_{14}x^4 + f_{15}k^2y^2x^2 + f_{16}k^4y^4)X$	Camber
9	$-rac{\delta}{c^4}k^2y^2x^3$	$-\frac{\delta}{c^4} F_3(f_{17}x^4 + f_{18}k^2y^2x^2 + f_{19}k^4y^4)X$	Camber and twist
10	$-rac{\delta}{c^4}k^4y^4x$	$\frac{\delta}{c^4} F_3(f_{20}x^4 + f_{21}k^2y^2x^2 + f_{22}k^4y^4)X$	Twist

$$\frac{Evaluation of the Integral \int_{0}^{c/k} \int_{ky}^{c} \frac{k^{2m}y^{2m}x^{n}}{(x^{2}-k^{2}y^{2})^{1/2}} dx dy \equiv \frac{c^{2m+n+1}}{k} T_{2m,n},$$
Where m, n are Positive Integers

It can be shown that

$$\begin{split} \int_{ky}^{c} \frac{x^{n}}{(x^{2} - k^{2}y^{2})^{1/2}} dx &= \frac{1}{n} \left(c^{2} - k^{2}y^{2} \right)^{1/2} \left[c^{n-1} + \frac{n-1}{n-2} c^{n-3}k^{2}y^{2} \\ &+ \frac{(n-1)(n-3)}{(n-2)(n-4)} c^{n-5}k^{4}y^{4} + \ldots + \frac{(n-1)(n-3)\dots 2}{(n-2)(n-4)\dots 1} (ky)^{n-1} \right] \\ &\quad \text{if } n \text{ is odd,} \qquad \ldots \qquad (V.1) \\ &= \frac{1}{n} \left(c^{2} - k^{2}y^{2} \right)^{1/2} \left[c^{n-1} + \frac{n-1}{n-2} c^{n-3}k^{2}y^{2} \\ &+ \frac{(n-1)(n-3)}{(n-2)(n-4)} c^{n-5}k^{4}y^{4} + \ldots + \frac{(n-1)(n-3)\dots 3}{(n-2)(n-4)\dots 2} c(ky)^{n-2} \right] \\ &+ \frac{(n-1)(n-3)\dots 1}{n(n-2)\dots 2} (ky)^{n} \cosh^{-1}\frac{c}{ky} \\ &\qquad \text{if } n \text{ is even,} \qquad \ldots \qquad (V.2) \end{split}$$

$$\int_{0}^{c/k} k^{2n} y^{2n} (c^2 - k^2 y^2)^{1/2} \, dy = \frac{\pi c^{2n+2}}{k} \left(\frac{(2n)!}{2^{2n+2} n! (n+1)!} \right) \qquad \dots \qquad \dots \qquad (V.3)$$

Hence

for all values of m, n.

If m = 0,

If n = 0,

$$T_{0,n} = \frac{\pi}{2(n+1)} \cdot T_{2m,0} = \frac{\pi(2m)!}{2^{2m+1}(2m+1)(m!)^2} \cdot T_{2m,0} = \frac{\pi(2m)!}{2^{2m+1}(2m+1)(m!)$$

A table of values of $T_{2m,n}$ used in the numerical calculations is given:

Values of $T_{2m,n}$

п	$\frac{1}{\pi} T_{0,n}$	$\frac{1}{\pi} T_{2,n}$	$\frac{1}{\pi} T_{4,n}$	$\frac{1}{\pi} T_{6,n}$	$\frac{1}{\pi} T_{s,n}$
0	1/2	1/12	3/80	5/224	35/2304
1	1/4	1/16	1/32	5/256	7/512
2	1/6	1/20	3/112	5/288	35/2816
3	1/8	1/24	3/128	1/64	35/3072
4	1/10	1/28	1/48	5/352	35/3328
5	1/12	1/32	3/160	5/384	5/512
6	1/14	1/36	3/176	5/416	7/768
7	1/16	1/40	1/64	5/448	35/4096
8	1/18	1/44	3/208	1/96	35/4352
9	1/20	1/48	3'/224	5/512	35/4608

с

(76072)

APPENDIX VI

$$\frac{Evaluation of the Integral \int_{0}^{c/(k-h)} \int_{ky}^{c+hy} \frac{k^{2m}y^{2m}x^{n}}{(x^{2}-k^{2}y^{2})^{1/2}} dx dy \equiv I_{2m,n},}{Where m, n are Positive Integers}$$

Writing $\{(c + hy)^2 - h^2y^2\}^{1/2} \equiv Z$, it can be shown that:

$$\begin{split} \int_{ky}^{c+hy} \frac{x^{n}}{(x^{2} - k^{2}y^{2})^{1/2}} dx &= \frac{1}{nZ} \left[(c + hy)^{n+1} + \frac{1}{n-2} (c + hy)^{n-1} k^{2}y^{2} \\ &+ \frac{n-1}{(n-2)(n-4)} (c + hy)^{n-3} k^{4}y^{4} \\ &+ \ldots + \frac{(n-1)(n-3)\dots 4}{(n-2)(n-4)\dots 1} (c + hy)^{2} (ky)^{n-1} \\ &- \frac{(n-1)(n-3)\dots 2}{(n-2)(n-4)\dots 1} (ky)^{n+1} \right] \\ \int_{ky}^{c+hy} \frac{x^{n}}{(x^{2} - k^{2}y^{2})^{1/2}} dx &= \frac{1}{nZ} \left[(c + hy)^{n+1} + \frac{1}{n-2} (c + hy)^{n-1} k^{2}y^{2} \\ &+ \ldots + \frac{(n-1)(n-3)\dots 5}{(n-2)(n-4)\dots 2} (c + hy)^{3} (ky)^{n-2} \\ &- \frac{(n-1)(n-3)\dots 3}{(n-2)(n-4)\dots 2} (c + hy)(ky)^{n} \right] \\ &+ \frac{(n-1)(n-3)\dots 3}{n(n-2)(n-4)\dots 2} (c + hy)(ky)^{n} \end{split}$$

Hence, if n is odd,

$$I_{2m,n} \equiv \int_{0}^{c/(k-h)} \int_{ky}^{c+hy} \frac{k^{2m} y^{2m} x^{n}}{(x^{2} - k^{2} y^{2})^{1/2}} dx dy$$

 $y = \frac{c}{k^2 - h^2} (h + k \sin \theta),$

is the sum of integrals of the form

$$\int_{0}^{c/(k-h)} \frac{(c+hy)^{M} k^{2m} y^{2m}}{Z} \, dy \equiv J_{2m,M} \, . \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VI.3})$$

If n is even, there are also terms of the form

It can be shown that

Putting

$$J_{2m,M} = \frac{c^{2m+M}}{k\lambda^{4m+2M+1}} \int_{-\cos^{-1}\lambda}^{\pi/2} (1 + a\sin\theta)^M (a + \sin\theta)^{2m} d\theta ,$$

where $\lambda^2 = 1 - h^2/k^2$, and $a = h/k^*$.

^{*} Recurrence formulae for $I_{N,n}$, $J_{N,n}$, which have been programmed for an electronic computor, and some tables of values will be given in a later paper.

2m, M	$(k/c^2)J_{2m,M}$
0, 0	$\left \frac{1}{c^2 \lambda} \left(\theta \right) \right $
0, 1	$\frac{1}{c\lambda^3}\left\{(\theta) + \lambda a\right\}$
0, 2	$\frac{1}{\lambda^5} \left\{ \frac{1}{2} (3 - \lambda^2)(\theta) + \frac{1}{2} \lambda a (3 + \lambda^2) \right\}$
2, 0	$\frac{1}{\lambda^5}\left\{\tfrac{1}{2}(3-2\lambda^2)(\theta)+\tfrac{3}{2}\lambda a\right\}$
0, 3	$\frac{c}{\lambda^7}\left\{\frac{1}{2}(5-3\lambda^2)(\theta)+\frac{1}{6}\lambda a(15+\lambda^2+2\lambda^4)\right\}$
2, 1	$\frac{c}{\lambda^7}\left\{\frac{1}{2}(5-4\lambda^2)(\theta)+\frac{1}{6}\lambda a(15-2\lambda^2)\right\}$
0, 4	$\frac{c^{2}}{\lambda^{9}} \{ \frac{1}{8} (35 - 30\lambda^{2} + 3\lambda^{4})(\theta) + \frac{1}{24} \lambda a (105 - 20\lambda^{2} + 5\lambda^{4} + 6\lambda^{6}) \}$
2, 2	$\frac{c^{2}}{\lambda^{9}} \{ \frac{1}{8} (35 - 35\lambda^{2} + 4\lambda^{4})(\theta) + \frac{1}{24} \lambda a (105 - 35\lambda^{2} - 2\lambda^{4}) \}$
4,0	$\frac{c^{2}}{\lambda^{9}} \{ \frac{1}{8} (35 - 40\lambda^{2} + 8\lambda^{4})(\theta) + \frac{1}{24} \lambda a (105 - 50\lambda^{2}) \}$
0, 5	$\frac{c^{3}}{\lambda^{11}}\left\{ \frac{1}{8}(63-70\lambda^{2}+15\lambda^{4})(\theta) + \frac{1}{120}\lambda a(945-420\lambda^{2}+29\lambda^{4}+22\lambda^{6}+24\lambda^{8}) \right\}$
2, 3	$\frac{c^{3}}{\lambda^{11}} \left\{ \frac{1}{8} (63 - 77\lambda^{2} + 18\lambda^{4})(\theta) + \frac{1}{120} \lambda a (945 - 525\lambda^{2} + 4\lambda^{4} - 4\lambda^{6}) \right\}$
4, 1	$\frac{c^{3}}{\lambda^{11}} \{ \frac{1}{8} (63 - 84\lambda^{2} + 24\lambda^{4})(\theta) + \frac{1}{120} \lambda a (945 - 630\lambda^{2} + 24\lambda^{4}) \}$
0, 6	$\frac{c^4}{\lambda^{13}} \{ \frac{1}{16} (231 - 315\lambda^2 + 105\lambda^4 - 5\lambda^6)(\theta) + \frac{1}{240} \lambda a (3465 - 2415\lambda^2 + 273\lambda^4 + 39\lambda^6 + 38\lambda^8 + 40\lambda^{10}) \}$
2, 4	$\frac{c^4}{\lambda^{13}} \{ \frac{1}{16} (231 - 336\lambda^2 + 119\lambda^4 - 6\lambda^6)(\theta) + \frac{1}{240} \lambda a (3465 - 2730\lambda^2 + 273\lambda^4 - 4\lambda^6 - 4\lambda^8) \}$
4, 2	$\frac{c^4}{\lambda^{13}} \left\{ \frac{1}{16} (231 - 357\lambda^2 + 140\lambda^4 - 8\lambda^6)(\theta) + \frac{1}{240} \lambda a (3465 - 3045\lambda^2 + 378\lambda^4 + 8\lambda^6) \right\}$
6, 0	$\frac{c^4}{\lambda^{13}} \left\{ \frac{1}{16} (231 - 378\lambda^2 + 168\lambda^4 - 16\lambda^6)(\theta) + \frac{1}{240} \lambda a (3465 - 3360\lambda^2 + 588\lambda^4) \right\}$
0, 7	$ \begin{array}{l} \frac{c^5}{\lambda^{15}} \left\{ \frac{1}{16} (429 - 693\lambda^2 + 315\lambda^4 - 35\lambda^6)(\theta) \right. \\ \left. + \lambda a \left(\frac{429}{16} - \frac{407}{16}\lambda^2 + \frac{409}{80}\lambda^4 + \frac{53}{560}\lambda^6 + \frac{23}{168}\lambda^8 + \frac{29}{210}\lambda^{10} + \frac{1}{7}\lambda^{12} \right) \right\} \end{array} $
2, 5	$\frac{c^{5}}{\lambda^{15}} \{ \frac{1}{16} (429 - 726\lambda^{2} + 345\lambda^{4} - 40\lambda^{6})(\theta) + \lambda a (\frac{42.9}{1.6} - \frac{5.5}{2}\lambda^{2} + \frac{44.9}{.80}\lambda^{4} - \frac{1.9}{2.80}\lambda^{6} - \frac{1}{70}\lambda^{8} - \frac{1}{105}\lambda^{10}) \}$

Formulae for the integrated values of $J_{2m,M}(2m + M = 1, 2, ... 10)$ are given below $(\frac{1}{2}\pi + \cos^{-1}\lambda)$ is written as (θ) :

(76072)

C 2
2m, M	$(k/c^2) {J}_{2m, M}$
4, 3	$\frac{c^{5}}{\lambda^{15}} \left\{ \frac{1}{16} (429 - 759\lambda^{2} + 384\lambda^{4} - 48\lambda^{8})(\theta) + \lambda a \left(\frac{42.9}{1.6} - \frac{47.3}{1.6}\lambda^{2} + \frac{26.7}{4.0}\lambda^{4} - \frac{3}{7.0}\lambda^{6} + \frac{1}{1.05}\lambda^{8} \right) \right\}$
6, 1	$\frac{c^{5}}{\lambda^{15}} \{ \frac{1}{16} (429 - 792\lambda^{2} + 432\lambda^{4} - 64\lambda^{6})(\theta) + \lambda a (\frac{42.9}{1.6} - \frac{2.5.3}{8}\lambda^{2} + \frac{8.3}{1.0}\lambda^{4} - \frac{1}{7}\lambda^{6}) \}$
0, 8	$\frac{c^{6}}{\lambda^{17}} \{ \frac{1}{128} (6435 - 12012\lambda^{2} + 6930\lambda^{4} - 1260\lambda^{6} + 35\lambda^{8})(0) \\ + \lambda d (\frac{6435}{128} - \frac{3861}{64}\lambda^{2} + \frac{1177}{64}\lambda^{4} - \frac{2280}{2280}\lambda^{6} + \frac{513}{4480}\lambda^{8} + \frac{809}{6720}\lambda^{10} + \frac{41}{336}\lambda^{12} + \frac{1}{8}\lambda^{14}) \}$
2,6	$ \begin{array}{c} \frac{c^{6}}{\lambda^{17}} \{ \frac{1}{128} (6435 - 12441\lambda^{2} + 7425\lambda^{4} - 1395\lambda^{6} + 40\lambda^{8})(\theta) \\ + \lambda u (\frac{6435}{128} - \frac{8151}{128}\lambda^{2} + \frac{2563}{128}\lambda^{4} - \frac{4847}{4480}\lambda^{6} - \frac{1}{2430}\lambda^{8} - \frac{1}{1680}\lambda^{10} - \frac{1}{168}\lambda^{12}) \} \end{array}$
4,4	$\frac{c^{6}}{\lambda^{17}} \{ \frac{1}{1\frac{5}{2}} \frac{1}{8} (6435 - 12870\lambda^{2} + 8019\lambda^{4} - 1584\lambda^{6} + 48\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{6}{1\frac{4}{6}} \frac{1}{55} - \frac{2}{1\frac{4}{5}} \frac{1}{\lambda^{2}} + \frac{2}{1\frac{6}{5}} \frac{1}{\lambda^{4}} - \frac{5}{5\frac{6}{5}} \frac{1}{6} \lambda^{6} + \frac{1}{70} \lambda^{8} + \frac{1}{3\frac{5}{5}} \lambda^{10}) \}$
6, 2	$\frac{c^{6}}{\lambda^{17}} \{ \frac{1}{128} (6435 - 13299\lambda^{2} + 8712\lambda^{4} - 1872\lambda^{6} + 64\lambda^{8})(\theta) \\ + \frac{1}{3}\lambda a (\frac{6435}{16} - \frac{9009}{16}\lambda^{2} + \frac{1639}{16}\lambda^{4} - \frac{941}{70}\lambda^{6} - \frac{1}{7}\lambda^{8}) \}$
8, 0	$\frac{c^{6}}{\lambda^{17}} \{ \frac{1}{128} (6435 - \frac{13728\lambda^{2}}{2} + 9504\lambda^{4} - \frac{2304\lambda^{6}}{2} + \frac{128\lambda^{8}}{128})(\theta) + \frac{1}{8} \lambda a (\frac{6435}{16} - \frac{4719}{8}\lambda^{2} + \frac{473}{2}\lambda^{4} - \frac{761}{35}\lambda^{6}) \}$
0, 9	$ \begin{array}{c} c^{7} \\ \lambda^{19} \left\{ \frac{1}{128} (12155 - 25740\lambda^{2} + 18018\lambda^{4} - 4620\lambda^{6} + 315\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{12155}{16} - \frac{2}{24} \frac{c455}{24} \lambda^{2} + \frac{110}{24} \frac{11}{4} \lambda^{4} - \frac{3}{7} \frac{4}{17} \lambda^{6} + \frac{5329}{5040} \lambda^{8} + \frac{2131}{2520} \lambda^{10} + \frac{181}{210} \lambda^{12} + \frac{55}{63} \lambda^{14} + \frac{8}{9} \lambda^{16}) \right\} $
2, 7	$\frac{c^{7}}{\lambda^{19}} \{ \frac{1}{128} (12155 - 26455\lambda^{2} + 19019\lambda^{4} - 5005\lambda^{6} + 350\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{12155}{16} - \frac{55055}{48}\lambda^{2} + \frac{7865}{16}\lambda^{4} - \frac{6149}{112}\lambda^{6} + \frac{89}{630}\lambda^{8} - \frac{37}{420}\lambda^{10} - \frac{2}{35}\lambda^{12} - \frac{2}{63}\lambda^{14}) \}$
4, 5	$ \begin{array}{c} c^{7} \\ \lambda^{19} \left\{ \frac{1}{128} (12155 - 27170\lambda^{2} + 20163\lambda^{4} - 5500\lambda^{6} + 400\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{12155}{16} - \frac{3575}{8}\lambda^{2} + \frac{2559}{48}\lambda^{4} - \frac{1041}{168}\lambda^{6} + \frac{109}{315}\lambda^{8} + \frac{1}{45}\lambda^{10} + \frac{14}{315}\lambda^{12}) \right\} \end{array}$
6, 3	$\begin{vmatrix} c^{7} \\ \lambda^{19} \{ \frac{1}{128} (12155 - 27885\lambda^{2} + 21450\lambda^{4} - 6160\lambda^{6} + 480\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{12455}{16} - \frac{59345}{48}\lambda^{2} + \frac{7007}{12}\lambda^{4} - \frac{2057}{28}\lambda^{6} + \frac{2}{63}\lambda^{8} - \frac{2}{63}\lambda^{10}) \}$
8, 1	$\begin{vmatrix} c^{7} \\ \lambda^{19} \{ \frac{1}{128} (12155 - 28600\lambda^{2} + 22880\lambda^{4} - 7040\lambda^{6} + 640\lambda^{8})(\theta) \\ + \frac{1}{8} \lambda a (\frac{12155}{16} - \frac{30745}{24}\lambda^{2} + \frac{3861}{24}\lambda^{4} - \frac{649}{64}\lambda^{6} + \frac{8}{9}\lambda^{8}) \}$
0, 10	$\begin{bmatrix} \frac{c^8}{\lambda^{21}} \left\{ \frac{1}{256} (46189 - 109395\lambda^2 + 90090\lambda^4 - 30030\lambda^6 + 3465\lambda^8 - 63\lambda^{10})(\theta) + \frac{1}{8}\lambda a \left(\frac{46189}{32} - \frac{235807}{26}\lambda^2 + \frac{19591}{15}\lambda^4 - \frac{125983}{560}\lambda^6 + \frac{79697}{15080}\lambda^8 + \frac{1577}{2016}\lambda^{10} + \frac{37}{48}\lambda^{12} + \frac{983}{1260}\lambda^{14} + \frac{71}{90}\lambda^{16} + \frac{4}{5}\lambda^{18} \right) \right\}$
2, 8	$ \left\{ \begin{array}{c} \frac{c^8}{\lambda^{21}} \left\{ \frac{1}{256} (46189 - 111826\lambda^2 + 94094\lambda^4 - 32032\lambda^6 + 3773\lambda^8 - 70\lambda^{10})(\theta) \right. \\ \left. \left. \left. \left. + \frac{1}{8} \lambda a \left(\frac{4.6+8.9}{32} - \frac{6.9775}{24} \lambda^2 + \frac{33+33+1}{240} \lambda^4 - \frac{6.8497}{240} \lambda^6 + \frac{15763}{2016} \lambda^8 - \frac{7}{1260} \lambda^{10} - \frac{17}{280} \lambda^{12} - \frac{13}{315} \lambda^{14} - \frac{1}{45} \lambda^{16} \right) \right\} \right\} $
4,6	$ \begin{vmatrix} \frac{c^8}{\lambda^{21}} \left\{ \frac{1}{256} (46189 - 114257\lambda^2 + 98527\lambda^4 - 34463\lambda^6 + 4180\lambda^8 - 80\lambda^{10})(\theta) \\ + \frac{1}{8} \lambda a \left(\frac{46189}{32} - \frac{2503993}{96}\lambda^2 + \frac{234949}{160}\lambda^4 - \frac{602203}{1600}\lambda^6 - \frac{91199}{10008}\lambda^8 + \frac{1}{210}\lambda^{10} + \frac{1}{70}\lambda^{12} + \frac{3}{315}\lambda^{14} \right) \right\} $

2m, M	$(k/c^2)J_{2m,M}$
6, 4	$\frac{c^8}{\lambda^{21}} \left\{ \frac{1}{256} (46189 - 116688\lambda^2 + 103389\lambda^4 - 37466\lambda^6 + 4752\lambda^8 - 96\lambda^{10})(\theta) \right. \\ \left. + \frac{1}{8} \lambda a \left(\frac{46189}{82} - \frac{128848}{48}\lambda^2 + \frac{758467}{480}\lambda^4 - \frac{84518}{280}\lambda^6 + \frac{3839}{360}\lambda^8 + \frac{2}{315}\lambda^{10} - \frac{2}{105}\lambda^{12} \right) \right\}$
8, 2	$\frac{c^{8}}{\lambda^{21}} \left\{ \frac{1}{256} (46189 - 119119\lambda^{2} + 108680\lambda^{4} - 41184\lambda^{6} + 5632\lambda^{8} - 128\lambda^{10})(\theta) \right. \\ \left. + \frac{1}{8} \lambda a \left(\frac{46189}{32} - \frac{264979}{96}\lambda^{2} + \frac{404261}{240}\lambda^{4} - \frac{48763}{140}\lambda^{6} + \frac{8921}{630}\lambda^{8} + \frac{4}{45}\lambda^{10} \right) \right\}$
10, 0	$\frac{c^{8}}{\lambda^{21}} \left\{ \frac{1}{8} \left(\frac{46189}{32} - \frac{60775}{16} \lambda^{2} + 3575 \lambda^{4} - 1430 \lambda^{6} + 220 \lambda^{8} - 8 \lambda^{10} \right) (\theta) \right. \\ \left. + \frac{1}{8} \lambda a \left(\frac{46189}{32} - \frac{17017}{6} \lambda^{2} + \frac{72501}{40} \lambda^{4} - \frac{14443}{35} \lambda^{6} + \frac{7381}{315} \lambda^{8} \right) \right\}$

When $\lambda = 1$, the swept-back wing becomes triangular. It has been verified for all the values 2m + M = 1, 2, ... 10 that, in this case $I_{2m,n} = \frac{c^{2m+n+1}}{k} T_{2m,n}$ (see Appendix V).

When the trailing edges of the swept-back wing are sonic, $\lambda = \varkappa$.

APPENDIX VII

Some General Formulae for the Lift, Drag, 'Interference' Drag, and Pitching Moments of Cambered and Twisted Surfaces

All forces are normalised by dividing by $(\pi \rho V^2 c^2)/(k^2 E(\varkappa))$.

For the surface given by $z = -\delta x^n (ky)^{2m}/c^{k-1}$, where R = 2m + n, the load distribution can be put in the forms

$$p_r = \frac{2k}{\pi c^{R+1}} \sum_r \frac{c_r (ky)^{2r} x^{R-2r}}{X}, \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (\text{VII.1})$$

or

(See Table 2), where the c_r are functions of \varkappa , and $b_r = \sum_r c_r$; and the incidence is

In this Appendix, each summation \sum_{r} is for r = 0, 1, ..., R/2 if R is even, and r = 0, 1, ..., (R -)/2 if R is odd.

Therefore, for a triangular surface:

i

the lift is

the pressure integral is

$$D_{r} = \int p_{r} \alpha_{r} dS = \frac{4n}{\pi} \delta^{2} \sum_{r} (c_{r} T_{2(m+r), R-2r+n-1})$$

= $\frac{n \delta^{2}}{R} \sum_{r} \left\{ \frac{c_{r} [2(m+r)]!}{2^{2(m+r)} [(m+r)!]^{2}} \right\}; \dots \dots \dots (VII.5)$

and the suction force is

The interference pressure integral for two surfaces given by $z_r = -\delta x^n (ky)^{2m}/c^{R-1}$, $z_s = -\delta x^N (ky)^{2M}/c^{Q-1}$, where Q = 2M + N, is: (Values of s in \sum_s are the same as for r, with Q in place of R)

$$D_{r,s} = \int (p_r \alpha_s + p_s \alpha_r) \, dS$$

= $\frac{4n\delta^2}{\pi} \sum_s \left(c_s T_{2(m+s), Q-2s+n-1} \right) + \frac{4N\delta^2}{\pi} \sum_r \left(c_r T_{2(M+r), R-2r+N-1} \right)$
= $\frac{\delta^2}{R+Q} \left[n \sum_s \left(\frac{c_s [2(m+s)]!}{2^{2m+2s-1} [(m+s)!]^2} \right) + N \sum_r \left(\frac{c_r [2(M+r)]!}{2^{2M+2r-1} [(M+r)!]^2} \right) \right]; \quad \dots \quad (\text{VII.7})$

and the interference suction force is

$$S_{r,s} = 2\pi\rho\varkappa \int_0^c (2P_r P_s) \, dx = \frac{2\varkappa\delta^2}{E(\varkappa)} \frac{b_r b_s}{R+Q} \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.8})$$

The pitching moment, about the apex, for surface z_r is

The corresponding formulae for a swept-back surface with straight supersonic, or sonic, trailing edges are:

$$L_r = \frac{4\delta k}{\pi c^{R+1}} \sum_r \left(c_r I_{2r, R-2r} \right); \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.10})$$

$$D_{r} = \frac{4\delta^{2}k}{\pi c^{2R}} \sum_{r} c_{r} I_{2(m+r), R-2r+n-1} ; \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.11})$$

$$S_r = \frac{\kappa \delta^2}{E(\kappa)} \frac{1}{(1-a)^{2R}} b_r^2 \frac{1}{2R}, \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.12})$$

where a = h/k;

$$D_{r,s} = \frac{4\delta^2 k}{\pi c^{R+Q}} \left[n \sum_{s} \left(c_s I_{2(m+s), Q-2s+n-1} \right) + N \sum_{r} \left(c_r I_{2(M+r), R-2r+N-1} \right) \right], \quad \text{(VII.13)}$$

$$S_{r,s} = \frac{2\varkappa\delta^2}{E(\varkappa)} \frac{1}{(1-a)^{R+Q}} \frac{b_r b_s}{R+Q}, \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.14})$$

For cambered triangular surfaces of the form $z = -\delta x^n/c^{n-1}$, m = 0, R = n, and it can be shown that

$$D_r = \frac{(n+1)\delta}{2} L_r$$
 (VII.16)

$$d_{r} = \frac{(n+1)\delta}{2L_{r}};$$

$$d_{r,s} = \frac{\delta}{n+N} \left[\frac{n(N+1)}{L_{r}} + \frac{N(n+1)}{L_{s}} \right]$$

$$= \frac{2}{n+N} \left[\frac{n(N+1)}{n+1} d_{r} + \frac{N(n+1)}{N+1} d_{s} \right]; \qquad \dots \qquad (\text{VII.18})$$

$$S_r = \frac{\varkappa \delta^2}{E(\varkappa)} \frac{b_r^2}{2n}; \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (\text{VII.19})$$

$$S_{r,s} = \frac{2\kappa \delta^2}{E(\kappa)} \frac{b_r b_s}{n+N}. \qquad \dots \qquad (\text{VII.20})$$

For triangular cambered (surface slope a function of x only) surfaces with sonic leading edges, $\varkappa = 0$, and

$$D_r = n\delta^2;$$
 $d_r = \frac{(n+1)^2}{4n} = t_r;$... (VII.21)

$$d_{r,s} = \frac{(n+1)(N+1)}{n+N} = t_{r,s}$$
. ... (VII.22)

In the limiting case, when $\varkappa \to 1$, i.e., $\tan \gamma/\tan \mu = (M^2 - 1)^{1/2} \tan \gamma \to 0$, for the cambered surfaces $z_r = -\delta x^n/c^{n-1}$, $z_s = -\delta x^N/c^{N-1}$, $b_r = n$, $L_r = n$, and hence $(n, N \ge 1)$

$$\begin{aligned} d_r &= \frac{n+1}{2n} \\ s_r &= \frac{1}{2n} \end{aligned} \right\} t_r = \frac{1}{2} = t_s; \qquad \qquad d_{r,s} = \frac{n+N+2}{n+N} \\ s_{r,s} &= \frac{2}{n+N} \end{aligned} \} t_{r,s} = 1 , \end{aligned}$$

and therefore $t_r + t_s = t_{r,s}$, and $t_{r,s} = 2t_r = 2t_s$.

Also

$$t_{r,s} = 1 \text{ for all } n, N(\ge 1) \text{ for surfaces } z_r = -\frac{\delta x^n}{c^{n-1}}, z_s = -\frac{\delta x^N k^2 y^2}{c^{N+1}}$$

$$= \frac{4}{3} \text{ for all } n, N(\ge 1) \text{ for surfaces } z_r = -\frac{\delta x^n k^2 y^2}{c^{n+1}}, z_s = -\frac{\delta x^N k^2 y^2}{c^{N+1}}$$

$$t_r = \frac{2}{3} \text{ for all } n \ge 1 \text{ for cambered and twisted surfaces } z_r = -\frac{\delta x^n k^2 y^2}{c^{n+1}}.$$

There are indications that similar results hold for higher powers of k^2y^2 in z_r and z_s .

APPENDIX VIII

١

Numerical Values of a_m, b_m

$\frac{\tan \gamma}{\tan \mu}$	a ₁	b_1	a_2	b_2	a ₃	b_3	\varkappa^2
0	0.666667	0.047619	1.111111	0.111111	2	1	1
$0 \cdot 1$	0.664970	0.047377	1.103081	0 • 109729	1.987504	0.987535	0.99
0.2	0.659505	0.046607	1.079320	$0 \cdot 105663$	1.950064	0.950562	0.96
0.3	0.648970	0.045153	1.040976	0.099180	1.887832	0.890340	0.91
0.4	0.630543	0.042697	0.990590	0.090794	1.801089	0.808960	0.84
0.5	0.598776	0.038677	0.933138	0.081362	1.690307	0 ·7 09326	0.75
0.6	0.544852	0.032358	0.876653	0.072022	$1 \cdot 556272$	0.595150	0.64
0.7	0.459468	0.023469	0.829013	0.063494	1.400408	0.471012	0.51
0.7211	$0 \cdot 436934$	0.021341	0.820339	0.061748	1.364949	0.444048	0.48
0.8	0.338897	0.013161	0.790825	0.054722	1.225834	0.342758	0.36
0.9	0.184935	0.004078	0.750701	0.040478	1.042142	0.219831	0.19
1.0	0	0	0.666667	0	0.888889	0.126984	0

APPENDIX IX

$\tan \gamma/\tan \mu$	k ⁴ λ ₁ ΄	k ⁴ λ ₂ '	$k^4 \lambda_3'$	k ⁶ λ ₁ ″	k ⁶ λ ₂ "	k ⁶ λ ₃ "	k ⁸ λ ₁ ‴	k ⁸ λ ₂ ‴	k ⁸ J ₃ ^{''''}	ײ
0	2.62500	-1.68750	0.06250							1
0.1	2·6984 0	-1.74222	0.06413	0.68660	114.06225	-12.70684	0.32045	86.20341	10177 • 588	0.9
0.2	2·93344	-1.91772	0.06934	0.78825	29·676 11	3.33745	0.40779	22.81665	654 • 9521	0.96
0.3	3·378 05	-2·24977	0.07930	0.99635	14.03547	- 1.61400	0.53905	11 • 15200	137.3924	0.91
0•4	4·11647	-2.79575	0.09651	1.39406	8.49012	- 1.02646	0.80435	7 · 10968	47.44718	0.84
0.2	5·24759	3 •59616	0.12636	2 ·13750	5·74962	— 0 ·93854 ·	1.33448	5-22539	21.88458	0.75
0.6	6 ∙82132	- 4 •56100	0.18108	3.46218	3.99047	— 0·67115	2.36691	4 • 13520	12.33554	0.64
0.7	9.07704	-5.52492	0.29250	5.75745	2.74579	- 0.65701	4.32642	3.53619	8 · 15027	0.51
0.7112	9.42255	-5.63968	0.31157	6.11835	2.63678	- 0.66066	4.64624	3.28446	7.85596	0·4942
0· 72 11	9.75534	-5·74514	0.33006	6•46478	2.54675	j — 0.66486	4.95533	3.49116	7.60481	0·48
0.8	14.04160	-6.88558	0.56013	10.78680	2.00364	- 0.73407	8.90245	3.75386	6-18168	0.36
0.9	23 · 96306	-8.93885	0-97539	20.41064	1.77704	- 0.85380	17.92285	3.06294	5.45887	0·19
				1		1	1	1	i	

Numerical Values of λ_m' , λ_m'' , λ_m'''

42

.

APPENDIX X

Triangular Wing—Numerical Values of d_r , $d_{r,s}$; t_r , $t_{r,s}$, $\tan \gamma/\tan \mu = 0.7338$, $(d_{r,r} \equiv 2d_r)$; $t_{r,r} \equiv 2t_r$) $\varkappa^2 = 0.4615$

	r		d_r	<i>d</i> _{1,<i>r</i>}	<i>d</i> _{2,<i>r</i>}	<i>d</i> _{3, <i>r</i>}	$d_{4,r}$	$d_{5,r}$	$d_{6,r}$
	1	$-\delta x$	1	2	1.923941	1.895608	1.881686	2.474180	2.426818
	2	$-\frac{\delta}{c}x^2$	$1 \cdot 039434$	1.923941	2·078867	$2 \cdot 183459$	$2 \cdot 257038$	2.582909	2.641195
Camber	3	$-\frac{\delta}{c^2}x^3$	1 • 194144	$1 \cdot 895608$	2 · 183459	2.388288	2.538991	2 ⋅689460	2.830092
	4	$\left -\frac{\delta}{c^3} x^4 \right $	1.377634	1.881686	$2 \cdot 257034$	2.538991	2.755268	2.783406	2.990803
Twist	5,	$-rac{\delta}{c^2}k^2y^2x$	2.431522	2.474180	2.582909	2.689460	2.783406	4.863045	5.071779
Camber and twist	6	$\left -rac{\delta}{c^3}k^2y^2x^2 ight $	$2 \cdot 699749$	2.426818	2 641195	2.830092	2.990803	5.071779	5.399497
	r		t_r	t _{1, r}	t _{2, r}	t _{3, r}	t _{4, r}	t _{5, r}	t _{6, r}
	1		0.752024	1.504048	1.593306	1.636966	1.663251	1.743092	1.794006
	2		0.915446	1.593306	1.830891	1.976545	$2 \cdot 075004$	1.998040	2.113852
	3		$1 \cdot 104222$	1.636966	1.976545	$2 \cdot 208444$	$2 \cdot 376255$	2.181104	2.358642
	4		1.302473	1.663251	$2 \cdot 075004$	$2 \cdot 376255$	$2 \cdot 604945$	2.323410	2.555314
	5		1.713052	1.743092	1.998039	2.181104	2.323410	3.426106	3.739158
	6		2.068936	1 • 7 94006	2.113852	$2 \cdot 358642$	2.555314	3.739158	4 • 137873

d_r dir $d_{2,r}$ d4.r 7 d3.r d_{8,r} d_{5.7} Z_T d_{6. r} d_{9.7} d_{10,7} : $(2d_1 = 2)$ 1 — ôx 1 1.9127 1.8796 1.8643 1.8511 2.4656 **2**·4115 2.3688 2.8037 $\frac{\delta}{c} x^{\mathbf{S}}$ 1.0267 2 $1.9127 |(2d_2 = 2.0534)|$ **2 · 1506** $2 \cdot 2215$ **2·2677** $2 \cdot 5609$ 2.6112 2·6400 2.9771 $-\frac{\delta}{c^2}x^3$ 1.8796 3 1 · 1728 2·1506 $(2d_3 = 2 \cdot 3456)$ 2·4908 2·5960 2.6577 2.7885 2.8798 3.1575 $-\frac{\delta}{c^3}x^4$ 1.3508 1.8643 2.2215 2.4908 $(2d_4 = 2.7016)$ 2.8593 3.0912 4 2.7498 2.94513.3337 $-\frac{\delta}{c^4}x^5$ 8 1.53201.8511 2.2677 2.5960 2.8593 $(2d_8 = 3.0640)^{10}$ 2.8186 3.0686 3.2602 3.4771 $\frac{\delta}{c^2} k^2 y^2 x$ 5 2.3983 **2·4656** 2.5609 **2·8186** 2.6577 2.7498 $(2d_5 = 4.7966)$ $4 \cdot 9905$ $5 \cdot 1302$ 6.5855 $\frac{\delta}{c^3} k^2 y^2 x^2$ 6 2.6500**2·4115** 2.6112 2.7885 2·9451 3.0686 4.9905 $(2d_s = 5 \cdot 3000)$ 5.5345 7.0168 $-\frac{\delta}{c^4}k^2y^2x^3$ 2·9255 2-3688 **2.6400** 2.8798 3.2602 $(2d_2 = 5 \cdot 8510)$ 9 3.0912 $5 \cdot 1302$ 5.5345 7.3501 $-\frac{\delta}{c^4}k^4y^4x$ 4·9649 10 **2·8037 2·977**1 3.1575 3.3337 3.4771 6.5855 **7**.0168 7.3501 $(2d_{10}=9.9298)$

Triangular Wing—Numerical Values of $d_{r,s}$, $\tan \gamma / \tan \mu = 0.7$, $\varkappa^2 = 0.51$

APPENDIX X—continued

-	Ÿ	z _r	t_r	t _{1, r}	t _{2, r}	t _{3, r}	t _{4, r} .	t _{8, r}	t _{5, r}	t _{6, r}	t _{9, r}	t _{10, r}
-	1	$-\delta x$	0.7346	$(2t_1 = 1 \cdot 4692)$	1.5589	1.6036	1.6314	1.6462	$1 \cdot 6935$	1.7420	1.7737	1.8357
	2	$-\frac{\delta}{c}x^2$	0.8940	1.5589	$(2t_2 = 1.7880)$	1.9298	2 ·0274	2.0921	$1 \cdot 9432$	$2 \cdot 0543$	2.1299	2·147 4
	3	$-\frac{\delta}{c^2}x^3$	1.0771	1.6036	1.9298	$(2t_3 = 2 \cdot 1542)$	2.3177	$2 \cdot 4366$	$2 \cdot 1222$	$2 \cdot 2919$	2 ·4156	2· 4024
45	4	$-\frac{\delta}{c^3}x^4$	1.2709	1.6314	$2 \cdot 0274$	2·3177	$(2t_4 = 2 \cdot 5418)$	$2 \cdot 7094$	$2 \cdot 2659$	$2 \cdot 4868$	$2 \cdot 6558$	$2 \cdot 6256$
	8	$-\frac{\delta}{c^4}x^5$	1.4608	1.6462	$2 \cdot 0921$	$2 \cdot 4366$	2.7094	$(2t_8 = 2 \cdot 9216)$	2 ·3715	$2 \cdot 6383$	$2 \cdot 8466$	$2 \cdot 8043$
_	5	$-rac{\delta}{c^2}k^2y^2x$	1.6495	1.6935	1.9432	2.1222	$2 \cdot 2659$	2.3715	$(2t_5 = 3 \cdot 2990)$	3.6018	3.8316	4.4732
	6	$-rac{\delta}{c^3}k^2y^2x^2$	1.9922	1.7420	$2 \cdot 0543$	$2 \cdot 2919$	2 ·4868	2.6383	3.6018	$(2t_6 = 3 \cdot 9844)$	$4 \cdot 2849$	4.9843
	9	$-rac{\delta}{c^4}k^2y^2x^3$	2.3249	1.7737	2 · 1299	$2 \cdot 4156$	$2 \cdot 6558$	$2 \cdot 8466$	3.8316	$4 \cdot 2849$	$(2t_9 = 4 \cdot 6498)$	5.3961
	10	$-rac{\delta}{c^4}k^4y^4x$	3.3758	1.8357	2 ∙1474	2 •4024	2.6256	$2 \cdot 8043$	4 • 4732	4.9843	5.3961	(2 <i>t</i> ₁₀ =6·7516)

Triangular Wing—Numerical Values of t_r , $t_{r,s}$, $\tan \gamma/\tan \mu = 0.7$, $\varkappa^2 = 0.51$

7	Z ₇	<i>d</i> ₇	d _{1,7}	d _{2.7}	d _{3. r}	d4.r	d _{5, 7}	d _{6,7}
1	ôx	1	2	1.782636	1.687146	1.636244	2.288764	2.174058
2	$-\frac{\delta}{c}x^2$	0.880465	1.782636	1.760930	1.763738	1.773600	2 ·227927	2.201272
3	$-rac{\delta}{c^2}x^8$	0.916195	1.687146	1.763738	1.832389	1.890558	2 ∙210661	2.245122
4	$-\frac{\delta}{c^3}x^4$	0 ·994132	1.636244	1.773600	1.890558	1.988264	2·213120	2.293638
5	$-\frac{\delta}{c^2}k^2y^2x$	1.908894	2.288764	2·227927	2.210661	2·21312 0	3.817787	3.847113
6	$-\frac{\delta}{c^3}k^2y^2x^2$	1.976767	2 · 174058	2·2 01272	2.245122	2 • 293638	3.847113	3.953534
- r		<i>t</i> _r	t _{1, 7}	t _{2,7}	t _{3, 7}	t4.7	t _{5,7}	t _{6,7}
1		0.585662	1.171324	1.230185	1-267308	1.292864	1.276311	1.306216
2		0.673296	1.230185	1.346592	1.427868	1.487450	1.417965	1.478070
3		0.774391	1.267308	1.427868	1 • 548783	1.642031	1.526734	1.617007
4		0.882970	1 • 292864	1· 487 450	1.642031	1 ·76594 0	1.613788	1.731748
5		1.084236	1.276311	1 • 417965	1.526734	1.613788	2.168472	2.332391
6		1·266720	1.306216	1.478070	1.617007	1.731748	2.332391	2·533439

Triangular Wing-Numerical Values of d_r , d_r , s; t_r , t_r , s, $\tan \gamma / \tan \mu = 0.3577$, $x^2 = 0.87205$

Triangular	Wing—Nume	rical Values (of d_r , $d_{r,s}$; t_r , $t_{r,s}$,	$\tan \gamma / \tan \mu = 0$	$0.1184, \kappa^2 = 0.9860$
------------	-----------	----------------	--	------------------------------	-----------------------------

Y	z _r	d_r	<i>d</i> _{1,<i>r</i>}	$d_{2,r}$	$d_{3,r}$	<i>d</i> _{4, r}	$d_{5,r}$	<i>d</i> _{6, r}
1	$-\delta x$	1	2	1.690196	1.539986	1.452816	2.070965	1.895328
2	$-\frac{\delta}{c}x^2$	0.776470	1.690196	1.552940	1.476218	1 • 428765	1.899199	1.795377
3	$-rac{\delta}{c^2}x^3$	0.719981	1.539986	1 • 476218	1 • 439962	1.418289	1.791546	1.731226
4	$-\frac{\delta}{c^3}x^4$	0.707526	1 • 452816	1 · 428765	1 • 418289	1 • 415051	1.719606	1.688400
5	$-rac{\delta}{c^2}k^2y^2x$	1.461410	2.070965	1.899199	1.791546	1.719606	2.922819	2.787716
6	$-rac{\delta}{c^3}k^2y^2x^2$	1.352096	1.895328	1.795377	1.731226	1.688400	2 ·787716	2·7 04192
Ÿ		t_r	t _{1.r}	t _{2, r}	t _{3, r}	t _{4,r}	t _{5, r}	t _{6, r}
1		0.513743	1.027486	1.041853	1.052911	1.061892	1.052880	1.062009
2		0.533342	1.041853	$1 \cdot 066683$	1.086558	$1 \cdot 102995$	1.084731	$1 \cdot 100945$
3		0.557350	1.052911	1.086558	1 • 114700	1 · 138588	1 · 111681	1 • 134997
4		· 0·584759	1.061892	$1 \cdot 102995$	1 · 138588	1 · 169518	1 · 134974	1 • 165007
5		0.750881	1.052880	1.084731	1.111681	1.134974	1.501763	1.541476
6		0 ·794247	$1 \cdot 062009$	1 · 100945	1.134997	1.165007	1.541476	1.588494

Triangular Wing (Sonic Leading Edges)—Numerical Values of $d_r = t_r$, $d_{r,s} = t_{r,s}$, $\tan \gamma / \tan \mu = 1$, $\varkappa = 0$

7	Z _r	t _r	t _{1,7}	t _{2.7}	t _{3, r}	t4.7	t _{8, r}	t _{ō, r}	t _{6, r}
1	— ôx	1	2	* 2	2	2	2	5/2	5/2
2	$-\frac{\delta x^2}{c}$	9/8	2	9/4	12/5	5/2	18/7	27/10	45/16
3	$-\frac{\delta}{c^2}x^8$	4/3	2	12/5	8/3	20/7	3	43/15	43/14
4	$-\frac{\delta}{c^3}x^4$	25/16	2	5/2	20/7 25/8		10/3	3	105/32
8	$-\frac{\delta}{c^4}x^5$	9/5	2	18/7	-3	10/3	18/5		
	$-\frac{\delta}{c^{n-1}}x^n$	$\frac{(n+1)^2}{4n} \rightarrow \frac{n}{4}$	2	$\frac{3(n+1)}{n+2}$	$\frac{4(n+1)}{n+3}$	$\frac{5(n+1)}{n+4}$	$\frac{6(n+1)}{n+5}$		
5	$-\frac{\delta}{c^2} x k^2 y^2$	13/5	5/2	27/10	43/15	3		Ż6/5	11/2
6	$-\frac{\delta}{c^3}x^{2k^2y^2}$	95/32	5/2	45/16	43/14 105/32			11/2	95/16

r	z _r	d_r	d _{1, r}	<i>d</i> _{2, <i>r</i>}	<i>d</i> _{3, <i>r</i>}	<i>d</i> _{4, r}	d _{8, r}	<i>d</i> _{5, <i>r</i>}	d _{e,r}	t_1	t _{1, r}	t _{2,r}	t _{3, r}	t _{4, r}	t _{8, r}	t _{5, r}	t _{6, r}
1	$-\delta x$	1	2	5/3	3/2	7/5	4/3	2	9/5	1/2	1	1	1	1	1	1	1
2	$-\frac{\delta}{c}x^2$	3/4	5/3	3/2	7/5	4/3	9/7	9/5	5/3	1/2	1	1	1	1	1	1	1
3	$-rac{\delta}{c^2}x^3$	2/3	3/2	7/5	4/3	9/7	5/4	5/3	11/7	1/2	1	1	1	1	1	1	1
4	$-rac{\delta}{c^3}x^4$	5/8	7/5	4/3	9/7	5/4	11/9	11/7	3/2	1/2	1	1	1	1	1	1	1
8	$-\frac{\delta}{c^4}x^5$	3/5	4/3	9/7	5/4	11/9	6/5	3/2	13/9	1/2	1	1	1	1	1	1	1
n	$-\frac{\delta}{c^{n-1}}x^n$	$\frac{n+1}{2n} \to \frac{1}{2}$	$\frac{n+3}{n+1}$	$\frac{n+4}{n+2}$	$\frac{n+5}{n+3}$	$\left \begin{array}{c} \frac{n+6}{n+4} \end{array} \right $	$\frac{n+7}{n+5}$		•								
5	$-rac{\delta}{c^2} xk^2y^2$	4/3	2	9/5	5/3	11/7	3/2	8/3	52/21	2/3	1	1	1	1	1	4/3	4/3
6	$-rac{\delta}{c^3}x^2k^2y^2$	7/6	9/5	5/3	11/7	3/2	13/9	52/21	7/3	2/3	1	1	1	1	1	4/3	4/3
N	$-\frac{\delta}{c^{N+1}}x^Nk^2y^2$	$\left \begin{array}{c} \frac{3N+1}{3N} \to 1 \end{array} \right $	$\frac{N+7}{N+3}$	$\frac{N+8}{N+4}$	$\frac{N+9}{N+5}$	$\left \frac{N+10}{N+6}\right $	$\left \frac{N+11}{N+7}\right $						· · · · · · · · · · · · · · · · · · ·				

Triangular Wing—Numerical Values of d,, d,, s; t,, t,, s, $\tan \gamma / \tan \mu = 0$, $\varkappa = 1$

(76072)

Ð

TABLES 3 to 14

All forces and moments are normalised by dividing by $(\pi \rho V^2 c^2)/(k^2 E(\varkappa))$.

TABLE 3

r	z _r	L _r	
1	$-\delta x$	δ	Ŋ
2	$-\frac{\delta}{c}x^2$	$\frac{\delta}{\overline{f_1}}$	
3	$-\frac{\delta}{c^2}x^3$	$\frac{3}{4}\delta F_{1}(4f_{5}-3f_{7})$	Camber
4	$-\frac{\delta}{c^3}x^4$	$\delta F_2(4f_{11}-3f_{13})$	
5	$-rac{\delta}{c^2} k^2 y^2 x$	$\frac{3}{4}\delta F_{1}(4f_{4}-f_{6})$	Twist
6	$-rac{\delta}{c^3}k^2y^2x^2$	$\frac{1}{2}\delta F_2(4f_{10}-3f_{12})$	Camber and twist
7	$f_4 z_3 - f_5 z_5$	$rac{3}{4}\delta$	J
8	$-\frac{\delta}{c^4}x^5$	$rac{\delta}{8} F_3(8f_{14}+2f_{15}+f_{16})$	Camber
9	$-rac{\delta}{c^4}k^2y^2x^3$	$-\frac{\delta}{8} F_{3}(8f_{17}+2f_{18}+f_{19})$	Camber and twist
10	$-\frac{\delta}{c^4}k^4y^4x$	$\frac{\delta}{8} F_3(8f_{20} + 2f_{21} + f_{22})$	Twist

Formulae for the Total Lift on Triangular Surfaces

TABLE 4

Formulae for the Pressure Integral for Triangular Surfaces

Ŷ	D _r
1	δ^2
2	$\frac{3}{2}\delta^2/f_1$
3	$\frac{3}{2}\delta^2 F_1(4f_5-3f_7)$
4	$\frac{5}{2}\delta^2 F_2(4f_{11}-3f_{13})$
5	$\frac{1}{8}\delta^2 F_1(6f_4-f_6)$
6	$rac{7}{16} \delta^2 F_2(2f_{10} - f_{12})$
7	$\frac{1}{8}\delta^2(12f_4-f_5)$
8	$\frac{3}{8}\delta^2 F_3(8f_{14}+2f_{15}+f_{16})$
9	$-\frac{3}{80}\delta^2 F_3(16f_{17}+8f_{18}+5f_{19})$
10	$\frac{\delta^2}{128} F_3(16f_{20} + 10f_{21} + 7f_{22})$

TABLE 5

Formulae for the Suction Force on Triangular Surfaces

r	$(E(\varkappa)/\varkappa)S_r$
1	$\frac{1}{2}\delta^2$
2	$\frac{1}{4}(\delta/f_1)^2$
3	$\frac{3}{2}\delta^2(F_1f_5)^2$
4	$2\delta^2(F_2f_{11})^2$
5	$\frac{3}{2}\delta^2(F_1f_4)^2$
6	$\frac{1}{2}\delta^2(F_2f_{10})^2$
7	0
8	$\frac{1}{10}\delta^2 F_3^2 (f_{14} + f_{15} + f_{16})^2$
9	$\frac{1}{10}\delta^2 F_3^2 (f_{17} + f_{18} + f_{19})^2$
10	$\frac{1}{10}\delta^2 F_3^2 (f_{20} + f_{21} + f_{22})^2$

51

D 2

Formulae for the 'Interference' Pressure Integral for Triangular Surfaces

 $(D_{r,s} - D_{s,r})$ is the interference pressure integral for the two surfaces given by z_r, z_s

¥, S	$D_{r,s}$
1, 2	$\frac{1}{3}\frac{\delta^2}{f_1}(4f_1+3)$
1, 3	$[\frac{3}{4}\delta^2]2 + F_1(4f_5 - 3f_7)]$
1,4	$\frac{1}{5}\delta^2 8+5F_2(4f_{11}-3f_{13}) $
1, 5	$[\frac{1}{4}\delta^2]1+3F_1(4f_4-f_6)]$
1,6	$\frac{1}{10}\delta^2 [4 + 5F_2(4f_{10} - 3f_{12})]$
1, 8	$_{2\frac{1}{4}}\delta^{2}[40+3F_{3}(8f_{14}+2f_{15}+f_{16})]$
1, 9	$\frac{1}{8}\delta^2[4 - F_3(8f_{17} + 2f_{18} + f_{19})]$
1, 10	$\frac{1}{8}\delta^{2}[1 + F_{3}(8f_{20} + 2f_{21} + f_{22})]$
2, 3	$\left[\frac{3}{5}\delta^{2}\left[\frac{3}{f_{1}}+F_{1}(8f_{5}-6f_{7})\right]\right]$
2, 4	$\frac{1}{3}\delta^2 \left[\frac{6}{f_1} + 5F_2(4f_{11} - 3f_{13}) \right]$
2, 5	$\frac{1}{5}\delta^2 \left[\frac{5}{4f_1} + 6F_1(4f_4 - f_6) \right]$
2, 6	$\frac{1}{12}\delta^2 \left[\frac{5}{f_1} + 10F_2(4f_{10} - 3f_{12}) \right]$
2, 8	$\begin{bmatrix} {}_{3}{}_{4} \delta^{2} \begin{bmatrix} 10 \\ f_{1} \end{bmatrix} + F_{3}(8f_{14} + 2f_{15} + f_{16}) \end{bmatrix}$
2, 9	$\left[\frac{3}{2f_{14}}\delta^{2}\left[\frac{5}{2f_{1}}-F_{3}(8f_{17}+2f_{18}+f_{19})\right]\right]$
2, 10	$\left[rac{1}{14} \delta^2 \left[rac{7}{4f_1} + 3F_3(8f_{20} + 2f_{21} + f_{22}) ight] ight]$
3, 4	$\frac{3}{7}\delta^2[4F_1(4f_5-3f_7)+5F_2(4f_{11}-3f_{13})]$
3, 5	$\frac{3}{8}\delta^2 F_1[16f_4 - 4f_6 + 2f_5 - f_7]$
3, 6	$[\frac{3}{14}\delta^2]5F_2(4f_{10}-3f_{12})+3F_1(2f_5-f_7)]$
3, 8	$_{32}^{3}\delta^{2}[20F_{1}(4f_{5}-3f_{7})+3F_{3}(8f_{14}+2f_{15}+f_{16})]$
3, 9	$r_{3^{\frac{19}{2}}}\delta^2 3F_1(2f_5 - f_7) - F_3(8f_{17} + 2f_{18} + f_{19})]$
3, 10	$[{}_{64}^{3}\delta^{2}[F_{1}(8f_{5}-3f_{7})+6F_{3}(8f_{20}+2f_{21}+f_{22})]$
4, 5	$\frac{1}{14} \delta^2 [24F_1(4f_4 - f_6) + 7F_2(2f_{11} - f_{13})]$

52

•

TABLE 6—continued

r, s	<i>D_{r.s}</i>
4,6	$\frac{1}{8}\delta^2 F_2[10(4f_{10}-3f_{12})+7(2f_{11}-f_{13})]$
4,8	$\frac{1}{9}\delta^2[25F_2(4f_{11}-3f_{13})+3F_3(8f_{14}+2f_{15}+f_{16})]$
4,9	$\frac{1}{6}\delta^2[7F_2(2f_{11}-f_{13})-2F_3(8f_{17}+2f_{18}+f_{19})]$
4, 10	$\frac{1}{4\cdot 8}\delta^2[3F_2(8f_{11}-3f_{13})+16F_3(8f_{20}+2f_{21}+f_{22})]$
5, 6	$\frac{1}{28}\delta^{2}_{L}6F_{1}(6f_{4}-f_{6})+7F_{2}(2f_{10}-f_{12})$
5, 8	$\frac{1}{64}\delta^2 [120F_1(4f_4 - f_6) + F_3(16f_{14} + 8f_{15} + 5f_{16})]$
5, 9	$\frac{1}{64}\delta^2 [18F_1(6f_4 - f_6) - F_3(16f_{17} + 8f_{18} + 5f_{19})]$
5, 10	$\frac{1}{64} \delta^2 [3F_1(8f_4 - f_6) + F_3(16f_{20} + 8f_{21} + 5f_{22})]$
6, 8	$\frac{1}{36}\delta^2[50F_2(4f_{10}-3f_{12})+F_3(16f_{14}+8f_{15}+5f_{16})]$
6, 9	$\frac{1}{36}\delta^2[21F_2(2f_{10}-f_{12})-F_3(16f_{17}+8f_{18}+5f_{19})]$
6, 10	$\frac{1}{288}\delta^2[9F_2(8f_{10}-3f_{12})+8F_3(16f_{20}+8f_{21}+5f_{22})]$
8, 9	$\frac{3}{80}\delta^2 F_3[16f_{14}+8f_{15}+5f_{16}-10(8f_{17}+2f_{18}+f_{19})]$
8, 10	$\frac{1}{128}\delta^2 F_3[16f_{14} + 10f_{15} + 7f_{16} + 48(8f_{20} + 2f_{21} + f_{22})]$
9, 10	$\frac{1}{640}\delta^2 F_{3} 24(16f_{20} + 8f_{21} + 5f_{22}) - 5(16f_{17} + 10f_{18} + 7f_{19})^{2}$

...

. .

Formulae for the 'Interference' Suction Force for Triangular Surfaces $(S_{r,s} = S_{s,r})$ is the interference suction force for surfaces given by z_r , z_r)

7, S	
1, 2	$2\delta^2/(3f_1)$
1, 3	$\frac{3}{2}\delta^2(F_1f_5)$
1, 4	$\frac{8}{8}\delta^2(F_2f_{11})$
1, 5	$\frac{3}{32}\delta^2(F_1f_4)$
1, 6	$\frac{4}{5} \delta^2(F_2 f_{10})$
1, 8	$\frac{1}{3}\partial^3 F_3(f_{14} + f_{15} + f_{16})$
1, 9	$-\frac{1}{3}\delta^2 F_3(f_{17}+f_{18}+f_{19})$
1, 10	$\frac{1}{3}\delta^3 F_3(f_{20}+f_{21}+f_{22})$
2, 3	$\frac{6}{5}\partial^2(F_1f_5/f_1)$
2, 4	$\frac{4}{3}\delta^{2}(F_{2}f_{11}/f_{1})$
2, 5	$\frac{6}{8}\delta^2(F_1f_4/f_1)$
2, 6	$\frac{2}{3}\delta^2(F_2f_{10}/f_1)$
2, 8	$\frac{2}{7}\delta^2(F_3/f_1)(f_{14}+f_{15}+f_{16})$
2, 9	$-\frac{2}{7}\delta^{2}(F_{3}/f_{1})(f_{17}+f_{18}+f_{19})$
2 , 10	$\frac{2}{7}\delta^2(F_3/f_1)(f_{20}+f_{21}+f_{22})$
3, 4	$\frac{34}{7}\delta^2(F_1f_5)(F_2f_{11})$
3, 5	$3\delta^2(F_1f_5)(F_1f_4)$
3, 6	$\frac{1.9}{7}\delta^2(F_1f_5)(F_2f_{10})$
3, 8	$\frac{3}{4}\delta^2(F_1f_5)F_3(f_{14}+f_{15}+f_{16})$
3, 9	$-\frac{3}{4}\delta^2(F_1f_5)F_3(f_{17}+f_{18}+f_{19})$
3, 10	$\frac{3}{4}\delta^2(F_1f_5)F_3(f_{20}+f_{21}+f_{22})$
4, 5	$f_{T}^{24} \delta^{2}(F_{2}f_{11})(F_{1}f_{4})$
4,6	$2\delta^2(F_{g}f_{11})(F_{g}f_{10})$
4, 8	$\frac{3}{9}\delta^2(F_2f_{11})F_3(f_{14}+f_{15}+f_{16})$
4, 9	$- \frac{8}{9} \delta^2(F_2 f_{11}) F_3(f_{17} + f_{18} + f_{19})$
4, 10	$\frac{8}{9}\delta^2(F_2f_{11})F_3(f_{20}+f_{21}+f_{22})$
5, 6	$\frac{19}{7}\delta^2(F_1f_4)(F_2f_{10})$
5, 8	$\frac{3}{4}\delta^2(F_1f_4)F_3(f_{14}+f_{15}+f_{16})$
5, 9	$-\frac{3}{4}\delta^2(F_1f_4)F_3(f_{17}+f_{18}+f_{19})$
5, 10	$\frac{3}{4}\delta^2(F_1f_4)F_3(f_{20}+f_{21}+f_{22})$
6, 8	$\frac{4}{9}\partial^3(F_2f_{10})F_3(f_{14}+f_{15}+f_{16})$
6, 9	$-\frac{4}{9}\partial^2(F_2f_{10})F_3(f_{17}+f_{18}+f_{19})$
6, 10	$\frac{4}{9}\partial^2(F_2f_{10})F_3(f_{20}+f_{21}+f_{22})$
8,9	$-\frac{1}{5}o^{2}F_{3}^{2}(f_{14}+f_{15}+f_{16})(f_{17}+f_{18}+f_{19})$
8,10	$\frac{1}{5}o^{x}f_{3}^{x}(f_{14}+f_{15}+f_{16})(f_{20}+f_{21}+f_{22})$
9, 10	$-\frac{1}{5}\sigma^{a}F_{3}^{a}(f_{17}+f_{18}+f_{19})(f_{20}+f_{21}+f_{22})$

54

.

Formulae for the Total Lift on Swept-back Surfaces

r	$(\pi c^2/k)L_r$
1	$4 \delta(J_{0,2} - J_{2,0})$
2	$\frac{4\delta}{cf_1}(J_{03} - J_{2,1})$
3	$12 \frac{\delta F_1}{c^2} [(f_5 - f_7)J_{0.4} + (2f_7 - f_5)J_{2.2} - f_7J_{4.0}]$
4	$16 \ \frac{\delta F_2}{c^3} \left[(f_{11} - f_{13}) J_{0.5} - (f_{11} - 2f_{13}) J_{2.3} - f_{13} J_{4.1} \right]$
5	$4 \frac{\delta F_1}{c^2} \left[(3f_4 - f_6) J_{0,4} - (3f_4 - 2f_6) J_{2,2} - f_6 J_{4,0} \right]$
6	$8 \frac{\delta F_2}{c^3} \left[(f_{10} - f_{12}) J_{0.5} - (f_{10} - 2f_{12}) J_{2.3} - f_{12} J_{4.1} \right]$
8	$4 \frac{\delta F_3}{c^4} [f_{14}J_{0,6} - (f_{14} - f_{15})J_{2,4} - (f_{15} - f_{16})J_{4,2} - f_{16}J_{6,0}]$
9	$-4 \frac{\delta F_3}{c^4} [f_{17} J_{0,6} - (f_{17} - f_{18}) J_{2,4} - (f_{18} - f_{19}) J_{4,2} - f_{19} J_{6,0}]$
10	$\dot{4} \frac{\delta F_3}{c^4} [f_{20} J_{0,6} - (f_{20} - f_{21}) J_{2,4} - (f_{21} - f_{22}) J_{4,2} - f_{22} J_{6,0}]$

Formulae for the Pressure Integral for Swept-back Surfaces

Formulae for the Suction Force on Swept-back Surfaces

 $(E(\varkappa)/\varkappa)S_r$ r $\frac{\delta^2}{2(1-a)^2}$ 1 $\frac{\delta^2}{4f_1{}^2(1-a)^4}$ 2 $\frac{3\delta^2}{2(1-a)^6}\,(F_1f_5)^2$ 3 $\frac{2\delta^2}{(1-a)^8} \, (F_2 f_{11})^2$ 4 $\frac{3\delta^2}{2(1-a)^6}\,(F_1f_4)^2$ 5 $\frac{\delta^2}{2(1-a)^8}\,(F_2f_{10})^2$ 6 $\frac{\delta^2}{10(1-a)^{10}}\,[F_3(f_{14}+f_{15}+f_{16})]^2$ 8 $\frac{\delta^2}{10(1-a)^{10}}\,[F_3(f_{17}+f_{18}+f_{19})]^2$ 9 $\frac{\delta^2}{10(1-a)^{10}}\,[F_3(f_{20}+f_{21}+f_{22})]^2$ 10

 $a = h/k = (1 - \lambda^2)^{1/2}$

Formulae for the 'Interference' Pressure Integral for Swept-back Surfaces

r, s	$(\pi c^2/k)D_{r,s}$
1, 2	$\frac{4\delta^2}{3cf_1}[f_1cJ_{2,0} + 3(f_1 + 1)(J_{0,3} - J_{2,1})]$
1, 3	$\frac{4\delta^2}{c^2}[\{1+3F_1(f_5-f_7)\}J_{0.4}+\{1-3F_1(f_5-2f_7)\}J_{2.2}-(2+3F_1f_7)J_{4.0}]$
1, 4	$\frac{2\delta^2}{c^3}[3H_4 + 2\{1 + 4F_2(f_{11} - f_{13})\}J_{0.5} + \{1 - 8F_2(f_{11} - 2f_{13})\}J_{2.3} - (3 + 8F_2f_{13})J_{4.1}]$
1, 5	$\frac{4\delta^2}{c^2} [F_1(3f_4 - f_6)J_{0,4} + \{1 - F_1(3f_4 - 2f_6)\}J_{2,2} - (1 + F_1f_6)J_{4,0}]$
1, 6	$\frac{4\delta^2}{c^3}[H_4 + 2F_2(f_{10} - f_{12})J_{0.5} + \{1 - 2F_2(f_{10} - 2f_{12})\}J_{2.3} - (1 + 2F_2f_{12})J_{4.1}]$
1, 8	$\frac{4\delta^2}{3c^4}[3J_{0,6} + J_{2,4} + 4J_{4,2} - 8J_{6,0} + 3F_3\{f_{14}J_{0,6} - (f_{14} - f_{15})J_{2,4} - (f_{15} - f_{16})J_{4,2} - f_{16}J_{6,0}\}]$
1, 9	$\frac{4\delta^2}{c^4} \left[-F_3 f_{17} J_{0.6} + \{1 + F_3 (f_{17} - f_{18})\} J_{2.4} + \{1 + F_3 (f_{18} - f_{19})\} J_{4.2} - \{2 - F_3 f_{19}\} J_{6.0}\right]$
1, 10	$\frac{4\delta^2}{c^4} \left[F_3 f_{20} J_{0.6} - F_3 (f_{20} - f_{21}) J_{2.4} + \{1 - F_3 (f_{21} - f_{22})\} J_{4.2} - \{1 + F_3 f_{22}\} J_{6.0} \right]$
2, 3	$\left \frac{3\delta^2}{c^3} \left[\left\{ \frac{1}{f_1} + F_1(f_5 + 3f_7) \right\} H_4 + 2 \left\{ \frac{1}{f_1} + 3F_1(f_5 - f_7) \right\} J_{0.5} - \left\{ \frac{1}{f_1} + F_1(5f_5 - 9f_7) \right\} J_{2.3} \right] \right]$
	$-\left\{\frac{1}{f_{1}}+F_{1}(f_{5}+3f_{7})\right\}J_{4,1}$
2, 4	$\left \frac{16\delta^2}{15c^4} \left[6 \left\{ \frac{1}{f_1} + 4F_2(f_{11} - f_{13}) \right\} J_{0.6} - \left\{ \frac{3}{f_1} + 2F_2(11f_{11} - 21f_{13}) \right\} J_{2.4} + \left\{ \frac{3}{f_1} + 2F_2(f_{11} - 6f_{13}) \right\} J_{4.2} \right] \right $
	$-2\left\{\frac{3}{f_{1}}+F_{2}(2f_{11}+3f_{13})\right\}J_{6.0}$
2, 5	$\left \frac{\delta^2}{c^3} \left[3F_1(f_4 + f_6)H_4 + 6F_1(3f_4 - f_6)J_{0.5} + \left\{ \frac{4}{f_1} - 3F_1(5f_4 - 3f_6) \right\} J_{2.3} - \left\{ \frac{4}{f_1} + 3F_1(f_4 + f_6) \right\} J_{4.1} \right]$
2, 6	$\left \frac{8\delta^2}{15c^4} \left[24F_2(f_{10} - f_{12})J_{0,6} + \left\{ \frac{10}{f_1} - 2F_2(11f_{10} - 21f_{12}) \right\} J_{2,4} - \left\{ \frac{5}{f_1} - 2F_2(f_{10} - 6f_{12}) \right\} J_{4,2} \right] \right $
	$- \left\{ \frac{5}{f_1} + 2F_2(2f_{10} + 3f_{12}) \right\} J_{6,0} \right]$
2, 8	$\left \begin{array}{c} \frac{\delta^2}{6c^5} \left[\left\{ \frac{30}{f_1} + 3F_3(f_{14} + 2f_{15} + 8f_{16}) \right\} H_6 + 40 \left(\frac{1}{f_1} + F_3f_{14} \right) J_{0,7} - 2 \left\{ \frac{10}{f_1} + F_3(19f_{14} - 18f_{15}) \right\} J_{2,5} \right] \right = \frac{10}{10} \left[\left\{ \frac{10}{f_1} + \frac{10}{f_1}$
	$+ \left\{ \frac{10}{f_1} + F_3(f_{14} - 30f_{15} + 24f_{16}) \right\} J_{4,3} - 3 \left\{ \frac{10}{f_1} + F_3(f_{14} + 2f_{15} + 8f_{16}) \right\} J_{6,1} \right]$
2, 9	$\left \begin{array}{c} \frac{\delta^2}{c^5} \left\lfloor \frac{1}{2} \right\rbrace \frac{6}{f_1} - F_3(f_{17} + 2f_{18} + 8f_{19}) \right\rbrace H_6 - \frac{20}{3} F_3 f_{17} J_{0.7} + \frac{1}{3} \left\rbrace \frac{18}{f_1} + F_3(19f_{17} - 18f_{18}) \right\rbrace J_{2.5} $ $(18) \qquad \qquad$
_	$-\frac{1}{6}\left\{\frac{35}{f_1} + F_3(f_{17} - 30f_{18} + 24f_{19})\right\} J_{4,3} - \frac{1}{2}\left\{\frac{5}{f_1} - F_3(f_{17} + 2f_{18} + 8f_{19})\right\} J_{6,1}$

r, s	$(\pi c^2/k)D_{r,s}$
2, 10	$ \frac{\delta^2}{c^5} \left[\frac{1}{2} F_3(f_{20} + 2f_{21} + 8f_{22})H_6 + \frac{20}{5}F_3f_{20}J_{0,7} - \frac{1}{3}F_3(19f_{20} - 18f_{21})J_{2,5} + \frac{1}{6} \left\{ \frac{24}{f_1} + F_3(f_{20} - 30f_{21} + 24f_{22}) \right\} J_{4,3} - \frac{1}{2}F_3 \left\{ \frac{8}{f_1} + F_3(f_{20} + 2f_{21} + 8f_{22}) \right\} J_{6,1} \right] $
3, 4	$ \frac{\delta^2}{c^5} [8\{3F_1(f_5 - f_7) + 4F_2(f_{11} - f_{13})\}J_{0,7} - 2\{3F_1(3f_5 - 5f_7) + 2F_2(7f_{11} - 13f_{13})\}J_{2,5} \\ + \{3F_1(f_5 + f_7) + 2F_2(f_{11} - 7f_{13})\}J_{4,3} - 3\{3F_1(f_5 + f_7) + 2F_2(f_{11} + f_{13})\}(J_{6,1} - H_6)] $
3, 5	$\frac{12\delta^2}{5c^4}F_1[3(3f_4 - f_6)J_{0.6} - (7f_4 - 4f_6 - 5f_5 + 5f_7)J_{2.4} + (2f_4 + f_6 + 10f_7 - 5f_5)J_{4.2} - (4f_4 + 2f_6 + 5f_7)J_{6.0}]$
3, 6	$\frac{\delta^2}{c^5} [16F_2(f_{10} - f_{12})J_{0.7} + 2\{9F_1(f_5 - f_7) - F_2(7f_{10} - 13f_{12})\}J_{2.5} + \{F_2(f_{10} - 7f_{12}) - F_1(15f_5 - 27f_7)\}J_{4.3} - 3\{F_2(f_{10} + f_{12}) + F_1(f_5 + 3f_7)\}(J_{6.1} - H_6)]$
3, 8	$ \begin{array}{l} \frac{4 \delta^2}{35 c^6} \left[75 \{ 3 F_1 (f_5 - f_7) + f_{14} F_3 \} J_{0.8} - 3 \{ 5 F_1 (11 f_5 - 18 f_7) + F_3 (23 f_{14} - 21 f_{15}) \} J_{2.6} \\ + \left\{ 5 F_1 (4 f_5 + 3 f_7) + F_3 (2 f_{14} - 49 f_{15} + 35 f_{16}) \} J_{4.4} \\ + \left\{ 20 F_1 (4 f_5 + 3 f_7) + F_3 (8 f_{14} + 14 f_{15} + 35 f_{16}) \} (J_{6.2} - 2 J_{8.0}) \right] \end{array} $
3, 9	$ \begin{array}{l} \frac{4\delta^2}{c^6} \left[-\frac{5}{7}F_3f_{17}J_{0.8} + \frac{1}{35}\{189F_1(f_5 - f_7) + F_3(23f_{17} - 21f_{18})\}J_{2.6} \\ + \frac{1}{105}\{63F_1(12f_7 - 7f_5) - F_3(2f_{17} - 49f_{18} + 35f_{19})\}J_{4.4} \\ + \frac{1}{105}\{63F_1(2f_5 + 3f_7) - F_3(8f_{17} + 14f_{18} + 35f_{19})\}(J_{6.2} - 2J_{8.0}) \right] \end{array} $
3, 10	$ \frac{4\delta^2}{c^6} \left[\frac{5}{7} F_3 f_{20} J_{0.8} - \frac{1}{35} F_3 (23f_{20} - 21f_{21}) J_{2.6} + \{3F_1 (f_5 - f_7) + \frac{1}{105} F_3 (2f_{20} - 49f_{21} + 35f_{22})\} J_{4.4} - 3F_1 \{(f_5 - 2f_7) J_{6.2} + f_7 J_{8.0}\} + \frac{1}{105} F_3 (8f_{20} + 14f_{21} + 35f_{22}) (J_{6.2} - 2J_{8.0}) \right] $
4, 5	$ \frac{\delta^2}{c^5} [8F_1(3f_4 - f_6)J_{0.7} - 2\{F_1(9f_4 - 5f_6) - 8F_2(f_{11} - f_{13})\}J_{2.5} \\ + \{F_1(3f_4 + f_6) - 16F_2(f_{11} - 2f_{13})\}J_{4.3} - \{3F_1(3f_4 + f_6) + 16F_2f_{13}\}J_{6.1} + 3F_1(3f_4 + f_6)H_6] $
4, 6	$\frac{32\delta^2}{c^6}F_2[\frac{4}{7}(f_{10}-f_{12})J_{0,8}-\frac{1}{35}(17f_{10}-31f_{12}-28f_{11}+28f_{13})J_{2,6}+\frac{1}{105}(3f_{10}-24f_{12}-77f_{11}+147f_{13})J_{4,4}+\frac{1}{105}(12f_{10}+9f_{12}+7f_{11}-42f_{13})J_{6,2}-\frac{1}{105}(24f_{10}+18f_{12}+14f_{11}+21f_{13})J_{8,0}]$
4, 8	$ \begin{array}{ c c c c c c } \frac{\delta^2}{c^7} [10\{4F_2(f_{11}-f_{13})+F_3f_{14}\}J_{0,9}-\{\frac{20}{8}F_2(5f_{11}-9f_{13})+F_3(9f_{14}-8f_{15})\}J_{2,7}\\ &+\{\frac{5}{3}F_2(f_{11}-9f_{13})+\frac{1}{4}F_3(f_{14}-24f_{15}+16f_{16})\}J_{4,5}\\ &+\{\frac{5}{6}F_2(5f_{11}+3f_{13})+\frac{1}{8}F_3(5f_{14}+8f_{15}+16f_{16})\}(J_{6,3}-3J_{8,1}+3H_8)] \end{array} $
4, 9	$ \begin{vmatrix} \frac{\delta^2}{c^7} [-10F_3f_{17}J_{0,9} + \{32F_2(f_{11} - f_{13}) + F_3(9f_{17} - 8f_{18})\}J_{2,7} \\ - \{4F_2(7f_{11} - 13f_{13}) + \frac{1}{4}F_3(f_{17} - 24f_{18} + 16f_{19})\}J_{4,5} \\ + \{2F_2(f_{11} - 7f_{13}) - \frac{1}{8}F_3(5f_{17} + 8f_{18} + 16f_{19})\}J_{6,3} \\ - \{6F_2(f_{11} + f_{13}) - \frac{3}{8}F_3(5f_{17} + 8f_{18} + 16f_{19})\}(J_{8,1} - H_8)] \end{vmatrix} $

TABLE 11—continued

¥, S	$(\pi c^2/k)D_{r,s}$
4, 10	$ \frac{\delta^2}{c^7} [10F_3f_{20}J_{0,9} - F_3(9f_{20} - 8f_{21})J_{2,7} + \{16F_2(f_{11} - f_{13}) + \frac{1}{4}F_3(f_{20} - 24f_{21} + 16f_{22})\}J_{4,5} \\ - 16F_2\{(f_{11} - 2f_{13})J_{6,3} + f_{13}J_{8,1}\} + \frac{1}{8}F_3(5f_{20} + 8f_{21} + 16f_{22})(J_{6,3} - 3J_{8,1} + 3H_8)\} $
5, 6	$ \begin{array}{ c c c c c c } \hline \frac{\delta^2}{c^5} [3F_1(f_4+f_6)H_6+2\{4F_2(f_{10}-f_{12})+3F_1(3f_4-f_6)\}J_{2.5} \\ &-\{8F_2(f_{10}-2f_{12})+3F_1(5f_4-3f_6)\}J_{4.3}-\{8F_2f_{12}+3F_1(f_4+f_6)\}J_{6.1}] \end{array} $
5, 8	$\frac{4\delta^2}{7c^6} [15F_1(3f_4 - f_6)J_{0.8} - \{3F_1(11f_4 - 6f_6) - 7F_3f_{14}\}J_{2.6} + \{F_1(4f_4 + f_6) - 7F_3(f_{14} - f_{15})\}J_{4.4} + \{4F_1(4f_4 + f_6) - 7F_3(f_{15} - f_{16})\}J_{6.2} - \{8F_1(4f_4 + f_6) + 7F_8f_{16}\}J_{8.0}]$
5, 9	$ \begin{vmatrix} \frac{4 \delta^2}{5 c^6} \left[\{9F_1(3f_4 - f_6) - 5F_3f_{17}\} J_{2.6} - \{3F_1(7f_4 - 4f_6) - 5F_3(f_{17} - f_{18})\} J_{4.4} \\ + \{3F_1(2f_4 + f_6) + 5F_3(f_{18} - f_{19})\} J_{6.2} - \{6F_1(2f_4 + f_6) - 5F_3f_{19}\} J_{8.6} \right] $
5, 10	$\left \frac{4\delta^2}{c^6} [F_3f_{20}J_{2,6} + \{F_1(3f_4 - f_6) - F_3(f_{20} - f_{21})\}J_{4,4} - \{F_1(3f_4 - 2f_6) + F_3(f_{21} - f_{22})\}J_{6,2} - (F_1f_6 + F_3f_{22})J_{8,0}] \right + \frac{4\delta^2}{c^6} [F_3f_{20}J_{2,6} + \{F_1(3f_4 - f_6) - F_3(f_{20} - f_{21})\}J_{4,4} - \{F_1(3f_4 - 2f_6) + F_3(f_{21} - f_{22})\}J_{6,2} - (F_1f_6 + F_3f_{22})J_{8,0}] $
6, 8	$ \begin{vmatrix} \frac{\delta^2}{c^7} [20F_2(f_{10} - f_{12})J_{0.9} - \frac{10}{3} \{F_2(5f_{10} - 9f_{12}) - 2F_3f_{14}\}J_{2.7} + \frac{1}{6} \{5F_2(f_{10} - 9f_{12}) - 2F_3(19f_{14} - 18f_{15})\}J_{4.5} \\ + \frac{1}{12} \{5F_2(5f_{10} + 3f_{12}) + 2F_3(f_{14} - 30f_{15} + 24f_{16})\}J_{6.3} \\ - \frac{1}{4} \{5F_2(5f_{10} + 3f_{12}) + 2F_3(f_{14} + 2f_{15} + 8f_{16})\}(J_{8.1} - H_8)] \end{vmatrix} $
6, 9	$ \begin{vmatrix} \frac{\delta^2}{c^7} \left[\frac{4}{3} \{ 12F_2(f_{10} - f_{12}) - 5F_3f_{17} \} J_{2,7} - \frac{1}{3} \{ 6F_2(7f_{10} - 13f_{12}) - F_3(19f_{17} - 18f_{18}) \} J_{4,5} \\ + \frac{1}{6} \{ 6F_2(f_{10} - 7f_{12}) - F_3(f_{17} - 30f_{18} + 24f_{19}) \} J_{6,3} \\ + \frac{1}{2} \{ 6F_2(f_{10} + f_{12}) - F_3(f_{17} + 2f_{18} + 8f_{19}) \} (J_{8,1} - H_8)] \end{vmatrix} $
6, 10	$ \begin{vmatrix} \frac{\delta^2}{c^7} \left[\frac{2 \cdot 0}{3} F_3 f_{20} J_{2,7} + \{8F_2(f_{10} - f_{12}) - \frac{1}{3} F_3(19f_{20} - 18f_{21})\} J_{4,5} \\ - \{8F_2(f_{10} - 2f_{12}) - \frac{1}{6} F_3(f_{20} - 30f_{21} + 24f_{22})\} J_{6,3} - 8F_2 f_{12} J_{8,1} \\ - \frac{1}{2} F_3(f_{20} + 2f_{21} + 8f_{22})(J_{8,1} - H_8) \right] $
8, 9	$ \begin{vmatrix} \frac{4\delta^2}{9c^8} F_3[-25f_{17}J_{0,10} + \frac{5}{7}(27f_{14} + 31f_{17} - 27f_{18})J_{2,8} \\ &- \frac{1}{3^25}\{27(23f_{14} - 21f_{15}) + 5(4f_{17} - 99f_{18} + 63f_{19})\}J_{4,6} \\ &+ \frac{1}{3^25}\{9(2f_{14} - 49f_{15} + 35f_{16}) - 5(8f_{17} + 12f_{18} + 21f_{19})\}J_{6,4} \\ &+ \frac{1}{3^25}\{9(8f_{14} + 14f_{15} + 35f_{16}) - 5(32f_{17} + 48f_{18} + 84f_{19})\}(J_{8,2} - 2J_{10,0})\} \end{vmatrix} $
8, 10	$ \begin{vmatrix} \frac{4\delta^2}{63c^8} F_3[175f_{20}J_{0,10} - 5(31f_{20} - 27f_{21})J_{2,8} + (63f_{14} + 4f_{20} - 99f_{21} + 63f_{22})J_{4,6} \\ - (63f_{14} - 63f_{15} - 8f_{20} - 12f_{21} - 21f_{22})J_{6,4} - (63f_{15} - 63f_{16} - 32f_{20} - 48f_{21} - 84f_{22})J_{8,2} \\ - (63f_{16} + 64f_{20} + 96f_{21} + 168f_{22})J_{10,0}] \end{vmatrix} $
9, 10	$ \begin{vmatrix} \frac{4\delta^2}{35c^8} F_3 \left[75f_{20}J_{2.8} - (69f_{20} - 63f_{21} + 35f_{17})J_{4.6} + (2f_{20} - 49f_{21} + 35f_{22} + 35f_{17} - 35f_{18})J_{6.4} \\ + (8f_{20} + 14f_{21} + 35f_{22} + 35f_{18} - 35f_{19})J_{8.2} - (16f_{20} + 28f_{21} + 70f_{22} - 35f_{19})J_{10.0} \right] $

Formulae for the 'Interference' Suction Force for Swept-back Surfaces

¥, S	$(E(\varkappa)/\varkappa)S_{r,s}$
1, 2	$\frac{\delta^2}{(1-a)^3}\frac{2}{3f_1}$
1, 3	$\frac{\delta^2}{(1-a)^4} \frac{3}{2} F_1 f_5$
1, 4	$\frac{\delta^2}{(1-a)^5} {}^{\frac{8}{5}} F_2 f_{11}$
1, 5	$\frac{\delta^2}{(1-a)^4} \frac{3}{2} F_1 f_4$
1, 6	$\frac{\delta^2}{(1-a)^5} {}^{\frac{4}{5}} F_2 f_{10}$
1, 8	$\frac{\delta^2}{(1-a)^6} \frac{1}{3} F_3(f_{14} + f_{15} + f_{16})$
1, 9	$\frac{-\delta^2}{(1-a)^6} \frac{1}{3} F_3(f_{17} + f_{18} + f_{19})$
1, 10	$\frac{\delta^2}{(1-a)^6} \frac{1}{3} F_3(f_{20} + f_{21} + f_{22})$
2, 3	$\frac{\delta^2}{\langle 1-a\rangle^5} \frac{6}{5} \frac{F_1 f_5}{f_1}$
2, 4	$\frac{\delta^2}{(1-a)^6} \frac{4}{3} \frac{F_2 f_{11}}{f_1}$
2, 5	$\frac{\delta^2}{(1-a)^5} \frac{6}{5} \frac{F_1 f_4}{f_1}$
2, 6	$\frac{\delta^2}{(1-a)^6} \frac{2}{3} \frac{F_2 f_{10}}{f_1}$
2, 8	$\frac{\delta^2}{(1-a)^7} \stackrel{_2}{_{\overline{7}}} \frac{F_3}{f_1} \left(f_{14} + f_{15} + f_{16} \right)$
2, 9	$\frac{-\delta^2}{(1-a)^7} \frac{2}{7} \frac{F_3}{f_1} (f_{17} + f_{18} + f_{18})$
2, 10	$\frac{\delta^2}{(1-a)^7} \frac{2}{7} \frac{F_3}{f_1} (f_{20} + f_{21} + f_{22})$
3, 4	$\frac{\delta^2}{(1-a)^7} \frac{\frac{24}{7}}{F_1} F_1 f_5 \cdot F_2 f_{11}$
3, 5	$\frac{\delta^2}{(1-a)^6} 3F_1 f_5 . F_1 f_4$
3, 6	$\left \frac{\delta^2}{(1-a)^7} \frac{12}{7} F_1 f_5 \cdot F_2 f_{10} \right $
	1

TABLE 12—continued

7, S	$(E(\varkappa)/\varkappa)S_{r,s}$
3, 8	$\frac{\delta^2}{(1-a)^8} \frac{3}{4} F_1 f_5 \cdot F_3 (f_{14} + f_{15} + f_{16})$
3, 9	$\frac{-\delta^2}{(1-a)^8} \frac{{}^3_4F_1f_5}{} \cdot F_3(f_{17} + f_{18} + f_{19})$
3, 10	$\frac{\delta^2}{(1-a)^8} \frac{{}^3_4}{{}^4_4} F_1 f_5 \cdot F_3 (f_{20} + f_{21} + f_{22})$
4, 5	$\frac{\delta^2}{(1-a)^7} \frac{\frac{24}{7}}{F_2} F_2 f_{11} \cdot F_1 f_4$
4, 6	$\frac{\delta^2}{(1-a)^3} 2F_2 f_{11} . F_2 f_{10}$
4, 8	$\frac{\delta^2}{(1-a)^9} \frac{{}^89}{} F_2 f_{11} \cdot F_3 (f_{14} + f_{15} + f_{16})$
4, 9	$\frac{-\delta^2}{(1-a)^9} {9}F_2 f_{11} \cdot F_3 (f_{17} + f_{18} + f_{19})$
4, 10	$\frac{\delta^2}{(1-a)^9} \frac{{}^89}{{}^9F_2}f_{11} \cdot F_3(f_{20}+f_{21}+f_{22})$
5, 6	$\frac{\delta^2}{(1-a)^7} \frac{\frac{12}{7}F_1 f_4 \cdot F_2 f_{10}}{F_1 f_4 \cdot F_2 f_{10}}$
5, 8	$\frac{\delta^2}{(1-a)^8} \frac{3}{4} F_1 f_4 \cdot F_3 (f_{14} + f_{15} + f_{16})$
5, 9	$\frac{-\delta^2}{(1-a)^8} \frac{{}^3}{{}^4}F_1f_4 \cdot F_3(f_{17}+f_{18}+f_{19})$
5, 10	$\frac{\delta^2}{(1-a)^8} \frac{{}^3_4F_1f_4}{} \cdot F_3(f_{20} + f_{21} + f_{22})$
6, 8	$\frac{\delta^2}{(1-a)^9} \frac{4}{9} F_2 f_{10} \cdot F_3 (f_{14} + f_{15} + f_{16})$
6, 9	$\frac{-\delta^2}{(1-a)^9} \frac{4}{9} F_2 f_{10} \cdot F_3 (f_{17} + f_{18} + f_{19})$
6, 10	$\frac{\delta^2}{(1-a)^9} \stackrel{4}{_9}F_2f_{10} \cdot F_3(f_{20} + f_{21} + f_{22})$
8, 9	$\frac{-\delta^2}{(1-a)^{10}} {}^{1}F_3^2(f_{14} + f_{15} + f_{16})(f_{17} + f_{18} + f_{19})$
8, 10	$\frac{\delta^2}{(1-a)^{10}} \frac{1}{5} F_3^2 (f_{14} + f_{15} + f_{16}) (f_{20} + f_{21} + f_{22})$
9, 10	$\frac{-\delta^2}{(1-a)^{10}} \frac{1}{5} F_3^2 (f_{17} + f_{18} + f_{19}) (f_{20} + f_{21} + f_{22})$

$\mathbf{T}\mathbf{A}$	BL	E	13

Formulae for the Pitching Moments of Triangular Surfaces

r	M_r
1	$\frac{2}{3}c\delta$
2	$rac{3}{4f_1}c\delta$
3	$\frac{3}{5}c\delta F_{1}(4f_{5}-3f_{7})$
4	$\frac{5}{6}c\delta F_2(4f_{11}-3f_{13})$
5	$\frac{3}{5}c\delta F_1(4f_4-f_6)$
6	$\frac{5}{12}c\delta F_2(4f_{10}-3f_{12})$
8	$\frac{3}{28}c\delta F_3(8f_{14}+2f_{15}+f_{16})$
9	$-\frac{3}{28}c\delta F_3(8f_{17}+2f_{18}+f_{19})$
10	$\frac{3}{28}c\delta F_3(8f_{20}+2f_{21}+f_{22})$

Formulae for the Pitching Moments of Swept-back Surfaces

r	$(\pi c^2/k)M_r$
1	$2\delta(H_2 + J_{0.3} - J_{2.1})$
2	$\frac{4\delta}{3cf_1}(2J_{0,4}-J_{2,2}-J_{4,0})$
3	$\frac{3\delta}{2c^2}F_1[(f_5+3f_7)H_4+6(f_5-f_7)J_{0.5}-(5f_5-9f_7)J_{2.3}-(f_5+3f_7)J_{4.1}]$
4	$\frac{16\delta}{15c^3}F_2[12(f_{11}-f_{13})J_{0,6}-(11f_{11}-21f_{13})J_{2,4}+(f_{11}-6f_{13})J_{4,2}-(2f_{11}+3f_{13})J_{6,0}]$
5	$\frac{3\delta}{2c^2}F_1[(f_4+f_6)H_4+2(3f_4-f_6)J_{0.5}-(5f_4-3f_6)J_{2.3}-(f_4+f_6)J_{4.1}]$
6	$\frac{8\delta}{15c^3}F_2[12(f_{10}-f_{12})J_{0,6}-(11f_{10}-21f_{12})J_{2,4}+(f_{10}-6f_{12})J_{4,2}-(2f_{10}+3f_{12})J_{6,0}]$
8	$\frac{\delta}{12c^4} F_3[3(f_{14} + 2f_{15} + 8f_{16})H_6 + 40f_{14}J_{0,7} - 2(19f_{14} - 18f_{15})J_{2,5} + (f_{14} - 30f_{15} + 24f_{16})J_{4,3} - 3(f_{14} + 2f_{15} + 8f_{16})J_{6,1}]$
9	$ \begin{vmatrix} \frac{-\delta}{12c^4} F_3[3(f_{17} + 2f_{18} + 8f_{19})H_6 + 40f_{17}J_{0.7} - 2(19f_{17} - 18f_{18})J_{2.5} + (f_{17} - 30f_{18} + 24f_{19})J_{4.3} \\ -3(f_{17} + 2f_{18} + 8f_{19})J_{6.1}] \end{vmatrix} $
10	$\frac{\delta}{12c^4}F_3[3(f_{20}+2f_{21}+8f_{22})H_6+40f_{20}J_{0.7}-2(19f_{20}-18f_{21})J_{2.5}+(f_{20}-30f_{21}+24f_{22})J_{4.3}\\-3(f_{20}+2f_{21}+8f_{22})J_{6.1}]$

65

 $\overline{\mathbb{C}^{n}}$

EXPLANATION:- POINTS A,G IN FIG. 1(b) POINTS K, L GIVE $(\Delta d/d_i)_{opt}$. FOR SURFACE COMBINATIONS $\tau = 1, 2, 5, 6$; $\tau = 1, 2, 5, 10$

FIG. 2a. Maximum drag reduction on triangular wings for 'two-surface' combinations, $\tan \gamma/\tan \mu = 0.7338.$

67

 $\mathbb{E} 2$

FIG. 5a. Maximum drag reductions by the use of camber and twist (triangular wings).

FIG. 5b. Comparison of drag reductions (on a triangular wing) due to camber and twist, with drag reduction on the flat wing due to suction force.

FIG. 6. Shape of Wing 1a, $\gamma = 18$ deg.—Designed for minimum C_{D_p}/C_L^2 (suction forces ignored) at M = 2.47.

FIG. 7a. Shape of Wing 1b, $\gamma = 18$ deg.—Designed for minimum C_{D_P}/C_L^2 (suction forces ignored) at M = 2.47.

FIG. 7b. Variation of drag with lift for Wing 1b, $\gamma = 18$ deg.—Designed for minimum C_{Dp}/C_L^2 at M = 2.47. Design $C_{L0} = 0.12$.

FIG. 8. Shape of Wing 1c, $\gamma = 18$ deg.—Designed for minimum C_D/C_L^2 (suction forces included) at M = 2.47.

FIG. 11a. Shape of Wing 2c, $\gamma = 9$ deg. —Designed for minimum C_D/C_L^2 (suction forces included), at M = 2.47.

FIG. 12. Shape of Wing 2d, $\gamma = 9$ deg. —Centre of pressure fixed at G; designed for minimum C_{D_P}/C_L^2 at M = 2.47.

76

FIG. 13a. Shape of Wing 3a, $\gamma = 3$ deg.—Designed for minimum C_{D_P}/C_L^2 at M = 2.47.

FIG. 13b. Variation of drag with lift for Wing 3a, $\gamma = 3$ deg.—Designed for minimum C_{D_P}/C_L^2 at M = 2.47. Design $C_{L_0} = 0.05$.

(76072) Wt. 53/2293

K.7

2/60

Hw.

PRINTED IN ENGLAND

S.O. Code No. 23-3132