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Summary.--A method of calculating the velocity distribution in incompressible flow on annular aerofoils of 
moderate thickness/chord ratio and camber, and reasonably large radius/chord ratio (the order of 1 or greater), 
is developed, based on the use of distributions of singularities on a cylinder whose velocity fields are tabulated 
here and in Ref. 1. 

The annular wing at zero incidence is treated first, and then the wing at incidence. Examples of the calculated 
velocity distributions on various aerofoils are given. 

1. Introduction.--Annular aerofoils are cylindrical fairings whose streamwise section is an 

aerofoil profile; they can be used as fairings for various types of propulsive systems, e.g., propellers 

and turbojet engines. Their  usual function is to increase the efficiency of such systems by increasing 
the mass flow through the system for a given power input. Other designs of annular fairings can be 

used to alleviate compressibility effects. A survey of some possible applications has been given in 

Chapter 6 of Ref. 1. 
Until recently, there have been few practical applications of such installations in aeronautics, 

but serious work has been done in the last few years on aircraft with annular wings, especially for 
'vertical take-off' applications; in France, Zborowski and the S.N.E.C.M.A. concern have developed 
such designs under  the name 'coleopter '2. Ducted propellers have been used as the lift-producing 

system on several American designs such as the Hiller VZ-1E, Piasecki 59K, and Doak 16. Some 

typical applications of annular wings are shown in Fig. 1. 

No simple method of.calculating the velocity distribution on annular wings of finite thickness 

appeared to be available when the present work Was initiated in 1955~. The  infinitely thin cambered 

annular aerofoil at zero incidence has been treated b y  Kfichemann and Weber (Ref. 1, Section 5.4) ; 

* The bulk of the work in this paper was done by P. J. Marcer, of Liverpool University, and N. B. Kirby, 
of the Royal Military College of Science, Shrivenham, while working as vacation students at the Royal Aircraft 
Establishment during July/August, 1955, and July/August, 1957, respectively. 

t R.A.E. Tech. Note Aero. 2571, received 3rd December, 1958. 
++ Since the completion of the work described in this paper, a further report by Weissinger 11 has become 

available, in which he has extended his earlier work 5 to enable surface velocity distributions to be calculated, in 
a similar way to that presented in Section 3 here. 



and Ribner a, Faure 4 and Weissinger 5 have calculated the overall aerodynamic forces on an infinitely 

thin annular aerofoil at incidence in incompressible flow. Weissinger's work 5 can be developed to 

give the velocity distribution on the aerofoil, and this is done in Section 3 of the present note. 

Calculations on annular aerofoils have also been made using the electrolytic-tank analogy: Malavard ~ 

has summarised recent French work. Hacques 1° has used this method to find the aerofoil section 

shape which, on an annular aerofoil,, has the same pressure distribution at zero incidence as a 

biconvex parabolic arc section has in two-dimensional flow, but the inverse problem of calculating 
the pressures on a given annular aerofoil has apparently not been tackled. 

In the present report, a method is developed which enables the velocity distribution to be cal- 

culated on annular aerofoils with moderate thickness/chord ratios and radius/chord ratios of the 

order of unity or larger in incompressible, non-viscous flow. This method uses distributions of 
singularities on a cylinder, whose strengths can easily be determined from the geometry of the 
system, and whose velocity fields are tabulated here or in other papers. The results for some typical 
examples are given. 

2. Annular Aerofoils at Zero Incidence. 2.1. Thin Aerofoils. The calculation method for thick 
aerofoils developed in this note is based upon the Kfichemann-Weber method for thin aerofoils 1, 
which will first be recapitulated. 

The flow about a thin annular aerofoil at zero incidence can be represented by the velocity field 
of a distribution of bound vortices on the aerofoil. For Small values of local surface slope (i.e., 
camber or conicity), and for values of the radius/chord ratio greater than about 1/4, it is adequate 

to place the singularities on a mean cylinder of constant radius, and to calculate the velocities 
induced by the vortices at points on this cylinder, instead of on the aerofoil surface itself. 

If  %(x, r) and %(x, r) are the streamwise and radial velocity increments due to the distribution of 
bound vortices, they are related to the aerofoil shape r(x) by the streamline condition: 

dr r) 
dx - V0 + vx(x, r)"  (1) 

This equation forms the basis from which the two main problems may be solved: (a) to find the 

velocity distribution on an aerofoil of given shape and (b) to calculate the shape needed to give a 

particular velocity distribution. Only the first problem is considered in this report. 

The simplest method of dealing with equation (1) numerically is to make use of a series of standard 

vortex distributions whose velocity fields have been tabulated. In the Appendix of Ref. 1, the 
velocity fields of five vortex distributions ~ placed on cylinders of various radius/chord ratios have 

been tabulated. By using these Tables, equation (1) can be satisfied at up to five points, giving five 
simultaneous equations from which the strength of the five standard distributions can be found, 
and enabling the velocity distribution on the surface of the cylinder to be calculated. 

* These comprise the first three distributions of the Birnbaum series, viz., 

rl(x) = 2, Vo - W -  

yz(x) = 2rrVo ~/{1 -- (1 - 2x) ~} 

ya(X) = 2rrVo(1 - 2x) ~/{1 - (1 - 2x) 2} 

and the constant and linear distributions, 7a = 2~rV o and Y5 = 27rVo(1 - 2x). 
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2.2. Aerofoils of  Finite Thickness. Just  as the theory of two-dimensional thick aerofoils can be 
developed from that of thin aerofoils by the addition of a source-sink distribution on the aerofoil 
surface (which can usually be approximated by a distribution along the chord-line), so the annular 
aerofoil of finite thickness will here be represented by the addition of a source distribution to the 
vortex distribution considered in Section 2.1. 

In the two-dimensional case, the condition that the aerofoil surface z = z~,(x) is a streamline is 

dx V o + vx(x, z )"  

If the aerofoil is reasonably thin, this can be simplified by assuming that v~ is small compared with 

V0, and that %(x, z) on the surface can be approximated by %(x, O) on the chord-line. Since, for a 
plane source distribution, the value of %(x, O) depends only on the local source strength q(x), the 
streamline condition becomes 

i.e., 

d~_j, = vo(~, o) _ ~(~) 
dx V o 2V o ' 

q(x) = 2Vo~-~zx t . (2) 

The velocity distribution around the aerofoil has then been shown by Weber ~ to be approximately 

g l + l f  ~/az~] dx' 
o \ d x l ~ = ~ ' x  -- -x' 

-~o = 1 + t dx]  ) 

which can conveniently be written 

where 

V 1 + Sa)(x) 
V0 ~/[1 + {s(2~(x)}~] ' 

and 

. . . .  ( "  z~(x , , )  S(~(x.)  ~" o \ d x  ] ~  =~, x .  - x '  = °""  

are sum-functions of the aerofoil ordinates at certain sPecified stations xa. The coefficients s(~ and 
s(~ ~) are tabulated in Ref. 7. 

In dealing with the annular aerofoil, it is convenient to consider a source distribution on the 
mean cylinder, and to calculate the velocities on this cylinder instead of at the aerofoil surface. 

Equation (2) connecting the source strength and the aerofoil thickness distribution can then be 
retained, as is shown in Appendix I, but this source distribution placed on a cylinder gives a 
distribution of radial velocities which includes a term depending on the whole source distribution, 
additional to that depending only on the local source strength. (The expressions for the axial and 
radial velocities due to the distribution of sources on the cylinder are given in Appendix I.) This 
additional term represents a curvature of the flow past the source distribution, and can be considered 
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as an effective camber of the aerofoil section. To represent an uncambered section thus requires the 
addition of a vortex distribution to the source distribution. 

Equation (1) is thus replaced, for the thick aerofoil, by the equation 

vet + v~r dr 
V o + v ~  + v ~  - dx '  (3) 

where v~ and VTr are the axial and radial velocity components due to the vortex distribution, 
%~ and Vqr are the axial and radial~ velocity components due to the source distribution, and (dr/dx)is 
the slope of the skeleton line of the aerofoil. 

For the range of section thicknesses and radius/chord ratios considered here, it will be adequate 
to assume that (%~ + v~) is small compared with V0, and to replace equation (3) by the linearised 
form 

vqr + vvr dr 
Vo = ~ .  (4) 

vq,./V o can be calculated from the known source distribution (see Appendix I, or equation (8) below) 
and dr/dx is known, so equation (4) can be satisfied at five (or fewer) points along the aerofoil chord 
by using the tabulated velocity fields of the five standard vortex distributions in the Appendix of 

Ref. 1. 
This gives 

5 
~"(~) - 2~  c , ~ / ,  (~), (s) 

V0 m=l 

where %.~ (x) are tabulated, so that the coefficients C m can be found. The axial velocity increment 
due to the effective camber is then 

7o +  =lY 2v0 ' 
(6) 

where the Vx~(X ) are also tabulated in Ref. i ,  and with the sign convention used there the positive 
sign in (7) is to be taken on the inner surface of the aerofoil and the negative sign on the outer 
surface. 

In Appendix I, the velocities on the cylinder due to the source distribution are derived in the 
form: 

Vo 

27-1  2 7 - i  

s(~ 1) zt(x.) + ~ °°(z~)l,~ zt(x.) (7) 
/z=l #=i 

Vo - - \ dx /,~,, 

271 
"~ (28) .=i s." ~;#¢,~) + \dx]~, '  (8) 

"~ Vqr in equation (3) omits the term __ ½qCx) = __ (dzddx). 
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where the coefficients" s(~'7)~ and s(e8)~ are given in Tables 1 and 2. The  fixed positions xz are the same 
as occur in Ref. 7; they are also tabulated in Table 3 of this report. 

The total axial velocity on the annular aerofoil at zero incidence is then given by 

V = V 0 + v q~ + v ~ ,  (9) 

where vax and v~x are to be taken from equations (7) and (6) respectively. 

In dealing with the two-dimensional symmetrical aerofoil Weber 7 has shown that the velocity on 
the aerofoil surface is obtained approximately from that calculated at the chord-line by multiplying 

the latter by the factor { 1 + (dz/dx)e} -I/~, and  a considerable improvement in the linearised theory 
is thus obtained. The same factor will therefore be applied here to the total velocity given by equation 

(9), so that the final expression for the velocity on the surface of the annular aerofoil becomes 

V 1 F 2v-1 N-1 
V 0 {1 + (dz/dx)2}112 El + ~ s(~t~ ) zt(x~) + ~ (27)z~(x,) + 

5 5 

+ 2: _+ c,,, 2v,7"l. (lo) 
~ = i  = i  - - o - ,  

A minor practical inconvenience arises in using equation (10), since the value of vq~ is obtained 
at the special stations x = x,, while the tables in Ref. 1 give the values of v7x at the stations x = 0, 

0.05, 0.1, 0..15 . . . .  etc. It is thus necessary to interpolate values of one or other term by graphical 
or similar means. 

2.3. Calculated Examples. The method outlined in Section 2.2 has been applied to four typical 
examples. The first two have RAE 101 symmetrical sections with a thickness/chord ratio of 10 per 
cent, and radius/chord ratios of ½ and 1 respectively. 

For these symmetrical sections, equation (4) reduces to 

VYr ~gr 
Vo - Vo" (11) 

In Fig. 2, vqrlV o (less the term + q/2Vo) calculated from equation (8) for the case R = 1 is com- 
pared with two versions of %r/V o from equation (5), using 5 and 3 standard vortex distributions 
respectively. As can be seen, the increase in the number of distributions used does not greatly 
increase the accuracy with which equation (11) is satisfied, and in fact the introduction of 7~ and 
75 leads to the appearance of an infinite radial velocity at both the leading and trailing edges. The 

comparison between the axial velocities calculated by using the three-term and five-term versions of 
equation (6) is given in Fig. 3, and the difference between them (except near x = 0) is insignificant. 

From this, it appears that it should be sufficient in practice to use only the first three standard 
vortex distributions, and in the subsequent examples, this has been done. 

In Fig. 4, the contributions of the variorfs terms in equation (9) are shown, for the case R - i 
It appears that the 'direct' effect of the source distribution is virtually identical with the two- 
dimensional case, the term S(~7)(x) being negligible. The 'induced camber' effect, measured by the 

terms Z Cmvx~ and Z Cm(ym/2Vo), is the important one. It should be noted that higher velocities 
are induced on the inner surface of the annular wing than on the outer surface, so that a radial force 
acting inwards is produced. 
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Fig. 5 shows the final result obtained from equation (10) for the cases R = ½ and R = 1, 
compared "with the two-dimensional result, R = oo. It is clear that the pressure distribution on the 
outside of the aerofoil does not change very much with decreasing radius/chord ratio; on the inside 

the changes produced are greater. 
As a further exampl e of the calculation method, pressure distributions have been calculated, 

for R = { and R = 1, on annular aerofoils with a cambered basic section. The section chosen has 

a 10 per cent RAE 101 thickness distribution, superimposed on a 5 per cent RAE 101 mean line. 
This shape would have a flat inner surface (although the shape close to the nose would probably 
have to be modified somewhat in any practical case). The results are shown in Fig. 6. 

3. Annular Aerofoils at Incidence. It will be assumed that the velocity increments due to 

incidence and' those due to thickness can be linearly superpose& This Section thus deals with a 
circular cylinder of zero thickness which is placed in a uniform stream inclined at an angle ~ to the 
axis of the cylinder. The results of Section 2 can then be added to this to give the velocity 

distribution at incidence on an annular aerofoil of finite thickness and camber. 
If the boundary condition that the cylinder is a stream-surface of the flow is also linearised, then 

the vertical velocity component, v,, at any point (x, R, 9) of the aerofoil is constant, equal to 

- V 0 tan ~. This implies that the radial velocity component 

~,  *' (12) V.  R, = V0 cos = tan  cos 

(taking ~0 = 0 at the 'top' of the aerofoil). 
WeissingeP has shown that distributions of bound vortex rings with the local strength 

CO 

~,(x, ~o) = Vo y_,=og.(x cos n~,,  

together with the corresponding trailing vortices (of strength 1/R.  dT/d~o ) on a cylinder of radius R, 

can be used to satisfy the boundary condition 

Vo = ~ ( x )  cos n ~ .  

For the case which is of interest here, namely, n = 1, Weissinger has solved this problem by 

taking a Birnbaum series for gl(x); 

gl(x) = & 2~  - W -  + A2 2~  ~/{1 - (1 - 2x)~} + 

+ A3 2~(1 - 2x) v ' O  - (1 - 2x)~} + . . . .  (13) 



For  the case ~(x) = constant, values of the coefficients A 1, A2, A3 for various values of the 

radius/chord ratio obtained f rom Weissinger's work 5 are given in the following Table] ' :  

R A1/tan a A2/tan c~ A3/tan 

1/4 - 0. 0896 + 0.0797 + 0.0530 

1/3 - 0 .  1036 + 0 . 0 7 6 8  +0 .0391  

1/2 - 0 .  1266 +0 .0661  + 0 . 0 2 1 6  

1 - O. 1747 + O. 0379 + O. 0056 

oo - 1fir = - 0 - 3 1 8 3  0 0 

T h e  axial velocity distributions at points on the cylinder induced by these Birnbaum vortices are 

calculated in Appendix I I  of this paper. I t  may be noted that on ly  the bound vortex elements will 

give an axial velocity component .  To  calculate the surface pressure distributions, the circumferential  

velocity components  % induced by both the bound and trailing vortices would have to be included, 

although for small incidences this contribution can be ignored since it is proportional to the square 

of the incidence. 

T h e  axial velocity increment  due to incidence is thus 

A,+v*+~ + Am 7m cos 9 ,  (14) 
\ m = l  = 1  

where the positive sign in this convention refers to the inner surface and the negative sign to the 

outer surface. T h e  final expression for the velocity on the surface of a thick annular aerofoil at 

incidence is obtained by adding these terms to equation (10): 

V = 1 [ iv-1 (~7)~ z,(x.) + 
v0 {1 + 1 + (41  + 

. . / z = l  

5 5 7 m  

+ 5 crave: _+ $ 1  cm ¢;0 + 
m = l  = 

+ c°s  +- y Am (15) 

Equation (15) has been used to calculate the velocity distribution on the 10 per cent thick RAE 101 

uncambered aerofoil with radius/chord ratio of unity at a = 5 deg, and the result is shown in Fig. 7. 

The  velocities on the inner and outer surfaces at ~o = 0 deg and 180 deg (the top and bot tom of the 

aerofoil) are shown. T h e  most significant feature of the results is the marked  asymmetry in the 

velocity distribution between the top and bo t tom halves of the aerofoil: clearly the lower part contri- 

butes the bigger part of the total lift force. 

t" In Weissinger's report 5, coefficients C O = - 27rA1, C 1 = - 2~rA2.and C~ = - ~rA z are used; a different 
nomenclature has been used here to preserve consistency with Ref. 1. In Ref. 5, values of the coefficients 
C3 and C4 of higher terms in the series are also given for the cases R = 1/4 and R = 1/10. It must also be 
observed that in the present report, following the usage of Ref. 1, vortices are counted positive which rotate 
anti-clockwise in a system where x (and V0) are positive to the right so that a positive circulation leads to 
increased mass flow through the wing; this is in the contrary sense to the convention normally used in two- 
dimensional aerofoil theory, and also by Weissinger in Ref. 5. 



4. Conclusions. In this report, a method hag been developed which enables the velocity 
distribution to be calculated on the surface of a moderately thick annular aerofoil. This should be 

useful as a tool in designing such aerofoils, and as an aid to understanding the causes of flow 
separations which may occur in a viscous flow. It is believed that one of the major reasons for the 

lack of success obtained by many experimenters on ducted airscrews in the past has been the 
occurrence of large flow separations on the annular fairing, most frequently near the leading edge 

or due to large adverse pressure gradients near the trailing edge. The existence of a suitable design 
method for predicting pressure distributions should help to overcome this difficulty. 

The work described here is only a contribution towards the complete theory which is needed; 

an isolated annular aerofoil will never occur in practice, but will contain a central body, or an air- 

screw, or a jet engine. In principle, these can be dealt with by adding further distributions of 
singularities to the flow. For example, the central body can be represented by a distribution of 

sources and sinks along its axis, and an airscrew can be replaced by a uniform distribution of sinks, 

as is shown in Ref. 1, pp. 130 to 133. TO preserve the condition that the aerofoil, or its mean surface, 
is a stream-surface of the combined flow, the singularities representing the aerofoil have to be 
appropriately modified to cancel the normal velocities induced by the added singularities. 



LIST OF SYMBOLS 

A1, A2, A3, Am 
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Note. 
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Source strength 
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- dx 

Coefficients in expressions for axial and radial velocities induced by 
source distribution on cylinder (See Appendix I) 

Velocity increments in x, r, z and qo directions 

Velocity increments due to sources 

Velocity increments due to vortices 

Axial and radial velocity increments induced by axially symmetric 
vortex distribution Ym 

Axial and radial velocity increments induced by vortex distribution 
~'m cos 
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Free-stream velocity 
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Vertical co-ordinate 

Aerofoil thickness distribution 

Incidence of aerofoil 
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Standard vortex distribdtions (defined in Section 2) 

Angular co-ordinate; ~0 = 0 at top of aerofoil 

All lengths are measured in terms of the wing chord as unit. 
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A P P E N D I X  I 

The Velocity FieM of a Source Distribution on a Circular Cylinder 

In the Appendix of Ref. 1, it was shown that the axial and radial velocities induced by a source 
distribution of strength q(x') along a cylinder of unit length and radius R are, at a point (x, r) outside 

the cylinder: 

% & ,  r) = (1 q(x') 2R(x - x')E(k ~) 
.]0 2 ,  {(x - x') ~ + (r - R) z} V'{(x - x') 2 + (r + R) ~} dx' (16) 

~A~, r ) =  f l  ° q(x') R{X(k~) - e(k~)~ 

2R(r - R)E(k 2) , I 
+ {(~ - ~')~ + (r = g))q ~ =  ~ )~ + (~ + R)~} &' '  (17) 

where K(k 2) and E(k 2) are the complete, elliptic integrals of the first and second kinds, with the 

modulus 
4rR 

ha. (~ - ~')~ + (~ + R)~" 

For points on the cylinder itself, where r = R, the kernels of these integrals have singularities 

at the point x = x'. The  integrals may be evaluated by considering the limits as r + R. Thus,  

%(~, R) = f ~  q(~') ' {K(k~), - E(k~)} o ~ V ( ~ Z x ~ - +  4R z}dx' + 

f ~ q(x') • 2R(r - ' R ) E ( k  ~) 
+ Lim ~ {(x - x') z + (r - R) 2} ~/{(x - x') 2 + (r + R) ~} dx' .  

~--~R 0 

(18) 

The  first integral still possesses a logarkhmic singularity (because K ( 1 ) +  oo) which is dealt with 
below. The second integral can be dealt with by treating separately a small region of width 2e across 
the singularity, within which mean values are taken of all the non-singular factors in the integrand. 
Outside this region, r can be put equal to R, and the integrand vanishes. Thus:  

Lim f ~  q(x') 2R(r - R)E(k 2) 
~ - ~  o 2~ {(~ - x')~ + (~ - R)~} ~/{(x - ~')~ + (~ + R)~} &'  

Lim 
e-->-0 ; 1 2vr 2R ~_~ (x - x;)2 -+ ~ - R) 2 dx' 

q(x)2~r Lim~_+o 2 ( r -  R) o ( X -  x') ~ + ( r -  R) ~ 
r-->R 

~ ) q(~) 
q(x)9 2 L i m t a n - 1  ~ = -+ 2 

~7"t  e --> 0 
~'--> R 

The  limit r + R is taken first. 

11 
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There is thus a discontinuity in v¢~., equal to q(x), as the source distribution is crossed. This is the 

same as the discontinuity in v~ which occurs for a plane source distribution used to represent an 
aerofoil in two-dimensional flow. Thus  the relation between the source strength and the aerofoil 

section shape is q(x) = 2V 0 (dzddx) .  

Applying the same technique to equation (16) gives 

vqx(x, R) = Lim~_,.o o + dz+~ 2w ~/{(x -- x') ~' + 4R -'2} (x Z x') + 

l f x  +c X -- X( I q(X) L i m  (x - x') ~ + (r - R)  2dx '  . (19), 
+ ~ ~->o ~ - ~  

The integrand in the second term is antisymmetric about the point x' = x, and this term is 

therefore zero. 

Thus,  finally 

Vo - ;r o \~-xi~=~' ~/{(x Z x ~  q- 4R ~} (x Z x') 

where 

 oxx, R) 1 f 1 K( . ) -  
V o - + [ d x ]  + - 

k 2 4R ~ 
( x -  x') 2 + 4R 2" 

The integral expressions in equations (20) and (21) are both of the form 

. fo \&/~=~,g(~') &' 
In the Appendix of Ref. 9, Weber has shown how integrals of this type can be approximated by 
sum-functions of the aerofoil ordinates at certain specified stations, provided that the functions 

(x - x') g(x')  and 

Equation (A.9) of 

d 
{(x - x') g(x')} are finite and continuous throughout the range 0 < x' ~< 1. 

Ref. 9 gives 

- (-d~x,)g ( ) d x ' =  ~ s~ l ) (x~-  x,) 2 -==;- o \ dx ]~'=X~ z(x~,) (22) 7/" /~=1 
r 

The stations x~ and x~ are tabulated in Table 3 and the coefficients s~ 1) are given in Ref. 7. 
Equation (20) satisfies these conditions, but (21) does not, s ince K ( k  ~) tends to infinity like 

in {4/~/(1 - k~)) as k ~ +  1. There is thus a singularity of the type - In ix - x' , in the function 
g(x')  for equation (21). To deal with this, the integral may be written: 

i = l f [ ( & ) l  K(k~)-E(k~) 1 ; ~ ~/(~--Z)~TTR~) + In I x -  x' I dx' 

- ;~ \ ~ ]  In l~ - ~'1 &'. (23) 
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Integrating the second term by parts gives 

and, since z(0) = z(1) = 0, the first term here is zero. 
An approximate form for the second term in (24) is given in equation (A.5) of Ref. 9: 

(24) 

if : . ,  . . . .  , a ~ '  = ~ c ~  _ ~ ) ~ ( ~ ) .  ( 2 5 )  
q7. "%'v - -  X = g v  ",, / ,  

The first integral in equation (23) satisfies the necessary conditions for the approximation (22) to 
be valid, so that 

+ II 

( ) = ~ ,(~.~, ~ _ ~)~ ~d  ~/((~ _- ~-5 ~ ~- 4R~ ~(~)  + Z ~ ( ' ~  _ ~.)~(~) , u v k  /L (26) 

From equations (23), (25) and (26), therefore, 

i = N, sm(x ' X.)2 d_~ ( K - E ) 
" ~ '  ~ ~ / { ( x  - x ' )  ~ + 4 R ~ }  z(x~). 

The approximation (22) can be applied immediately to equation (20) but it is convenient to 

write the axial velocity increment as 

vqx = Vqz + Avqx , 

where 

\~1 ~ - ,= 

is the streamwise velocity increment produced by the two-dimensional aerofoil with the same 
thickness distribution. 

The expressions finally obtained for the velocity increments due to the distribution of sources 
on a cylinder are therefore 

where 

go ~ ~(s (1)~,~ + s ~,~ j 
/ z = l  

sC27) = s(1, 1 2R { [ 3 ( x . -  xl,)2 + 4R~]E(k ~) - ( x . -  x~)2K(k~)} 1 
t,. s,~ {(x~ - x~) z + 4R2} 3/" - 1 (27) 

13 



and  

where  

wi th  

- = s Vo + \~-J~ + ~ ¢zs) 

s(2a) = s(,)(x~ - xt~ ) {(x. - xl ,)2 K ( k  ~) + (4R 2 - ( x .  - x ~ ) 2 ) E ( h = ) }  

~ ~ {(x v -- x/,) ~ + 4R~} at~ - -  , 
(28) 

k 2 
4R z 

(x~ - %)~ + 4R 2" 

Values of  the  coefficients ~(27)~ and  odz8)~, for  N = 8, have  been  calcula ted f r o m  equat ions  (27) and  

(28) for  the  cases R = ½ and R = 1; the  resul ts  are given in T a b l e s  1 and  2. 
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A P P E N D I X  II 

The Axial Velocity FieM of Certain Vortex Distributions 

The  vortex distributions considered are of the form y(x, 50) = y(x)cos  50, distributed along a 
cylinder of unit length and radius R. Trailing vortex elements of strength 1 /R .  dT/d50 will also be 
present, stretching along the cylinder, but  these do not contribute to the axial velocity component.  

By application of the Biot-Savart law, the axial velocity induced at a point (x, r, 50) by a vortex 
distribution of s t rength/7  cos 50 on a circle of radius R in the plane x = 0 can be shown to be e 

r f ~ -  R(r cos (50 - 503 - R) cos 50' 
vx - 4-zr 0 { xz + r~ + R2 2 r R c o s ( ~ -  ~7)}3/~ d50'. (29) 

Writing a 2 for (x 2 + r 2 + R2), putting 0 = 50 - 5o' and noting that 

f 2, sin 0 
o ( a~ - 2rR cos 0) a12 

equation (29) can be reduced to the form 

v x =  4rr R c o s 9  r o ( a 2 - 2 r R c o s O )  812 

dO = O, 

f "  cos 0 d0 
- 2 R  0 ( a2 - 2-r-/~ ~ 0) 3/2 + 

f "  c°s 2O dO I + r  
o ( a~ - 2 r - R - e - ~  O) 3t~" " 

Each of the integrals in this expression can be reduced, by writing 0 = 7r - 2~b, to the form 

2 f~12 cos 2n~ 
{x  ~' + (r + R)2}  3/~" J o  (1 - k ~ s in  2 %b) 3/2 d~b 

4rR 
k 2  = 

x ~ + ( r  + R )  2" 

with 

These integrals have been treated by Riegels s, who has 

• f~/2 COS 

defined them as 

2n# 
sin 2 %b)s/2 dsb 

and has evaluated them in terms of the complete elliptic integrals E(k ~) and K(k~). 
functions (1 - k2)Gn(k ~) are tabulated in Refs. 8 and 8A. 

Using Riegel's functions G~(k2), equation (30) becomes 

F 2R cos 9 
v~ : - 47r {x ~ + (r + R)~} ~12 {rG°(k~) + rG2(k2) - 2Rat(k2)}" 

(30) 

Values of the 

(31) 

The corresponding expression for the vortex ring of constant strength is derived in Ref. L The negative 
sign in equation (29) arises from the use of the same sign convention for positive vortex strength as in Ref. 1 
(see footnote to Section 3). 
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The  axial velocities induced by vortex distributions along a cylinder of unit length are now required. 
These velocities are of the form 

+ 
- 2 V  ° ' 

where tile second term represents the effect of the vortex ring at the point x, and the first term 
represents the integrated effect of the remainder of the vortices. 

The  first term can be evaluated by  replacing/~ by y(x') dx'  and x by (x - x ' )  in equation (31), 
and integrating over the range 0 ~< x' ~< 1. 

Rac°sgf l  = 

with 

Thus  for points on the cylinder, r = R,  and 

[ao(k a) + G ( k  ~) - 2G(ka)] 
y(x') { ( x -  x') a + 4Ra}3I~ dx'  (32) 

4R 2 
(x - x') ~ + 4R ~" 

For the present application, the velocity increments v*~(x) associated with the first three 
Birnbaum vortex distributions 

y~(x) = 27rV o 5/{1.- (1 2 x )  a} 

73(x) = 2~v0(1  - 2x) 5/{1 - (1 - 2x) 2} 

To  obtain them, equation (32) must be evaluated numerically, and this is not quite are required. 

straightforward since the functions G~(k 2) tend to infinity as k a +  1, i.e. at x = x'. 

Using the asymptotic expressions given by Riegels for G~(k2), for values of k a near 1, 

Go(k 2) + G d k  2) - 2GI(k 2) = 12 + 26(1 - k a) + 40.219(1 - k2) 2 + . . .  

4 
- In 5 / (1  - h 2) ( 4  + 15(1 ~- h a) + 2 5 . 3 1 2 ( 1  - k~) 2 + . . . } .  (33)  

Thus  it appears that the integrand in equation (32) tends to infinity like In (x  - x ') .  The 
integrals of (32) can therefore be obtained numerically by using,the theorem 

f: f ( x )  dx  = 2 f ( x )  5 / x  d 5 / x  , 

since 
xl lg" lnx->-O as x + 0 .  

The appropriate transformation of equation (32) is 

R 2 [ ~/(l-x) 
v*~(x) = - ~ cos 9 2 7m (X ' )p ( x  - x ' )  5 / ( x '  - x ) d s / ( x '  - x)  + 

d O  

+ 2 y m ( x ' ) p ( x  - x ' ) 5 / ( x  - x ' ) d 5 / ( x  - x ' ) ,  (34) 
0 

16 



where 

- = 

{(x - x') ~ + 4R~} 8/2 

The expression (34) can be conveniently used, except for the point x = 0 and the vortex distribution 

71(x), where the integrand in equation (33) tends to infinity like (ln x ) / ~ x .  This can be reduced to 

a form with finite integrand by using the relation 

I n  evaluating the integrand in equation (34), the formula (33) was used to obtain values of 
{G0(h 2) + G2(h 2) - 2Gl(h2)} for values of k 2 not tabulated by Riegels. 

The calculations have been made only for the case R = 1. The results are given in Table 4. 
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T A B L E  1 

Values of the Coefficients s(~) for Equation (7) 

R = I  

V 

1 

1 0 
2 +0.0205 
3 0 
4 +0.0027 
5 0 
6 -0 .0047  
7 0 

+0.0111 
0 

+0.0200 
0 

-0 .0004  
0 

-0 .0026  

0 
+0.0153 

0 
+0.0188 

0 
-0 .0003 

0 

+0.0010 
0 

+0.0174 
0 

+0.0174 
0 

+0-0010 

0 
-0 .0003 

0 
+0-0188 

0 
+0.0153 

0 

-0-0026 
0 

-0 .0004  
0 

+0.0200 
0 

+0.0111 

7 

0 
-0 .0047  

0 
+0.0027 

0 
+0.0205 

0 

-0"0032 
0 

-0 .0025 
0 

+0.0091 
0 

+0.0054 

R = ~  

1 
2 
3 
4 
5 
6 
7 

0 
+ 0.0441 

0 
- 0.0328 

0 
- 0- 0274 

0 

+0.0238 
0 

+0.0334 
0 

-0 .0356  
0 

-0 .0148  

0 
+0.0256 

0 
+0-0238 

0 
-0 .0273 

0 

-0 .0126  
0 

+0-0220 
0 

+0.0220 
0 

-0 .0126  

0 
-0 .0273 

0 
+0.0238 

0 
+0.0256 

0 

-0-0148 
0 

-0 .0356  
0 

+0.0334 
0 

+0.0238 

0 
- 0.0274 

0 
-0 .0328  

0 
+0.0441 

0 

-0 .0149  
0 

-0 .0381 
0 

-0 .1253 
0 

-0-0061 

T A B L E  2 

Values of the Coefficients s(~ s) for Equation (8) 

R = I  

/z 

0 
-0 .4118  

0 
-0-1451 

0 
-0-0581 

0 

+0.2229 
0 

-0-3633 
0 

-0 .1145 
0 

-0 .0315 

0 
+ 0-2780 

0 
-0-3349 

0 
-0 .0877  

0 

+0.0555 
0 

+0.3094 
0 

-0 .3094  
0 

-0 .0555  

0 
+0.0877 

0 
+0.3349 

0 
-0 .2780  

0 

+0.0315 
0 

+0.1145 
0 

+0.3633 
0 

--0.2229 

0 
+0.0581 

0 
+0.1451 

0 
+0.4118 

0 

+ 0.0271 
0 

+ 0. 0905 
0 

+0.1961 
0 

+0.6298 
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T A B L E  2--continued 

R = ½  

p~ 

0 
- O. 8399 

0 
- O. 2852 

0 
-0 .0874  

0 

+0.4545 
0 

-0 .7488  
0 

-0 .2144  
0 

--0.0473 

0 
+0-5731 

0 
-0-6932 

0 
- O. 1642 

0 

+0.1090 
0 

+0-6404 
0 

-0-6404 
0 

-0 .1090  

0 
+0.1642 

0 
+0.6932 

0 
-0-5731 

0 

+0.0473 
0 

+0.2144 
0 

+0.7488 
0 

-0 .4545 

0 
+0.0874 

0 
+0.2852 

0 
+0.8399 

0 

+0.0660 
0 

+0.2005 
0 

+0.4053 
0 

+1.2660 

T A B L E  3 

Positions of the Pivotal Points x,, x. for N = 8 

or v x# or x~ 

1 0.9619 
2 0.8536 
3 0.6913 
4 0.5000 
5 0.3087 
6 0.1464 
7 0.0381 

T A B L E  4 

Axial Velocity Increments Due to First Three 

Standard Vortex Distributions from Equation (32) 

R = I  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0-8 
0.9 
1.0 

1 . 2 5  

1.05 
0.88 
0.73 
0.60 
0.49 
0.38 
0.28 
0.18 
0.O9 

0 

v~ 2 

0.108 
0.219 
0 .'307 
0.367 
0.404 
0.416 
0.404 
0. 367 
0. 307 
0.219 
0.108 

V~ 3 

+0-091 
0.145 
0.148 
0.117 

+0.066 
0 

-0 -066  
- 0 . 1 1 7  
- 0.148 
-0 -145  
-0 .091  
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FIG. 1. Some aircraft configurations utilising annular wings. 
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