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Maxxnum Thickness Position, Nose Radius, 

Camber and Nose Droop 
- By - 

L. H. Tanner, D.A., 
of the Aerodynamics Division, N.P.L. , 

14th February. 1957 

The paper shows that it is possible to design geometric curves, 
gaven by single explicit equations, and having shapes suitable for use as 
aerofoil sections. A fannly of sharp-nosed sections with variable maxz.mum 
thickness position is described. A method of rounding the leading edge 
of any sharp-nosed section 1s then suggested. Finally a family of -es 
with camber and nose droop is given. The methods used could be adapted 
to produoe other section variations if required.. 

1. Introduction 

In the design of an aerofoil section for high-speed aeroplanes, 
* it is sometimes possible to specify the general characteristics, such as 

thickness, maxxnum thickness position and nose radius, which are required. 
The problem is then to design a smooth curve having these properties. 

. This has sometimes been done by fitting together several algebraic curves, 
making sure that the ordanates and their first and possibly second derivatives 
are continuous at the Jam, This method is however unsatisfactory in 
several ways. The higher derivatives are often discontinuous and the curve 
nm sufficiently smooth. It is difficult to var one characteristic 
( e.g., nose radius or maximum thickness position 3 while leaving the general 
shape unchanged. The lack of a single explicit equation for the whole 
curve may lead to complication an calculating the low speed pressure 
distrabution. 

The present paper gives examples showing that it as possible to 
design geometrical curves, given by single explicit equations, which are 
suitable for aerofoil sections. The curves have all their derivatives 
continuous and their shape is given by parameters which enable nearly 
andependent variation of maximum thickness position, nose radius, etc. 

The first family of curves described was used by Michel, Marchaud 
and Le Gallo' for bump sections. They provide useful sharp-nosed aerofoil 
sections with variable maximum thickness position. 

A method is then given for rounding the nose of these or any 
other sharp-nosed. sections, and the resulting nose shapes are described 
in detafl. 

Finally/ 
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Finally a method is given for adding an extended and drooped 
nose to these sections. 

Apart from the value of the particular examples given, the methods 
shown will suaest posslbllzties for designing curves of any other shapes 
which may be requred. 

2. Notation 

b English symbols 

A 

a 

B 

b 

C 

c 

D 

E 

L 

m 

N 

n 

t 

x 7 

) 
y J 

= ,x(1-x%) + %x(1-xn2), Section 5.2 

Length cut off In rounding the nose, Section 4.2 

= alx(l-x%) - a,x(l-xQ), Section 5.2 

Intercept of linear portlon under the drooped nose with the 
x-axis, Sectlon 5.2 

= - L log (eWBb + e-'/L), Sectlon 5.2 

a,*, l/n 
= -_-me 

( > 
, Section 3.4 

9 

Chord of sharp-nosed aercfoil lnth droop, bectlon 5.2 

= - m(x-b), Sectlon 5.2 

Ordinate of droop-nosed aerofoil, Section 5.2 

Parameter in the fairing curve C, Sections 5.2, 5.3 

h 

, 

Slope of linear portion under the nose of the drooped aerofoll, 
Section 5.2 

Axis ratio of conic, SectIon 4.3 

Parameter determining maximum thickness position, Section 3 

Maximum thiokness/chord ratlo of aerofoil, Section 3.2 

Cc-ordinates 

a 

P 

Y 

E 

Greek s~&ols 

Parameter determining thickness, SectIon 3 

Parameter determining nose shape, Section 4 

FZatlo to the ncse radius of the basic-section ordinate at 
x = a+~, Section 4.4 

x-a 
= m-w , Section 4.3 

a 



n 

P 

4 

9 

6 

3. 
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Ord1nat e, Sections 4, 5 

Nose radius, Section 4 

fla 
, Lection 4.3 

a 

Slope of basic sharp-nosed sectlon at x = a, Sectlon 4.3 

Parameter determnmg thickness for n = 0, SectIon 3.1 

A Family of S.ymmetrical kerofoils' 

3.1 Equation and kaneral properties 

A farmly of curves mutable for sharp-nosed aerofoll sectlons 1s 

Y = t a x [l-+1 . ..(3.1) 

where y = 0 at x = 0 and at x = 1, so that the chord 1s unity. 

The possible range of the parameter n, which determnes the 
maximum thmkness posltlon, 1s from -1 to +m. The effeot of this 
parameter 1s shown In Figs. 1, 2. 

For n = -1, 

For -1<n<-0.5, 

For n = -0.5, 

FOX- -0.5<neo, 

For n = 0, 

ths cume IS triangular. 

the curve has an mfmite slope and infmlte 
radius of curvature at x = 0, e.g., Flg.la. 

the curve lus a fmite radius equal to 
&a2 at x = 0, Flg.lb. 

the curve has infmite slope but zero m&us 
at x = 0, e.g., Flg.lc. 

1 
the limiting curve* y = hxlog- 1s an 

x 
approximation to an equlangular spiral, 
F1g.ld. 

For n>O, the curve has a fmltt slope equal to 
a at x = 0, F1g. 2. 

For all values of n tht slope at x = 1 is -na. The 
slope at any value of x is:- 

dY 
-- = a [I-(n+l)S] . . ..(3.2) 
dx 

1 l/n 
Th.m 1s zero when x = --- 

( ) 
, so the maxmum thickness position 

n+l 
1s at this value of x. Fig. 3 shows a graph of the mxmum thickness 
posltion against n. For n = 1 the curve 1s the parabolic arc havmg 
its maxlrnum thlokness at x = 0.5. For n<l the-maximum thickness 
occurs at ~~0.5.,whercas for/n>1. It occurs at ~0.5. Hence If the 
curves wth ml are used f&r aerofolls and if their maxinun thickness 
posItIon 1s to be fomard of 0.5, the curves must be reversed, so that x 
1s zero at the trallmg edEe and unity at the leadug edge, 

Th& 
--------------------__1__1____^_1_______------------------- 
*Latting a* DO as n + 0 scthatthethmicknens remains i%nite. 
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Thus for any maxxmxn thickness position other than 0.5 there are 
two possible curves, one with n<l and the other with ml. Fig. 1 shows, 
however, that negative values of n lead to unsuitable nose shapes, and 
so practxmlly the range over which there are two possible sections 1.9 
that of maximum thiokness posltlons from e-'(= 0.368) to 0.5. 

Fig. 4a shows, for mmparlson, the sections n = 0 and 
= 3, whzch have approximately the same maxzmum thickness position, 

73%) when one is reversed. This shows that the section with n>l is 
thin& and less curved., both at the leadIng and trailing edges. The 
curvature near the maximum thickness positlon is of course correspondingly 
greater. 

3.2 LeatinE-and trailing-edge slopes 

From equation (J.2), for too, the slopes at x = 0 and 
x = 1 are respectively a and -no.. Thus if n>l the leading-edge 
slope is n times the trailing-edge slope, while if n<l It is l/n 
times the tralllng-edge slope (for aerofolls rnth their maxxmnn thickness 
forward of mid-chord). The maximum thickness of the seotlon is:- 

1 l/n 

( ) 

n 
t = 2a --- v-- . . ..(3.3) 

n+l n+l 

Hence in terms of the thickness, a is given by:- 

t 
a = -. (n+l)n+l/n . 

2n 

l%g. 5 shows a and na plotted against n, for t = 0.10. The 
trailing-edge slopes of the P&E IOO-I& ser1es2 are also shown, at the 
values of n glvlng the same maxllilum thickness positions. This shows that 
the sections v,lth n>l have nearly the same tmllmg-edge angles as the 
corresponding RAE sections, (within nb), while the sections with n<l 
have trallmg-edge angles 20 to 30,; greater t'han the PAE sections. 

Pig. &b shows a comparison of the sectlon n = 2 and the 
RAE 1% seotlon, with the same chord and thxkness. The maximum thxkness 
position 1s nearly the same, and the stctlons drffer little behlnd this 
posltlon, cxccpt that the P&E section has a slight bump at about 
x = 0.6. 

3.3 Curvature 

When the slope, a [I-(n+l)$], is small, the curvature is 
approximately equal to day/d? which IS:- 

@Y 
--- = n(n+l) d-l . 
axa 

In terms of the thiokness:- 

@Y 
--- = 

a2 
‘, (n+l)(2n+% xn-l . 

Thus with n>l the curvature Increases from eero at x q 0, 
(the trailing edge), to a maximum at x = 1. Thus these se&Ions are 
flat near the trailing edge. The higher derivatives up to the mth, 

where/ 
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whe:e ntm<n+1, are also zero at x = 0. Thus the extent of the flat 
portion increases with n. The length marked "Flat" in Figs, 1, 2, is 
that over which the value of y differs from 
na(l-x)), by less than I$ of the seam-thickness 

ax, (or, for ntl, from 
t/2. 

For n = 1, the curwture 1s constant and equal to 4t. For 
WI the curvature 1s infinite at x = 0 and decreases to a minimum 
at x = 1. For n = 0 the radius of curvature is approxurately 
proportional to the distance from the leading edge. 

3.4 Bump sections : effect of tilting 

The sections have a property which makes them partxcularly 
useful for testing as "bumps" on the v;all of a vslnd tunnel. This is' that, 
If the seotaon 1s tilted,about Its trailing edge through a small angle, 
the result is a similar sactlon with a different thlokness to chord ratio. 

Consider the section y = a,x(l-19). The effect of tlltlng 
this through a small angle a, about ths orxgln 1s approximately to add 
an ordmate a,~. Thus the section becomes 

y = (blx(l-x") 

i 

+ Tax 

.- 
Y x; X” 
- = 

0 

(l.ii.zLa) - ;I - - 
0 01 c 

L J 

where n,tcL, l/n 
c q ----- ( ) a1 

The result is a similar se&Ion vvlth a chord lnoreased by the factor 
%+a, 

, and the thickness/chord ratlo increased by the factor e-w-.- , 

a1 

ThLS if c$/l+ is small, the xnxease of chord 1s about 
l/n times the increase in thzckness ratlo. So if n 1s fairly large, 
greater than 2, say, the thickness ratlo of the bump may be varied by 
tilting it, unth only slight varlatlon of the chord. 

4. Round Noses - 

4.1 Properties requirs 

A geometrical method 1s required for rounding the leading edge 
of any sharp-nosed aerofoil seotlon. The resulting se&Ion should have the 
following properties:-* 

I./ 

'The suitabIlity-of a partvxlar noss radius or nose shape depends on its 
effect on tne aerodynamx characterlstios of the stctlon, whxh must be 
determined by experiment or by calculation of the pressure distrSbutlon. 
The geometrical propartles given are not an adequate guide to suitable 
nose shapes. 



1. 

2. 

3. 

4. 

5. 
0 
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It should be possible to vary the nose radius independently of 
the shape of the basic section. 

Near the leading edge the curve should approximate to an ellipse 
or hyperbola, whatever the shape of tne basic section. 

The curve should be R srr.ooth one and the curvature should decrease 
monotonically from the leading edge. 

SubJeot to 3, the length cut off the sharp-nosed section should 
be zs sum11 as possible relative to the nose radius. 

The curve should fair in rapidly to the baric se&Ion. 

The last two properties, & and 5, are not always necessary, but 
they are desirable when a family of aerofolls is required, differing from 
one another only near the nose. 

There are many ways of obtaining these properties. One fairly 
simple method is given below. 

4.2 The function tanh 

Suppose y = Zn(x) is the ordinate of a symmetrical sharp-nosed 
aerofoil section vvlth its leading edge at x = 0. Consider the equation:- 

._ _.-. .-_ 

y =rntanh . ..(4.1) 

This is a sectzon with a round nose, with a radius and shape depending on 
a and fl, which for suitable values of these prsmeters has the properties 
stated above. Fig. 6 illustrates the pramters involved. 

From equation (4.1), y = 0 ,#hen x = a. Thus the length 
cut off in rounding the nose is a. 

approximately equal to 

approximately equal to . Hence near x = a, y -is 

approximately given by:- 
--__-_ 

The curve is thus approximately a hyperbola with axes a and n&F. 
The nose radius, p, 1s the value of y dy/dx at x = a, which is:- 

dy x 

P 
= y  -- = p 0; . ,; 

dx 

rr” 
pq3-a . 

a 

This/ 
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This value for the ncse radius is exact, as may be seen by 
d.zWerentiatlng the exact expression for Y. 

4.3 Second approximation to the leading-edjie shape 

Let x = &(1+-z). The previous section shown that for 
E<<I, the ncse shape approximates to a hyperbola. Now consider values of 
e such that .?, but not E, I.S negligible. 

To th;s apprcximatmn, 

R = % 

where $ 1s the value cf d+lx at 

to tanh 8 for small I3 is 

+ w , 

x = a. The second approximtion 
ea 

= ,---. 
3 

Hence the seccnd approximation to y is given by:- 

or, - + --- - -- . ..(4.2) 

Consider a ccnlc section mth the sme leading-edge radius 
ila 

P -a , and let the rat.10 of its axes be N. Then Its sem-axes are 
a 
R= a 

NB -5 in the y direction and I?@ % in the x direction. Hence the 
a a 

equatmn of the conic is:- 
a 

( 

q; 
x - & - N"@ -- 

& 

y", 

Nap ri", 
+ ____________-__-_-- = ------ 

Na aa 

or, 

or, 

Y”, 

‘I; (x-a)” 
= 2(x+) p -- - ---.$.-- 

e. -, 
L 1 

1 a=, 

YC a = 2@e - - ----- 2 Ptla,rsd I 

, 

* 
, 

. ..($.J) 

so, / 
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&, complnng equations (4.2) and (4.3), the aerofoil section and the 
conic comcide, to this approxunatron, If:- 

1 2w 40 1 aa 
_ + _-- - -- = - - ----- f 
2 qa 3 2 fin;@ 

17a or, putting -- = $, 
a 

9 + ,+'I"- 

c ' 

3 
- ----- = iJ . . ..(4.4) 

“J 
6P p 

For i'P<O the con10 16 a hyperbola. For N = 01 It 1s a 
3 4u 

parabola, and the condition for this 1s j3 = - 1 + -- 
6 ( ) 

. For Na>l 
$ 

the conic is an ellipse vnth Its mayor axis on the x-axis, and hence with 
Its greatest curvature at the leadlng edge. For P = 1 the conz.c is a 

6 
cn-cle of radius p -- . For O<IP<l the conic 1s ar; ellipse with its 

a 
minor axis on the x-axis. Its curvature thus Increases mth y, and this 
violates condztlon 3 of Seotlon 4.1. 

Thus condltlon 3, that the curvature should decrease monotonxally 
from the leadug edge, ~~11 not be satlsfled unless l/k? e 1. The present 
paper will gave no proof that the condition is satisfied If Ifi '< 1, for 
any particular sectIon shape, but vnll suggest that, for normal se&Ion 
shapes, this appears likely to be a good crlzerion. 

4.4 Effects of B for d lmear basx section 

Suppose the basic section 1s linear, or approximately linear 
for x<2a, say. Then $ = t and q = $x. Equation (4.4) becomes:- 

A graph of p against Q for N = 1, the lirmtug value for which the 
nose shape approxrmates a circle, 1s shovrn in Fig. 7. 

The effeot of p on the nose shape for different valUes of $ 
and. * 1s given by equation (4.4) but this is rather dlfflcult to 
visualise. A parameter urhich seems to be useful In practice 1s the ratlo 
to the nose radius of the ordinate at a+p of the baslC seotlon. Denotug 
this ordinate by n,,,,, the parameter y is:- 

%tg 
Y = --- 9 

P 

na = -- + *, 
P 

a 
= --- + $ ) 

ma 

1 
= --+$, . 

PQ 

. ..(4.5) 

Hence,/ 



-v- 

Hence, 
1 

P = ------ . 
P (Y-e 1 

For the linear sectlon, for whihlch $ = $, 

1 

Y = -- + $5 . 

m 

Hence 
1 

B = ------ . 
4(v-$) 

1.0, & an2 2.0. The cuiir; for y = d 
for N = 1. F'q. b shows the varxitlon of y vrlth $ for N = 1. 
The cu.-ve has a muz.irzm at $ = 0.5, and the varla',ion of y over 
the useful ra!lge of $ is from about 1.3 to 1.6. 

I'll: 9 shcws, for @ = 0.1, 0.2 and 0.4, the effect of y on 
the nose sha?es. The curves drawn are those wxth y = 1,x./? and 2. 
Yilth y = 1 tnc curvature cl&arly lnCrC*SeS amy from the nose, the nose 
shapes have "swxAders" and are unacceptable. With y = 2 the curvature 
clearly decreases monotonically away frow the nose, and the curves are 
geometrically acceptable nose shapes. Vlth y = & the curves appear 
to follow the circle of curvature at the leading edge through a large angle. . The nose shapes still appear acceptable, although it 1s not clear from the 
figure whether the curvature IY a maximum dt the leading edge. Fig. 8 
shows that in fact N is greater than unity for $ = 0.4, about equal 
to unity for $4 = 0.2, a&less than unity for 4 = 0.1. 

Thus the value of y g~.ves s useful criterion as to whether the 
n-use @ape 1s acceptable. It should not be less than the value given by 
Fig. 8, f'or N = 1. This value gives a curve whch probably ~111 have 
a monotonloally decreasing curvature. The curvature appears to fall very 
mXienly where: the c-o departs from the nose ouxle, however, and a rather 
better nose shape may be obtaued by choosing a value of Y greater than 
this by a factor of fi. 

lhg..IO shows the variation of N with y for three values of 
6. For y = 2, N equals I.42 8~ $b = 0.1, passes through Inf1nlt.y 
as $ mcreases an4 equals 2.1?3/-1 at $5 = 0.4. The appearance of the 
curves of F';g. 9, \nth y constant and equal to 2.0 suggests that, so 
long as N>l, a constant value of y gives curves of generally smilar 
appearance, and y may thert;fore be a more practical parameter than N. 

4.5 Effects of non-linearltg of the beslc section 

The effect of non-1uearlt.y of the basic section 1s to alter the 
~$0 t/J in equation (4.4). usually the basic sectlon 1s convex and 
1 . 

Fig. 11 shows, for var=ous values of /3 (ei) when l~/$ = 1, 
the change m p yYhlch 1s requuxd to keep N@ constant when u/$ differs 
from unity. The method of using thx figure 1s to determlne the Value of 
p vfh;ch, for the ousting $, would gave a sutable N for P/$ = 1. 
Then from the figure, obtain the correction to be s&Aracted from this 
miluc of p for the actual value of IL/#. 

The/ 
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The effect of $L/$ on y, or on the value of B requred for 
a given y, may be obtained from equation (4.5). The effect on y is 
considerably smaller than the effect on N, unless 4/y is unusually large. 

4.6 Pairing of the nose shape into the basic section 

For large 8, tanh 0 is approximately equal to I-2e -28 . 
Hence for sufficiently large x/a, the curve 

-- 

Y = -fn tanh 

is approximately given by 

Thus the curve is exponentially asymptotic to the basic section. Fig. 12 
&LOW- ", plotted agaLnst p, the values of x/a for which 
1)-Y 
--- = 0.01, 0,001 and 0.0001. This shcws that even for low values of p 

rl 
the ordinate 2~ within 3% cf,the basic section at a distance less than 
2a from the leading edge (x = a). The curve is very rapidly asymptotic, 
as is required. 

4.7 Apnliontion of the mund noses to uns,ymmetrioal sections 

In order to preserve the symmetry of the nose, and to place the 
leading edge on the centre line of the basic section, and not on the 
x-axm, the semi-thickness of-the basic sectmn, and this only, must be 

multiplied by tanh Thus if the upper surface is n,(x) 

and the lower surface n,(x), the equation of the round-nosed section is:- 
r, -z 

Y = $(nu+7)~) C $(nu-nh) tanh 

L J 

The nose shape is then stilar to that produced by rounding the nose of 
a symmetrical basio section tith an ordinate equal to the semi-thickness, 
S(r7!pJL) * 

4.8 Application cf the round noses to the aerofoils of Section 3. and 
com3ariscn with the FW IOO-IO!+ secticnsL -.--- 

The ncses may clearly be applied to any of the sectmns with n>O. 
The mcre useful range is n>l, for which x = 0 at the trailing edge. 
The equaticn of the round-nosed aerofoils is then:- 

___-_.__ 

Y = %J, x (1-x”) tanh 

For/ 
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For small values of a, $5 and * are given approxlJxate1y by:- 

I-- 

$ = Ilai 
(11+1) 

I 

, - ----- a , 
2 

__ I 

Y : n ai;1 - (n+l) aI1 . 

* -;"+I) 
Hence 

s 
= 1 - ----- a ( 

2 

Fq:. kc shows the section n = 6, a = 
the 1GU lOC2. 

0.0133, compared with 
Tnc two sectlcns have tht same maximum thickness posltlon 

and are smnular except that the n = 6 scctlon has a slightly smaller 
tralllng-cdg* angle, and a leading-edge radius about half that of the 
P&E stctlon. Thus it 1s posslbll, by suItable cholct of n and a, 
to product; cwvcs which are similar to the RAE scctlons but with any desu-ed 
leadlog-edge radus. It 1s also possible to produce sections vclth the same 
maxwum thxkne-s posltion and lea&ng-edge radius as the RAE sections: 
these are thus rv~es given by expluxt equations whxch, except In detail, 
are similar to the RAE se&Ions. 

1~s an example of this, a curve has bten aeslgncd to fzt the 
%E 101 sectloo as closely as posszble. rrlth z = 0.0906, 
n = 3.90, a = O.C%O and p = 1.71, the nose radius, maxunun~ thickness 
posltlon and trailing-edge angle are the sdm= as for the IO:' thxck RAE 101 

and the ordlnntes are everjwhure the same to wlthln 210 of the maxxmum 
ordmate. 

'Ihe RAX s&clons have certain disadvantages at high speeds 
due to the fact that the curvature has a n;axxwm Just aheaa of the flat 
ta11 section. The curves dcscrlbed above do not have this disadvantage. 

5. Droop-Nose-d end Cambered 5mtlons 

The aerofolls of Section 3 may, of course, be cambered. by the 
addltxon of any sdltable camber line. Mr. H. H. Pearcey has suggested 
that the; ordlnataof the same section, or of another member of the family, 
rmght form a useful camber line. Then the section would become:- 

Y = qx(l-xn’) + a,x(l-XQ) . ..(5.1) 

The rounci nosed sections would be:- 

Y = a,x(l-xnL) C a,x(l-x%) tanh -_--_- - 

assurfing n,>1 so that x = 0 at the tralllng edge. The thxkness of 

the sharp-rtised section, from tquation (3.3), would be 2% 
l/n, na 

----, 
n,+l 

5.2/ 
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5.2 Nose droop 

A curve is required having an extended and drooped leading edge, 
faired in to the basic section of equation (3.1), or the cambered section 
of equation (5.1). A suitable curve is shown in Pig. 13. The upper 
surfaoe, (A, U. 13), 
section, 

except near the rounded nose, is simply the basic 
equation (3.1) or (5.1), extended to values of x greater than 

Ull1ty. The lower surface at the rear (B) is also that of the basic section, 
equation (j.l) or (5,l). Near the nose a fairing curve (C) joins this 
section to a straight lme (D). 
the rounded nose (2). 

This, and the upper surface, fair into 

The equations of the different ourves making up the section 
are as follows:- 

(A) y = cLix(l-xn~) + a,r(l-9) =A 

(B) y = 4x(1-a) - c4~x(l-xn~) = B 

(C) y = 4 log (eeBh + eeDb) = C 

(D) y = -m (x-b) = D 
.  r  I  

A+D (A-D) 
(B) y = -;- !: ----- ------ _ = E, . ..(5.2) 

2 

where o 1s given by A = D, or:- 

+I-~"1) + a2cjl-&) + m(o-b) = 0 . . ..(5.3) 

The assumption that the curve may be treated as a set of five 
separate parts is normally Justified, owng to the rapldrty of the convergence 
of C and E to D. It may not be Justified if o-a-l is small, or 
negative. If this assumption is not Justified, D must be replaced by C 
ln the equations for E and c. This gives the exact equation for the 
curve which is:- 

AtC (A-c) 
y = --- + _____ ,anh@:;!t - ,I, . ..(5.4) 

2 2 

where c. is given by:- 

‘- 1[,,0(12i) - a,&o(l-c"a)] 
alc(l-cnL) + a,c(l-cna) = -L logje L 

I 

The approximate value for c given by equation (5.3) will, however, 
almost always be sufficiently accurate, even when the approximation 
c = D in flJUatlOn (5.2) 1s not Justifiable. 

5.3/ 
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5.3 Effeots of the parameters 

The complete equation (5.4) contains nine independent parameters. 
These may be listed as follows:- 

Parameter 

"I 

Effect 

PosItIon of maxumun orduate of the camber line 
(see b3ctlons 3.?, 5.1) 

"a Uxlmum thickness posItIon of the basic section 
(see Sectlon 3.1) 

9 Camber of the aerofoil, 
(see Sections 3.2 and 5.1) 

a, Thxkness of the aezofoll, 
(see sectloll 3.2) 

m Slope of tht linear portion under the nose 
(Fig. 13) 

b IntersectIon of the 1lnes.r portlon with the y-axis 
@lg. 13) 

II Extent of fairing between the linear portion and 
the rear under-surface, (see below) 

a Length cut off the leading edge in roundlng the 
nose (Section 4.2 and Fig. 13) 

B Leadug edge radius and nose shape (Seotlon 4) 

c Chord of the sharp-nosed section (Fig. 13). 
Kot Independent but determined by ni, na, 
al 9 aa, m and b. 

The only parameter whose effect 1s not clear from preceding 
sections or fromFig. 13 1s L, whxh affects the falrlng C, Fig. 13. 

Gonslder two curves y = Q(X) and y = Q(X), Fig. 14, 
which cross one another at x = q,, where q, = '1, = R,,, and such that 
"a'% for %X0 and v3q for xao. Then the curve:- 

Y = L log [e%h + e%/L ] ) . ..(5.5) 

is a smooth curve which IS exponentially asymptotic to '11 for *<x0 
and to 0, for x,x,. Its value at x = ~0 1s 

Y = L log 2 eQ /L 

= 77, + L log 2 

= ?I* + 0.693 L . 

Equation (5.5)/ 
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or as 

Equation (5.5) may be rearranged as:- 

Y-‘i, 
---- = log 

L 
L+e” ]’ . ..(5.6) 

---- = log 

! 171 ----- 4, 

7 

Y-l, 

1 

’ 

+ e L 1 

. 
L 

Y-7, % -1 
Fig. 15 shows a graph of ---- agaxnst _-__-, This shows that the 

r T 
difference between y and tin, or n, becimes very small when 
37, -01 'I, -0, n!a -r), 

exceeds ak lout 3 or 4. 
--=-- ----- 01‘ ----- ilhen e J.8 1s small. 

L L 
equation (5.6) becomes approximately:- 

% -71 ----- 

y=ni+LeL . 

'7,~% -m--v 
Similarly when e L is small, 

‘Ii -% ----- 
Y = n,+Le L 

Thus the curve is exponentrally asymptotic to ~1 and 02. y differs 
from na by less than 0.01 L for n,-ni > 4.605 L, and by less than 
0.001 L for 'I,-n, > 6.708 L. 

This method may be used to produce a falrlng between any two 
suitable intersecting curves. When applied to the curves B and D of 
Sectaon 5.2 and Fig. 13 the farring curve C results. 

Thas method clearly could be used to produce a round nose by 
fairing the upper and lower surfaces of a sharp-nosed aerofoil. The 
result would give a shape similar to one of the ourves of Section 4, 
but for a very low, and invariable, value of p. Thus the method 1s not 
very practical for this purpose. 
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