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Summary.~This report presents the first stage of an investigation of the response to random noise of a stiffened 
cylinder, representing an aircraft fuselage, including an analysis of the lower modes of such a cylinder. 

Preliminary investigations suggested that assumptions and approximations which are valid for the uniform, i.e., 
unstiffened, shell are not necessarily valid for a shell with heavy stiffening, and this report therefore starts with a review 
of existing theories in which the assumptions are examined critically, and, it is hoped, somewhat rationalised. There is 
very little literature on stiffened shells and this review deals mainly with uniform ones, including the general analysis of 
strain in a thin shell and the vibrations of a uniform cylindrical shell in vacuo, but includes some comments on the 
effects of an acoustic medium round the shell. 

The energy approach is then extended to give the resonant frequencies and natural modes of a circular cylindricaI 
shell uniformly stiffened with closely spaced longerons and frames, ' close spaced' implying that stiffener spacing is 
much less than the spacing of nodal lines. The effects of rotary inertia have had to be included owing to  tile lack of 
symmetry of the section about the skin, but shear deflections are still neglected. Further numerical work is required 
"before much comment can be made on tile results, but they seem to be similar in nature to those obtained for the 
uniform cylinder. 

Finally, some indication is given of how the theory can be extended to cover higher-order modes where shear deflection 
and stiffener spacing become important. 

1. I n t r o d u c t i o n . - - T o  u n d e r s t a n d  e i the r  t h e  effects  of  noise on a s t r u c t u r e  or  t h e  t r ansmis s ion  
of noise  t h r o u g h  a s t r u c t u r e  i t  is n e c e s s a r y  first  to  u n d e r s t a n d  t h e  response  of t h e  s t ruc tu re .  
W h a t e v e r  t h e  n a t u r e  of t h e  ' noise ', w h e t h e r  r a n d o m  ' wh i t e  ' noise, p u r e  tones,  or  even  exc i t a t ion  
w h i c h  is n o t  acoust ic ,  this  is m o s t  c o n v e n i e n t l y  done  a f t e r  first  f inding  t h e  n a t u r e  of t h e  n a t u r a l  
m o d e s  of t h e  s t r u c t u r e . %  A t  sonic f requenc ies  these  modes ,  a n d  t h e  t o t a l  response,  are  app rec i ab ly  
a f fec ted  b y  ti le s u r r o u n d i n g  acous t ic  m e d i u m ,  a n d  in t u r n  t h e  pressures  in  t h a t  m e d i u m  are  
d e p e n d e n t  on  t h e  i nc iden t  noise field, b u t  t h e  overa l l  p r o b l e m  can  be  b r o k e n  down,  f i rs t ly  in to  
s e p a r a t e  m e c h a n i c a l  a n d  acous t ic  p roblems ,  a n d  t h e n  f u r t h e r  to  give  t h e  s teps  : 

(a) T h e  d e t e r m i n a t i o n  of t h e  ' u n d a m p e d '  n o r m a l  m o d e s  in  vacuo, i.e., d e t e r m i n a t i o n  of  
m o d e  shapes ,  f requenc ies  a n d  genera l i sed  masses  

(b) T h e  e s t i m a t i o n  of t h e  m e c h a n i c a l  d a m p i n g  

(c) T h e  modi f i ca t ion  of t hese  m o d e s  b y  t h e  acous t ic  m e d i u m ,  i.e., a l lowance  for  t h e  p re s su re  
field due  to  r a d i a t e d  s o u n d  ; add ing  d a m p i n g  a n d  mass  a n d  m o d i f y i n g  t h e  f requenc ies  
a n d  poss ibly  m o d e  shapes  

(d) T h e  d e t e r m i n a t i o n  of t h e  response  in each  modi f i ed  m o d e  due  to  t i le i n c i d e n t  noise field, 
i nc lud ing  t h e  effects of t h e  re f lec ted  sound,  i.e., due  to  t h e  forc ing  pressure  as i t  w o u l d  
be  a t  a r igid su r face  

(e) T h e  s u m m a t i o n  of t h e  responses  in i nd iv idua l  m o d e s  to  give  t h e  t o t a l  response.  



Each of these steps is independent of those following, Or at least very nearly so ; certainly (a), 
which is considered in this report, can be treated independently 3. I t  is convenient to do so since, 
for the order of mechanical damping usually encountered, (b) will have little effect on the 
.quantities derived from (a), that  is (b) will have little effect on frequencies and does not introduce 
much coupling of t h e '  undamped ' normal modes. Similarly the effects of (c), which are discussed 
in Section 2.1, will involve little coupling of these modes. Thus tile ' undamped ' modes can be 
carried-through independently until  the final summation in (e). This, at least, is the conventional 
argument, but, as shown below, it will need close examination when dealing with a cylinder. 

The uniformly stiffened circular cylinder, approximating to an aircraft fuselage, seems to be a 
suitable model for response calculations. I t  can be considered representative of a fair proportion 
of the practical structures involved in noise problems, having sufficient complication, and yet 
still being amenable to theoretical analysis:  albeit rather more involved than for a simple 
beam. One of the attractions theoretically is its lack of dependence on boundary conditions : 
there is no longitudinal boundary, and the end conditions are not critical (see Section 2.4.3). 

The comparative complication of the stiffened cylinder gives it some interesting properties. 
In  common with the uniform cylinder its natural  modes are often very closely spaced in frequencyS, . 
so tha t  certain coupling terms, from (b) and (c) above, and cross-product terms, from (e) ~°, must 
be examined carefully. The stiffening itself introduces further effects when the structural 
half-wavelength approaches the stiffener spacing, the natural  modes of the complete cylinder 
taking on rather unexpected shapes, similar to ' local panel modes ', 

Although the vibrations of uniform circular cylindrical shells have been fairly extensively 
!nvestigated (especially Refs. 5 and 6) there is no satisfactory treatment of stiffened cylinders: 
m particular, no consideration at all has been given to stiffeners which are not closely spaced 
relative to structural wavelengths, or of their shear and rotational energies. This report represents 
the first stage of an investigation to consider these effects, covering the uniform cylinder and the 
closely stiffened cylinder. I t  is hoped to cover the effects of stiffener spacing and shear strain 
energy in- a later report and the work here has been presented with those extensions in mind. 
I t  must be remembered tha t  in a typical aircraft fuselage the stiffening is much too heavy to be 
treated merely as a modification to a uniform shell. 

A critical review of the relevant literature is presented, as one result of which it was found 
necessary to include a review of general shell theory. The method of analysis used herein for the 
stiffened cylinder follows on existing theory for the uniform cylinder 5, a summary of which is 
included in an Appendix. 

A general description of cylinder modes is given together with a general discussion of the 
effects of stiffening.. A solution for the cylinder with closely spaced stiffeners is then presented, 
the detailed analysis being included in the Appendices. There are some preliminary discussions 
of the extension of the theory to higher-order modes. 

2. Survey of Previous Work.--2.1.  The Shell i~¢ a~ Acoustic Med ium. - -The  general problem of 
the vibrations of a cylindrical shell in an acoustic medium has been considered by Junger 1, ~ and 
b y  Baron and Bleich 3,~. To simplify the acoustic problem all these papers consider infinitely 
long cylinders but  this need not concern the mechanical problem since the infinite cylinder can 
be considered as a series of finite ones placed end to end. In fact, Junger ~ does effectively do this 
by introducing rigid septa which isolate the sections of cylinder mechanically. All these papers 
seem to be mainly concerned with a steel shell submerged in water but  filled with air. Only 
Ref. 2 takes any account of stiffening. Further details of these papers follow. 

Ref. 1 considers only the unstiffened cylinder with no nodal rings so that  the problem is reduced 
to two dimensions. Ref. 2 is an extension to allow for nodal rings but also introduces the com- 
plication of having the cylinder rigidly built in at regular intervals by  rigid septa. I t  is necessary 
to break the cylinder up into finite lengths so as to restrict the choice of distance between nodal 
rings to integral fractions of that  finite length, but this can be done more simply by  thin 
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diaphragms which are free to warp so that  the normal modes are still sinusoidal along the length 
of the cylinder. Junger still expands his deflections in series of circular functions which do not 
individually satisfy his end conditions at the  rigid septa. Consequently, instead of finishing with 
three coupled equations corresponding to the three modes with the same nodal configuration, he 
ends with an infinite set of coupled equations of which a large number must be solved together. 
The present writer feels that  the problem of the cylinder with fixed ends is best solved in the 
manner used by Arnold and Warburton 6, who used a mixture of circular and exponential functions 
similar to the mode shapes of an encastre beam. 

Junger also considers the effects of closely spaced stiffening rings, including their strain energy 
in extension and torsion but  omitting their bending energy which is the most important  con- 
tribution. He does not a t tempt  to isolate the mechanical and acoustical problems and his results 
are in a cumbersome form. 

Baron and Bleich do separaee the acoustic and structural problems, dealing with them in 
separate papers. They are concerned only with uniform cylinders, although they did remark 
that  the approach would be the same for a stiffened shell provided the distances between nodes 
were much greater than the stiffener spacings. This remark presumably refers only to the 
contents of Ref. 3, since Ref. 4, dealing with the cylinder in vacuo, cannot be extended to cover 
stiffening. In Ref. 4 they first analyse the vibrations ignoring bending stiffness and then add the 
bending effects as a modification to frequencies only, using Rayleigh's principle: this would 
hardly do for a stiffened shell where the relative magnitudes of bending and extensional stiffnesses 
are very different from those in the uniform shell. The advantage of their approach is that  it 
leads to a fairly compact tabulation of mode shapes and frequencies, all the factors tabulated 
being independent of the physical dimensions of the cylinder. It  is not likely that  any such 
' once on ly '  tabulation will be possible for stiffened shells due to the large number of possible 
variables. Even for the uniform shell Baron and Bleich's method is restricted to low-order 
modes (n ~< 6, Z ~< =). 

In Ref. 3 Baron and Bleich treat the cylinder as a mechanical system with three degrees of 
freedom corresponding to three modes with the same nodal configuration. These modes become 
coupled acoustically through the radial components of their displacements. Their final frequency 
equation (in X~) is of the form 

1 1 1 
,~ i (o ,?- -  o ~) + , ~ ( ~ , : - -  0 ~) + m~(~,~--  ~ )  = F(O) , . .  . .  (2.a) 

where ml, m2, ma are the generalised masses of the three modes, referred to a radial reference 
displacement. 

~ol, co~, ~o3 are the resonant frequencies of the three modes in vacuo, ~ol < ~2, o~1 < c%. 

F(~?) depends on the nodal configuration. 

Now o)2 and co~ are very much greater than ml, so that  when ~? is near o)1, (0)2 2 -  ~2) and 
(~o3~ _ D2) must be large. Also m2 and m3 are much greater than ml since they correspond to 
modes with predominantly tangential displacements. Thus near the lowest resonant frequency 
the second and third terms in equation (2.1) will be very small, i.e., the acoustic coupling between 
the modes will be very small. The present writer therefore suggests that  the acoustic analysis 
can be done on single degree of freedom systems. In fact, usually the lowest mode of each set 
of three is the only one of interest since, firstly, the frequencies of the other two are generally 
too high and, secondly, being mainly tangential modes they will not be excited very much by 
radial forces, i.e., they have large generalised masses. These points have yet to be verified for 
the stiffened cylinder. 

2.2. The Shell in Vacuo . - -The  most complete treatment of the vibrations of a uniform circular 
'cylinder in vacuo is that  of Arnold and Warburton (Ref. 5, simply supported ends and Ref. 6, 
fixed ends. Appendix II,  para. 3 of this paper follows their method closely, arriving at essentially 
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the same results as their first paper which differs from equations (I1.22) only in the addition of 
insignificant bending terms, similar to those in equations (II.20) but  not the same. Appendix II  
differs from Ref. 5 in that  : slightly different strain expressions, equation (II.9), are used ; in 
the energy integrals the element rd¢ is not shortened to ad¢ ; some note is taken of the effect of 
rotary inertia, indicating the range of validity of the theory which ignores shear deflections and 
rotary inertia ; the approximate equation (II.24) is obtained for the lowest mode and this equation 
is used to explain the variations of frequency with nodal patterns. 

Arnold and Warburton use an energy approach, deriving expressions for the kinetic and 
O . . . . .  ' p tentlal energies and then substituting into Lagrange s equations, but  equations similar to 

equation (II.20) can be obtained via the equations of equilibrium of an element. The stresses 
are obtained from equations (II.9), or their equivalent, and equations (II. 14) are still used, these 
forms satisfying the differential equations. This approach is used by Kennard 7 in a ' paraphrase ' 
of Epstein 8, by  Naghdi and Berry 9 and by Yi-Yuan Yu 1°, but none of these investigate their 
results to the extent that  Arnold and Warburton do. At the expense of increasing the order of 
the equation, the w equation can be de-coupled from the u and v equations : if a form such as 
equations (II.14) is going to be assumed for the deflections, this merely amounts to obtaining 
the terms of the frequency equation (II. 19). On the whole the energy approach is rather simpler 
and is the only practical one for the stiffened shell with its discontinuities. 

Further  comments on these other papers are given later (at the end of Section 2.3). 

2.3. The General Theory of Thin Shells.--One point which arises from a study of these papers 
is that  there is considerable confusion as to what the form of the final equations should be. This 
arises through various workers applying approximations in rather haphazard manners. The 
general conclusion reached is tha t  the discrepancies are of little practical importance, e.g., 
Ref. 11 and discussion on Ref. 12, but in the reply to the discussion on Ref. 13, Joseph points 
out that  ' one does not know in general whether the modifications and corrections are of practical 
importance except by  considering each special case on its own mer i t s '  Since they have only 
been demonstrated to be small for the special case of the thin uniform shell where extensional 
strains are generally small and in particular 

z 
(extensional strain) × a < bending strains . . . . . . . .  (2.2) 

and since the relative magnitudes of bending and extensional stiffnesses are entirely altered by 
the addition of heavy stiffening, the present writer decided that  an investigation of the dis- 
crepancies was necessary. 

When making use of the ' thinness ' of the shell two types of approximation may be made 
which I will term ' physical '  and ' mathematical '  approximations. Examples of the first are the 
neglect of shear strains e~3 and e13 and of normal stress ~.  The second may take the form of 
assuming 

- -  _ _  _ _  o o • • o • ° . . . . .  c~ 

as was done by Love, or of curtailing series expansions at particular powers of z/a. I t  is these 
lat ter  assumptions which give rise to the discrepancies, since they may be applied in various 
ways. For instance (by using (2.3) in the derivation) Love (Ref. 14, page 543) obtains the 
following strain expressions : 

el = u~--  zw~,, . . . . . . . . . . . . . .  (2.4a) 

1 w z e 2 = a V , + a - - a  ~ ( w ~ + % ) '  . . . . . . . . . .  (2.4b) 

1 2z 
= + u s  - a + . .  (2.4c) 
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whilst two different linearised forms may be obtained from equations (II.9) by firstly putt ing 
r/a = 1 to find 

el = u ~ - -  z w ~ ,  . . . . . . . . . . . . . .  (2.5a) 

1 w z 
e2 = a V ~  ~ a a2 w ~ ,  . . . . . . . . . . . .  ( 2 .5b )  

1 z 
e1~ = ~ u ~  + v ,  - - 2 w x ~ ,  . . . . . . . . . .  (2 .5c )  

• t ~  

or by expanding in powers of z to find 

e~ = u~ - z w ~ ,  . . . . . . . . . . . . . .  ( 2 . 6 a )  

1 w z 
e~ = ~ v, + ~ - -  a- ~ (w** + w ) ,  . . . . . . . . . .  (2.6b) 

1 z (  1 ) (2.6c) % = ~ u  s + % - ~  2 w ~ - - a  us - / %  " . . . . . .  

Thus apparently the same assumption, that  z/a is small, can lead to different results. Equations 
such as (2.4), (2.5) and (2.6) have all be used by various workers. For instance, Arnold and 
Warburton started by assuming Love's expressions, equations (2.4). One advantage of equations 
(II.9) over equations (2.4) is that  every term in equations (II.9) can be given a direct physical 
interpretation. 

The difficulty with mathematical approximations is that  the power of z/a is not a true guide 
to the importance of any particular term ; for instance, (z/a) 2w¢4,¢¢ may not be very small compared 
with w~¢. Also, if such approximations are introduced at an early stage, many of the ' large 
terms used for comparison may cancel out, thus completely invalidating the assumption. For 
instance, in Appendix II, the mathematical approximation (II.21) (which it will be noted is less 
severe than equation (2.3)), has been applied at the last possible stage • if it were applied one 
stage earlier it would eliminate two of the terms in equations (II.23) and thus eliminate the 
# and # terms in equation (II.22a) with consequent error when ~ and n are small. 

I t  is not necessary to make these assumptions during the derivations and the present writer 
feels that  once the initial physical assumptions have been made there should be no more curtail- 
ment until  the last possible stage. The principle is the same as carrying an extra figure or two 
during lengthy numerical calculations in order to avoid rounding-off errors • the extra figures 
may have no significance in themselves but  they do contribute to the final accuracy. Consequently 
in the Notation such assumptions have been carefully avoided and the physical assumptions 
made in the most logical manner possible. There is nothing new about the strain expressions 
obtained (equations (II.8) and (II.9)) but the derivation from equations (II.2) has been presented 
in a slightly different and, it is hoped, more logical form. It  is appreciated that  the modifications 
to Arnold and Warburton s results 5 are of no consequence in that  context but they will be 
important  when the theory is extended to cover shear deflections and/or stiffening. 

Provided unnecessary 'ma the ma t i c a l '  assumptions are avoided, the energy and equilibrium 
approaches will yield identical results from the same physical assumptions, spurious anomalies 
being eliminated. 

A number of authors have made comments on these discrepancies. Bleich and Di Maggio 1~ 
obtain a strain-energy expression for a cylindrical shell, pointing out that  functions of r can be 
integrated without first expanding them in powers of z • the only expansion they use being for 
the logarithmic terms. They quote strain expressions identical with equations (II.9) and their 
result is identical with equation (II.13a). 

Langhaar and Carver 15 agree with Ref. 11 and point out that  the procedure is possible for any 
shell. They say that  the linearisation (in z) of the strain equations is of doubtful validity and 
after giving a statical example suggest that  it may be justified when calculating the displacements 
only but  not when these are used to calculate strains and then stresses. 
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Osgood and Joseph 13 re-derive the strain expressions, following Love's method (Ref. 14, Chap. 
XXIV) in general, but they still linearise the equations, their results for the general shell reducing 
to equations (2.7) for the cylinder. They then modified the equation of equilibrium by including 
terms due to the differences between the strained and unstrained axes. This is of little value 
since the extra terms are non-linear and, under the assumptions of small strains and displacements, 
are neglected in the linearised theory of elasticity. 

Kennard 7 uses a power-series approach, including the effects of shear deflections and normal 
stresses, to obtain equations of equilibrium expanded up to (h/a) ~, i.e., to first bending term only. 
However, his method involved cutting off series at practically every stage, which I consider to 
be dangerous. I t  should be possible to use a similar approach in which the series for the stresses 
are curtailed (e.g., assume transverse shear stresses to be distributed parabolically) and thereafter 
all terms are retained. The resulting equations, although not cut off cleanly at any power of 
t/a, would represent a consistent approximation. For a stiffened cylinder the approach would 
have to be somewhat different because of the discontinuities. In a further paper (Ref. 16), 
Kennard modifies his equations by adding multiples of terms which he considers small. This 
would only be valid for low-order modes for which shear deflections would probably be un- 
important  anyway. 

The final equations resulting from a power-series approach are of successively higher order as 
more terms are retained. This is not a serious drawback if assumed deflection forms are 
substituted in the usual way. 

Naghdi and Berry 9 start  from linearised strain equations and derive equations of equilibrium 
in the usual way. They then derive an equation, of increased order, in w on ly :  if assumed 
deflection forms are used this is no advantage. Their equations are no more logical than Love's, 
and they conclude themselves that  they offer no practical improvement. 

Yi-Yuan Yu 1° again obtains an equation in w alone, and then makes simplifying assumptions, 
valid for long axial wavelength only, which reduce it to the fourth order so that  it can be readily 
solved. He obtains solutions for free ends, clamped ends, and one free and one clamped end. 

Byrne 17 derives strain expressions which are actually identical with equations (II.8) although 
algebraically more complex. He has still neglected shear strains and contraction of normals so 
tha t  much of the algebraic complexity of his subsequent work is of little value. 

2.4. Summary of Conclusions from this Survey.--2.4.1. Approximations.--Some physical 
assumptions must be made at the outset in order to make the problem tractable. The usual 
ones are tha t  normals to the middle surface remain normals after straining, tha t  extensions of 
these normals are negligible, and that  normal stresses are negligible. These are adequate for 
thin uniform shells up to quite high-order modes so that  no great effort has been made to improve 
on them. 

Most authors have then made further approximations during their analyses, the most common 
being that  of linearisation (in z) of the strain expressions : these are of little real value and 
introduce unnecessary errors. Again they are of little practical consequence for uniform shells, 
provided they are thin enough : the physical assumptions would probably break down before 
these errors became significant. 

Some authors have then simplified their results by  making assumptions about the magnitudes 
of the strains of the middle surface or of such operators as (h/a) 2 (~/3x2). This may be legitimate 
for low-order modes of uniform shells but it is easy to go astray. In Appendix II  the frequency 
equation has been simplified to equations (11.22) without loss of accuracy but  as is pointed out 
there the approximations (11.21) cannot be applied any earlier without loss of accuracy due to 
terms cancelling out. Thus manipulations on the equations of equilibrium (equivalent to 
equations (I1.18)) are suspect. 

All these assumptions become even more doubtful for the stiffened shell where the bending 
stiffness is higher compared with the extensional stiffness than in the uniform shell : in particular, 
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assumptions about the smallness of extensional strains fall down. Also the order of modes 
possible in an aircraft fuselage is much higher than  seems to have been envisaged in any of the 
papers quoted. I t  is therefore concluded tha t  all approximations, other than the initial physical 
assumptions, should be avoided in the analysis of stiffened shells. 

2.4.2. Method of analysis.--It seems tha t  if the same physical assumptions are made and all 
other approximations avoided , then the same frequency equation is obtained by  energy methods 
(Lagrange's equations) and via the differential equation. The displacement functions which 
satisfy the differential equations also give rise to Lagrange equations which are uncoupled so far 
as different nodal patterns are concerned and after substitution the sets of equations are identical. 

Even for the uniform shell the energy approach seems to be rather simpler as it avoids bringing 
in ' stress resultants ', i.e., net loads and couples on shell elements. These could be avoided by 
writing tile equations of equilibrium for a general three-dimensional element, substituting the 
strain expressions and then integrating with respect to z. This is in effect done in some papers 
but the ' stress resultants ' are still introduced. They are as unnecessary to the theory as tile 
so-called ' changes of curvature '  

For stiffened shells the energy approach is definitely simpler and is used exclusively in this 
work. 

2.4.3. End conditions.--The analysis is greatly simpler for ' freely supported '  ends than for 
a n y  other end conditions because only those conditions give purely sinusoidal normal modes (for 
the uniform cylinder). Tile effects of the end supports are small provided the modes are described 
by ~ (=  mean circumference/longitudinal wavelength) defined at some part of tile cylinder remote 
from the ends. The discrete values of ~ which are allowable will, however, be dependent on end 
conditions, and if it is desired to identify individual modes the end conditions must be allowed 
for. However, interest is usually centred on the overall  response to an excitation which covers 
an appreciable frequency band, so tha t  a considerable number of the closely packed cylinder 
modes are excited. I t  then makes little difference what end conditions are assumed : the total  
number of modes excited will be very nearly the same for all end conditions so tha t  the total  
response will be virtually the same. This applies to displacements and to quantities derived 
from displacements such as loads and stresses, except, of course, in the immediate vicinity of 
the ends. 

Tile present work therefore assumes ' simply supported ' ends for the cylinder, i.e., ends closed 
by thin diaphragms. The extra work involved in allowing for other end conditions does not 
seem justified, but  if it is required it is recommended that  coupling of the dynamical equations 
should be avoided by choosing displacement functions which satisfy the new end conditions, at 
least in tile more important  respects, but are still orthogonal. This was done by Arnold and 
Warburton 6 for tile uniform cylinder with fixed ends. 

2.4.4. Application of results.--It is possible that  the coupling between the radial mode and the 
two tangential modes with the same nodal pat tern which arises from the acoustic medium will 
be small. If so, the information required from this analysis will be simplified. Tile results must  
be examined along with the acoustical problem to see whether or not this is so. 

3. The General Character of Cylinder Vibrations.--3.1. The Uniform Cylinder.--The natural  
modes of tile uniform cylinder have been described fully in the literature (e.g., Ref. 5). A typical 
pat tern of the radial deflections is shown in Fig. 2. There are a number of orthogonal nodal lines, 

. longitudinal and circumferential ; each nodal pattern can b e  described by  the number (n) of 
full waves round the circumference, and tile number (m) of half-waves in the length (l). When 
tile ends of tile cylinder are simply supported both circumferential and axial mode shapes are 
sinusoidal so tha t  we can write the radial deflection in the form 

w = W cos n¢ sin (m~x/l) cos cot, 

where ¢ and x are co-ordinates as shown in Fig. 1, co is the circular frequency of tile vibration 
and n, m are integers ; n ~> 0 ; m ~> 1. 
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In general there is also an appreciable amount of tangential movement of the shell walls ; 
to be consistent with the radial displacement this can be expressed by 

u = U cos  ~ ¢  cos  (~n~x/l) cos  ~ t ,  

v = V sin ~¢ sin (m=x/l) sin oot. 

Clearly, a mode with m half-waves in a length l is exactly equivalent to one with 2m half-waves 
ill a length 21 so tha t  it is convenient to eliminate 1 by writing 

~ 4 ~ a  ~44~rX ~X 
2 -- so that  -- 

! ' 1 a 

So far as the general theory is concerned ,~ may take any positive value, but for a particular 
cylinder it is restricted to a series of values dependent on I .  Modes where the generators remain 
straight (i.e., ~ = 0) can be looked on as the limiting case of an infinitely long cylinder with 
m = 1 (see Section 4.8). 

I t  has already been shown (e.g., Refs. 19 and 5) that,  corresponding to each nodal configuration 
(n, m) there are three normal modes with different proportions of U, V, W, and that  the resonant 
frequencies of these modes are of different orders of magnitude. The lowest mode has pre- 
dominantly radial movement involving both bending and stretching of the cylinder walls : the 
other two modes have predominantly tangential movement and involve very little bending. 
The lower, radial, modes are of the most interest generally since the excitation is usually radial 
and also because the other modes are usually outside the frequency range considered. Both 
extensional and flexural strain energies are important with these modes and these energies vary 
in opposite senses with n at constant m, giving the curious situation in which an apparent increase 
in complexity of the mode does not necessarily mean an increase in resonantf requency ~. In 
Appendix II, para. 5 it is shown that  this behaviour can be predicted easily, and accurately, 
from an approximate expression for the lowest root of the frequency equation. 

Any system with normal modes which can be ordered by a pair of numbers such as (n, m) would 
be expected to have its resonant frequencies comparatively closely packed ; much more so than, 
say, a simple beam with a single modal parameter. For the radial modes of a cylinder over part  
of the frequency range they are even more closely packed due to the effect mentioned above. 
Thus, given a random excitation covering a given frequency band, not only will there be an 
increased number of modes in tha t  band but they  will also show a greater diversity of mode 
shapes, with consequent increase in the chances of finding spatial correspondence of acoustic 
and structural w a v e s  2~' 21. 

3.2. The Effects of Adding Periodic St i f fening.--In a typical aircraft fuselage the stiffening is 
fairly heavy compared with the skin so that  it can by no means be considered as a minor modifica- 
tion and is of fundamental importance in determining the vibrations of the shell. ~ We will now 
discuss, in general terms, the effects of this stiffening. 

Firstly, the relative magnitudes of the extensional and bending stiffnesses are completely 
altered : the extensional stiffness and the mass are comparatively little changed, but the bending 
stiffness is of an altogether different order. The general remarks of Section 3.1 still apply : the  
quanti tat ive results are changed, of course, but' qualitatively the modes are the same (but see 
the third point, below). We can no longer employ order-of-magnitude arguments depending on 
the smallness of extensional strains, as used by many authors dealing with uniform cylinders, 
in order to make simplifying approximations (see Sections 2.3 and 2.4.1). 

Secondly, rotary inertia and shear deflections become important  for modes of comparatively 
low order. Remembering that  we are concerned with n and up to at least 50, which is much higher 
than seems to be considered by workers investigating uniform shells, it is seen tha t  some allowance 
must eventually be made for these effects. Although they will be of quantitative importance  
they are not likely to alter the modes qualitatively. 
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Thirdly, as shown in Appendix IV, the sinusoidal modes described in Section 3.1 are not 
completely independent, the periodicity of the stiffeners introducing coupling terms between 
certain of them. A sinusoidal mode with distances between nodal lines considerably larger than 
the stiffener spacing will be only lightly coupled to other modes, so that  a good approximation 
to the corresponding normal mode will be obtained by ignoring the coupling. However, as the 
order of the mode increases the coupling becomes more important  and will be very large for two 
modes of which one has nodal intervals just less than the stiffener spacing and the other just 
greater. The resulting normal modes will be far from sinusoidal, having the appearance of 
modulated sinusoidal waves with considerably varying amplitude. Thus we can imagine a 
natural mode in which one side of the cylinder vibrates with large amplitude whilst the other is 
hardly moving. The so-called panel and stringer modes must arise in this way. I t  is hoped to 
make these modes the subject of further investigations ; some preliminary thoughts are included 
in the Appendices here. 

The present paper is by way of clearing the ground for a fuller investigation and, in the main, 
is confined to natural modes of long wavelength for which the second and third points above 
are not important, but the possible extensions have been kept in mind and explain the com- 
parative rigour of the treatment. The results arrived at by the summations of Appendix IV 
can also be obtained by imagining the various stiffnesses of the frames and longerons to be spread 
uniformly over the shell, but  tha t  approach gives no idea of the range of validity and, of course, 
cannot be extended to higher modes. 

4. The Analysis of the Stiffened Cylinder.--Closdy Spaced Stiffeners.--4.1. Summary of Method.- 
This is basically the method used by Arnold and Warburton ~ for the uniform cylinder, and which 
is set out in Appendix II  with minor modifications. I t  is an energy method, using Lagrange's 
equations, the main steps being as follows : 

(i) The thinness of the shell enables its entire deflected form, and hence the components of 
strain at any point, to be expressed in terms of the displacements of a reference surface, 
taken at the middle surface of the skin. This depends mainly on the neglect of shear 
strains through the thickness of the shell wall, corresponding to engineers' bending 
theory. 

(ii) Neglecting certain components of the stresses, the strain energy is expressed in integral 
and summation form in terms of the ~ieflections of the reference surface and their 
derivatives. The kinetic energy can be similarly expressed in terms of time derivatives 
of the deflections. 

(iii) Sinusoidal forms are assumed for the deflections and the integrations and summations 
carried out. 

(iv) The final energy expressions are substituted into a set of three Lagrange equations 
yielding three simultaneous equations with the maximum deflection components as 
unknowns. These equations are homogeneous and their eliminant gives a cubic 
frequency equation and hence three resonant frequencies, as described in the previous 
section. 

These steps are now covered in more detail, the mathematics being given in full in the 
Appendices. 

4.2. Strain Components.--In Appendix II, para. I, it is assumed that the co-ordinate system 
is so chosen that z = 0 defines the middle surface of the shell. This is not essential : the whole 
of para. 1 is still valid if z =- 0 is any surface parallel to the middle surface, z = 0 is simply a 
reference surface at which the displacements are specified, the ' thin-shell ' assumptions enabling 
the deflected form of the entire shell to be defined by the deflected form of the reference surface. 
All members Of the family of surfaces z = constant are parallel and remain approximately parallel 
after straining, so that assumption II.5, that normals to z = 0 become normals to the strained 
reference surface with negligible extensions, have the same physical significance for any choice 
of reference surface from that family. 
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The most convenient reference surface for the stiffened shell is the middle surface of the skin, 
there being no unique neutral surface for bending, and the complication of using different 
reference radii for the u and r displacements hardly seeming worth while. If then, we neglect 
shear deflections of the longerons we find that,  in the longerons, normals to the skin remain 
normal to it after straining so that,  if we also neglect the extensions of those normals, the radiat 
and longitudinal components of displacement at any point in the longerons are given by equations 
(II.10a) and (I1.10c). For the cylinder equation (II.4a) becomes simply 

and substituting from (II. 10a) we find the longitudinal strain, e~, in the longerons to be given by 
equation (II.9a). Equations (II.9b) and (II.9c) are irrelevant for the longerons, but equation 
(II.10b) still applies if we neglect lateral shearing, e~. 

Similarly, equations (II. 10) and equation (II.9b) apply to the frames. 

These arguments can be generalised for any shell with stiffeners lying along its lines of curvature, 
the appropriate equations from' (II.7) and (II.8) applying. 

4.3. Strain E~cergy.--For the longerons, only the strain energy due to longitudinal strains is 
relevant and that  is given by the integral of ½Eel 2 over the volume of the longerons. Equation 
(II.9a) gives el in terms of z and the displacements so that  we can carry out the z integration and 
obtain the strain energy of one longeron as a line integral, equation (III.3), in terms of u, w and 
the section constants. After substituting the sinusoidal deflection forms (II.14) we can carry 
out the x integration to give equation (1II.4). 

Provided the stringers are equally spaced round the circumference we can sum equation (1II.4) 
over the stringers, the result being exactly the same as if we imagined the various section constants 
to be spread uniformly round the circumference. For instance, if the cross-sectional area A~ 
were spread uniformly it would give p A  l/2=a per unit circumference and we have 

f ~  (pA,/2~a) (he) ads = p/2 . C O S  2 

0. 

But from Appendix IV we see that ,  within the'limits of the assumption of close stiffener spacing, 
p- -1  

A ,  c o s  = 
r = 0  

the two results being clearly equivalent. 

I t  is convenient to take out as a factor the same quant i ty  as appears for the uniform shell, 
namely, ~Ehl/4a(1 --  v ~) and this leads naturally to the definition of the dimensionless constants 
Lo, L1, L~, depending on the section constants. As longerons are normally inside the skin, the  
sign of L1 has been arranged to be positive then : as z is positive outwards, this corresponds to a 
negative first moment of area. The final expression for strain energy of tile longerons is given 
in equation (111.5). 

An exactly parallel procedure for the frames leads to equation (III.10). 
I t  will be noted that,  as z = 0 is not the neutral surface for bending we do not at tempt to 

distinguish between extensional and bending strain energies. The procedure used here automatic- 
ally introduces all the required section constants and actually defines them explicitly, this being 
particularly convenient for the frames. 

The strain energy of the skin is given by equation (11.16a), as for the uniform shell, and we 
can now write the total  strain energy of the shell. I t  is found that  tile bending strain energy 
of the skin is negligible and it has been omitted in equation (III.11). This is equivalent to 
omitting a very small term when calculating the combined second moment of area of tile skin 
and stiffener. 
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4.4. Kinetic Emrgy. - -Assuming that  the mass of one longeron is concentrated on a plane of 
constant $, its kinetic energy can be written, using equations (II.10), in terms of z and the 
components of velocity ~'t,, ~, zO, of the reference surface, at tha t  value of ~ (equation (1II.14)). 
Following the procedure used for the strain energy this can be integrated and summed to give 
the total  kinetic energy of the longerons in terms of the time-dependent displacement coefficients 
ql, q2, q~ (equation (1II.18)). 

I t  is convenient to take out the factor ~phla/4, which appeared in the expression for the kinetic 
energy of the uniform shell, and this leads natural ly to the dimensionless inertial constants 
Ho, H1, Ha. One unfortunate result of using a reference surface which does not coincide with the 
mass centroids of the longeron-skin combinations is that  we cannot neglect terms in H1 and Ha, 
for they are not merely rotary inertia terms in the usual sense of the word. The terms in H l ~ s ,  
H ~ s  and H ~  2 are due principally to this offset and would still arise if the inertia due to 
translation of the mass centroids were calculated. A change of variables to displacements of 
mass centroids would not be entirely satisfactory since the mass centroids of the frames and 
stringers are at different radii. 

The only term in equation (II1.18) which could reasonably be dropped is that  in H2~ ~, since 
H~ ~ H0 generally. Neglect of rotary inertia would merely change Ha by subtracting an amount 
proportional to the moment of inertia about the centroid, with no real simplification. 

An identical procedure leads to equation (Ili.24) for the kinetic energy of the frames. The 
form of the approximate express~ions (III.23) and (II1.25) is another result of  the difference 
between the radii to the reference surface and to the mass centroids. The kinetic energy of the 
skin is still given by equation (II. 16b), as for the Uniform shell, the effect of rotary inertia of the 
skin about its own middle surface being completely negligible for fairly heavy stiffening, and so 
the total  kinetic energy of the shell can be written as in equation (III.2 ), a crude approximation 
being given by equation (II1.27). tTIowever, (F~ + L2) can easily be of the order 0.01 to 0.05 
so that  equation (Ill.27) can only be expected to be useful for the very lowest modes. 

4.5. The Dynamic Equations.--We now have the strain energy as a function of the q~ and the 
kinetic energy as a function of the ~, and since the q~ are independent we can use them as 
generalised co-ordinates in a set of Lagrange equations (III.29), giving three homogeneous linear 
equations (III.30), in the maxima of the displacement components, U, V and W. The eliminant 
of these equations can be expanded to give a cubic in the frequency parameter A : 

K s A  ~ - K ~ A  2 + K1A -- Ko = O 

where, for instance, Ks is the determinant of the coefficients of the inertial matrix [B] and/£1 is 
the determinant of the coefficients of the strain energy matrix [C]. 

This cubic can be solved for three values of A and the corresponding frequencies obtained from 

1j(i" ) f -  (1  - " 

There seems to be little advantage in actually obtaining expressions for the K from equations 
(III.30) as the results would be extremely involved. When obtaining numerical solutions for a 
particular cylinder the best course seems to be to first substitute numerical values of the F,., 
G~, H ,  L~ and ~ into equations (III.30), obtaining the elements of [B] and [C] as functions of Z, 
n only. Particular values of ,~, n are chosen, the K~ evaluated and the roots of the frequency 
equation obtained. Alternatively the K~ could be expanded as functions of the Z, n only, after 
the first numerical substitution. 

The lowest root of the frequency equation can be obtained rapidly by iteration from the form 

A K0 K2 Ks A ~ + 

since, for that  root, A is generally appreciably less than 1. 
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4.6. The Generalised Mass . - -We  are concerned with radial excitations and so refer the 
generalised mass M to the co-ordinate q3, it being defined by 

T ,  = ½ M ~  ~ . 

The ratios (q~/qa), (q2/qa) are the same as (U/W), (V/W), these being obtained from equations 
(III.30) after evaluating the roots of the frequency equation, so tha t  by  substituting for T, from 
equation (III.26), we find M as in equation (III.33). 

In general, for the lowest, radial, mode, (U/W) and (V/W) will be rather larger for the stiffened 
cylinder than for the uniform cylinder. This is due part ly to the relatively lower extensional 
stiffness of the stiffened cylinder, and part ly to the difference between the radius of the reference 
surface and the radii to the centroids of the shell wall. 

4.7. Note o~¢ the Assumed Mode Sh@e.--Str ict ly  the deflections should be expanded completely 
in the forms 

= Z ~ {q~,,,,, sin ~¢ sin (*-d~) + ql .... cos ~¢ sin (i~/a)} 
# " . 

= E E {q~ ..... cos ~¢ sin (*~/~) + q~.o, sm *a sin (~t~)}. 
These are complete expressions, capable of describing any arbitrary mode shape and would 

yield 6,am independent Lagrange equations. For the uniform shell or for the shell with closely 
spaced stiffeners these 6nm equations would be grouped in 2~¢m sets of 3 coupled equations with 
no coupling between the groups. Also the nm sets in the q, would be identical with the nm sets 
in the q,' so that  the q,' may be ignored completely. This is equivalent to saying that  the choice 
of origin for co-ordinate ¢ is immaterial. 

The substitution of equations (II.14), with no summation over n and m is therefore justified 
for the uniform or closely stiffened cylinders. 

When considering higher modes," however, these coupling terms will not all disappear and we 
must retain the full expressions as above. 

4.8. The Special Cases n = O, ~ = O. 

(i) ~ = 0, ~ ~ 0. 

This amounts to replacing deflection forms (II. 14) by 

u = ql cos (~x/a), 

v=O, 
w = q~ sin (~x/a). 

It is easily verified that the strain and kinetic energies are obtained correctly by putting ~ = 0 
and q~ = 0 in equations (III.ll) and (III.26) and doubling the remaining terms. The frequency 
equation is then obtained from equations (III.30) in the same way except that the doubling 
cancels out. Putting q2 = 0 has eliminated the trivial solution d = 0 and we are left with a 
quadratic in A. The generalised mass is obtained from equation (III.33) by putting n ,= 0 and 
V = 0 and doubling the remaining terms. 

(ii) n ~ 0,,t  = 0 .  

This is a limiting case obtained by letting l--~ m with m = 1. The corresponding deflection 
forms are 

%z0, 
v = q~ s i n  n ¢  , 

w = q~ cos n¢ , 

12 



where, paradoxically, sin (Xx/a) has been replaced by 1 and cos (2x/a) by 0. This arises since 
as l -+ oo we must let x -+  oo as well. The expressions for the strain and kinetic energies must 
be taken over a finite length, so we will consider a finite length l out of an infinitely long cylinder. 
We then find that  the strain and kinetic energies are given from equations (III.11) and (III.26) 
by putt ing Z = 0 and ql = 0 and doubling. The dynamic equations (III.30) are treated similarly, 
the doubling cancelling, and the frequency equation is reduced to a quadratic in A, a root A = 0 
having been eliminated. The generalised mass is obtained from equation (III.33) by putt ing 

= 0 and U = 0 and doubling. 

(iii) n = 0 and X = O. 

This corresponds to displacements 

u = 0 ,  v = 0 ,  w = q 3  

above together with (ii), multiplying by four where appropriate. and we simply apply (i) 

and /or  

If we start  from 
n < p/2,  m < q:  

5. Extensions of the Theory.--5.1.  The Coupling Effects due to Stiffener Spac ing . - -We  consider 
what happens when we use the full expansion for the deflections as given in Section 4.7. All 
coupling terms vanish during the integrations, and couplings between the q and q' terms vanish 
during summations as seen from equation (IV.11), but equations (IV.9), (IV.10), (IV.12) and 
(IV. 13) show that  there will be coupling between sinusoidal modes with 

n l + n ~ = 0 ,  _+_p, __2p . . . .  

m~ +_ m2 = O , ! 2q , +_ 4q . . . .  

a mode (n, m) we find that  it is coupled to the following modes, assuming 

(n,m) 

(p - n, ~) 

(p + n, ~) 

(n, 2q .-- m) 

(p --  n, 2q --  m) 

(p + n, 2q - ~) 

(n, 2q + m) . . . .  

(p - n, 2q + m) . . . .  

(p + n), 2q + ~) 

This is a doubly infinite set of modes, every one of which is coupled to every other one, but to 
no others, i.e., it is a closed set. There are in fact about p/2  × q such sets. Although the 
magnitude of the coupling problem is reduced in tha t  large proportion it is still considerable. 
Assuming n, m to be small, as assumed in Section 4, the other eight modes in the above array 
represent only the next order of magnitude of mode number, and yet there are already 27 coupled 
equations. I t  appears tha t  any complete investigation will require a digital computer. 

The magnitude of the coefficients of the uncoupled equations is dependent on the order of the 
mode numbers. The direct coupling terms between (n, m) and the other modes will be of the 
general order of the (n, m) coefficients, and consequently much less than the coefficients of the 
other modes. To a first approximation then, if n, m are sufficiently small, we can split the array 
up into four groups as shown by the dashed lines. This is the justification for the procedure of 
Section 4. I t  should be possible to obtain some idea of how small n, m are required to be, by  some 
approximate method and this is being followed up. The other three groups could also be investi- 
gated since they are of amenable order. 

A group which will be interesting when investigating these couplings is tha t  starting from 
(0, 0), vi~., 

(0, o) (0. 2q) (0, 4q)... 
(p, 0) (p, 2q) (p, 4q) . . .  

(2p, 0) (2p, 2q) (2p, 4q) . . . .  

This set should give something like the so-called ' panel ' and ' stringer ' modes. 
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Similar coupling will also arise from irregularities in the stiffening. For instance, some extra 
heavy longerons could be added as extra stiffening with large spacing, so giving coupling between 
quite low modes. 

I t  is proposed in the first instance to get some idea of the importance of these effects in a few 
numerical calculations, starting from the uncoupled modes and adding first order corrections 
for the coupling. 

5.2. Relaxation of Thin-Shell Assumptions.-The most important  step in this will be the allow- 
ance for shear deflections. This can be done, in a similar manner to that  already used on beams, 
by separating the shear and bending deflections. The present analysis applied to bending 
deflections will allow the resultant bending moments to be calculated and the equations of 
equilibrium will then give the corresponding shear forces so tha t  shear deflections can be calcu- 
lated. The details of this analysis have not yet  been worked out. For instance, it is not yet  
clear whether it will be better to have the final equations in terms of bending deflections or total 
deflections. The principle is, however, reasonably clear and should lead to a straightforward 
development, the first object of which will be to find when the effects become important. 

6. Remarks and Conclusions.--A theory has been developed which gives the lower resonant 
frequencies and corresponding mode shapes of a right circular cylindrical shell with uniform, 
Closely spaced stiffeners in the form of circular frames and straight longerons. Further numerical 
work is required to establish the influence of the various parameters, but, within the limits of 
the assumptions, the general character of the results appears to be similar to that  of the uniform 
cylinder results. Some indication is given of the possible extensions of the theory to cover 
higher-order modes where stiffener spacing becomes important,  and to investigate the importance 
of various assumptions, including some which are common to usual shell theory. This has 
involved an investigation of the general theory of thin shells, leading, it is believed, to some 
degree of rationalisation of the method and assumptions. 

No numerical results are presented here, but  some preliminary calculations on a typical fuselage 
indicated a very large number of modes with frequencies in the range present in jet noise;  
a number which would probably be further increased by the inclusion of higher modes. If 
thorough calculations are carried out for some typical fuselages and plotted in the form of curves 
of frequency parameter, A, against longitudinal wavelength parameter, ;t, for a series of values 
of circumferential mode number, n, then it is possible that  on any fresh fuselage it would only 
be necessary to calculate a few key modes, the rest being obtained by interpolation. The complete 
investigations would require the use of a digital computer, for which the problem is well suited, 
involving .systematic variation of parameters. 

The results would need to be incorporated in the investigations, which are proceeding, of the 
effects of the acoustic medium, the final presentation possibly being of the modified modes. 

Some experimental checks would also be desirable but  the Overall theory is not yet advanced 
enough for a model to be designed, there being a large number of structural and acoustic para- 
meters to be considered. For instance, it is not yet certain whether we will wish to have the 
stiffeners very close together, as in full-scale practice, or whether to have relatively few stiffeners 
to accentuate the coupling effects due to stiffener spacing. The overall scale of the model will 
depend on the nature of the interaction of acoustic and mechanical effects which is not yet fully 
understood. The answer may be to have two models ; one small with few stiffeners for studies 
of the mechanical features ; the other larger and more complicated for studies of overall response, 
including acoustic effects and damping, both acoustic and mechanical. 
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N O T A T I O N  

General  Nota t ion  and Co-ordinate Systems 

(x, ¢, r) 
Z 

81, b2, G 

U, V, W 

q~, q2, q~ 

U , V , W  

(1) 

A 

q4 

&, S I, S, 
Tl, T z, T, 

C1, g2, e3 

~23, e31, el2 

0"1~ 0'2, 0' 3 

G23, G31, G12 

Suffixes 1, 2, a 

Suffixes x, ,~ 

Suffixes ~, s, 

Dots (e.g., ¢'~) 

Righ t -handed  cylindrical  polar co-ordinates, origin at one end of cyl inder  

= r -- a (Perpendicular  distance outwards  from middle surface of skin) 

Linear  displacements in the longitudinal ,  t angent ia l  and radial  directions 
at any  point  in the  shell 

Linear  displacements in the  longitudinal ,  tangent ia l  and radial directions 
at any  point  on the  middle surface of the  skin. 

Coefficients in t h e  Fourier  expansions,  in space, of u, v, w. Funct ions  of 
t ime only : used as generalised co-ordinates 

Maximum values of ql, q~, q8 = m a x i m u m  values of u, v, w 

Time 

= 2~f (Circular freqtrency : t ime dependence t aken  in form cos cot) - 

= pa2(1 -- v 2) a)2/E (Non-dimensional f requency parameter)  

Number  of full waves round circumference 

Number  of half  waves in length  l 

~]g:7/:~ circumference at skin median 

longitudinaI wavelength 

Strain energy of longerons, frames, and to ta l  shell 

Kinetic  energy of longerons, frames, and total  shell 

Direct  / s t rain components  at  any  point  in shell, referred to (x, ¢, r) 
Shear J co-ordinates 

Direct / stress components  at any  point  in shell, referred to (x, ¢, r) 
Shear J co-ordinates 

Refer to co-ordinates (x, 4, r) or (x, 4, z) 

Denote par t ia l  differentiation 3/Ox 

Refer to longerons (or stringers), frames, and total  shell 

Denote par t ia l  differentiation O/~t 

(~1, G, G) 

i l l ,  ~%, fla 

(~1, G z) 
R1, R~ 

A , B  

S u f f i x e s  1, 3, a 

General  curvil inear co-ordinates 

Quanti t ies  convert ing elements d~ to lengths 

Co-ordinates for general  shell 

Principal  radii of curvature  of surface z = 0 

Values of ~1, ~ at  z = 0 

Refer to (~1, G, G) or (~1, G, z) co-ordinates 
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Physical Constants 

E 

a ~ .  

V 

p 

Pz, p /  

5,1 ~: 

NOTATION--con t inued  

Youngs Modulus of shell material, assumed constant (differences could be 
incorporated in areas) 

E/2(1 + ~) (Modulus of Rigidity) 

Poissons ratio for skin material 

Density of skin material 

Densities of longerons, frames, variagle with r, but averaged over width 

Densities of longerons, frames, averaged over complete section 

Dimensions of Cylinder 

a Radius to skirt median 

h Skin thickness 

l Length of cylinder 

p Number of longerons ; longeron spacing = 2~a/ib 

q Number of frame lags in length / spacing = l/q 

bt, b: Net breadth of longerons, frames • functions of r 

At = f b~ dz (Area of longeron section) 
depth 

A/r) = f b~z r dz (rth moment 0f area about skin median of longeron section) 
depth 

A: = f b: dz (Area of frame section) 
depth 

A: (~) = f b:z r dz (rth moment of area about skin median of frame Section) 
depth 

m~ = f p~bz dz (Mass of one longeron per unit length) 
depth 

i / )  _ ~ o~bzz ~ dz (rth moment of mass of longeron per unit length about skin 
- -  J median) 

depth 

m: = p:b: ~ dz (Mass of one frame per unit circumference at skin median) 
depth 

I:  (') = f p:b:: z ~ dz (rth moment of mass of frame per unit circumference at skin 

depth median, about skin median) 
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N 0 T A T I  ON--continued 

Dimensionless Constants  

L~ = (-- 1) ~ h a ~  

F~ = ( _  1) ~qA/~) (1 --  v~) 
hla" 

Ho pml Zz Lo 
- -  2~pha -- p(1 --  v2) 

pI/'~ _~ ~t L~ 

q m 1 _  Pi ( F o -  F1) Go = phz p ( 1 - ~  ~) 

(-- 1)' qI/'~ es (Fr --  F,÷i) 
phla r - p ( 1  -- v 2) 

Note tha t  for r odd, L .  Fr, Hr, Gr are negat ive  when the  longerons/frames are outside the  skin. 

= h'~/12a ~ 

A,•, Defined above 

Miscellaneous 

Ko, KI, K~, K~ 

Ec] 

[B] 

Coefficients of frequency equation expressed as cubic in A 

Matr ix  of coefficients arising from strain energy 

Matrix of coefficients arising from inert ia  
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A P P E N D I X  I 

Surm~ary of Assu~ptiom 

1. The Cylinder Model. 

(i) I t  is a right circular cylinder wi th  constant  skin thickness.  

(ii) Tile stiffening consists of uniform equally spaced circular frames and uniform equal ly 
spaced s t ra ight  stringers. 

(iii) Frames  and stringers are both  a t tached  direct ly to the skin. 

(iv) The cylinder is closed at the  end by  thin  d iaphragms rigid in their  own plane bu t  free 
to warp, i.e., 

at ends v = w = 0 ; ¢~ unspecified 

u~ = 0 = zv~ ; vx, % unspecified. 

(v) The distances between successive nodal lines is large compared with  the  stiffener spacing. 

2. Analysis of Stress and Strain. 

(vi) Strains and displacements are small. This is essential in order to use a linearised theory  
of elasticity.  

(vii) Normals to the  middle surface of the skin remain normal  to it and s t ra ight  after straining,  
i . e . ,  

e23 ~ c31 ~ 0 . 

(viii) The effect of the  changes in length of the normal  are negligible, i.e., 

d 3  - ~ -  W . 

(ix) Tile normal  stresses are negligible, i.e., 

0"3 ~ 0 .  

For the  stiffeners we also neglect s t rain energy arising from 

( x ) . . .  shear in the  plane of the  skin 

(xi) . . .  torsion 

(xii) . . .  t ransverse stresses in the  plane of the skin. 

Assumptions (i), (iv), (vi), (vii), (viii) and (ix) are common to the usual theory  for the uniform 
cylinder. 

3. Comments.--Future Devel@ments.--Work is ill hand  or contempla ted  to relax some of these 
assumptions,  or, at least, to invest igate  their  importance,  as follows : 

(i) The effects of taper  on the cylinder will be considered. This is one reason for present ing 
Appendix II, para.  1 in terms of the general shell. 

(ii) Irregulari t ies of stiffening will give effects similar to those discussed in Section 5.1 and  
under  (v) below. 
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(iii) When frames are attached to the inside of longerons a separate degree of freedom is 
introduced, the circumferential frame displacements not being the same as those of 
the skin. A first approximation is given by dropping bending strain energy of the 
frames, but the problem can be isolated and the frames solved separately under 
arbitrary radial displacements. 

(iv) This is covered by Section 2.4.3. 

(v) First thoughts on this problem are given in Section 5.1. 

(vi) Strains are certainly small but radial displacements may be appreciable compared with 
the shell thickness. If displacements are not assumed small, then the strain expressions 
become non-linear in displacements. This was followed through for the uniform 
cylinder giving, rise to a very large number (over 300) non-linear terms in the strain- 
energy expression. I t  is hoped to apply a simplified procedure to the stiffened shell, 
retaining the most important  non-linear terms, so as to get some estimate of the 
magnitude of displacement at which the effects become important. This knowledge 
wil] be important  in any experimental work undertaken. 

(vii) The relaxation of this is mentioned in Section 5.2. 

(viii) to (xii) These effects are almost certainly small, except possibly (xi), but their import- 
ance can be estimated, at least for a given numerical example. 

I t  will be appreciated that  a number of these points require numerical investigation to establish 
orders of magnitude and importance of various factors. These would, in the first instance, be 
carried out by hand to obtain a general picture, but  any detailed investigation, particularly of 
coupling effects, or covering a wide range of mode numbers, could be programmed for a digital 
computer. 
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A P P E N D I X  II " 

T h e  Uns t i f f en ed  S h e l l  

t ha t  point  to the  Sr co-ordinates. 

1. General  T h e o r y  o f  T h i n  S h e l l s . - - S t r a i n  C o m p o m n t s . - - L e t  ($i, G, G) be a set of r ight -handed 
or thogonal  curvilinear co-ordinates. 

Let  71, Vy, w be factors convert ing distances along co-ordinates to lengths, thus an element  of 
length  is given by  

(ds) ~ = (~1 d h )  ~ + (7~ dG)  ~ + (~3 riG) ~ . . . . . . . . .  (II.1) 

In  general vl, vy, v3 are functions of $1. G, G. 

Let  G, G, G be the  three-components  of displacement  at any point  referred to the  tangents  at  

Then the  six components  of strain are given by  

1 ~(~1 (~2 3~i 38 971 
e l - -  q - + - -  

~]1 951 ~]1~]2 ~ 2  73fll 953 ' " " 

1 3~2 d8 372 ~1 3~2 
- + - - - -  q 

~ ~$~ ~2~3 853 ~17',. 351 ' " " 

1 9G ~1 973 ~2 9~a 
e 3 = ~ 353 + ~]8~]1 9~ I q , - .  T]273 9~2 

el~ --  ~1 351 + -- ' "" ~2 3G 

e23 72 352  -~- - - - -  ' " "  ~3 9G 

(II.2a) 

(ll.2b) 

(II.2c) 

(II.2d) 

(II.2e) 

(II.2f) 

See,  for example,  Wang  18, page 336, equations (12.45). These equations assume only small strains 
and  small displacements, as always assumed in the  linearised, theory  of elasticity and apply to 
any  t h r e e  dimensional body. 

We now change the  co-ordinate system to one which is suitable for describing a t h i n  shell. 

Let  the surface G = 0 be the  mid-surface of the  shell. 

Replace G by z, the normal distance from the mid-surface. 

-Thus ~3 = 1, for all $1, $2, z . . . . . . . . . . . . .  (II.3a) 

Since ($1, G, z) are orthogonal  co-ordinates then  G ---- constant,  ~1 ----- constant  mus t  be lines of 
curvature  of z : 0 ( theorem due to Dupin  ; see Love (Ref. 14), page 51). The z co-ordinates 
are s traight  lines and the  z co-ordinates through two adjacent  points on the  line ($2 ---- constant,  
z 0) mus t  mee t  at  the  centre of curvature  of tha t  line. I t  follows tha t  

~1 = A ( 1  - -  z / R  d . . . . . . . . . . . . . .  (II.3b) 
and  similarly 

~ = B ( 1  - -  z / R J  , • . . . .  . . . . . . . . . . .  (I1.3¢ 

where A, B are the  values of Vl, V~ at z = 0, and R1 R2 are the  principal radii of curvature  of 
z = 0, t aken  positive when the  cen t re  of curvature  has a positive z co-ordinate. 
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Changing the co-ordinates (~, ~, ,~ ) to  (~1, ~, z) and using equations (II.3), we can write 
equations (II.2) as" 

1 861 6~ 8rh A 

263 
g3 - ~ -  - ~  , . .  . . . . .  

( I I . 4a )  

( I I .4b)  

( I I .4c)  

~ 2 8  - -  
C ' 

~ 3 1  - -  

18da ~ ((~1) 

These equations are just as general as equations (11.2). 

( I I . 4d )  

( I I .4e )  

( I I . 4 f )  

Now ~1, 62, ~a are functions of ~1 ~, and z, but, provided the shell is thin, it is possible to make 
assumptions Which enable us to describe the displacements, and hence the strains, at any point 
in the shell in terms of the displacements at the middle surface, which are functions of ~1, ~2 only. 
We assume tha t  normals to the middle surface remain normal to the strained middle surface, i .e . ,  

shear strains e2a = e~l = 0 ,  . . . . . . . . . . . . . .  ( I I .5a )  

and tha t  changes in length of the normal are small compared with the radial displacements, i .e . ,  

normal strain e~ < w / h  . . . . . . . . . . . . . . . . . .  ( I I .5b)  

E q u a t i o n s  ( I I .4c) ,  (II.4e) and ( I I . 4 / )  then reduce to 

~ 3  ~ . . . . . . . .  (II.6a) 
8z< , • . . . . . . .  

Equations (II.6) can be integrated, substituting for ~1, ~ from equations (II.3b) and (II.3c), to 
give 

~1 Z 8 w . . . . . . .  ( I I . 7a )  
6 1 = ~ u  A S f l '  " . . . . . .  

~2 z 8 w ( I I . 7 b )  
~ 2 = ~ v  B S ~ '  " . . . . . . . . . . . . .  

~ = w ,  . . . . . . . . . . . . . . . .  ( I I .7c)  

where u, v, w are the displacements at the middle surface. 
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Substituting from equations (II.7) into equations ilI.4a), (II.4b) and (II.4d) we find 

e ~ -  u - -  + (II.8a) 
~1 ~1 A ~1 ~ ~IB ~I~B ~ ~1R1' " " 

e ~ -  v - -  + ( I I . 8 b )  
~2 ~ 2  B ~ 2  ~ ~-A ~ 2 A  ~ ~2R2' "" 

° 
e~2 ~1 ~ -- ~ B  ~ + . . . . . .  (II.8c) 

~ 2 ~ 2  A ~ 1 A ~ 1  ' 

which are the generally accepted expressions for strains in terms of displacements at the middle 
surface of the shell. 

The thin shell assumptions only enable us to define these three components of strain. The 
subsequent assumption that  ~ = 0 (equations (II.11)) effectively defines e3 in terms of e~ and e~ 
but it is not useful to write it out unless assumption ( I I . S a ) i s  being relaxed. 

2. Uniform Cylindrical Shell--Strain Comybonents.--We now apply equations (II.S) to the special 
case of the uniform circular cylinder. 

The co-ordinates (~, ~2, z) become (x, 4, z) 

and ~,  ~2 become 1, r(---- a + z) , 

A, B become 1, a, 

R~, R~ become oo, -- a. 

Equations (11.8) now become" 
e ,  = u ,  - z w , , ,  • . . . . . . . . . . .  ( I I . g a )  

1 w z 
e2 = ar  q r ar w , ~ ,  . . . . . . . . . .  ( I I . g b )  

e~2 = ~ u~ + ~ v, - -  z + zo,~ . . . . . . .  (II.9c) 

I t  is, of course, possible to simplify 'the preceding work by restricting ourselves to cylindrical 
polar co-ordinates from the start, but the steps in the argument are unaltered. 

I t  is useful to write the particular form of equations (II.7) for the cylinder, viz., 

~ = u - -  z w , ,  • . . . . . . . . . . .  ( I I . 1 0 a )  

r z 
~2 = a v - ~ w , ,  . . . . . . . . . . . .  (II.10b) 

~ = w . . . . . . .  , . . . . . . . .  ( I I . 1 0 c )  

Equations (II.~) are identical with those derived by Flugge ~. 

3. Uniform Cylinder.--Dynamic Equatiom.--Assuming plane stress in the shell we find 

E 
O l - - l _ ~ { e ~ +  ~e2), . . . . . . . . . .  ( II .11a)  

E 
o2 = 1 _ ~ { e ~  + ~e l } ,  . . . . . . . . . .  (II .11b)  

E 
¢~ = Gel~ = 20  + ~) el2 . . . . . . . . .  (II.11c) 

o~ - -  0 = ~ - -  ~ . . . . . . . . . . .  (II.1 ld) 
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The strain energy of the  shell can therefore be wr i t t en  

f'f f""l I l el ~ + e 2  ~ + 2 ~ e l e 2 + - l -  ~,e 2 
S 2 (1  - -  v 2) 0 o o - t , / 2  2 12 r dx d$ dz .  - . .  (II.12a) 

The kinet ic  energy is given by  

 f,f v T = ~  o o ~-~/2{~l"+~2+~2}rdxd~dz" (II.12b) 

After  subst i tu t ing from equat ions (II.O) and (I1.10) we can carry  out  the  z-integration to find 

a2u~, 2 + (% + w) ~ + 2vau,(v~ + w) + 1 --  v 2 (u~+av,) ~+ 
Eh__ ~'~) - /  ~ [a2w"~l (a2w'~ - -  2au~) - /  (w,~+ w~) 2 + 2~a2w,~(w~ --  v~) + S 

2a(1 
m 4 

d$ dx , . .  . .  

T - -  2 o o ${azb,(azb~-- 

where  fi = h~/12a 2. 

d x  , 

(II.13a) 

(n.13b) 

Logar i thmic  terms arising from in tegra t ion  of 1/r have  been expanded  as far as (h/a) 2. The 
next  terms in the  expansion are in (h/a) ~, i.e., fi2, so tha t  equat ions (II.13) can be considered as 
ma themat i ca l ly  exact  wi thin  the  l imitat ions of the  physical  assumptions in equat ions (II.5) and  
(II.11d). 

Equa t ion  (II. 13a) is ident ical  wi th  one 

We now assume the  displacements  ~co 

u =  U c o s ~  cos2-X 
t~ 

derived by Bleich and Di-Maggio u. 

have  the  form 

cos cot q~ cos n$ cos ;[ x 
a 

. .  (II.14a) 

v V s i n n 6  s i n i X  = - cos cot ---- q2 sin uS sin 2 __x a g '  .. (II.14b) 

w ----- W cos n¢ sin ~ x cos cot : q8 cos n¢ Sill A -x , . . . . . .  (II.14C) 
ot a 

where  ,l = - m z / a ;  m =  1 , 2 , 3 , . . . ;  n =  1 , 2 , . . . .  

Equations (II. 14) satisfy the b o u n d a r y  condit ions of th in  diaphragms,  i.e., 

v = 0, w = 0 at x = 0, l . . . . . . . . . . . . . . .  (11.15) 

They  are also self-consistent and  on subst i tu t ing into equat ions (II. 13) every t e rm in the in tegrands  
involves squares of circular functions only. As a corollary, if d isplacement  forms involving 
different circular functions (e.g., u ---- ql' sin n¢ cos ~x/a) were added  to equat ions (II.14), then,  
on subst i tu t ion into equat ions  (II.13) terms in, for instance qffl '  or q~q~' would also involve a 
funct ion such as sin n¢ cos n¢, and  would therefore vanish  on integrat ion.  Similarly, if we added  
te rms wi th  different values of n and  m, all the  result ing cross product  terms would vanish  on 
integrat ion.  We  are therefore justified in selecting equat ions (II.14) from the  complete Four ier  
type  expansions for u, v, w. 
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Subst i tu t ing from equations (II. 14) into (II. 13), in tegrat ing and re-arranging the terms we have 

{ ~ + 1 - - ~ n ~  } (1 ~) 2~,;~q~q~ 

z~Ehl + I n ~ + l - - ~  I 
S -- 4a(1 - -  ~,~) ~ ~ q~ + 2nq~q~ + q~ + , (II.16a) 

I ~ - ~ - ~  ~ 3 ( ~ _ ~ ) ~ 2 q ~ + 1  
+/~  ~ n q~ 4- {(1 - -  v),~n ~ - -  2X~}q~qa.+ 

• L+ (3 --  ~)~?nq~q~ + {(2 ~ + n2) ~ -- 2n ~ + 1} q~ 

4 q? + g? + g? + ~ 4 ~ 6 ~ +  ( z ~ + ~ ) ¢ ~ 2  " "" 
. .  (II .16b) 

We take ql, q2, qa as the generalised co-ordinates of Lagranges equations for free vibrat ions • 

d-? ~q, + ~q~ - -  O, r = 1, 3, 3 . . . . . . .  (II .17) 

Subst i tu t ing from equations (II. 15) and (II. 16) and mul t ip lying through by  2a(t  --  v~)/~Ehl cos ~ot 
we find, since ~ = --  o)~q,, 

[ -  a + ~ + ½(1 - ~)n ~ + 1(1 - ~)n2~ u + [ -  ½(1 + ~)~nlv  + 

+ [ ~  - ~ + ~{1(1 - ~)zn ~ - ~3}]w = o ,  . .  ( I I .18a)  

[ -  ½(1 + , ) ~ - l v  + [ -  ~ (1 + ~ )  + ~ + ½(1 - ~)~ + ~(1 - ~ ) ~ v  + 

+ [-- 2n/L~ - / n  + ½(3 -- v ) ~ n f l ] W  -= O, . .  (11.183) 

[ z ~  - ~ +/~{½(1 - ~ )~2  - ~ } ~ v  + [ -  2 ~  + ~ + 3(3 - ~ ) ~ v  + 

+ ~ -  ~{1 + (z~ + n~)~} + ~ + ~ { ( ~  + n2) ~ - 2n ~ + 1}~W = 0 ,  . .  (Ir.~Sc) 

where A = {pa~(1 --  W)o~) /E .  

Note tha t  it  is dangerous to s tar t  neglecting too m a n y  of the fi terms at this stage since m a n y  
of the  extensional terms cancel out in t h e  frequency equation. Equat ions  (II.18) yield the 
frequency equat ion 

. . . .  K ~  3 - -  K,A 2 + K i d  - -  K0 ---- 0 ,  . . . . . . . . .  (II. 19) 
where 

K o  = ½(1  - -  ~,)(1 - -  v " ) l  ~ + ½(1  - -  ~) /~{(Z~ + n") 4 - -  2 , ~  6 - -  6 ~ % "  - -  (8  - -  2 , ) t " n  4 + 

+ 2n 6 + (4 --  3~2),P -}- 3(7 3,)22rz 2 + r#}, : . .  . ,  . . . . . .  (II.20a) 

K1 = 3(1 - -  ,)(~2 + ~2)~ + ½(1 - -  ~)(3 + 2~)~" + 1(1 _ ~ ) ~  + ~{(2 - -  ~ ) ( ~  + ~ )~  + 

+ { - (3  - -  9 ~  + 2 , 2 ) 2  ' - -  (6  - -  ~ - -  ~2)2~n2 - -  3 ( 7  + 3 r ) n '  + 

+ {-(9 -- 4~ --  3~,2)2~ + ~(11 -- 7v)n~}, . . . . . . . . . . . .  (H.20b) 

K~ = 1 + 3(3 - -  , ) ( ~  + ~ )  + ½~{(S - -  ~)(~2 + ~ )~  + (~ - -  7~)~ ~ - -  

- -  3(3 + 5~,)n 2 + 5}, . . . . . . . . . . . . . . . .  (II.20c) 

K~ = 1 + ~ { ( ~  + ~2) + ~} . . . . . . . . . . . . . . . . .  (I1.20d) 
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Owing to the  neglect of shear deflections m a n y  of the  /3 terms in equations (11.20) are of 
doubtful  value. I t  is to be expected tha t  shear deflections would introduce terms of the  same 
order as those arising from rotary inertia, i.e., of order ~/~ or n2/3 t imes the  extensional terms. 
I t  seems then  tha t  the  present theory should be restricted to cases where shear deflections and 
rotary inertia are small, i.e., where 

(~ + ~)/3 < 1 . . . . . . . . . . . . .  (11.21) 

Equations (I1.20) can then  be simplified to 

K0 = ½(1 --  ~)(1 --  ~ ) ~  + ½(1 --  ~)/3{~ + # ) ~ - -  2n 6 + # } ,  .. (II.22a) 

K1---= ½(1 --  v)(~ 2 + n2) 2 + ½(1 -- v)(3 + 2v)a ~ + ½(1 --  v)n ~ , . .  (II.22b) 

Ks---- 1 + ½(3 -- ~)(~2 + n~), . . . . . . . . . .  (II.22c) 

K8---- 1 . . . . . . . . . . . . . . . . . . .  (II.22d) 

Had  the  assumption (II.21) been made  in equations (II.18), then  the  n 6 and n 4 terms in (II.22a) 
would have been omi t t ed  • these are essential when ~ and n are small (i.e., for a long cylinder 
with n and m fairly small). However,  all the  terms in equations (II.22), together  with some 
addit ional  small/3 terms, are obta ined from the  following simplified forms of equations (II.18) • 

[ -  ~ + ~2 + ½(1 - ~,)n~]u + [ -  ½(1 + ~ ) ~ ] v  + [ -  ~ ] w  = o ,  . .  (II .23a)  

[ -  ½(1 + ~,),~n]u + [ - / t  + n 2 + ½(1 - ~)a~]v + [n]W = 0 ,  . .  (II.23b] 

[-- ~,;t]U + [n]V + [-- /, + 1 +/3((22 + n2) 2 --  2n ~ + 1}]W = 0 .  . .  (II.23c) 

Thus we have  effectively neglected rotary inertia and all the bending terms in the  strain energy 
except those associated with W 2. 

As has been no ted  before (e.g., Arnold and Warbur ton  5, equat ion (II. 19) yields three solutions 
for 4,  corresponding to three  normal  modes with the  same nodal  pa t te rn  but  with different 
values of U/W and V/W. In  each mode one of the  three components  of displacement pre- 
dominates  and the  three  values of A are of different orders of magnitude.  We are principally 
interested in the  lowest root corresponding to p redominant ly  radial displacements. 

4. Approximation to Lowest Root of Frequency Equation.--A first approximation to this root 
is obta ined by  neglecting the tangent ia l  components  of inertia, i.e., omit t ing the  A terms in 
equations (II.23a) and (II.23b). The frequency equat ion then  becomes 

. .  . . . .  

A bet ter  numerical  approximat ion is actually obta ined by put t ing  

Ko . . . . .  (II.25) 
= K--~' . . . . . . . . . . .  

and it can be improved  by  i terat ion from equat ion (II.19), a single i terat ion giving quite good 
accuracy as pointed  out  by Arnold and Warbur ton  6. If the  convergence is slow it follows tha t  
the  assumptions of this theory  are no longer valid. 

5. Note on the Anomalous Variation of Frequency with Mode Numbers.--Equation (11.24) (or 
(11.25)) is adequate  to demonst ra te  the  variat ion of frequency with ~ and n • for instance, with 

constant  it indicates a m in imu m frequency at about  

= [~ [ /3 V ~ -  .]~/~ (I1.26) 
\ 1 - ~ !  ' " . . . . . . . . . . .  

26 



which agrees very well with the curves given by Arnold and Warburton. This curious effect, 
namely, that  an increase in mode number does not necessarily increase the frequency, was 
pointed out by them, but they only demonstrated it in theory by carrying out a large number of 
calculations. Equation (11.24) (or (11.25)) has the merit of summing up this behaviour in a 
compact form. The explanation (given by Arnold and Warburton) is also readily apparent 
from equation (I1.24) : for when n is small the first term in the numerator predominates (provided 

is such that  tile right-hand side of equation (11.26) is ~> 1) and we have 

A N ( 42 + # ) "  decreasing as n increases. 

Eventually the second term of the numerator takes over and we have A N/~ (2~ + # ) ' ,  increasing 
with n. 

The minimum of n is reached when the two termg are equal giving equation (11.26). I t  is clear 
from equation (II.24) that  when n is less than the value given by equation (II.26) stretching 
energy predominates and when it it is greater bending energy predominates. 

Remembering that  n is a positive integer, i.e., n ~> 1, equation (11.26) indicates the range of 
over which this reversal c a n t a k e  place. 
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A P P E N D I X  I I I  

Deta i l s  o f  A ~ a l y s i s  o f  St(,~remd C y l i n d e r  

(The analysis is described in Section 4) 

1. S t r a i ~  E m r g y  o f  L o ~ g e r o ~ s . - - I t  is reasonable to assume tha t  s~ and ~a are small so tha t  
longitudinal  stress and strain are related by  

~ = Ee~ . . . . . . . . . . . . . . . . . . . .  (III.1) 

and the  total  strain energy of one longeron is then  

dSz = ½-E e~b~dz dx  , . . . . . . . . . . . . . .  (III.2) 
o 

depth 

where bz = b read th  of longeron at any height  z, and strain energy of shear is neglected (this 
includes torsion). 

Subst i tut ing for e~ from equat ion ( I I . 9 a )  

f' ; dS, = ½E dx (u? - -  2zu~.w,, + w,,~)b, dz 
o 

depth 

where Al ~ ;. 
depth 

depth 

depth 

A/(2) 

b~ dz = area of longeron section, 

zbz dz = first momen t  of area of longeron section about  skin median,  

z2b~ dz  = second momen t  of area of longeron section about skin median.  

(111.3) 

Note tha t  A t (1> is only positive when the  longeron is outside the  skin. 

Assuming sinusoidal deflection forms we can subst i tute for u and w from equations (II.14) 
obtaining, for the r th  longeron, provided 2 # 0, 

El  { ~ ~ 43 ~ } 
d S , - ~  ~ A , q l  ~ -  2 ~ A ~ ( ~ ) q ~ q 3 + ~ A / ~ ) q 8 2  c o s ~ ( 2 ~ n r / p ) ,  . . . . . .  (III.4) 

where /5 = number  of longerons, r = 0, 1 . . .  ~ b -  1, the  longerons being assumed to lie at 
$ = O, 2 ~ n / p ,  4 ~ ¢ / p ,  . . . , their  finite widths being ignored. 

From equat ion (IV.3) we see tha t  
p - 1  

cos  ~ ( 2 ~ u / p )  = p/2  ; , ¢ o, p/2, p . . . .  
r=0  

= 0 is dealt  with separately. The other  singular values are excluded by the  assumption of 
closely spaced stiffeners, implying 15/2 > n. 

Hence equat ion ( I l l . 4 )  can be summed  over the  p longerons to give 

~ E h l  ~)  } 
S ~ -  4a(1 )~2L°q~2 + 223L~q~q3 + Z4L2q~2 ' . . . . . . . .  (111.5) 

where Lo pA~(1  - -  v2) . L~ PA/~)(1 - -  v~) " L2- -PA~(~) (1  - -  v~) 
- -  2~ah  ' = - -  2~a~h ' - -  2~a'~h 

Note  now tha t  L~ is (positive/negative) when stringers are (inside/outside) the skin. 
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2. Strain Energy of Frames.--Neglecting a: and z, we have 

O~s ~ E e  2 ~ . . . . . .  

dSz = ½E b:es~r d~o dz , 
0 

depth 

where b: = breadth  of f rame at  any  radius r = a + z. 

. .  ( I I I . ~ )  

. .  ( I l l . 7 )  

Subst i tu t ing  for es from equation (II.9b) 

dS: = ½E ff~ 
0 

where 

d$ f b : l lv ,  + W z I r ar W~ 2rdZ 
depth 

2 % 2 ( A f + l A / 1 ) ) + 2 v ~ w A / - - a V ~ W ~ , A / 1 ) +  

+ w 2 (A: 1 A (:) --  . . --  
\ 

1 A?>) 

1A "÷ )] 
a s f • . . 

( I I I . S )  

A: = f b: dz = area of frame section 
depth 

? 

A/~) = | zYb: dz = r th  moment  of area of frame section about  skin median. 
depth 

Note • for r odd, A/~  is negat ive  when frame is inside skin. 

Assuming deflection forms (II. 14), for the r th  frame, provided n ~ 0, 

n s (A: + 1_ A (:5 n~ a : ]q22+2n(  A : +  

=E l (  1A:(I~ + ) + 2 n S (  A j : ) I  d S : = ~  + A : - -  a . . .  a 

+ # ( 1 - A / ~ )  - " " ")1 q3~ 

Where  frame-spacing = !/q, 

r = (0), 1, 2 . . .  ¢ - 1, (q). 

From equat ion (IV.7) 

3 \qa / q 

1 \ 
A/:)) q~q8 + 

1 A:(S ) + .) + 
a s • . 

m ~ q ,  2 q . . . ,  

{r~l 1 sin" ~ : "  . .  (111.9) 

where again the singular values are excluded by  tile assumpt ion of close spacing which implies 
q>> m. 

The l imit ing case Z = 0 is dealt  wi th  separately.  - ,  
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Thus equation (III. 14) can be summed over the frames to give 

Sj -- 4a(1 -- v 2) | [+ {(Fo + F~ + . . . )  -- 2n~(F~ - /F~ + . . . )  + n~(t,~ + F3 + ...)}q3 ~j , (III.~0) 

where • 
F o -  qA~(1  - -  e ) .  F~  = (-- 1)~ qA/*)(~ - -  *~) 

hl ' a~hl 
Note now that  for r odd, F, is (positive/negative) when frames are (inside/outside) the skin. 
The series of F, in the q~ term of equation (III. 10) will generally converge rapidly, probably only 
two terms being required. 

3. Total Strain Energy of Shell.--The strain energy of the skin is given by equation (II.16a). 

Adding equations (II.16a), (111:5) and (II.10) we have 

~{22(1 + Lo) + ½(1 -- ~,)n2}q~ ~ -  (1 -+- v)~nq~q2- ] 
/ / ~Ehl [ - -  2{vZ -- ~ L~}q~q~ + {n~(1 + F0 + F~) + 1(1 -- v);~}q~ ~ + 

S, | (III.11) 4a(1 [ +  2{n(1 + F0) -- n3F~}q~q~ + {(1 + Fo + F~ + . . . )  -- 
p Q ¢ 

! 
[_-- 2n2(F~ + F2 + . . .) + #(F~ + F3 + . . . )  + ~L~}q~ 2 J 

The bending energy of the skin has been omitted since we are concerned with relatively heavy 
stiffening and can assume 

Most of the skin bending terms appear in direct company with these quantities : the others are 
of little importance even for the uniform shell. 

4. Kinetic Energy of Longerons.---The kinetic energy of one longeron is given by 

tiT, = ½ p,b,{3? + ~ -V 33 ~} dz dx ,  . .  . .  
o 

depth 

where p ~bz is the mass of the longeron per unit depth and length. 

Substituting for the ~ from equations (II.10), 

where 

depth 

= i f  dx 
° _ ( l I , ' l ' + l I , 2 , ~ i j ~ + I y ,  w,~+ 1 

. .  ( 111 .13 )  

(111.!4) 

(111 .15 )  

Iz< 1) _~_ 

Ii(2) = 

depth 

f pzb~ dz = mass of longeron per unit length, 
depth 

f zpzb~ dz 
depth 

f z~p~b~ dz = moment of inertia of longeron per unit length about skin 
median. 
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If we average out the  rivets, etc., give to a mean  densi ty  ~ z, then  

rn~ ~ ~zA~ ; I/~> --- ~zAz (~) ; I~ (~> ~ fizAz(2) . . . . . . . . . . .  (III.16) 

Subst i tu t ing from deflection forms (II. 14) into equat ion (III. 15), 

m~qg --  2 a2 I~(~>q~q8 + -~ I y>~? + m~q3 cos ~ 2~zn + -  

l l 2 I  (~) 1 dT~ = ~ + . (m~ + a ~ + ~ I , ( ~ ) ) ~ +  

- -  2 n  [ !  / (1) I @  ) q 'q '  "-[- 'J~2 T ('),,-[ 9,1 s in  2 ( ~ ' ~ )  ka ' a -~ I / '> /  a ' "  ~', ) 

As with the  strain energy we can sum over the longerons to find, finally, provided n # 0, 
a # o ,  

(III.18) 

where 

2zcahp ' 2z&pa ~ ' - -  2zchpa ~ 

when densi ty  is averaged out to tsz, 

,,Sz Lo ; H1 ----- t~ L1 ; Ho - -  p(1 - : )  p(1 - : )  

Note • signs of I [  z) and H1 are as for A / )  and L~. 

H~ " ~l L2 
p(1 --  v ~) " 

. . . . .  ( I I1.17)  

. . . .  (1II.19) 

where - 

5. Kinetic Energy of Frames . - -The  kinetic energy of one frame is given by  

t iT:  = ½ p:b:{31 ~ + ~? + ~?}r de dz . . . . . . . . . . .  (111.20) 
0 depth 

where p)b/. is the  mass of the frame per uni t  depth  and per uni t  circumference at radius r = a + z. 

Subst i tu t ing for the ~ from equations (II.10), 

depth 

1 ~ ~ f eL2 : ~ J ro mf 2f/lYtwx ~- //.(2)i0)x 2 -~ (~l~f -~- ~- .[ (1) _]_ __ @ d ¢ ,  (Ill .22) 

1_ I (') ~ I i(~)z~, . m:~2 - (1Ul>+a2  : ] ~ z ~ +  + 

f r d  z m: = p:b: 
depth 

f r z d z  I/'(1) = 0[b/' a 

depth 

depth 

= mass of frame per unit  circumference at the  reference surface. 

= (total mass of f rame)/2~a,  

Bo th  per unit  circumference at the  reference surface. 
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If the  densi ty is averaged out to p~ then  

÷ I , 

1 A / a /  . 
I:(~) -"- #: lA:(~) + a I 

. . . . . . . . . . . . . .  (iii.2a) 

Subst i tut ing from deflection forms (II.14) we obtain an equat ion similar to equat ion (111.17), 
which can then  be summed  over the  frames to give, finally, provided n ~ 0, X ~ 0, 

~ h l a  IGoq~ ~ + 2 ~ G 1 ~  + (Go = 2 <  + G~)~" + ] . . . .  (111.24) 
T ~ -  4 L+ 2~(~ - ~)~q~ + (~o + z ' ~  + ~ ) ~ '  "" 

Go qmI " G, - -  qI/~) " G~ qI/~) 
- -  hlp ' - - h l a p  ' - -  hla~p " 

where 

#s ( F ~ -  F2)" G ~ -  #~ ( F ~ -  Fa). (III.2S) p(1-- e) ' p(1 e) 

W h e n  density is averaged to #I, 
Go -- , , ( 1 -  ~2) 

6. Total Kinetic Energy of She l l . - -The  kinetic energy of the  skin is given with sufficient accuracy 
by equat ion (II.16b). Adding equations (II.16b), (III.18) and (111.24) we have 

xphla 
T , - -  4 

+ ((1 + Go + Ho) -- 2(G~ + H~) + C~ + H~)}~? +1  " 

+ ((1 + Co + ~0) + (4~+ ~ ) ( ~  + H~)}~ 2 

. .  (III.2G) 

A crude approximat ion is given by 

T , -  =phla4_ (1 + Go + H.)(~# + #2 + ~ )  . . . . . . . . . . . .  (Ill.27) 

This assumes, for instance, tha t  

(~ + #)(G~ + H~) < 1 + Go + H o , .  . . . . . . .  (III.28a) 
which is equivalent  to 

(x ~ + ~¢~)(F~ ~- L~) < 1 . . . . . . . . . . .  (III2Sb) 

7. The Dynamic  Equat ions. - - -We write Lagrange equations in ql, q2, qa " 

e ( TQ 0 ---- 1, S, a . . . . . . . . .  ( I l i . 29 )  

d .  
Now dt qY = ~Y = --  oPq~ = --  co 2 cos cot (u, v, or w) , 

so if we subst i tute  for T, and S~ from equations (III.11) and (1II.24) and mul t ip ly  through by  
2a(1 -- v2)/=Ehl cos cot we can write the  three resulting equat ions in the form • 

I t -  ~BI = o ,  . . . . . . . . . .  . .  (111.3o) 
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where A = pa2(1 - -  v ~) co~/E, and where [C] and [B] are square matrices defined by 

[z(~ + Zo) + ½(~ - ~)~ ,  
/ 

E C ]  - 1 -  ½(1 + ~)~n , 
/ 

L -  '~. + ~t3F1 , 

- -  v,a + &L1 ] 

J ~(1 + Fo) - ~ F ,  

(1 + Fo + . . . )  -- gnU(F, + . . . )  + # ( G  + . . . ) +  a'L~ 

- ½(1 + , ,)an 

,~ ' (1 + Fo - F 1 )  -]- ½(1 - -  v)~, ~ 

n(1 + Fo) --  n3F, 

[B] -- 

1 +-Go + Ho, 

U.(G + H,) , 

j 

(1 -t- Go + Ho) --  2(G~ + H~) + (G~ + H~), 

z (G + H~ -- G -- H~) 

~(G + H~) -] 

~(G + H1 - G -  H~) J 
(1 + Go + Ho) + (,~2 _/#)(G~ q- H~) 

The eliminant of equations (III.30), i.e., 

[c - d.8] = 0 

can be expanded to give a cubic in A, 

K3A 3 - K~A ~ + K1A - -  Ko = O , 

giving three real positive roots,  in general. 

. . . . . . . . . . . .  (lll.31a) 

. . . . . . . . . . . .  (III.31b) 

After substituting these roots back in equations (III.30) the mode shapes can be determined, 
as defined by the ratios U / W ,  V / W .  

8. The Generalised M a s s . - - T h e  generalised mass M is defined by 

T, = ½M~32 . . . . .  

Comparing equations (111.32) and (III.26), we find 

M --  ~phla 
2 

since, e.g., 

(1 + Go 

+ {(1 + Go + Ho) --  2(G~ + H~) + (~1 ~- ,i~-/2)} + 

+ 2n{(Gt + H~) - -  (G~ + H~)} ( V )  + 

+ {(1 + Go -t-- H o ) +  (P + n~)(G2 + H~)} 

~_j = --  co U sin cot U 
~ --  cow sin c o t -  W "  
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A P P E N D I X  IV  

lo 

w h e r e  k = in t ege r  or  zero, 

r, s = in tegers .  
S_l ( ; )  

Now ~ oos k~ = ~ E exp (ik~ r/s), 
r=O r=O 

Evaluat ion of Summat ions  over Frames and Longerons 

Two Prel iminary  Summat ions . - -F i r s t  we e v a l u a t e  ~ cos ha , 
r=0 

i = % / - -  1 .  

(0 Simi la r ly  ~ sin k~ cos (kz/2s) - -  cos (2s - -  1 kz/2s) 
, = o  = 2 sin (k~12s) 

cos (k~/2s) --  cos (k~) cos (kz/2s) + sin (k~) sin (kz/2s) m 
- -  2 sin (k~/2s) 

cos (k~/2s) 
= {½ - -  ½(-- 1)~} sin (k~/2s)" 

B u t  w h e n  sin (k~/2s) = 0, sin (k~r/s) = 0 • hence  

l 
0 k even'  

s--1 / er\ 

Z sin(k  )= cos(k /2s) . . . .  

,=o t, sin (k~12s) ' k odd  

2. Summat ions  Ar i s ing  f rom Single Sinusoidal  Modes. 
L o n g e r o n s  

W e  h a v e  fl longerons  spaced  a t  ¢ = 2=r/p, r = O, 1, 2 . . .  p - -  1. 
p - 1  p--1 
Z c°s" (2~nr/p) = ½ ~ {1 + cos (4~nr/p)} 
r=O r=O 

p--1 
_ _  1 (4~rnr/p). - ~ ~ + ~,  cos  

r=0 

34 

. .  ( IV. l )  

. .  (iv.2) 

0, k even  b u t  ~ 0, -¢- 2s, ! 4 s . . . ~  

~ i  ( : )  ,= c°s  k ~ v  = s, k = 0 , - C - 2 s , ~ 4 s . . .  
b ~ 

1, k odd  

B u t  th is  is a geome t r i c  progress ion  wi th  s t e rms ,  c o m m o n  ra t io  of exp  (ika/s) a n d  first t e r m  ---= 1 

s--I ( ~  ~_) 1 - -  e x p  (i/~7~) 
There fo re  ,:o ~ cos ~ = N 1 - -  exp (ik~/s) 

= ~ exp ( - -  ik=/2s) - -  exp  (i2s - -  1 k=/2a) 
exp  ( - -  ik=/2s) - -  exp  (ik=/2s) 

- -  sin (k=/2s) - -  sin (2s - -  1 k=/2s) 
7------ 

- -  2 sin (k=/2s) 

sin (k~) cos (k=/2s) - -  cos (k~) sin (k~/2s) 
= -[- } + 2 sin (k~/2s) 

= + ½ - ½ ( -  1),0,  

p r o v i d e d  sin (k~/2s) ~ O, i.e., k :/: 0, 2s, 4s . . . . .  

B u t  if sin (kx/2s) = O, t h e n  cos (k~/s) = cos (k~r/s) = 1 a n d  hence  



C o m p a r i n g  th is  las t  s u m m a t i o n  w i th  e q u a t i o n  ( IV. l ) ,  k = 4n, s = p, we see t h a t  

Similar ly ,  

Also  

~1 (~#, ~ 0  ½~, p...} cos ~ ( 2 ~ n r / p )  = ' . 

,=o / P ,  ~ = 0 ,  }p,  p 

sin" (2anr/p) = ' . 
~=o , ~ = o ,  ½p, p 

sin (2xnr/p) cos (2~nr/p) = ½ sin (4~nr/p).  

C o m p a r i n g  w i t h  e q u a t i o n  (IV.2), w i t h  k = 4n, we  see t h a t  
p--1 

sin (2~nr/p) cos (2~nr/p) = 0 for all n . . . . .  
r = O  

F r a m e s  

W e  h a v e  f r ames  s p a c e d  a t  i n t e rva l s  of l/q, i.e., 

a t  x l r = - ,  r = l ,  2 , . . . q - - 1 .  
q 

T h e  add i t i on  of  r = 0 will no t  affect  t he  s u m m a t i o n .  

cos' m~ ~ = -~ + ~ cos 2m~ ~ . 

C o m p a r i n g  w i t h  e q u a t i o n  ( IV. l ) ,  w i t h  k = 2m, s = q, we see t h a t  

S imi la r ly  

Also 

sin 

cos 2 m~ q,  m ¢ O, q,  2 q . .  
tq , m = 0 ,  q ,  2q 

~ s i n  e m~ = 
,=o 0 , m = O ,  q ,  2q 

r r 
~-~ ~ sin 

C o m p a r i n g  w i t h  e q u a t i o n  (IV.2), w i t h  k ---- 2m, we see t h a t  

sin m~ cos m~ = 0 for  all m . . . . .  

(iv.3) 

(IV.4) 

(IV.5) 

(IV.6) 

(IV.7) 

(IV.S) 

3. Coupling Terms between D(fferent Sinusoidal Modes. 

L o n g e r o n s  

e.g., t e r m s  w h i c h  w o u l d  arise f rom 

cos 2~n - + - ~ s i n  2~n . 

N o w  

( f ) ( )  ( ) ( ) COS 2 ~ 1  r r r r cos 2 ~ , }  ½cos 2~E + ~2~ + }cos  2 ~ E -  ~2}. 
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~ ( ; )  ( ~ )  Therefore ~ cos 2~nl cos 2~n,~ 
r = 0  

l 
0 , n ~ ± ~ s # 0  , ± p ,  

= ½/5, ( ~ + ~ s )  o r ( ~ - ~ ) = 0  , ± / 5 ,  

t/5 , (ca1 q- n=) and (n, -- ns) -- 0,  ± / 5 ,  

! 2P. !} 

± 2/5 . . . . .  

± 2/5.. 

(IV.9) 

Also sin (2~nlp) sin (2=n2 ; )  

-- ~ cos 2=~ q- ns q- ½ cos 2=}~'i -- ns . 

~-~ ( ~ )  ( ~ )  Therefore ~ sin 2~nl sin 2~ns 

i '  -~+~s#o , +p, = p ,  ( n , + ~ s )  o r ( ~ - ~ ) = 0  , ± / 5 ,  

, (rtl+ns) a n d ( n l - - m . ) = 0 ,  ±15,  
+2/5 . : .  (IV. 10) 

t 2P 

al~o ~in(~.;) ~o~( ;)~.= 
( - - ~ )  ( ;) __-- ~i sin 2 ~  q- ns q- ½ sin 2z'nl -- n2 . 

Therefore ~ sin 2~nl cos 2~ns 
r = 0  

= 0 for all Tat, f t  s . . . . . . . .  : . . . . . . .  (IV.11) 

Equations (IV.a), (IV.4), (IV.5) are special cases of (IV.9), (IV.10), (IV.ll). 

Frames 

e.g., terms which would arise from 

~i l~co~ (o~;) + ~ n  (o~)I ~ • 

N O W  C O S  ~/;$i~ C O S  ¢4~2~ 

-~ ( ~) - ~ c o s  m l + r ~ , ~ =  + ½  C O S  ( ~) ~i -- ~ft27~$ . 

q l (~) 
Therefore ~ cos ml= 

ml ± m2 even but # 0 

(ml + -~s) or (.~1 - ms) = 0 , 

(ml -[- ms) and (ml -- ms) = O, 
m, ± m2 odd 
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q- 2q, 

± 2q, 

-I- 2q, ! 4q. .  i t  
± 4q 

+ 4q 
(Iv.m) 



Similarly ~i  sin (m~ ~) sin (m~ q) 

= q, ( m ~ + m ~ ) o r ( m ~ - - m ~ )  = 0  , - t -2q,  ~ 4 q . .  . (IV.13) 
, (m~+m~)and(m~--m2) = 0 ,  ± 2 q ,  1 4 q . .  

and r~0 sin ml~ cos. m ~  

0, ml -t- m~ even 

= cos (m~ + m~ ~/2q) + 

ksin (m~ + m~ ~/2q) 
c o s  (m~ - m 2  ~/2q) 
sin ( 'm~-  m2 ~/2q)' 

m~ -t- m~ odd} " 
(IV.14) 

Note: This last summation can only occur in a very long cylinder where the end conditions are 
virtually indeterminate so that we can have displacements varying as  either sin (max~I) or 
cos (m~xff). 
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' x 

6:3;w 

U~V~W are at  r----o~ i.e, z = O  

6t, 62,83 are at any r 

{a) Polar  Coord ina tes  (b) D e / l e c t i o n s  

FIGS. la and lb. Co-ordinate system. 

!\ /'~', /1 ',X / \ /,' 

Section XX looking 
in ÷re x direct ion 

w =  qac°s  n ~5 sin m r r x  

FIG. 2. 

- ~ -X  

J I l . ~ j ~ o d o l  ,i.es 

t / 
i 

J i 
f . . . .  
I 

I 

LX . . . . .  

; ri - -  3 j  m = 4 

Typical radial deflection form. 
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