LIBRARY

A.R.C. Technical Report

C.P. No. 358
 (19,054)

A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL

 CURRENT PAPERS
Curves Suitable for Families of Aerofoils with Variable Maximum Thickness Position, Nose Radius, Camber and Nose Droop.

By
L. H. Tanner, B.A.,
of the Aerodynamics Division, N.P.L.

Curves Suitable for Families of Aerofoils whth Variable Maximum Thickness Position, Nose Radius, Camber and Nose Droop
 - B_{j} -
 L. H. Tanner, B.A., of the Aerodynamics Division, N.P.I.

14th February: 1957

SUMMARY

The paper shows that it is possible to design geometric curves, gaven by single explicat equations, and having shapes suitable for use as aerofoil sections. A famly of sharp-nosed sections wath variable maximum thickness position is described. A method of rounding the leading edge of any sharp-nosed section is then suggested. Finally a family of curves with camber and nose droop is given. The methods used could be adapted to produce other section variations if required.

1. Introduction

In the design of an aerofoil section for high-speed aeroplanes, it $1 s$ sometimes possible to specify the general characteristics, such as thickness, maximum thickness position and nose radius, which are required. The problem is then to design a smooth curve having these properties. This has sometimes been done by fitting together several algebraic curves, making sure that the ordinates and theur first and possibly second deravatives are continuous at the join. This method is however unsatisfactory in several ways. The hagher derivatives are often discontinuous and the curve not sufficiently smooth. It is difficult to vary one characteristic (e.g., nose radius or maximum thickness position) while leaving the general shape unchanged. The lack of a single explicat equation for the whole curve may lead to complacation in calculating the low speed pressure distribution.

The present paper gaves examples showing that it as possible to design geometrical curves, given by single explicit equations, which are suitable for aerofoul sections. The curves have all their derivatives continuous and their shape as given by parameters which enable nearly andependent variation of maxamum thickness position, nose raduus, etc.

The first family of curves described was used by Michel, Marchaud and Le Gallo ${ }^{1}$ for bump sections. They provide useful sharp-nosed aerofoll sections with variable maximum thickness position.

A method is then given for rounding the nose of these or any other sharp-nosed sections, and the resulting nose shapes are described in detall.

> Finally/

Finally a method is guven for adding an extended and drooped nose to these sections.

Apart from the value of the particular examples given, the methods shown will suggest possibilaties for designing curves ot any other shapes which may be required.
2. Notation

English symbols

A
$=a_{1} x\left(1-x^{n_{1}}\right)+a_{2} x\left(1-x^{n_{2}}\right), \quad$ Section 5.2
Length cut off in rounding the nose, Section 4.2

B
b

C
c

D
E
L
m
$N \quad$ Axis ratio of conic, Section 4.3
n Parameter determining maximum thackness position, Section 3
t Maximum thickness/chord ratio of aerofoil, Section 3.2
x
y
$\}$
$=a_{1} x\left(1-x^{n_{1}}\right)-a_{2} x\left(1-x^{n_{2}}\right)$, Section 5.2
Intercept of linear portion under the drooped nose with the x-axis, Section 5.2
$=-L \log \left(e^{-B / L}+e^{-D / L}\right), \quad$ Section 5.2
$=\left(\frac{a_{1}+a_{2}}{a_{1}}\right)^{1 / n}$, Section 3.4
Chord of sharp-nosed aerofoil whth droop, section 5.2
$=-\mathrm{m}(\mathrm{x}-\mathrm{b})$, Section 5.2
Ordinate of droop-nosed aerofoil, Section 5.2
Parameter in the fairing curve C, Sections 5.2, 5.3
Slope of linear portion under the nose of the drooped aerofoil, Section 5.2

Co-ordinates

Greek symkols

a Parameter determining thickness, Section 3
$\beta \quad$ Parameter determining nose shape, Section 4
$y \quad$ Ratio to the nose radius of the basic-section ordinate at $x=a+p$, Section 4.4
$=\frac{x-a}{a}$, Section 4.3
$\eta \quad$ Oränate, Sections 4, 5
$\rho \quad$ Nose radius, Section 4
$\phi \quad=\frac{\eta_{\mathrm{a}}}{\mathrm{a}}$, section 4.3
Slope of basic sharp-nosed section at $x=a$, Section 4.3
Parameter determaning thickness for $n=0$, Section 3.1
3. A Family of Siymmetrical Aerofoils ${ }^{1}$

3.1 Equation and 6eneral properties

A family of curves suitable for sharp-nosed aerofoll sections is

$$
y= \pm a x\left[1-x^{n}\right] \quad \ldots(3.1)
$$

where $y=0$ at $x=0$ and at $x=1$, so that the chord is unity.
The possible range of the parameter n, which determines the maximum thickness position, is from -1 to $+\infty$. The effect of this parameter is shown in Figs. 1, 2.

$$
\begin{aligned}
& \text { For } n=-1 \text {, the curve is triangular. } \\
& \text { For }-1<n<-0.5 \text {, the curve has an infinite slope and infinate } \\
& \text { radius of curvature at } x=0 \text {, e.g., Fıg. 1a. } \\
& \text { For } n=-0.5, \quad \text { the curve has a finite radzus equal to } \\
& \frac{1}{2} a^{2} \text { at } x=0, F i g .1 b \text {. } \\
& \text { For }-0.5<n \geqslant 0 \text {, the curve has infinite slope but zero radius } \\
& \text { at } x=0 \text {, e.g., Fig.1c. } \\
& \text { For } n=0 \text {, } \\
& \text { For } n>0 \text {, the curve has a finzte slope equal to } \\
& a \text { at } x=0, \text { Fig. } 2 .
\end{aligned}
$$

For all values of n the slope at $x=1$ is -na. The slope at any value of x is:-

$$
\frac{d y}{d x}=a\left[1-(n+1) x^{n}\right]
$$

This is zero when $x=\binom{1}{--1}^{1 / n}$, so the maximum thickness position is at this value of x. Figg. 3 shows a graph of the maximum thiokness position against n. For $n=1$ the curve is the parabolic arc having its maximum thickness at $x=0.5$. For $n<1$ the maximum thickness occurs at $x<0.5-$ whercas for $n>1$. It occurs at. $x>0.5$. Hence af the curves with $n>1$ are used for aerofolls and if their maximum thickness position is to be forward of 0.5 , the curves must be reversed, so that \mathbf{x} is zero at the trailing edee and unity at the leading edge.

Thụs/
*Letting $a \rightarrow \infty$ as $n \rightarrow 0$ so that the thickness remoins ininite.

Thus for any maximum thickness position other than 0.5 there are two possible curves, cne with $n<1$ and the other with $n>1$. Fig. 1 shows, however, that negative values of n lead to unsuatable nose shapes, and so practically the range over which there are two possible sections is that of maximum thickness positions from $e^{-1}(=0.368)$ to 0.5 .

Fig. 4 a shows, for comparison, the sections $\mathrm{n}=0$ and $n=3$, which have approximately the same maximum thickness position, (37\%), when one is reversed. This shows that the section wath $n>1$ is thinner and less curved, both at the leading and trailing edges. The curvature near the maxamum thickness position is of course correspondingly greater.

3.2 Leading-and trailing-edge slopes

From equation (3.2), for $m 0$, the slopes at $x=0$ and $x=1$ are respectively a and $-n a$. Thus if $n>1$ the leading-edge slope is n times the trailang-edge slope, while if $n<1$ at is $1 / n$ times the trailang-edge slope (for aerofoils wath their maximum thackness forward of mid-chord). The maximum thickness of the section is:-

$$
\begin{equation*}
t=2 a\binom{1}{-\cdots+1}^{1 / n} \frac{n}{n+1} \tag{3.3}
\end{equation*}
$$

Hence in terms of the thickness, a is given by:-

$$
a=\frac{t}{2 n} \cdot(n+1)^{n+1 / n} .
$$

Fig. 5 shows a and na plotted against n, for $t=0.10$. The trailing-edge slopes of the PhE 100-104 series ${ }^{2}$ are also show, at the values of n glvang the same maximum thickness positions. This shows that the sections vilth $n>1$ have nearly the same trailing-edet angles as the corresponding RAE sections, (within 7%), while the sections wath $n<1$ have trailing-eage angles 20 to 30,0 greater than the RAE sections.

Pig. 4 b shows a comparison of the section $\mathrm{n}=2$ and the RAE 104 section, with the samc chord and thickness. The naximum thickness position is nearly the same, and the scctions differ little behind this position, except that the RAE section has a slight bump at about $x=0.6$.

3.3 Curvature

When the slope, $a\left[1-(n+1) x^{n}\right]$, is small, the curvature is approxamately equal to $d^{2} y / d x^{2}$ which is:-

$$
\frac{d^{2} y}{d x^{2}}=n(n+1) a x^{n-1}
$$

In terms of the thickness:-

$$
\frac{d^{2} y}{d x^{2}}=\frac{t}{2}(n+1)^{(2 n+1) / n} x^{n-1}
$$

Thus with $n>1$ the curvature increases from zero at $\mathbf{x}=0$, (the trailing edge), to a maximm at $x=1$. Thus these sections are flat near the trailing edge. The higher derivatives up to the $\mathrm{m}^{\text {th }}$,
where $n<m<n+1$, are also zero at $x=0$. Thus the extent of the flat portion increases wath n. 'lhe length marked "Flat" in Figs. 1, 2, is that over whach the value of y differs from ax, (or, for $n<1$, from $n a(1-x))$, by less than 1% of the semi-thickness $t / 2$.

For $n=1$, the curvature $1 s$ constant and equal to $4 t$. For $n<1$ the curvature is infinite at $x=0$ and decreases to a minimum at $x=1$. For $n=0$ the radius of curvature is approximately proportional to the distance from the leading edge.

3.4 Bump sections : effect of tilting

The sections have a property which makes them particularly useful for testing as "bumps" on the vall of a wind tunnel. This $\dot{-}$ s that, If the section $1 s$ tilted about its trailing edge through a small angle, the result. is a similar section wath a dirferent thackness to chora ratio.

Consider the section $y=a_{1} x\left(1-x^{n}\right)$. The effect of tilting this through a small angle a_{2} about the origin is approximately to add an ordinate $a_{2} x$. Thus the section becomes

$$
\begin{aligned}
y & =a_{4} x\left(1-x^{11}\right)+a_{2} x \\
& =\left(a_{1}+a_{2}\right) x\left[1-\frac{a_{1}}{\left(a_{1}+a_{3}\right)} x^{n}\right]
\end{aligned}
$$

Hence,

$$
\frac{y}{c}=\left(x_{1}+a_{a}\right) \frac{x}{c}\left[1-\left(\begin{array}{l}
x \\
- \\
c
\end{array}\right)^{n}\right]
$$

where

$$
c=\left(\frac{a_{1}+a_{2}}{a_{1}}\right)^{1 / n}
$$

The result is a similar section with a chord increased by the factor $\binom{a_{1}+a_{3}}{-\frac{a_{1}}{1 / n}}^{1 / n}$, and the thickness/chord ratio increased by the factor $\frac{a_{1}+a_{3}}{-a-a_{1}}$.

Thus if a_{2} / a_{1} is small, the increase of chord is about $1 / n$ tames the increase in thickness ratio. So if n is fairly large, greater than 2, say, the thickness ratio of the bump may be varied by tilting it, with only slight variation of the chord.
4. Round Noses

4.1 Propertics required

A geometrical method is required for rounding the leading edge of any sharp-nosed aerofoil section. The resulting section should have the following properties:-*

$$
1.1
$$

[^0]1. It should be possible to vary the nose radius independently of the shape of the basic section.
2. Noar the leading edge the curve should approximate to an ellipse or hyperbola, whatever the shape of the basic section.
3. The curve should be a smooth one and the curvature should decrease monotonically from the leading edge.
4. Subject to 3, the length cut off the sharp-nosed section should be as small as possible relative to the nose radius.
5. The curve should fair in rapidly to the baric section.

The last two properties, 4 and 5, are not always necessary, but they are desirable when a family of aerofoils is required, dirfering from one another only near the nose.

There are many ways of obtainang these properties. One fairly simple method is given below.
4.2 The function $\tanh \sqrt{\beta\left[\begin{array}{l}x^{2} \\ -a^{2}\end{array}\right]}$

Suppose $y= \pm \eta(x)$ is the ordinate of a symmetrical sharp-nosed aerofoil section wath its leading edge at $x=0$. Consider the equation:-

$$
y= \pm \eta \tanh \sqrt{\beta}\left[\begin{array}{l}
x^{2} \\
a^{2}
\end{array}\right] \quad \ldots(4.1)
$$

This is a section with a round nose, wath a radius and shape depending on a and β, which for suitable values of these parameters has the properties stated above. Fig. 6 illustrates the paramcters involved.

From equation (4.1), $y=0$ when $x=$ a. Thus the length cut off in rounding the nose is a. For x very close to a, η is approximately equal to its value η_{a} at a, and $\left.\tanh \sqrt{\beta} \left\lvert\, \begin{array}{l}x^{2} \\ a^{2}\end{array}\right.\right]$ is
 approxamately given by:-

$$
\begin{aligned}
& \left.\mathrm{y}_{1}= \pm \eta_{\mathrm{a}} \sqrt{\beta\left[\begin{array}{l}
\mathrm{x}^{2} \\
-a^{2}
\end{array}\right]}\right] \text {, } \\
& \frac{x^{2}}{-2}-\frac{y_{1}^{2}}{a^{2}}-\overline{\left(\eta_{a} \sqrt{\beta}\right)^{2}}=1 \text {. }
\end{aligned}
$$

or,

The curve is thus approximately a hyperbola with axes a and $\eta_{a} \sqrt{\beta}$. The nose radius, p, as the value of $y d y / d x$ at $x=a$, which $1 s$:-

$$
\begin{aligned}
p=y \frac{d y}{d x} & =\beta \eta_{a}^{2} \cdot \frac{x}{a^{2}} \\
p & =\beta-\frac{\eta_{a}^{2}}{a}
\end{aligned}
$$

This value for the nose radius is exact, as may be seen by dafferentiatang the exact expression for y.

4.3 Second approximation to the leading-edge shape

Let $x=a(1+\varepsilon)$. The previous section shows that for $\varepsilon \ll 1$, the nose shape approximates to a hyperbola. Now consider values of ε such that ϵ^{2}, but not ε, ls negligible.

To this approximation,

$$
\eta=\eta_{\mathrm{a}}+a \epsilon \psi,
$$

where ψ is the value of $d \eta / d x$ at $x=a$. The second approxiration $\tanh \theta \quad \theta^{2}$ to $\tanh \theta$ for small θ is $-\cdots \cdots-1-\cdots$.

Hence,

$$
\begin{aligned}
\tanh \sqrt{\beta}\left[\begin{array}{ll}
x^{2} \\
-\overline{a^{2}} & -1
\end{array}\right] & =\left(1-\frac{\beta}{3}\left[\begin{array}{l}
x^{3} \\
--1 \\
a^{2}
\end{array}\right]\right) \sqrt{\beta\left[\begin{array}{l}
x^{2} \\
-1 \\
a^{3}
\end{array}\right]}, \\
& \approx\left(1-\frac{2 \beta \epsilon}{3}\right) \sqrt{\beta \epsilon(2+\epsilon)} .
\end{aligned}
$$

Hence the second approximation to y is gaven by:-

$$
\begin{align*}
\mathrm{y}_{\mathrm{a}} & = \pm \eta_{\mathrm{a}}\left(1+\frac{\mathrm{a} \psi \epsilon}{\eta_{\mathrm{a}}}\right)\left(1-\frac{2 \beta \varepsilon}{3}\right) \sqrt{\beta \epsilon(2+\epsilon)}, \\
\text { or, } \quad \mathrm{y}_{a}^{a} & =2 \eta_{\mathrm{a}}^{2} \beta c\left[1+\epsilon\left(\begin{array}{ccc}
1 & 2 \mathrm{a} \psi & 4 \beta \\
2 & \eta_{\mathrm{a}} & \left.-\frac{4}{3}\right)
\end{array}\right] .\right. \tag{4,2}
\end{align*}
$$

Consider a conzc section wath the same leading-edge radius $\beta \xrightarrow[a]{\eta_{a}^{2}}$, and let the ratio of its axes be N. Then its semı-axes are $N \beta \xrightarrow{\eta_{\mathrm{a}}^{2}}$ in the y direction and $\mathrm{N}^{2} \beta \stackrel{\eta_{a}^{2}}{-}$ in the x direction. Hence the equation of the conic is:-

$$
\begin{aligned}
& y_{c}^{2}+-\frac{\left(x-a-N^{2} \beta \frac{\eta_{a}^{2}}{a}\right)^{2}}{N^{2}}=\frac{N^{2} \beta^{3} \eta_{a}^{4}}{a^{2}}, \\
& \text { or, } \quad y_{c}^{2}=2(x-a) \beta \underset{a}{\eta_{a}^{2}}-\frac{(x-a)^{2}}{N^{2}} \text {, }
\end{aligned}
$$

or, $\quad y_{c}^{2}=2 \eta_{a}^{2} \beta \epsilon\left[\begin{array}{cc}1 & a^{2} \epsilon \\ 1-\frac{2}{2}-\eta_{a}^{2} N^{2}\end{array}\right] \quad \ldots(4.3)$

So, comparing equations (4.2) and (4.3), the aerofoil section and the conic coincide, to this approxumation, if:-

$$
\frac{1}{2}+\frac{2 a \psi}{\eta_{a}}-\frac{4 \beta}{3}=-\frac{1}{2 \beta \eta_{a}^{2} a^{2}}
$$

or, putting $\frac{\eta_{a}}{-\underset{a}{a}}=\phi$,

For $N^{2}<0$ the conac is a hyperbola. For $N=\infty$ it is a parabola, and the condition for this is $\beta=\frac{3}{8}\left(1+\frac{4 \psi}{\phi}\right)$. For $N^{2}>1$ the conic is an ellipse with its major axis on the x-axis, and hence with its greatest curvature at the leading edge. For $\mathbb{N}^{2}=1$ the conic is a carcle of radzus $\beta \frac{n_{\mathrm{a}}^{a}}{\mathrm{a}}$. For $0<\mathrm{N}^{2}<1$ the conic is an ellipse with its minor axis on the x-axis. Its curvature thus increases with y, and this violates condition 3 of Section 4.1.

Thus condition 3, that the curvature should decrease monotonically from the leading edge, will not be satisfied unless $1 / \mathbb{N}^{2}<1$. The present paper will gave no proof that the conaztion is satisfized if $1 / \mathbb{N}^{2}<1$, for any particular section shape, but wall suggest that, for normal section shapes, this appears likely to be a good criterion.

4.4 Effects of β for a linear basic section

Suppose the basic section 15 linear, or approximately linear for $\mathrm{x}<$ la, say. Then $\phi=\psi$ and $\eta=\phi x$. Equation (4.4) becomes:-

$$
\beta^{2}-\frac{15}{8} \beta-\frac{3}{8 N^{2} \phi^{2}}=0 .
$$

A graph of β against ϕ for $N=1$, the limiting value for which the nose shape approximates a circle, $1 s$ shown in Fig. 7.

The effect of β on the nose shape for dufferent values of ϕ and. ψ is given by equation (4.4) but this is rather difficult to visualize. A parameter which seems to be useful in practice is the ratio to the nose radius of the ordinate at $a+p$ of the basic section. Denoting this ordinate by η_{a+p}, the parameter y is:-

$$
\begin{aligned}
y & =\frac{\eta_{a}+\rho}{\rho}, \\
& =\frac{\eta_{a}}{\rho}+\psi, \\
& =\frac{a}{\beta \eta_{a}}+\psi, \\
& =\frac{1}{\beta \phi}+\psi \cdots(4 \cdot 5) \\
& \text { Hence, } /
\end{aligned}
$$

Hence,

$$
\begin{array}{r}
\beta=\frac{1}{\phi(y-\psi)}, \\
\text { Fior the linear section, for which } \psi=\phi, \\
\gamma=\frac{1}{\beta \phi}+\phi .
\end{array}
$$

Hence

$$
\beta=\frac{1}{\phi(\gamma-\phi)}
$$

$1.0 \sqrt{2}$ Fig. 7 shows β plctted against ϕ for values of γ of 2.0. The curve for $y=\sqrt{2}$ differs little from that for $N=1$. Fig. o shows the variation of y with ϕ for $N=1$. The curve has a minimum at $\phi=0.5$, and the varia'ion of y over the useful range of ϕ is from about 1.3 to 1.6 .

I'I\& 9 shows, for $\phi=0.1,0.2$ and 0.4 , the effect of γ on the nose shapes. The curves drawn are those with $y=1, \sqrt{2}$ and 2 . Winth $y=1$ the curvature clearly increases away from the nose, the nose shapes have "shoulders" and are unacceptable. With $y=2$ the curvature clearly decreases monotonically away from the nose, and the curves are geometrically acceptable nose shapes. Wath $y=\sqrt{2}$ the curves appear to follow the carcle of curvature at the leading edge through a large angle. The nose shapes still appear acceptable, although it is not clear from the figure whether the curvature is a maximum at the leading edge. Fig. 8 shows that in fact N is greater than unity for $\phi=0.4$, about equal to unzty for $\phi=0.2$, and less than unity for $\phi=0.1$.

Thus the value of y gaves a useful oriterion as to whether the nose shape is acceptable. It should not be less than the value given by Fig. 8, for $N=1$. Thas value gives a curve whach probably wall have a monotonically decreasing curvature. The curvature appears to fall very suddenly where the curve departs from the nose curcle, however, and a rather better nose shape may be obtained by choosing a value of y greater than this by a factor of $\sqrt{2}$.
ling. 10 shows the variation of N wath γ for three values of ϕ. For $\gamma=2, N$ equals 1.42 at $\phi=0.1$, passes through infinity as ϕ increases and equals $2.18 \sqrt{-1}$ at $\phi=0.4$. The appearance of the curves of Fig. 9, with y constant and equal to 2.0 suggests that, so long as $N>1$, a constant valus of γ gives curves of generally sumilar appcarance, and y may therefore be a more practical parameter than N.

4.5 Effects of non-linearıty of the basic section

The effect of non-linearity of the basic section is to alter the ratio v / p in equation (4.4). Usually the basic section is convex and $\psi<\phi$.

Fig. 11 shows, for varıous values of $\beta\left(\beta_{1}\right)$ when $\psi / \phi=1$, the change in β which is required to keep $N \phi$ constant when ψ / ϕ differs from unity. The method of using thas figure is to determine the value of β which, for the existing, ϕ, would give a suitable N for $\psi / \phi=1$. Then fron the figure, obtain the correction to be suotracted from this value of β for the actual value of ψ / ϕ.

The effect of ψ / ϕ on γ, or on the value of β requared for a given y, may be obtained from equation (4.5). The effect on y is considerably smaller than the effect on N, unless ϕ / y is unusually large.
4.6 Farring of the nose shape into the basio section

For large $\theta, \tanh \theta$ as approximately equal to $1-2 e^{-2 \theta}$. Hence for sufficiently large x / a, the curve

$$
y= \pm \eta \tanh \sqrt{\beta\left[\frac{x^{2}}{a^{2}}-1\right]},
$$

is approximateiy given by

$$
\mathrm{y}= \pm \eta\left[1-2 e^{\left.-2 \sqrt{\beta\left[\underline{a}^{2}-1\right]}\right]} .\right.
$$

Thus the curve is exponentially asymptotic to the basic section. Fig. 12 shows, plotted agaınst β, the values of x / a for which $\eta-y$ $--=0.01,0,001$ and 0.0001 . This shows that even for low values of β η
the ordinate 2 s within 1% of, the basic section at a distance less than 2a from the leading edge $(x=a)$. The curve is very rapidly asymptotic, as is required.

4.7 Application of the round noses to unsymmetrical sections

In order to preserve the symmetry of the nose, and to place the leading edge on the centre line of the basic section, and not on the x -axis, the semi-thickness of the basic section, and this only, must be multiplied by $\left.\tanh \sqrt{\beta\left[\frac{x^{2}}{a^{2}}-1\right.}\right]$. Thus if the upper surface is $\eta_{u}(x)$ and the lower surface $\eta_{\mathrm{L}}(\mathrm{x})$, the equation of the round-nosed section is:-

$$
\mathrm{y}=\frac{1}{2}\left(\eta_{\mathrm{u}}+\eta_{\mathrm{L}}\right) \pm \frac{1}{2}\left(\eta_{\mathrm{u}}-\eta_{\mathrm{I}}\right) \tanh \sqrt{\left[\begin{array}{l}
\frac{x^{2}}{\mathrm{x}^{2}}-1 \\
\mathrm{a}^{2}
\end{array}\right]} .
$$

The nose shape is then slmilar to that produced by rounding the nose of a symetracal basic section with an ordinate equal to the semi-thickness, $\frac{1}{2}\left(\eta_{u}{ }^{-\eta_{L}}\right)$.
4.8 Application of the round noses to the aerofolls of Section 3, and comarison with the PAE $100-1 \mathrm{~N}_{4}$ sections ${ }^{2}$

The noses may clearly $b \in$ applied to any of the sections with $n>0$. The more useful range is $n>1$, for which $\mathbf{x}=0$ at the trailing edge. The equation of the round-nosed aerofouls is then:-

$$
y= \pm a x\left(1-x^{n}\right) \tanh \sqrt{\beta\left[\frac{(1-x)^{2}}{a^{2}}-1\right]} .
$$

For small values of a, ϕ and ψ are given approximately by:-

$$
\begin{aligned}
& \phi=n a\left[\begin{array}{cc}
1-\frac{(n+1)}{2}
\end{array}\right] . \\
& \psi=n a[1-(n+1) a \\
& \psi=\frac{(n+1)}{2} a .
\end{aligned}
$$

Fig. 4 c shows the section $\mathrm{n}=6, \mathrm{a}=0.0133$, compared with the RAE 1002. Ine two sections have the same maximum thackness position and are simplar except that the $n=6$ section has a slightly smaller trailing-edge angle, and a leading-edge radius about half that of the Rhe section. 'ihus it is possiblc, by suatable choict of n and a, to produce curves which are simalar to the RAE scctions but with any desired leading-edge radius. It is also possible to produce sections wath the same maximum thickness position and leading-edge radius as the RaE sections: these are thus curves given by explicat equations which, except in detail, are similar to the RAE sections.
as an example of this, a curve has been designed to firt the RaE 101 section as closely as possible. With $x=0.0906$, $\mathrm{n}=3.90, \mathrm{a}=0.040$ and $\beta=1.71$, the nosc radıus, maxımum thickness position and trailing-edge anglt are the same as for the 10.0 thack RaE 101 and the orainates are everywhere the same to within 2% of the maximum ordinate.

I'he RaE' sections have certain disadvantages at high speeds aue to the fact that the curvature has a maximum just anead of the flat tail section. The curves described above do not have this disadvantage.

5. Droop-Nosed and Cambered Sections

5.1 Camber

The aerofoils of Section 3 may, of course, be cambered by the additaon of any suitable camber line. Mr. H. H. Pearcey has suggested that the ordinates of the same section, or of another member of the family, maght form a usefili camber line. Then the section would become:-

$$
\begin{equation*}
y=a_{1} x\left(1-x^{n_{1}}\right) \pm a_{2} x\left(1-x^{n_{2}}\right) \tag{5.1}
\end{equation*}
$$

The round nosed sections would be:-

$$
y=a_{1} x\left(1-x^{n_{1}}\right) 上 a_{3} x\left(1-x^{n_{2}}\right) \tanh \sqrt{\beta\left[\frac{(1-x)^{3}}{a^{2}}-1\right]}
$$

assuming $n_{2}>1$ so that $x=0$ at the trailing edge. The thiokness of the sharp-ncsed section, from єquation (3.3), would be $2 a_{2}\left(\begin{array}{c}1 \\ -\cdots \\ n_{a}+1\end{array}\right)^{1 / n_{2}} \frac{n_{2}}{--1} n_{2}+1$,
wiale 1 ts camber would be $a_{1}\left(\begin{array}{c}1 \\ -\cdots-1 \\ n_{1}+1\end{array}\right)^{1 / n_{1}} \frac{n_{1}}{n_{1}+1}$.

5.2 Nose droop

A curve is required having an extended and drooped leading edge, faired in to the basic section of equation (3.1), or the cambered section of equation (5.1). A suitable curve is shown in Fig. 13. The upper surface, (A, Fle. 13), except near the rounded nose, is simply the basic section, equation (3.1) or (5.1), extended to values of x greater than unity. The lower surface at the rear (B) is also that of the basic section, equation (3.1) or (5,1). Near the nose a f'airing curve (C) joins this section to a straight line (D). This, and the upper surface, fair into the rounded nose (${ }^{2}$).

The equations of the different curves making up the section are as follows:-
(A) $y=a_{1} x\left(1-x^{n_{1}}\right)+a_{2} x\left(1-x^{n_{2}}\right)=A$
(B) $y=a_{1} x\left(1-x^{n_{1}}\right)-a_{2} x\left(1-x^{n_{2}}\right)=B$
(C) $y=-L \log \left(e^{-B / L}+e^{-D / L}\right) \quad=C$
(D) $y=-m(x-b)=D$
(E) $y=\frac{A+D}{2} \pm \frac{(A-D)}{2} \tanh \sqrt{\beta\left[\begin{array}{c}(c-x)^{2} \\ -\cdots a^{2}\end{array}\right]=E, \ldots(5.2)}$
where c is given by $A=D$, or:-

$$
a_{1} c\left(1-c^{n_{1}}\right)+a_{2} c\left(1-c^{n_{2}}\right)+m(c-b)=0 . \ldots(5.3)
$$

The assumption that the curve may be treated as a set of fave separate parts is normally justafied, owing to the rapidity of the convergence of C and E to D. It may not be justified if $o-a-1$ is small, or negative. If thas assumption is not justafied, D must be replaced by C in the equations for E and c. Ihis gives the exact equation for the curve which is:-

$$
\begin{equation*}
y=\frac{A+C}{2} \pm \frac{(A-C)}{2} \tanh \sqrt{\left[\frac{(C-x)^{2}}{a^{2}}-1\right]}, \tag{5.4}
\end{equation*}
$$

where c is gaven by:-

$$
\left.\begin{array}{r}
a_{1} c\left(1-c^{n_{1}}\right)+a_{2} c\left(1-c^{n_{3}}\right)=-L \log \left\{e^{-\frac{1}{L}\left[a_{1} c\left(1-c_{1}\right)-a_{2} c\left(1-c^{n_{2}}\right)\right]}\right. \\
+e^{-\frac{m}{L}(x-b)}
\end{array}\right\}
$$

The approximate value for c glven by equation (5.3) will, however, almost always be sufficiently accurate, even when the approximation $C=D$ in equation (5.2) is not justifiable.

5.3 Effects of the parameters

The complete equation (5.4) contains nine independent parameters. These may be listed as follows:-

Parameter
$n_{1} \quad$ Position of maximun ordinate of the camber line (soe Sections 3.1, 5.1)
$n_{3} \quad$ Maxımum thickness position of the basic section (see Section 3.1)
$a_{1} \quad$ Camber of the aerofoil, (see Sections 3.2 and 5.1)
ay Thickness of the aerofoll, (see Section 3.2)
m Slope of the linear portion under the nose (Fig. 13)
b Intersection of the linear portion with the y-axis (Fig. 13)

L Extent of fairing between the linear portion and the rear under-surface, (see below)
a Length out off the leadng edge in rounding the nose (Section 4.2 and Fig. 13)
$\beta \quad$ Leading edge radius and nose shape (Section 4)
c Chord of the sharp-nosed section (Fig. 13). Not independent but determined by n_{1}, n_{3}, a_{1}, a_{2}, m and b.

The only parameter whose effect is not clear from preceding sections or from Fig. 13 is L, which affects the fairing C, Fig. 13.

Consider two curves $\mathrm{y}=\eta_{1}(\mathrm{x})$ and $\mathrm{y}=\eta_{2}(\mathrm{x})$, Fig. 14, which cross one another at $x=x_{0}$, where $\eta_{1}=\eta_{2}=\eta_{0}$, and such that $\eta_{2}>\eta_{1}$ for $x x_{0}$ and $\eta_{3}<\eta_{1}$ for $x<x_{0}$. Then the curve:-

$$
y=L \log \left[e^{\eta_{1} / L}+e^{\eta_{2} / L}\right], \ldots(5.5)
$$

is a smooth curve which is exponentially asymptotic to η_{1} for $\mathrm{x}<\mathrm{x}_{0}$ and to η_{2} for $x>x_{0}$. Its value at $x=x_{0}$ is

$$
\begin{aligned}
\mathrm{y} & =\mathrm{L} \log 2 \mathrm{e}^{n_{0} / L} \\
& =\eta_{0}+\mathrm{L} \log 2 \\
& =\eta_{0}+0.693 \mathrm{~L} .
\end{aligned}
$$

Equation (5.5) may be rearranged as:-

$$
\begin{equation*}
\frac{y-r_{1}}{L}=\log \left[1+e^{\frac{\eta_{2}-\eta_{1}}{L}}\right], \tag{5.6}
\end{equation*}
$$

or as

$$
\frac{y-\eta_{2}}{L}=\log \left[1+e^{\frac{\eta_{1}-\eta_{3}}{L}}\right] .
$$

Fig. 15 shows a graph of $\frac{\mathrm{y}-\eta_{1}}{\mathrm{~L}}$ against | $\eta_{2}-\eta_{1}$ |
| :--- | . This shows that the difference between y and η_{a} or η_{1} becomes very small when $\frac{n_{2}-\eta_{1}}{L}$ or $\frac{\eta_{1}-n_{2}}{L}$ exceeds about 3 or 4 . When $e^{\frac{\eta_{2}-\eta_{1}}{L}}$ is small, equation (5.6) becomes approximately:-

$$
\mathrm{y}=\eta_{1}+\mathrm{L} \mathrm{e}^{\frac{\eta_{2}-\eta_{1}}{\mathrm{~L}}}
$$

Similarly when $e^{\frac{\eta_{1}-\eta_{a}}{L}}$ is small,

$$
\mathrm{y}=\eta_{\mathrm{z}}+\mathrm{L} \mathrm{e}^{\frac{\eta_{1}-\eta_{\mathrm{a}}}{\mathrm{~L}}}
$$

Thus the curve is exponentially asymptotic to η_{1} and η_{2}. y daffers from η_{2} by less than 0.01 L for $\eta_{2}-\eta_{1}>4.605 \mathrm{~L}$, and by less than 0.001 L for $\eta_{2}-\eta_{1}>6.908 \mathrm{~L}$.

This method may be used to produce a fairing between any two suitable intersecting curves. When applied to the curves B and D of Section 5.2 and Fig. 13 the falring curve C results.

Thas method clearly could be used to produce a round nose by fairing the upper and lower surfaces of a sharp-nosed aerofoil. The result would give a shape similar to one of the curves of Section 4, but for a very low, and invariable, value of β. Thus the method is not very practical for this purpose.

References

No.
suthore
R. Michel,
F. Marohaud and
J. Le Gallo
R. C. Pankhurst and
H. B. Square

Tatle, etc.
Influence de la position du maztrecouple sur les écoulements transsoniques autour de profils a pointes. O.N.E.R.A. Publication No.72, (1954).

Calculated pressure distributions for the RAli 100-104 aerofoil sections. R.A.E. Tech. Note Aero. 2039.

Fig. 1.

Examples of the curves $y= \pm \alpha x\left(1-x^{n}\right)$ for 10% thick sections $(t=0.10)$

Fig. 3.

Maximum thickness position of $y=a x\left(1-x^{n}\right)$

Comparisons between aerofoil sections

Figs. 5 \& 6
Fig. 5.

Graph of leading and trailing-edge slopes of sections $\alpha x\left(1-x^{n}\right)$ against π

Fig. 6.

Method of producing round noses, showing the parameters involved

Figs. $7 \& 8$.

Graph of β against ϕ. (β should not exceed the value giving $\mathrm{N}=1$)

Fig. 8.

Graph of γ against ϕ for $N=1 .(\gamma$ should not be less than the value giving $\mathrm{N}=1$)

Fig. 9.

γ	β	$\frac{\rho}{a}$	N
1	4.16	0.666	0.50
$\sqrt{2}$	2.47	0.395	1.26
2	1.56	0.250	$2.18 \sqrt{-1}$

Nose shapes: effect of ϕ and γ.

Fig. 10.

Graph of N against y for three values of ϕ

Pigs. 11a 12
Fig.II

Effect of $\frac{\psi}{\phi}$ on β for constant $N \phi$

Fig. 12.

Graphs of $\frac{x}{a}$ against β for $\frac{\eta-y}{\eta}=10^{-2}, 10^{-3}$ and 10^{-4}

Round-nosed aerofoil with droop, showing the effects of some of the parameters.

Fic. $14 \& 15$.
Fio. 14.

Method of fairing two intersecting curves.

Fig. 15.

Graph of $\frac{y-\eta_{1}}{L}$ against $\frac{\eta_{2}-\eta_{1}}{L-}$

Crown copyright reserved
Prnted and published by Her Majesty's Stationery Office
To be purchased from York House, Kingsway, London w.c 2
423 Oxford Street, London w.I
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Brrmingham 3
80 Chichester Street, Belfast
or through any bookseller

*

Printed in Great Britain

[^0]: *The suitability of a particular nose radius or nose shape depends on its effect on tne aerodynamic characteristics of the section, which mast be determined by experiment or by calculation of the pressure distribution. The geometrical properties given are not an adequate guade to suitable nose shapes.

