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Summary. ;rhe lateral-directional stability of a single-rotor helicopter is investigated by solving tile 
equations of motion for a typical aircraft. It is found that the motion has three constituent parts, two 
subsidences and an oscillation. The oscillation is slightly unstable at very low speeds but becomes more and 
more damped as the speed of the aircraft is increased. The response to disturbances of various kinds and to 
control movements is illustrated by means of examples. It is found that increasing altitude reduces the 
damping of the oscillatory motion and decreases the rolling effectiveness of the control. Flight measurements 
of the lateral-directional oscillation agree well with theory except for an overestimation of period at very low 
speeds. 

Consideration is given to the effect of varying some design parameters; in particular it is shown that a large 
increase in roll damping at very low speeds will stabilise the lateral-directional oscillation and that a decrease 
in roll damping at high speed can lead to the appearance of a second oscillatory mode which may be unstable. 

An Appendix shows the connection between certain stability derivatives and control positions in asymmetric 
flight. 

1. Introduction. The lateral-directional stability of a single-rotor helicopter was investigated by 
Zbrozek in 19481; since then there have been developments in rotor theory, notably the work of  

Amer on rotor damping ~. Studies of some aspects of the lateral-directional motion have been made, 
but  it was felt that for the interpretation of flight tests it would be useful to make a general 
investigation similar to those recently published for the longitudinal motion 3, 4. 

The object of the present paper is to describe the lateral-directional characteristics of a single-rotor 
helicopter within the framework of classical stability theory as applied to aeroplanes. 

For the sake of simplicity the rotor characteristics are calculated on the basis of uniform inflow 
with empirical corrections at low speeds based on full scale tests. 

Sections 2 and 3 of this ]:eportdetail the equations of  motion and the general principles from which 

the stability derivatives are found and these apply to any helicopter configuration. The  remainder o f  

the paper is concerned with the applicatiort of these principles to a helicopter with a single lifting 

rotor, first considering tlie motion of a typical laelicoptm: under  various conditions and then 

proceeding to examine the effect of various changes in tile basic parameter s of tile aircraft. 

An Appendix shows that some of the stability derivatives can be found from measurements of  
control positions in steady asymmetric flight. :', 

e Aeroplane and Armament Experimental Establishment report AAEE/Res/299, received 15th September, 
1958. 



Considerable use has been made of the methods developed in the study of aeroplane stability; 

in particular of the work of Melvill Jones 5. 

2. Equations of Motion. The system of axes (based On Ref. 6) is shown in Fig. 1. The origin is 

at the centre of gravity of the aircraft. In the equilibrium condition the x axis is horizontal and 

forward and is fixed in the aircraft during the disturbed motion; the z axis is downward in the 
plane of symmetry of the aircraft and perpendicular to the x axis while the y axis is to starboard. 

In the equilibrium condition the helicopter is moving with velocity V in the direction of the x axis 
(we have thus restricted the investigation to hovering and level flight). During a disturbance the 
helicopter has velocity v in the direction of the y axis and angular velocities p and r about the x 

and z axes in the directions shown in Fig. 1. It is assumed that the disturbances are small, so that 
their products can be neglected, and that the motion is entirely independent of any motion in the 

longitudinal plane. 
Since v, p and r are small quantities we may write the force and moments acting on the aircraft 

in  the form Y = Y,  + Y , v  + Y2~P ~- Y~r, for example, where Y~ is the equilibrium value of 

Y and Y~ = 3Y /Sv ,  etc. 
The equations of motion can then be written v 

) m ~ + V r - g ¢  = Y~v + Y , p  + Y~r + Y ~ A  1.+ Yo,Ot 

@ & 
A - ~  - E-~t = L~v + L~p + Lrr + £at  A t  + Lo,O, 

dr dr 
C ~ - E-di  = N~v + N~p + N~r + N a t A i  + No,Or, 

where the last two terms in each equation represent the effect of control movements. 

Adopting the system of non-dimensional notation of Ref. 8 and dividing the first equation by 

A s  p (~2R) 2 and the others by As  p (ff2R)2R and replacing differentiation with respect to t by 

differentiation with respect to ~, the aerodynamic time, we have 
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Assuming that 4, ~ and v are proportional to e ~" and expanding and rearranging the determinantal 
equation, we get a quintic for I with one zero root. This zero root means that ~ is undetermined 7, or 

in other words that the aircraft has no preference for a particular compass heading. The motion 
then depends on the roots of _/1t 4 + B I  3 + C1 ~ + DA + E = 0 where, from Ref. 8, 

A = 1 i~ 

B =  - y ~ ( 1 - = i ~ l  _ (~+n~.+~_ i , n , + i , l ~ t  . . . .  
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( . . . .  + . .  . .  + 
zo ~z~ ~ /  \ z~  ~o / ~ ~ fz~ 1~2 i,,t.2/ 

+ 

D = - y ,  \ id~ z'd~/ it ~ /zd - ~ + zdz2" + =-z~ t /  

+ is- 1 ' 4 -  + : t~ 

E = to'lx2 ~l n - nil,) 

3. Me thod  o f  Calculating the Derivatives. Before the equations of motion can be solved the force 
and moment  derivatives must be calculated. 

Fig. 2 shows the type of rotor considered. I t  has flapping,blades, the hinges of which are offset 
eR from its centre and its t ip-path plane is tilted to port through an angle (b 1 + Ax) , bx, the tilt of the 
tip-path plane relative to the control plane, being due to the variation in resultant airflow over each 
blade as it rotates and A1, the tilt of the control plane, being due to the cyclic change in blade pitch 
caused by a sideways movement of the pilot's control. 

The aerodynamic resultant force on the rotor is the thrust T, inclined to the control plane at 
x 

an angle b' nearly, but not quite, equal to b 1. Due to the flapping hing e offset there is a rolling moment  

of - F~eR (b x + A~) sin ~ 4/ for each blade which gives an average of - ½- F~eRb (b~ + A~) for the 

rotor. Now since there is no coupling with the longitudinal motion there is no variation in normal 

acceleration and T will remain constant during the disturbed motion so we have only to consider 
the variation of b~ and b'. 

I t  can be shown (Ref. 9, for example), that the effect of a sidewind is to tilt the rotor disc away 
from the direction of the sidewind and that the rotor disc tends to lag behind the fuselage during a 
roiling motion. These effects are expressed by the equations 

8bl 80 21 
8v - 3B + B ~ (Refs. 1 and 9) 
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When the helicopter is yawing about the z axis the rotational speed of the main rotor through the 
air is changed. This produces a damping moment given by r@Q/Sr)  or, expressed in non-dimensional 

terms, the part of n~ due  to the effect is approximately - 2q~. 
The effect of a yawing motion on a lifting rotor also depends on its distance from the centre of 

gravity, so that 
sbl 
S? 

~b 
Sr 

Sideslip will change the flow 

\ svj, 

which reduces to 

and to 
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- l ~ v  ' 

Oh' 
- l 
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through a tail rotor and thus change its thrust. It can be shown that 

= 8a 3 + a s a  2 - 

B2/ ,  

Sv] t \ 16A+ as t 
when hovering 

( ~  --  2-B~a~] at high speed (Ref. 4). { 
Uv], = \ 8t~ + as] t  

The effect of roll and yaw on the tail rotor then follow from the geometry of the helicopter. 

4. Expressions f o r  the Derivatives for  a Helicopter with a Single Lif t ing Rotor.  The expressions 
which follow can be derived directly from Figs. 2 and 3. In each case (except for the control move- 
ment derivatives), the expression consists of two parts, the first dueto  the main rotor and the second 
to the tail rotor. The effect of the fuselage and any fixed surfaces can be calculated as for an aeroplane. 

We then have 
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where D, the tail thrust ratio, equals {As(~R)2p}t/{As(X?R)2p}. 
h, ht, l and It are all measured with respect to the x and z axis, not the fuselage datum and for a 

given helicopter will "gary with fuselage attitude, tn  particular l will always be small and ht may change 
considerably with airspeed. 

5. Solution of the Equations for a Typical Helicopter. 5.1. Values of the Derivatives. Numerical 
values for the derivatives have been calculated for a Sycamore, the relevant particulars of which are 

given in Table 1. At low speeds the value of B, the tip-loss factor, was taken from the full-scale 
results of Ref. 10. 

Calculations were made (a) assuming that the fuselage attitude remained const'ant throughout the 
speed range and (b) using the actual fuselage attitude as recorded in flight tests; the results are 
shown in Fig. 4. 

5.2. Examination of the Quartic for ~. Before considering solutions of the equations of motion 
it is interesting to examine the form of the quartic for A. The coefficients of this are plotted in Fig. 5. 

To see more clearly the reason' for the change in C and D with tip-speed ratio it is useful t o  retain 
only the dominant terms in the expressions for the coefficients. We then have 

A = I  , 

B =  - + 

C = Ipn,.+ n~fx 2 
z'~ie ie t~ 

ix ~ 
D = - to + -=. (n j , )  . 

" l a ~ e  

E = t~.u.~ (lo,~ - n j , . ) .  
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From Fig. 5 it can be seen that all the coefficients of the quartic are poskive throughout the speed 

range, and there can therefore be no purely divergent motion. For complete stability it is necessary 

(Ref. 7, for example) for Routh's  discriminant B C D  - B2E - D 2 to be positive and from Fig. 5 we 

see that this condition is fulfilled except at very low values of/x where the discriminant is negative 

and there will be an unstable oscillation. 

5.3. Numerical Solution of the Quartic. We find that there are two real roots of the equation. 

The first is a negative real root approximately equal to - B at low values of /~ and decreasing 

numerically as /z increases. This corresponds to a motion which rapidly dies away, decaying to 

half its original value in about 0.36 see at /x = 0 and 1.09 see at/~ = 0.25. 

The second real root is approximately equal to - E / D  which corresponds to another decaying 

motion, falling to half its original value in about 2.1 sec at /, = 0 or 7 sec at /x = 0.25. 

There remains a pair of complex roots which correspond to an oscillation with period varying from 
about 10 sec at/~ = 0 to 2.5 see at/x = 0.25. The motion is slightly unstable at tz = 0, having time 

to double amplitude of about 16.7 sec, but becomes increasingly stable as/~ is increased above about 

0. 025 the time to half amplitude being 0.95 see at/~ = 0.25. 
Fig. 6 shows the roots of the quartic in non-dimensional form. 

5.4. Flight Measurements of the  Lateral-Directional Oscillation. The predicted values of the 
period and damping of the oscillation for a Sycamore are shown in Fig. 7 together with the results 

of flight tests. It  can be seen that the theory agrees quite well with the experimental values of the 
damping factor but that at low speeds the period of the motion is much less than the predicted value. 

The  aircraft was destroyed in an accident before more low-speed results_could be obtained. 

5.5. Response to a Disturbance. The way in which the different modes combine to give the 

complete motion of the helicopter following a disturbance is shown by the theoretical curves of 

Fig. 8, obtained by solving the equations of motion on an analogue computer. The examples chosen 

show the response of the aircraft to sudden disturbances in roll, yaw and sideslip while hovering 

and while in level flight at 56 kt. 

I t  must be remembered that in making these calculations we are straining somewhat the 

assumption of small deviations from straight and level flight. It '  is also worth pointing out that, at 

least in the final stages of the motions to be described, the thrust on a real rotor would change so 

that the later part of the theoretical motion may not be apparent in practice. 

I t  can be seen that the oscillation predominates in the hovering case, the motion consisting of a 

slowly increasing oscillation like a failing leaf with the aircraft also yawing about a heading different 

to the original. The new mean heading is reached after about eight sec, this motion corresponding 
to the numerically smaller real root, and the remaining aperiodic mode decays too rapidly to be 

obvious on the diagrams. Flight tests show that the motion is very much as predicted although the 

period is less, as mentioned earlier. In practice it is difficult to prevent a longitudinal oscillation 

developing at low speeds. 
The diagrams illustrating the response of the helicopter to the same disturbances while flying at 

56 kt (/x = 0.15) show that the motion is now of a quite different character and in particular that 
the oscillation, in which sideslip and yaw now predominate, is much less important, being so damped 
that it dies out after seven or eight see. The numerically larger real root is evident during the first 
two sec or so after which the smaller root leads to a slow return to steady flight on a new heading after 

about 15 sec. 



Again, flight tests confirm that the motion is generally as shown, but it is difficult to prevent the 
longitudinal motion intruding during the later stages. 

5.6. Response to Controls. Fig. 9 shows the theoretical motion of a Sycamore following 
instantaneous control inputs, calculated using an analogue computer. In practice, of course, 
manoeuvres are made by the co-ordinated use of both cyclic pitch and tail rotor controls but it is 
convenient to consider the response of the aircraft to each control applied separately. 

Turning first to the effect of a lateral control step we see that in hovering the motion is dominated 
by the unstable oscillations, as might be expected. 

At 30 kt the aircraft is stable and hardly any oscillation is excited by the applied rolling moment.  
As soon as the stick is moved sideways, to the right, for example, the helicopter begins to roll at an 
increasing rate; the high value of ( -  l~) due to the fact that the main rotor thrust  vector tends to 
lag behind the fuselage tends to damp the motion and a maximum rate of roll of about 2½ deg/sec is 

reached after about 1 sec. The  sideways tilt of the disc causes right sideslip ; both sideslip and roll 
act on the tail rotor so that the aircraft turns to the right (since n~ and n~ are both positive). 

The effect of increasing speed is shown by the response diagrams at 50 and 80 kt. The  main change 
is due to the marked decrease in ( - l~) with speed which causes an increase in the maximum rate of 
roll and gives the effect of more sensitive controls. 

Considering now the response to a sudden 1-deg change in tail rotor pitch, we see first that at 

/z = 0 the motion is once more primarily an unstable oscillation, this time superimposed on a rate 

' of turn of about 12 deg/sec. The response curves at forward speed show that the oscillation is more 

marked by a change in tail rotor pitch than by lateral cyclic. The immediate effect of the application 

of ' rudder '  to the right, for example, is to start the helicopter turning to the right, sideslipping to 

the left and, since the tail rotor is above the centre of gravity, roiling to the left. The rate of turn is 

damped by the tail rotor (n,. is negative) and quickly reaches its peak after which it oscillates before 

settling down to a steady value while the sideslip is damped by its effect on both the main and tail 

rotors (y, is negative) and it, too, reaches a final value as the oscillation dies away. The initial roll to 

the left is opposed by the effect of the left sideslip on both rotors (l~ is negative) and the roll angle 

soon reverses and tends toward a final steady right bank. The effect of the changes with speed can 

be seen by comparing the diagrams for 30, 50 and 80 kt. The initial peaks of rate of turn, sideslip 

and roll are reduced as nr, y ,  and I, become numerically larger, though the situation is complicated 

by the fact that ( - y~), which affects the initial peak of sideslip and ( - l~), which affects the initial 
peak of roll, decrease numerically with speed. 

It  is found that the changes in the final rate of turn and angle of bank shown in Fig. 9 are mainly 
due to the variation with speed of l~ and n~. An increase in n, results in an increase in the turning 

moment  opposing the motion due to sideslip and an increase in - l~  increases the rolling moment,  
assisting the motion due to sideslip, so that broadly speaking, it can be expected that an increase in 
-n~/l~ will decrease the final rate of turn and angle of bank. Fig. 10 shows -n~/l~ for a Sycamore 
and it can be seen that this ratio increases from/~ = 0 to /x = 0.11 after which it becomes smaller. 
This accounts for the final value of bank and rate of turn being lower at 50 kt than at either 
30 or 80 kt. 

5.6. The Effect of Change in Altitude. When discussing an aeroplane it is possible to demonstrate 
the effect of a change in air density by changing/~2, the relative density parameter, and considering 
the motion at various altitudes at the same lift coefficient. With a helicopter the situation is rather 
more complicated: firstly, because for a given helicopter the thrust  coefficient will increase with 



altitude as the operating range of rotor speed is usually small; secondly, because air density enters 
directly into Lock's inertia number, 7. 

As an illustration of the effect of altitude, calculations have been made for a Sycamore at a tip-speed 
ratio of 0.15 from sea level to 15,000 f t  at constant weight and rotor speed. Most of the derivatives 
change with t~, the changes are less than 30 per cent with the exception of l~ which, depending on 
both t~ and y, has double its sea-level value at 15,000 ft. Fig. 11 shows the period and damping of the 
lateral oscillation, and it can be seen that at greater heights the damping is reduced appreciably and 
the period becomes slightly longer. 

The change with altitude in the response to lateral cyclic pitch is shown in Fig. 12. Due mainly to 
the increase of l~ with decreasing density the maximum rate of roll for a given control movement 
becomes smaller as the height increases; this means that .the helicopter takes longer to reach a 
given angle of bank and leads to a feeling of 'lag' in the controls. The response to changes of tail-rotor 
pitch is not greatly affected by altitude. 

6. The Effect of Changing Various Parameters on the Solution for a Typical Helicopter. In the 
following sub-sections an investigation is made into the effect of changing various parameters in 
turn, retaining the basic rotor system. 

The results are presented in terms of real time. Conversion to the non-dimensional time scale 
may be made by dividing the time in seconds by t c [2 Rig ( = /~2 D). This conversion factor is 1.17. 

6.1. The Effect of Increased Damping in Roll or Yaw on the Lateral Directional Oscillation in the 
Hovering Case. The negative value of Routh's discriminant at low tip-speed ratios is caused by the 
decrease in C and D as the tip-speed ratio becomes small. This is due to the Vr term in the first 
equation of motion and is a dynamic rather than an aerodynamic effect, so that small design changes 
will not change the basic shape of the C and D curves in Fig. 5. 

It is found that the most promising method of stabilising the oscillation is to increase the damping 

in roll (- l~),  the damping, in yaw ( -  nr) or both. The roll damping must be more than doubled or 
the damping in yaw multiplied by three to achieve stability; the use of large flapping hinge offsets 
might give the required l~. 

6.2. The Effect of Reduced Roll Damping at High Tip-Speeds. The damping in rol l  ( - lp )  
decreases with increasing tip-speed ratio and it was pointed out by Amer in Ref. 2 that the damping 
may even become negative for powerful high-speed helicopters. To investigate this, calculations 
were made on an analogue computer using as a starting point the equations of motion for a Sycamore 
with ~ = 0" 25 and reducing ( -  l~) in stages. 

The results are shown in Fig. 13. It can be seen the reduction in roll damping leads first to an 
increased sensitivity to disturbances coupled with a quicker subsidence to the trimmed condition. 
This corresponds to a numerical decrease in the 'large' real root and a numerical increase in the 
'small' real root consequent on the reduction of the coefficients C and D respectivety. As - l~  is 
further reduced below about 0.006 these two roots combine to give a damped oscillation with a 
period of about 20 sec and if - l~ is made Smaller then about 0- 001 the oscillation becomes unstable. 

We see then that there is a possibility that for helicopters with low damping in roll at high speeds 
the disturbed motion may consist of two oscillations: one of period of the order of two sec which 
will probably be quite heavily damped and one of period of the order of 20 sec which may be unstable. 

Physically - l~  could be reduced by decreasing the flapping hinge offset or increasing the inertia 
number of the rotor. 

8 



6.3. The Effect of Tail-Thru# Ratio and of Tail-Rotor Position on the Lateral-directional Oscillation 
in Cruising Flight. The influence of the tail rotor is governed by three parameters: D, the tail thrust 
ratio; It, a measure of its distance behind the aircraft centre of gravity, and hi, which defines its 
distance above the aircraft centre of gravity. 

It is found that variation in ht has little effect on the oscillatory motion in cruising flight. The 
results of changes in D and l~ are shown in Figs. 14 and 15 and are, as might be expected, an increase 
in either D or It leading to increased damping and a shorter period. The numerical results shown in 
Figs. 14 and 15 are approximate, because the calculations were made assuming a constant value of 
(~tc/O~)t which will in fact change slightly with the characteristics of the tail rotor and with the 
change of tail-rotor thrust consequent on the change of lt. 

6.¢. The Effect of Changing l~ and n~. The derivatives I~ and nv, which may be interpreted as 
'effective dihedral' and 'weathercock stability' respectively, are of interest' for two reasons: first, 
because they are relatively easy to alter by the addition of fixed surfaces to the fuselage (except at 
very low speeds) and second, because it is easy to establish their signs, and possible to measure their 
values, by means of steady flight tests as shown in the Appendix. 

We first consider the effect of wide changes in the derivatives on the lateral-directional oscillation 
at a moderate speed (/~ = O. 15). The results are shown in Fig. 16, from which it can be seen that a 
reduction in nv is destabilising while a reduction in the numerical value of l~ increases the stability, 

the period in' each case increasing as the damping falls. 
To see more fully the effect of changes in lv and nv on the stability of the motion, refer to Fig. 17. 

This shows the region of the l~, nv plane within which the motion of the helicopter will be completely 

stable, the region being bounded on the one side by the line E = 0, which denotes neutral stability 
of the slowly developing motion corresponding to the small real root of the stability quartic and on 

the other side by the line representing neutral stability of the lateral-directional oscillation. The 

values of l~" and n~ for a Sycamore are shown on each diagram. 

7. Discussion and Conclusion. The lateral-directional stability of a helicopter has been illustrated 
by the solution of the equations of motion for a particular helicopter. It was found that the motion 
consists of three modes: two subsidences and an oscillation. The oscillation is unstable when the 
aircraft is hovering or flying at very low forward speeds but as the forward speed increases the 
oscillatory mode becomes more and more heavily damped. Its period varies from about 6 sec in 
hovering to 2 sec at high speed. Of the two subsidences one decays to half its value in about one 
third of a second at low speed and its damping decreases as the speed becomes greater; the other 
represents a motion which decays much more slowly, taking roughly 6 sec to reach half its original 
value. 

The main effect of altitude is a decrease in the apparent lateral controI power, i.e., a given control 
movement may produce a roll angle of 10 deg in 4 sec at sea level and take 7½ sec to produce the 
same result at 10,000 ft. 

It is theoretically possible to make the oscillation stable when hovering by much increasing the 
value of roll damping, possibly by using large flapping hinge offsets. The damping in roll decreases 
markedly at high speeds and there is a possibility of this causing the two subsidences to combine to 
give a second oscillation which, with very small values of roll damping, would become unstable. 
The analysis is being extended to cover tandem-rotor helicopters. 

Acknowledgement. Acknowledgement is due to R. W. Coombes who carried out a large part 
of the computation igvolved in the preparation of this report. 



L I S T  OF SYMBOLS 

A Disc area; coefficient of ;~4 in non-dimensional quartic 

A 1 Lateral cyclic pitch applied ~ by control; positive to the left 
a Slope of blade lift coefficient/incidence curve 

B Tip-loss factor; coefficient of ;~8 in non-dimensional quartic 
b Number of  blades 

b' Sideways inclination of thrust vector to control plane; positive to the left 
b 1 Sideways tilt of rotor disc relative to control plane; positive to the left 
C Coefficient of }t 2 in non-dimensional quartic 

c Mean chord of blade 

D Coefficient of A in non-dimensional quartic 

Tail thrust ratio = {As(K2R)~p}t /{As(Y2R)~o} 

E Constant term in non-dimensional quartic 
e Flapping hinge offset divided by R 

Fc Centrifugal force on one blade 

fo = Fo /p ,A  
g Gravitational acceleration 
h Distance of c.g. below rotor hub divided by R 

h t Distance of tail-rotor centre above c.g. divided by R 
i~ Moment of inertia of helicopter about rolling axis divided by m R  2 

it Moment of inertia of helicopter about yawing axis divided by m R  ~ 

i~ Product of inertia of helicopter about rolling and yawing axes divided by m R  ~ 

I~ Moment of inertia of rotor blade about flapping hinge 
L Rolling moment, positive 'right wing down' 

L ~ I  = ~ L / ~ A  1 

L,. = ~L/Or 

L~ = OL/Ov 

Lot = OL/~O t 

l Distance of e.g. behind rotor centre divided by R 

1~1 = L~ta /psA( t?R)  2 R 

l~ = L p / p s A ~ R  a 

l,. = L r / p s A t ~ R  3 

It Distance of centre of tail rotor behind c.g., divided by R 
l~ = L~ /psAt '?R  2 

lot = Lo t /psA(Y2R)2R  

m Mass of helicopter 

N Yawing moment; positive for right turn 

N a l  = a N / ~ A I  

= a N / a p  

= a N / a , -  

N~, = ~ N / O v  

No t  = ON/O0 t 
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Q 

• q ,  

R 
r 

s 

T 
t 

t, 

V 
q) 

2) 

W 
X 
Y 

y,  

Y~ 
V~ 
Y~ 
Yo 

Yo, 
Y a t  

Yv 
Yr 
Y~ 

Yot  

OL 

0 
0, 

A 

N A1/ psA( DR )2R 

NdmA(~R)~ 
N~/psADR~ 
No~/psA(DR)2R 
Rolling velocity; poskive 'right wing down' 
p/~ 
Torque on main rotor 
Q/Asp(DR)~R 
Rotor radius 
Yawing velocity; positive for right turn 
r/D 
Rotor solidity bcfirR 
Rotor thrust 
Time, or as a suffix signifying 'tail rotor' 
Aerodynamic time 
T/Asp(DR) ~ 
W/Asp(DR) 2 

Helicopter speed 
Sideslip velocity; positive for sideslip to the right 
v/DR 
d~)/d~ 

Weight of helicopter 
Force in the direction of x axis (Fig. 1) 
Force in the direction of y axis (Fig. 1) 
Lateral force on rotor parallel to tip-path plane 
8 Y/OA 1 
8Y/Sp, 

Y/~r 
Y~ ~ v 

Y~I/mA(QR) ~ 
Y~/P sADR~ , 
YdpsADR ~ 
Y~/psADR 
Yo,/ psA( ~2R) 2 
~/(m ~ + ~) 
Blade mean profile-drag coefficient 
Lock's inertia-number, pacR4/Ib 
Collective pitch on main rotor 
Collective pitch of tail rotor 

Inflow parameter = (flow up through the disc)/DR, or root of non-dimensional 
stability quartic 

Root of stability quartic expressed in real time 
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/Lz 

P 
'7" 

~2 

Tip-speed ratio Vcos o~/Y2R 
Relative density parameter m/psAR 
Air density 

Angle of bank; positive 'right wing down' 
d¢/d  (= p) 

Angle of yaw; positive for nose to right 
Angle of rotation of blade 'Section 3) 
d~b/di(-- r) 
d2~b/dt 2 ( =- dr/di) 
Rotor rotational speed 
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T A B L E  1 

Leading Particulars of Sycamore used in Calculations 

t~ -- 0.0516 
½f, b, = 0 .00380~at  sea level 

D = 0.0512 

y = 9.34 at sea level 

i~, = 0.0655 

i~ = 0.0133 

i~ = 0 

h = 0.174 

It = 1.33 

l ~ See Fig. 18 
ht J 

A P P E N D I X  

Control Positions in Steady Asymmetric Flight 

1. General. In this Appendix we show that the signs of l~, nv and the coefficient E of the stability 
quartic can be found from measurements of control positions in steady asymmetric flight. The 
values of l~ and nv can be found from the same data if the control derivatives lxl, lot and not are 

accurately known. 
T h e m e t h o d  of analysis is taken from Ref. 11 with the slight adaptations necessary for its applica- 

tion to a helicopter instead of an aeroplane. 

2. Equations of Motion. In steady flight the equations of motion become 

lr • 
~l~ + ~ ~b + lxtA~ + lotOt = 0 (1) 

nr 
~n~ + - - ~  + nalA1 + no,Or = 0 .  (2) 

3. Steady Yawed Flight. In this case we have ~ = 0 and thus 
dA1 dO, 

= - - l O ,  d O  (3) 

dot dA1 (4) 
n v = - not ~ - nal.d~ • 

Now lal and no, are always negative, lot is positive and nxl can be neglected so that we have from 

(3) that l, is negative (positive effective dihedral) if 

~ -  + ~al \ dO ] is negative. 

This will always be so if dA1/dO is negative and dOt~dO is positive. 
i 
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Likewise from (4) n~ is positive (positive weathercock stability) if dOddO is positive, remembering 
that the sign convention is such that positive sideslip means flight with the nose of the aircraft to the 
left of the flight path, positive A 1 means that the stick is moved to the left and positive 0t means that 

the left pedal is pushed forwards. 
It is, of course, possible to calculate the values of l~ and nv as well as their signs but this depends 

on the accuracy with which the values of the control parameters lal, lot and no~ are known. 

4. Steady Turns on Cyclic Control Only. Eliminating 0 from (1) by (2) and rearranging with 

0t = 0 we have 
( n~l l~I dA1 l ~ n , . -  n j , .  _ l~1 1 

n ~  l~tl nv/ de  ' 

and since mA1/lA 1 can be neglected, we say that E will be positive if dA1/d ~ is negative and nv is 

positive. 

5. Flight Test Results from Steady Yawed Flight. Flight measurements made during preliminary 
tests on a Sycamore are shown in Fig. 19 to illustrate the method rather than as accurate results. 
It can be seen that dA1/dO is negative and dOddO is positive, so that "the aircraft has both positive 

dihedral effect and weathercock stability. 
To obtain these results the helicopter was fitted with a yaw-meter and continuous trace recorders 

for control positions and yaw. The position error of tile air-speed measuring system was first checked 
in yawed flight by flying in formation with another helicopter, after which the aircraft was flown at 
constant equivalent air speed at various angles of yaw and the stick and pedal position recorded. 

15 
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