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Summary. Slender-body theory is used to calculate the lift and drag forces acting on a thin slender delta 
wing cambered to form part of the surface of a circular cone, in the type of flow in which separation is from 
the trailing edge only. The boundary condition satisfied by the flow on the wing surface is applied there, 
instead of on a nearby plane as is usual in linearized theory. This has relatively little effect on the overall 
forces on a wing at a given incidence. However, a large discrepancy arises between the overall forces at the 
incidence for which the singularity in the pressure at the leading edge vanishes, as calculated by the present 
and by the usual linearized theory. This is particularly important, since it is at this incidence that the type of 
flow treated is expected to be realized in a physical fluid. The lift-dependent drag factor found is below the 
usual linearized-theory value for this type of wing at the incidence of no leading-edge singularity; and, for 
large lift, is below unity, which is the minimum for a trailing vortex sheet which is effectively flat. 

1. Introduction. The partial differential equations which govern the motion of an inviscid 

fluid are non-linear. To the second order in the perturbations of a uniform stream, the flow is 

irrotational and a velocity potential exists and satisfies a non-linear second-order equation. For 

Mach numbers which are neither too high nor too near unity, this equation can be linearized, i.e., 
the terms in it involving products of derivatives of the perturbation potential can be omitted. 
The boundary condition to be satisfied in the case of steady, attached~ flow'past a solid body is 

the vanishing of the normal derivative of the potential on the surface of the body. The  solution 
of the linearized equation with this exact boundary condition is still difficult, so it is usual to apply 

the boundary condition on a geometrically simple surface (e.g., a plane, circular cylinder or body 
of revolution), which is close to the actual surface of the body. For  brevity, and the purpose of the 

present paper, this process will be referred to as 'linearizing the boundary conditions' (clearly 

this can be done in different ways, but  we are not concerned wit h distinguishing between them). 

Such a geometrically simple surface, parallel t o  the undisturbed stream, can be found for most 
aircraft components. 

* R.A.E. Report Aero. 2602, received 10th July, 1958. 

1" We use 'attached flow' to mean (inviscid) flow with separation from trailing edges. Q!!ly or flow which 
has vorticity only in the wake. 



Since the justification for using the linearized differential equation is the smallness 'of the 
perturbations, it can be held that no additional assumption is made in using linearized boundary 

conditions. Indeed, there is no a priori estimation of the errors introduced in the two linearization 
processes which shows them to be of different orders. Thus it is not claimed on mathematical 

grounds that the solution of the linearized equation with exact boundary conditions is closer to the  
solution of the exact equation with the same boundary conditions, either in general, or in any 
particular case. On the other hand, it is certainly true that if the use of the exact boundary 

conditions produces results which differ unacceptably from those obtained using the linearized 

boundary condition, the latter cannot be relied on (they could, through compensating errors for 

instance, be correct; but they would not be trustworthy). If the results from the exact and linearized 
boundary conditions agree closely, confidence in the linearization of the differential equation may 

be increased, since in some sense th6 perturbations are small. If they differ, and no better treatment 
is available, we may be inclined on intuitive grounds to favour the treatment using the exact 
condition e. Furthermore, in the particular solution obtained in the present paper, it is easily seen 
that, for the ranges, of the parameters considered, the perturbations of the stream are of higher 
order than the discrepancies introduced when the boundary conditions are linearized. This point 
is taken up again in Section 3. 

The only solutions using exact boundary conditions for the flow round a given wing are effectively 
two-dimensional. Many solutions for thick, cambered aer0foils in plane flow exist. In supersonic 
conical-flow theory the elliptic cone at zero incidence and the flat delta at incidence have been 
studied 1 using the exact boundary conditions and the linearized equation. Further attempts 2, 3 at 
similar problems have been made using the exact equation and exact conditions. In slender-body 
theory, bodies of elliptic cross-section have been studied 4, ~, 6 and there are also solutions 7, s for 
combinations of plane wings and bodies of revolution at incidence. However, no solutions for 
cambered, three-dimensional wings are known. 

It has recently become clear that there is a need to be able to assess the applicability of the 
linearized equation and, more particularly, the linearized boundary conditions, to the flow past 
slender, cambered wings. Recent work 9, 10,11 on the design of slender wings to maintain attached 

flow has suggested that mean surfaces with steep slopes near the. leading edge may be necessary, 

and it is not certain that the theory using the linearized equation and boundary condition which 
satisfactorily predicts the properties of flat or slightly warped wings will be adequate to deal with 
them. The perturbation velocities predicted by the linearized equation for the flow past a wing 

warped to maintain attached flow are finite everywhere; in contrast to those predicted for a lifting 
flat plate, for instance. Thus the linearization of the differential equation seems to be at least as 
well justified aposteriori for the warped wing as in many other cases where it is accepted. Therefore, 
in the present paper the aerodynamic characteristics of a slender delta v~ing, in the form of a sector 
of the surface of a circular-cone, are studied by slender-body theory, i.e., making use of the exact 
boundary condition. 

* The situation here is parallel to that occurring in the calculation of pressures in supersonic linearized 
theory. The quadratic terms in Bernoulli's equation for the pressure coefficient are of the same relative order, 
mathematically, as the terms omitted in linearizing the differential equation. If, arithmetically, they materially 
modify the pressure coefficient, only the breakdown of the theory can strictly be deduced, though intuitively 
we may accept the modified result, 



The properties of such slender configurations wkhout thickness are given by slender-body 
theory in terms of the solution of a two-dimensional harmonic problem in the cross-flow plane, 
in a form independent of Mach number. The validity of this for subsonic and low supersonic 
speeds is well known 7 and has recently been established 1~ for transonic speeds also. The present 
treatment proceeds by transforming conformally the cross-flow plane exterior to the circular arc 
in which the wing meets it into the region o f  the plane exterior to a straight slit. The complex 
potential corresponding to the distribution of normal velocity on the slit, as prescribed by the 
condition of no velocity normal to the three-dimensional surface, is then constructed. This is done 

by considering a continuation of the normal velocity and eliminating its singularities in a third plane 

where the slit is transformed into a circle. 
This potential is a complicated function, so, instead of calculating the perturbation velocities 

and pressures on the wing, the lift and drag ar.e evaluated in a plane behind the wing. These are 

given by expressions involving the incidence and a parameter representing the camber of the wing, 

The first term of an expansion in powers of the latter is tile solution of the problem with the 

linearized boundary condition. The expressions depart further from this as the camber increases, 

i.e., as the wing includes a greater proportion of the surface of the cone. 
It is known that the physical flow past a sharp-edged slender wing with a conical mean surface, 

such as that considered herel separates at the leading edge except near one particular incidence. 
This separation is associated with the singularity of the attached-flow solution at such an edge 
and is believed not to occur at the incidence for which this singularity vanishes. The type of flow 
which is treated in this paper, however, has separation from the trailing edge only, so that the present 
theory can only be expected to apply to real flows at the incidence on each wing for which it 
predicts finite velocities everywhere. Numerical results are therefore presented and discussed in 
more detail for each wing of the family at this incidence. 

2. Solution of the Problem. 2.1. Boundary Values. We consider a slender delta wing without 
thickness, warped to form part of a circular cone. We use  right-handed rectangular Cartesian 
axes arranged as in Fig. 1, with the origin, O, at the Wing (and cone) apex, Oxy the plane of the 
leading edges, Oy to starboard and Ox downstream. The leading edges are the lines ]y ] = s = K x  

and the warp is such that the section of the wing by the cross-flow plane x = const is a circular 
arc rising a distance/Ts above the plane Oxy of the leading edges. This plane is at an incidence ~ to 
the undisturbed stream of velocity U, which is resolved into components U cos ~ along Ox and 
U sin a along Oz. These two components are treated separately in the present analysis, so that we 

seek a function ¢ such that the velocity potential is Ux cos a + ¢. Thus ¢ N Uz sin ~ at a large 

distance from the wing. 
Introducing the angle 3 by/7 = tan 3 (O ~< 3 ~ ~/4), we find the geometrical relations shown 

in Fig. 2, in the complex plane Z = y + iz. The equation to the cone is seen to be 

S --y~ + (z + cot 23Kx) 2 - cosec 2 23K~x ~ = 0.  (1) 

Now, provided the wing is slender, i.e., K 2 ~  1, the velocity normal to the contour in the 
cross-flow plane due to the component U cos ~ is given by: 

D¢ u cos ~ (~S/ax) 

t ey! + t } 



which is equivalent to requiring the wing to lie in a stream surface in three dimensions. Taking n 

to be the upward, outward normal, equations (1) and (2) show that 

O--n = K U c o s =  sin 23 1 - - c o t 2 S  . 
S 

Introducing an angular co-ordinate 0 on the arc (see Fig. 2) so that, on the arc, 

we find: 

where 

y = s cosec 23 sin 20, z = - s cot 2S + s cosec 23 cos 20 : 

~n - K U  cos o~ cosec 23(1 - cos 23 cos 20) ,  (3) 

Z = s cosec 23(sin 20 - i cos  23 + icos  20) .  (4) 

We now consider the transformation (see Fig. 2), which takes the plane slit a long the circular 

arc into the plane slit along the line: g{~} = 0, - s ~< ~ {~} K s; and the point at infinity into 
a 'finite point;  i.e., 

z - i ~ 3 ,  z ¢ + i~s d z  s~(1+ /3~) 
s - s - i ~ z '  s - s + i / 3~ '  d ~  - ( s  + i ~ ¢ ) ~ "  (5) 

On the slits the point 0 in the Z plane becomes t h e  point ~ = s cos ~b, where 

tan 0 tan 0 
c o s ~ # -  t a n S -  /3 (6) 

by equations (4) and (5). Similarly the modulus of the transformation d ~  is given on the slit by: 

d~ 1 +/3 ~ 
= cos z 0(1 + p2)  _ 1 + /3z c o s  ~ ~b" ( 7 )  

Thus  the required normal velocity on the slit in the ~ plane is given by: 

~n ¢ ~n ~ +/3~)(1 + cos z ~b) ~ = ~(~ ~ d Z  = K U c o s ~ / 3 ( l ( 1  +/3~cos~ .~b)2 (8) 

at ~ = s cos ~, using equations (3), (6) and (7). 

2.2. Complex Potential. We now construct a complex potential W in the cross-flow plane so 

that the complete potential is Ux c o s ,  + N{ W}. W must then behave like - i U Z  sin c~ for large Z 

and the real part of its normal derivative must take the values (3) or (8) on the contour. I t  is allowed 

to have branch points at the leading edges, but  must otherwise be non-singular in the finite part 

of the Z plane. We first find a complex potential which produces the correct normal derivative on 

the contour and then modify it by adding sources, sinks and doublets so as to remove its unwanted 

singularities without changing the normal derivative on the contour. 

T h e  function 

K U  cos ~/3(1 + p~)sZ(s 2 + ~2) 
(s~ + / 3 ~ ) ~  (9) 
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is an obvious continuation of the right-hand side of (8), taking the same values on the slit ~9(~) = 0, 
- s ~< N(~) ~< s. Now (9) is minus the imaginary part of the derivative with respect to ~ of 

K U s c o s a ( 1 + 5 2 ) l  8 ~ + i s  ( 1 1 ) I  
453 (1 + 8 i e ) l o g ' - -  + i s ( 1  - 8 ~) - + - -  • 5~ - is ~ is 8~ + is (10) 

Thus  (10) is a complex potential with the correct normal derivative on the contour. 
To make clear the adjustment of the singularities, we introduce the Z* plane in which the wing 

slit becomes the unit circle. Then  

and (10) becomes 

KUs  cos a(1 + 82)[ - 
48 = ~(1 

) Z* = ~ + - 1 - = Z* + (1'1) 
s > ' s 2 ~ 

8Z* + i{1 + ~/(1 + 8in)} 8 Z ,  _ i { -  1 + v/(1 + 8~)} 
+ 8 ~) l o g ~  _ i{1 + v/(1 + 8=)} 8Z* 7 i{ 1 + v/(1 + 82)} 

+ 

+ i ( 1 - 8 2 ) 5 ~  l 1 ( 1 
v/(1 +82)  1 + V(1 +82)  8 Z* + i { -  1 + ~/(1 +82)} + 

1 ) 
8z* - i { -  1 + ~/(1 + 82)} 

1 ( 1 1 ~)- ] .  
+ - 1 + v/(1 + 8 ' )  ~ Z * -  i { 1 +  x/(i  +8~)} + S Z *  + i { 1  + v/(1 +82)} 

(12) 

This is the complex potential of two sources, two sinks and four doublets, of which one source, 
one sink and two doublets lie outside I Z*[ = 1 and are therefore to be removed. This is done 
without upsetting the normal velocity on the circle by introducing cancelling singularities outside 
[Z* l = 1 with their image systems inside the circle .  The  Source and sink at the centre of the 
circle cancel and the other singularities introduced inside the circle double the strengths of those 
already there .  In addition, we must introduce a doublet at the point Z* = i{1 + ~/(1 + 82)}/8, 

corresponding to the point at infinity in the Z plane, with the strength appropriate to a velocity 
d W / d Z , - ~  - i U s i n a  as Z tends to infinity; together with an image doublet in the unit circle. 

The  result of these modifications to (12) is the comple x potential: 

l - i { -  1 + v / ( l +  82)} w=KUsc°sa(l+82) (1+ 82} log ~** +i{ 1+ v/(1 +82)} + 
25 ~ 

+ i(1 - 52)8 ~ [ 1 
.v/(1 + 82){1 + .v/(1 + 8=)} ~SZ* + i { -  1 + .v/(1 + 82)} ' )I + S Z * - i { -  1 + v/(1 +82)}  

+ 

i U s s i n a ~ ( 1  + 8 2  ) [  - 1 + V/(1 + 8 2  ) 1 + v/(1 + 8  e) 
+ 8 - [SZ* i{ - 1 + ~/(1 + 82)} - 8Z* - i{1 + ~/(1 + 82)}] " 

(13) 

This can be re-written in terms of ~, using (11): 

W = K U s  cos c~(1 + 82) 2 
482 log - -  

s - i8~ sv ' (1  + 5~). + i S V ( ~  ~ - sn) 

s + i8~ , v ' ( 1  + 5 ~) - i 8 V ( ~  ~ - ,~) 

iKUs  2 cos o~(1 - fi2) x/(1 + fi2) 
+ 2fl{,v/(1 + fie)~ + ~/(~2 _ s2)} 

iUs ~ sin a~/(1 + f12) 
fi{fix/(~ 2 - s e) - isv/(1 + fl~)}' 

(14) 

(78801J A* 



and so 

d W  _ _  _ i K U s  ~ cos = ( I  + # ~ ) ~ { ~ / ( I  + ]~)  - v ' ( ~  ~ - s~)} 

2#(s  + v ' ( ,Y - 
+ 

igUs~coso~(1 _ fl2)V(1 + ~e){~ V(1 + ~2) _ V(~2 _ s~)}2{~ + V(1 + ~ ) V ( ~  ~ - s~)} 
2/9(s z + /~z~z)2 ~/($z _ s~) 

+ iUs ~ sin av/(1 (s ~+ fl2)~{flv/(~2+ fl~2)~ ~/(~2- s~)_ s ~) + isv/(1 + fi2)}~ (15) 

At this point it is convenient to mention the relationship of the present problem to others in 

aerodynamic theory which involve circular arcs, e.g., the (part) annular wing of small chord and the 
two-dimensional circular-arc profile. In each case we require a solution of Laplace's equation with 
a prescribed behaviour at infinity and, in contrast to the Present case, zero normal derivative on the 
circular arc. For the annular wing there is no total circulation about the section of the wake in the 
Trefftz plane; and for the two-dimensional profile, the circulation is determined by the Kutta- 
Jowkowski condition. The same transformation can be used in these problems, but the expressions 
found are much simpler. For instance, for the part annular wing of small chord, the lift and drag 
are given by the present theory with K zero and c~ twice the geometrical incidence of the wing. 

2.3. Pressure and Load  Distribution. The pressure coefficient, to the same order as the linearized 
equation for the potential, is given, for slender configurations, by 

C~ = UOx U 2 + ~ + sin2 ~ '  (16) 

where ~ = 4(x, y, z) = ~{ W}. The differentiation with respect to x is for constant y and z, i.e., 
constant Z, so that: 

~x = t-~x ]c con~ + - ~ - ~ c o ~  x ~ Zoo~tl " (17) 

O¢/Oz is continuous on the slit but 3¢/8y is not antisymmetric in this solution, so that the non- 
dimensional load distribution is given by 

I 1 = - A{C2, } = A ~x  + ~ o, ~h~ ,ring " 

Equations (16), (17), (18) make the calculation of the pressure and load from (14) a straightforward, 
though complicated, procedure. The expressions .are too cumbersome to be  worth publishing. 
Fortunately we can obtain the overall forces more simply, after we have restricted the range of 
inciderme required. • 

2.4. Overall  Forces. As explained in the introduction, the flow model studied here is only 
expected to be adequate for incidences near that at which the leading-edge singularity in load and 

'r 



velocity vanishes. We denote this incidence by %. It  is sufficient* to require that the cross-flow 

velocity be non-singular at Z = ±s ,  or that d W / d ~  be non-singular a t e .  = s .  Referring to 

equation (15), we see that the coefficient of ( ~  - s~) -1/2 in d W / d ~  vanishes at ~ = -¢-s if ,and only if  

tan a = ½/~(3 + ~ ) K .  

Now K s • 1, fi = O(1) and so 

o~ 2 ,< 1 ,  (19) 

% / K  = ½/3(3 + 5 ~) (20) 

near,  and at, respectively, the incidence for which the coefficient of  the singularity vanishes. 

Having verified that the incidences we consider are small, we proceed to calculate the overall 

forces. Consider a control surface consisting of a streamwise cylinder surrounding the wing 

terminated by a plane ahead of the wing and a plane through the trailing edge, both normal to the 

stream. Then, for a slender configuration without thickness, the expressions for the lift and drag 

reduce to integrals over the plane through the trailing edge. Since we are considering a more exact 
treatment than usual, i t  is appropriate to distinguish between the plane normal to the free stream 

and the plane x = constant. Consider new co-ordinates Ox'y'2;' rotated through a about O y  (see 

Fig. 3): Then  

X = X t COSo~ - -  2;, s i n o ~  

2; = x '  s i n o ~  + 2; '  COSo~ 

y - - y  

X' ----- XCOS c~ + zsino¢ 

z' = -- xsino~ + xcosocj . 

y ' = y  

(21) 

The lift (normal to the free stream) is given by the integral: 

L = - p U x c o s e ~ +  ~{ d y ' ,  
upper 

where the integral is taken along the wake, in the plane x' = const. 

Now (see Fig. 3) the values of W on the wake at the same ~¢alue of y '  = y in planes x' = const 

and x = const through the trailing edge are the same to the order of a2 (i.e., the order of K ~ for 

t he  values, of ~ considered). Ux cos a and 3{ W} are continuous functions across the wake and 

~{ w dz}  = ~{ w )  dy - s{ W} dz . 

Thus  

where C is the contour just containing the wake. Since W is analytic outside the wake, this contour 

can be replaced by any other contour containing the wake, for instance, a large circle. Thus  if, 
for large Z, 

W = a l Z  + a o + a _ l Z  - I  + . . . ,  

* For a conical field, this follows from the relation 

0-x = x x " + a function of x. 

In general, it follows by considering the continuity of the bound vortices. 

(Tssm) A* 2 



we have 

L = 2rrpU ~{a_l} . 

An expansion of (14) for large Z shows 

a_ 1 =-~iUs ~ sin ~(2 + fi~) - ~-iUs=K cos c~(5 + 3f12)fl 

and so 

3 

Thus  

based on the projected area of the wing, S~ = s2/K. 

(22) 

2¢ 
+ %'  = ~ +  ~ U c o s 2 0  

on the upper and lower surface, where O¢lOn is given by (3). Thus  we have 

' if6 F -lupper ( ) 
D =  ucos20- KU cosec 28 ( 1 -  cos2a cos20) 

x s cosec 28 2dO. 

From (14) 
i "] upper o~ Us cot 8 e~ Us cot 3 
~{~ l  = + , Jlo,ve~ 1 -- s i n8  sin ¢ 1 + sin 3 sin ¢ 

1 - s i n 8  s i n e  
+ K U s c o s e c  =28 2 1 o g l  + s in8  s i n e  

sin 48 cos8  s i n e ]  
+ 1 - sin 23 s in=C]  (24) 

Thus,  substituting from (6) and (24) in (23), we find, for the coefficient based on the projected 
area of the wing, 

(23) 

The drag (in the stream direction) is given by the energy integral: 

D =  ~o f f (w'~ + v'~) +' dz'  , 

where the integral extends over the plane x' = const slit along the wake, and w' and v' are the upwash 

and sidewash in this plane. Transforming the double integral by Green's Theorem for, the plane, 

we have : 

= ~o[ (Ux cos ~ + ~ {  W})v.'  d~' ,  D 
d O' 

where %'  is the velocity along the inward normal to the slit and or' is the arc length in the plane" 
x' = const and C' just surrounds the wake. Now Ux cos ~ is continuous across the wake and v~' is 

equal in magnitude and opposite in sign on the upper and lower surfaces. Further,  the values of 
W in the planes x' = const and x = const agree to Order c& To the same order, %'  is given by 



CD D 

K a ½p U2K2s 2 

sio  co ec  I 
2~ ,  , --~-n ~3 ~-n ~bR7  + 2cosec 2231og l  T s i n 3  s in~ + 1 - sin 28 sin 2~b , x 

t_ 1_/32cos,,  /3(1 + cos2,) t 2/3cosec2  sin d  (25) 1 T/32 cos2 ¢ - 1 +/32 cos2 ~1 1 +/32 cos2 

The integrals in this expression are all elementary, except those involving the logarithmic function, 
and these are evaluated in Appendix I. The final expression obtained is: 

c~, ~ ( 1 + / 3 ~ ) ~ / 1 + / 3 2  . 1 - /32 )  
K a - 4/32 1 - ~ -  mg( t  4-/32) 1 + • .  - 8 (1 -/32)(5 + 3/32) 

s 5 + 3/32 ( s ) 2 (  ~) 
~r/3K 2 + ~ r ~  1 . - + ( 2 6 )  

3. Results. Before discussing in detail the results obtained, we must return to the question, 
raised in Section 1, of the validity of the procedure. The orders of magnitude of the perturbation 
velocities can be found by inspection. 

From equations (15) and (5) we see at once that 

U - U d Z  - f l  ,/3 s i n s + f 2  ,/3 K/3coss  
r 

and from (17), (14), (15) and (5), by a more careful examination, that 

U -  U Ox =fa , K s i n s  + , K2/3c s s , 

wheref~(Z/s,/3) is a function of Z/s  and/3 only, finite for 0 ~</3 ~< 1 in the finite part of the Z plane, 
except possibly at Z = ±s .  Provided K 2 ~ 1, i.e., the wing is geometrically slender, even if 

/3 is of order unity, equation (19) shows that a 2 ~ 1 for the incidences near s = s 0 which we 
chiefly consider. Hence u ~ U and v 2 + w 2 4 U2 almost everywhere. In particular, if s = a 0 
(equation (20)), (v 2 + w2)/(K ~ U 2) and u / ( K  ~ U) i~re uniformly bounded in any finite region of the 

Z plane for 0 ~</3 <~ 1. Thus the results obtained for the perturbation velocities are consistent 
with the assumptions made about them when the differential equation was linearized, and when 
equation (16) was written for the pressure coefficient. On the other hand Figs. 4 to 7 show the 
discrepancies between the treatments using the linearized and the exact boundary conditions, 
as far as they affect quantities at the incidence s 0. The results of the calculations, therefore, provide 
as much justification as they can (sUbject to the reservations in Se.ction 1) for the procedure adopted. 
(Figs. 4 to 7 are discussed in detail below.) 

We now consider the results without restricting the incidence to the neighbourhood of %. 
Thus expressions are obtained which relate to a given wing at different incidences and lift 
coefficients; it must be remembered that these have only the sort of validity associated with other 
attached-flow theories of slender wings, when applied through a range of incidence. It should be 
noted that the expressions for the drag contain a thrust component arising from the singularity 
in the pressure at the leading edge whenever s ¢ s o. No attempt is made here to allow partially 
for leading-edge separation effects by omitting this component. 

The lift coefficient, based on the area of the projection of the wing on the plane z = 0, is given 



by equation (22). For fixed/3, this is linear in ~. Numerical values are plotted in Fig. 8 for fl = 0, 
0.5 and 1.0. Use of the linearized boundary condition is equivalent to neglecting fi3 compared 
with unity: the results of doing this are also shown in Fig. 8 for comparison. In a treatment of a 
wing in which the boundary condition is applied on its surface, it may seem more appropriate to 
calculate its aspect ratio and force coefficients with reference to its actual or 'developed' area. 
Using S d and Sp for this developed area and the area of the wing projection on z = 0, .we have 
(see Fig. 2): 

S d _  28 3(1 2 + /33) 
1 + 2 / 3 3  2/34 + 0(/36) (27) 

A - S r  sin 28 - fi - 

C ~ =  C~ ~ / ~ )  

C~ C~ p/)~, (28) 
A~, = Ap / ;~J  

where the suffixes d andp have the obvious significance. The Coefficient CL a based on the developed 
area is also plotted in Fig. 8 for the three wings. We see that for fi = 0.5, the lift coefficient obtained 
by linearizing the boundary condition (and using the projected area, of course) is only about 
4 per cent above that obtained using the exact boundary condition and forming the coefficient 
from the developed area. Even for/3 = 1.0, the lift curve slopes, (1 /K)(dC~/da) ,  based on the 
exact boundary condition and the developed area and the linearized boundary  condition and 
projected area are within 5 per cent of one another. 

The lift-dependent drag coefficient, based on the projected area, is given by equation (26). 
This is plotted against the incidence in Fig. 9 for the same three values of/3 as in Fig. 8. Again the 
curves obtained by using the linearized boundary condition and also by referring the more exact 
results to the developed wing area are plotted for comparison. The drag coefficients, like the lift 
coefficients/are remarkably close for/3 = 0.5. At fi = 1, the discrepancy is much greater, especially 
near the drag minimum. In both cases the linearized result is closer 1;o the exact result based on the 
developed area than to that based on the projected area. 

Substituting in equation (26), for the drag coefficient, the value of ~ / K  in terms of C L / K  3 from 
(22) we have 

(1 +/33)% 1 
.-.. wK 5 - ~-fi: ~og (1 + /33) 2 +/321 + 2(2 + /335\~7£-~ ] " (29) 

Thisexpressi0n is non-singular for fl = 0, in fact 

~ K ' = 4 8  1 + /33+0(/3,) + 2 ( 2 + / 3 3 5 \ ~  ] " (30) 

We see, .by inspection of (29) and (30), that the minimum lift-dependent drag on a given wing 
OCCURS at zero lift, that this minimum increases with the' camber and that the familiar relationship 
for the slender flat plate is recovered for/3 = 0. We define the lift-dependent drag factor, K, in a 
form independent of the wing area definition: 

K - CL 3 - w K  a / \ ~ r K 2  ] (31) 
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Then K is a decreasing function of C~ for a given wing, bounded below for varying lift by ~:~o, where 

1 
t ¢  > / ¢ m  ~ 

The variation of K with/3 for fixed Cz is less simple. For each value of C~, there is a value o f / 3  
which makes K a minimum. These values are plotted in Fig. 10 as 'camber needed to attain 
minimum-drag factor'. For CL/rrK2<~ 0"4 the required camber is zero *, i.e., the flat plate attains 
the minimum lift-dependent drag factor for small Cz/rrK 2 on the present }heory, a s  it does for 
all C~ on the theory with the linearized boundary condition. For larger values of C,./rrK 2 
considerable camber is required to reach the minimum of K, the optimum wing being half of a 
circular cone at Cz/rrK 2 = 2. The values of K obtained by this optimum cambering are also shown 
in Fig. 10 and we see that a reduction from K = 1 for small CL/rrK ~ to K = 0" 773 at Ci, firK 2 = 2 
takes place. 

We now proceed to a more detailed account of the properties of the wing at incidence ~ = ~0, 
at which incidence the results of the present treatment are expected to approximate most nearly 
to those for a real fluid, since the type of flow studied is expected to occur. Substituting from (20) 
in (22) and (26), we find 

CL 
~K2 - }/3(1 + 32) 2 , 

c ~  ( 1 + / 3 ~ ) ~ [ 1 + 3 2 ,  , ,  1 - 5 2  ) 
~rK a = 4/3 2 ~ t °g t t  + 32) 1 7 

/32(3 +/32)( 4 + 32 _/34) 

lfl_~ ( 1 13 2 18-4 0(f16)) 
= +%-3 +T~ + 

(1 - 32)(5 + 332) 
8 

(32) 

(33) 

(34) 

at the incidence ~0 for Which the leading-edge singularity vanishes. The expansion of ~ (equation 
(31)) for small/3, at e~ = %, is 

= ~(1 - ~ 3  ~ - ~-3 ~ + o(3~)). (3s) 

The terms of lowest order in these expansions for small /3 a r e  the results obtained when the 
linearized boundary condition is used. Thus K = 4/3 is the lift-dependent •drag factor calculated 
in Ref. 9 for the simplest of the slender wings there studied. If  we regard the terms of next order as 
indicating the divergence of the results with the linearized boundary condition from those found 
here, we are struck by the magnitude of this divergence in the lift and drag coefficients at ~ --' %. 
Reference t o  (20) shows that the linearized estimate of ~0 is not ~videly out, while (22) and (26) 
show that, in general, the lift and drag coefficients for given incidence are also close. However, 
the lift coefficient is given by the difference of two terms which are nearly equal at c~ = ~0 so that 
small discrepancies in % have disproportionately large effects on C~, and these affect C~. To some 

extent the divergence of Cr and C~ is complementary, so that ~: is given more accurately by its 
linearized value than they are. 

*.For large CLfirK 2, the minimum drag occurs where OCg/Ofl_ = 0. For_small Cz/rrK 2, it occurs at the 
end point of the permitted range of/32 , i.e., zero. 

, :  - , 
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Fig. 4 shows the incidence, %, for no leading edge singularity as a function of the camber, fl, 

for the wings of the family. For/3 = 0-5 the linearized boundary condition value is less than 8 per 

cent below the more exact value and only 25 per cent below it at/3 = 1. However, in Fig. 5 the 
effect of this on the lift at this incidence for each wing is shown. The estimate based on the linearized 

boundary condition is now about 37 per cent in error at/3 = 0.5 if we compare it with the coefficient 

based on projected area and about 27 per cent compared with the coefficient based on developed 

area. Fig. 6 shows that the lift-dependent drag at the incidence at which the singularitY is predicted 

to vanish is already about 50 per cent in errdr at/3 = 0.5 if calculated using the linearized boundary 

condition. The partial cancellation of the errors in lift and drag when the lift-dependent drag 

factor is calculated is illustrated in Fig. 7. This shows the values of K at the incidence % = %(/3) 

for the wings of the family, using the exact and linearized boundary conditions. The latter is constant 

at 1. 333 for all/3, but the value based on the exact condition falls from this value at/3 = 0, through 
the minimum for a flat vortex sheet (1) at/3 = 0.67, to 0. 773 at/3 = 1. The error in using the 
linearized boundary condition at/3 = 0.5 is 18 per cent. 

The curves not previously discussed in Fig. 10 a re  those which relate to wings cambered to 
eliminate the leading-edge singularity. For a given aspect ratio and lift coefficient, lying within 
certain ranges, a value of the camber/3 can be chosen by (32) or Fig. 5 so that a wing with this 
camber shall have no singularity at the given lift. In this condition the lift-dependent drag factor 

is obtained from (34) or Fig. 7.  The cross-plots so obtained of/3 and • as functions of Cz/zrK 2 are 
shown in Fig. 10 as 'camber needed to eliminate singularity at leading edge' and ' lift-dependent 

drag factor obtained by cambering for no singularity'. We see that for small values of Cz/zrK 2 there 

is a considerable difference between the camber for minimum drag factor and the camber for no 

singularity, while the lift-dependent drag factor with n o  singularity is well above the minimum. 

However, the difference rapidly decreases, so that, for Cz~/zrK 2 = 1, cambering for no singularity 

produces a lift-dependent drag only 2 per cent above the minimum for a wing of this family at 
this lift. 

No results have been given for the lift-curve slope, ~Cz/~o~, at c~ = ~0. It  is not certain that this 
is the same in the two types of flow with separation from all edges and from the trailing edge only. 

In the partial solutions 13, ~4 so far obtained for flat plates with separation from all edges it seems 

that the lift-curve slopes for the two types of" flow agree a t  the incidence for which both predict 

trailing-edge separation only, but this is no more than a plausible reason for expecting the same on 

cambered plates. I f  the lift-curve slope were the same, it would be given by differentiating (22) 

with respect to c~. 

4. Conclusions. Thin  wings which are geometrically slender and cambered to form portions 
of circular cones are treated in attached flow by a method more refined than those hitherto available. 
The boundary condition satisfied by the flow on the wing is applied there instead of on a nearby 
plane as in the  usual linearized theory. From the results we can deduce the following: 

(a) If  the attached flow solution is accepted through the range of incidence, then: 

(i) The force coefficients fo r  given camber and leading-edge incidence calculated using 
the linearized boundary condition are reasonably close to those found using the 
exact boundary condition. They are, in fact, closer to the exact coefficients if these 
are based on the developed area of the wing than if they are based on the projected 
area. 

12 



(ii) The lift-dependent drag factor for a given wing decreases with increasing lift, but is 
bounded below by a function of the camber, which, in turn, decreases as the camber 

increases. 

(iii) The li•dependent drag factor has a minimum for a fixed lift, which is less than one 
unless the lift is small. Thus the flat wing is not the most efficient lifting surface of 
slender triangular plan-form, except, possibly, for small lift coefficients. 

(b) If we restrict our attention to the results found for the particular incidence on each wing 
at which the leading-edge singularity vanishes and the attached-flow theory is therefore 

most trustworthy, then: 

(i) This incidence is predicted fairly accurately by the theory with the linearized 

boundary condition. 

(ii) The lift and drag coefficients calculated using the linearized boundary condition at 
the incidence for no singularity found in the same way are considerably too small. 
Correspondingly, except for small lift coefficients, the camber required to produce 
no leading-edge singularity at a given lift is much overestimated by the treatment 
with the linearized boundary condition. 

(iii) The lift-dependent drag factor, though less in error than the lift and drag coefficients, 
is overestimated for all non-zero values of the camber by using the linearized boundary 
conditions. Instead of remaining at 4/3 for all cambers it falls from this value for 
vanishingly small camber to 0.773 for the wing cambered to form half of a circular 

cone. 

(iv) As the lift coefficient increases, the camber designed to eliminate the leading-edge 
singularity approaches that designed to mifiimize the lift-dependent drag factor 
(assuming the attached flow solutior~ applies through the incidence range). The two 
coincide at CL = 2~K ~ (based on projected area), at which lift the  half-circular 
cone has both no leading-edge singularity and the least lift-dependent drag for wings 

of this type. 
It is, unfortunately, not clear how these results should be modified to apply them to other types 

of camber, in particular to wings whose ordinates are small although their slopes are locally large. 
In the family studied, large slopes are associated with large ordinates and it is not possible to say 
whether the slopes alone would produce the same discre ~ancies between the solutions with different 
applications of the boundary condition. 

13 
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LIST OF SYMBOLS 

Aspect ratio based on area of projection of wing 

.Aspect ratio based on developed area of wing 

Drag coefficient based on  area of projection of wing 

Drag coefficient based on developed area of wing 

Lift coefficient based on area of projection of wing 

Lift coefficient based on developed area of wing 

Pressure coefficient 

Drag 

Cotangent of leading-edge sweep angle 

Non-dimensional load distribution 

Lift 

Normal to wing surface 

Wing semi-span 

Developed and projected areas of wing 

Undisturbed velocity 

Perturbation velocities 

Complex potential in the cross-flow plane 

Rectangular, right-handed co-ordinates, origin at wing apex, Ox down- 
stream, Oy to starboard, with Oxy  as the plane containing the leading 
edges 

Complex co-ordinate in cross-flow plane 

Complex co-ordinate in circle plane 

Incidence of undisturbed stream to plane of leading edges 

Value of a for which leading-edge singularity vanishes on a particular 
wing 

Camber parameter, ratio of height to semi-span of wing cross-section 

One quarter of the angular measure of the wing cross-section 

Difference operator across wing, 'upper- lower '  

Complex co-ordinate in transformed plane 

Angular co-ordinate on wing 

Lift-dependent drag factor 

Density 

~ {  W},  potential in the cross-flow plane 

Co-ordinate on slit in transformed plane. 
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A P P E N D I X  I 

The Evaluation of Two Definite Integrals 

The  right-hand side of equation (25) involves the two, definite integrals 



T h u s  b y  (39) and (40) we find 

x ~(1 +/3~) log/3v'(1 - a ~) + ~ra(1 -/3=) + 
2/3zV'(1 +/3=){1 + 3/ (1  .+/3=)~/(1 - a=)} v41j' x .  

or, applying (38), i.e., a = sin 3 - 
/3 1 

V'(1 + /32) a n d  V'(1 - a 9) - ~/(1 +/3=) ' 

1- /3= 1 + /3~, ",, 

In  exactly the, same way, we have 07 = 07(a,/3) and 

: ' ' "2 
"" 307 2 ~ ] ~  sill-~ ¢ (1 - -  /32 COS= ¢ )  d e  

- - Jo  cos= ¢)~ 8a (1 - a ~ sin = ¢)(1 +/32 

(42) 

A ~  B .  C-~ ( 
= - 2 2 ~ / ( ~ -  a '~) + 2~/(1 +/3~) + 4~/(1 +/3~i 1 

where  

1) 
+ 1 + / 3  = 

A = 
1 - 5 ~ 25 = 

(1 + flS){a=(1 + fl=) - /3=} + (1 +/3=){a2(1 +/3=) - fl~}* ' 

B = 
1 +/3~ 2/3~ 

a=(1 +/3~) - 5~ {a~(t + 5 =) - / 3 = ? '  

c = -  2 ( 1 + / 3 " )  
a=(1 + / 8  =) - / 3 2 "  

Again, 07(0,fl) = 0 and so 

- -  7 r a  

Y = ~/(1 +/3=){1 + ~/(1 ~- fi=)~/(1 - a=)} 
(43) 

or, wi th  a = sin 8: 

y _ ~/3 
2(1 +/3=)" 

(44) 

"i" 
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