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Summary. Part I is an introduction to an empirical and theoretical study of two-dimensional aerofoil flows 
which include a limited region of supersonic flow terminated by a shock wave. A brief review of theoretical 
studies of the problem is followed by a detailed analysis of the flow pattern and associated pressure distribution. 
A scheme for the analysis of measured pressure distributions is thus derived, and this is used in Part II of the 
present paper to construct a semi-empirical method for the estimation of pressure distributions. The implica- 
tions of the results established by this analysis are discussed in relation to the development of transonic 
aerofoil flows. In Part III the results of an integral solution of the transonic flow equation are examined, and 
modified on the basis of the analysis of Part II. 

PART I 

INTRODUCTION AND QUALITATIVE ANALYSIS 

1.1. Introduction. Theoretical methods for the estimation of the two-dimensional inviscid flow 

about aerofoil sections have existed for many years. The incompressible flow about simple profiles 
can be calculated exactly, and useful approximate solutions for the compressible subsonic flow about 

geometrically defined profiles have been developed. However, in these compressible-flow methods 

a solution is obtained only by recourse to approximations to the governing equation which destroy 

the feature that is essential for the representation of mixed subsonic/supersonic flows, i.e., the change 

from an elliptic form to a hyperbolic form of the equation when the local speed passes from below 

to above the local speed of sound. This change in form is associated With a non-linear term in the 
equation, which if retained leads to great difficulties in the derivation of an analytical solution to 
even the most simple transonic flows; in this paper an alternative approach is suggested. This 

approach is based on approximations that appear sensible from the physics of the flow, rather than 
to facilitate a mathematical analysis of the flow equations. 

The flow over an aerofoil surface in which a local region of supersonic flow terminated by a 
shock wave occurs is of great importance. A large volume of experimental data for this type of flow 
has been obtained, and it has been found that the development of supersonic-flow regions leads to 

* Published with the permission of the Director, National Physical Laboratory. 



significant modifications to the form of the pressure distribution over an aerofoil. One resuk is an 
increase in pressure drag due to the development of a low-pressure supersonic region behind the 
crest of the aerofoil surface. It is in this way the energy losses through the shock wave which 
terminates the supersonic flow are transmitted to the aerofoil surface. Measured pressure distributions 
of this type are shown in Fig. 1. A feature of transonic aerofoil flows of equal or greater importance 

is the effect on the boundary layer of the rapid pressure rise through the shock wave. With quke 

moderate shock pressure rises this can lead to separation of the boundary layer and hence to severe 
changes in loading, wkh the consequences described in Ref. 1. The inherent instability of the 

separated }tow results in unsteady phenomena in flight such as buffeting. The study of shock- 

induced boundary-layer separation, and methods of avoidance or prevention, has been a major 

aim of high-subsonic experimental work. 
Recently further consideration has been given to the design of aerofoil sections to operate at 

high-subsonic speeds. It has been suggested that it may be advantageous to design for pressure 
distributions which include limited supersonic regions. To achieve useful gains this requires that 

no significant loss of leading-edge suction occurs, 'and that the shock wave terminating the local 
supersonic flow forms in the neighbourhood of the aerofoil surface crest, and is not strong enough to 
induce boundary-layer separation. To take advantage of these possibilities and also to assess aerofoil 
characteristics in off-design conditions, a knowledge of the factors which affect shock-wave 
movement and strength is desirable. 

The objects of the investigations described in this series of papers are to assess the usefulness of 
existing theoretical methods for the prediction of transonic pressure distributions, and to suggest 
improvements, and to analyse transonic experimental data to establish an alternative empirical 
method for the predict:ion of pressure distributions. It is then shown how theoretical methods might 
be improved by the use of the empirical relations established. 

A brief review of theoretical methods for the estimation of mixed subsonic/supersonic flows is 
given below, and in Section 1.3 a discussion of the flow pattern and associated pressure distribution 
is given. This is followed by an outline of the approach used in Part II for the analysis of measured 
transonic pressure distribtitions. Part II also includes a discussion of the physical mechanism 
governing some aspects of the development of transonic flows, based on the results of the analysis. 
Part I I I  contains a summary of the most promising analytical method, a discussion of solutions that 

have been calculated, and the relation of these to the results-of Part II. 

1.2. Theoretical Methods. Many mathematical studies of transonic flow have considered the 
flow of a sonic stream past a simple aerofoil section. In this problem a shock wave occurs only at the 
trailing edge of the profiles considered and need not be treated explicitly in solutions for the pressure 
distribution over the profile. The methods chiefly used in the analyses are transformation to the 
hodograph plane and the method of characteristics. Hodograph solutions cannot be easily obtained 
for arbitrary geometric boundaries, and have mainly been used to study the flow past flat-plate 
and wedge profiles. The method of characteristics can be used to  calculate supersonic-flow develop- 
ment about curved surfaces, but requires a knowledge of the sonic line (or some other supersonic- 
pressure boundary) as a starting point in the calculation. However, the determination of this itself 
requires the analysis of a mixed flow region. Neither of these approaches is suitable for the 
estimation of transonic flows about round-nosed aerofoil sections, even with a free-stream Mach 
number of unity, though useful solutions have been obtained for simple profiles ; these are discussed 



in Ref. 2. Mathematical methods directly related to the calculation of transonic flows with high- 
subsonic free-stream conditions and arbitrary aerofoil profiles are considered below. 

The shock waves which may occur in the flow of a high-subsonic stream about an aerofoil are 

usually not strong enough to invalidate significantly the assumption that the flow is irrotational and 
isentropic. It is thus permissible to consider a velocity potential qs, and it can be shown that for 
two-dimensional flows ~ must satisfy the following equation 

(a ~ - ~£ ' )~= + (a 2 - % ~ ) ~  - 2 ~ ¢ ~  = 0. (1) 

Suffices denote partial derivatives; the local speed of sound, a, is a function of the free-stream 
parameters, and q5 and ~v" It is convenient to introduce a perturbation velocity potential ¢, where 

¢ = ¢ -  u0x. 
If the usual thin-wing-theory assumptions are made, and terms higher than the second order 
neglected, equation (1) becomes 

M0 e 
(I - MoDe= + - Uo + + - (2) 

To represent the particular feature of transonic flow it is only necessary to retain the terms in 
¢~¢~ of the right-hand side of equation (2), leaving 

(1 - MoD¢   + Mo + 1 
= Uo (3) 

Minor differences in the perturbation analysis can lead to different expressions for the coefficient 
of the non-linear term in equation (3), a point which is discussed in detail in Ref. 3. 

Even in the much reduced form given by equation (3) the compressible-flow equation is not 

amenable to direct analytical treatment. Moreover, equation (3) is only valid in regions where the 

necessary derivatives are continuous; therefore if shock waves are to be considered a further relation 
is necessary. It is also of course necessary that a solution must satisfy the boundary conditions of a 
given flow. 

An alternative derivation of the exact compressible-flow equation is given in Ref. 4 and is possibly 
a more useful form to that given above for the application of numerical methods. 

Two distinct approaches to the solution of the non-linear partial differential equation for the 
flow about aerofoils have been adopted. Attempts have been made to calculate solutions of the 
exact equation by using the methods of numerical analysis, notably relaxation. References 4 and 5 
are examples of this approach, nei ther  of which appears wholly satisfactory. Emmons's 6 (1946) 
earlier work has, however, been extremely valuable in throwing light on the flow in the neighbourhood 
of a normal shock wave adjacent to a solid boundary. A serious drawback in attempts to derive 
solutions to the exact equation is the amount of computation required. It is possible that useful 
results could be obtained if electronic computors can be used to perform the relaxation process. 

The alternative approach to the calculation of transonic flows is that based on approximations to 
I 

the equation to facilitate the use of analytical methods. It is essential in this approach that tile mixed 
elliptic/hyperbolic nature of the  equation is retained. Approximations introduced to linearize the 
equatidn, or to reduce it to a set of linear equations do not give a proper representation of the 
significant differences in stream-tube behaviour in subsonic and supersonic flow. The well-known 
methods of expressing the velocity potential as an expansion in Mach number or aerofoil thickness 
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are of this kind, and although they lead to solutions which include local supersonic regions, they are 
physically unreal. The same criterion applies to the method of solution of the transonic-flow 
equations suggested by Meksyn 7 (1953) (see Ref. 8); it is interesting to note that this method is 
shown to be equivalent to the M 2 expansion method by Imai 9 (1957). 

An analytical solution of a simplified form of the transonic-flow equation in which the essential 
quadratic nature of the equation is retained has been developed by Spreiter and Alksne ~ (1955); the 
analysis follows that of Oswatitsch 1° (1950) and Gullstrand 11 (1952). The differential equation 

governing the flow is converted into an integral equation to which an iterative solution is obtained. 

Solutions for mixed subsonic/supersonic flows including shock waves can be obtained, but approxi- 

mations introduced to simplify the analysis and computation still prevent an exact representation of 

the physics, particularly in the neighbourhood of a shock wave. However, Spreiter's method appears 

to be by far the most promising theoretical approach to transonic-flow problems, and the analysis 

of results obtained by a modified form of it is the basis of Part III  of the present paper. 

1.3. Features of the Transonic Flow about an Aerofoil. The type of flow considered is that for 

which the free-stream Mack number is such that the flow over part of the aerofoil surface is super- 
sonic. When the maximum local Mach number exceeds about 1.10 it appears that the downstream 
boundary conditions can only be satisfied in a real viscous flow by the termination of the supersonic 
region by an abrupt pressure rise to subsonic conditions. Although this type of flow is certainly a 
possible theoretical inviscid flow, no entirely satisfactory explanation of its predominance over the 
sometimes possible smooth supersonic deceleration has yet been found; a number of interesting 
hypotheses are discussed in Ref. 12. If mixed subsonic/supersonic shock-free flows can be shown to 
be inherently unstable, the presence of a boundary layer in real flows could well provide a triggering 
mechanism to induce collapse into discontinuous flow. In this paper it is supposed that all limited 
supersonic regions terminate in shock waves. The shock-wave position must then be such that the 
pressure on the aerofoil surface immediately upstream of the shock (Pl), and that immediately 
downstream (P2), which must be related via the flow over the rear of the aerofoil and the wake to 

the downstream boundary conditions, are such that the ratio P~/Pl satisfies a consistent relation. 
This condition is discussed in detail in Section 1.3.2. 

The flow of a high subsonic stream past an aerofoil is illustrated in Fig. 2a, and the associated 
pressure distribution in Fig. 2b. The upper-surface flow is of the mixed subsonic/supersonic type, 
including a shock wave, considered in this paper. Discussion of this flow can conveniently be 
divided into three parts; the subsonic and supersonic region upstream of the shock wave, the 
shock wave, and the subsonic flow downstream of the shock wave. 

1.3.1. Flow upstream of shock wave. A typical family of pressure distributions with free-stream 
Mach number (M0) as parameter is shown in Fig. 1. It is seen that once a region of supersonic flow 
has developed further increase in M 0 leads to a downstream movement of the shock wave and 
extension of the supersonic-flow region, but to only small changes in local pressure ahead of the 
shocks e. This is the well-known 'Mach number freeze' phenomenon discussed in Ref. 2. It is shown 
in that paper that the pressure distribution over an aerofoil surface at M 0 = 1 can be related to the 
surface slope and to tile leading-edge geometry, for these determine the sonic-line shape and 

* For all aerofoil at incidence there may be large changes in pressure near the leading edge with changes in 
M o over a limited range above the critical Mack number. 



following supersonic-flow development. For high subsonic values of M 0 the development of the 
supersonic region must also be determined by these parameters, as is evidenced by the occurrence 
of the Mach-number freeze. It therefore seems reasonable to attempt to relate supersonic fl0w 
occurring at high-subsonic speeds to the corresponding 'sonic-range' flow. The introduction of 
some parameter to account for changes in sonic-line shape will clearly be necessary, as will the 

representation of the overall flow field about different aerofoil3, as this is subsonic. The analysis of 

measured local supersonic pressure distributions in Part II is based on this approach. 

1.3.2. Shock pressure rise. It is noted above that the pressures immediately upstream and 

downstream of a shock wave must be related in some consistent manner. This relation can be shown, 
by analysis of the stream tube adjacent to the surface, to be the classical normal-shock pressure-rise 

equation ~. Now in addition to the complexity of the transonic-flow equation discussed in Section 1.2, 

a further problem in the correlation of theoretical and experimental studies of transonic flow is the 
finding that measured shock pressure rises are invariably less than those given by the shock equation. 

Moreover, as some typical results given in Fig. 5 show, they are not found to follow any definite 
trend. Fortunately the detailed numerical solutions for mixed flows in-a hyperbolic nozzle obtained 

by Emmons 6 suggest an explanation of the discrepancies. Emmons found that if he used the normal 
shock equation to determine the pressure change through a shock, the predicted pressure rise was 

followed immediately by "a pressure fall. He explains this behaviour by considering the effect on the 
pressure gradient normal to the surface of applying the shock relation along a line normal to the 
streamlines. It is clear that a reversal in direction of the normal pressure gradient must occur, and 
hence there must be a discontinuity in surface curvature at the shock position. This discontinuity 
in surface, or more correctly, bounding streamline curvature, would be expected to lead to a local 
pressure fall in a manner analogous to the incompressible flow over a curvature singularity. In the 
inviscid-flow problem postulated by Emmons, the pressure changes were found to occur in a very 
small region and led to solutions in which the shock pressure rise appeared to be less than that 
given by classical theory. From the analogy with the incompressible flow past a boundary curvature 
singularity the streamwise extent of the pressure changes would be expected to depend on the 
strength of the singularity, which is dependent on the Mack number ahead of the shock and the local 
surface curvature. In a viscous flow the phenomenon will clearly be associated with a local thickening 
or separation of theboundary layer, and is further complicated by the influence of the rapid pressure 

change itself on the equilibrium of the boundary layer. 
This aspect of shock-wave boundary-layer interaction has been studied by Gadd 13 (1957). He 

shows that a local increase in boundary-layer displacement thickness under the influence of the 
shock pressure rise leads to an effective decrease in stream-tube cross-section near the surface and 

hence, with local subsonic flow, to a pressure fall. However, this mechanism is effective over a few 
boundary-layer thicknesses only. Neither it, r/or the previous hypothesis, explains the non-attainment 
of the full normal shock pressure rise for a shock on a surface with zero curvature, as on the wedge 
tail of many aerofoil sections. In such cases the existence of non-uniform flow normal to the surface 

above the surface may influence the pressure changes behind the shock wave. 
A further feature of transonic shock-wave boundary interaction follows from Emmons's analysis. 

For very weak shock waves the pressure fall following a shock was found to lead to the establishment 

Which states that P2/Pl is a function o f M  1 only. 
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of supersonic flow, the shock pressure-rise-pressure-fall pattern was then repeated, possibly many 
times. The sketch below shows the type of pressure distribution associated with this phenomenon. 

M=I.~ 

X ' IL  

The broken line indicates the pressure distribution that would be deduced for a flow of this nature 
by interpolation from relatively widely spaced pressure measurements, as in the analysis of wind- 

tunnel tests. The presence of a boundary layer would also be expected to obscure the details of the 
corresponding inviscid-flow pressure distribution. Earlier it is noted that shock waves are detected 
in such tests when the maximum local Mach number exceeds about 1.1. It may well be that 
repeated shocks of the kind sketched above occur at lower Mach numbers, and that the apparent 

upper limit for shock-free flows is an upper limit for these repeated shocks. Emmons's calculations 
for the flow through a nozzle gave a corresponding local Mach-number limit of 1. 075. 

1.3.3. Flow downstream of shock wave. Downstream of a shock wave the pressure changes must 
satisfy the boundary conditions imposed by the geometry of the surface, boundary layer and wake, 
and in particular the flow must return to the initial free-stream conditions downstream. 

It is well known that for wholly subsonic flows the pressure distribution over an aerofoil at 
different free-stream Math numbers can be related by simple compressibility formulae. A significant 
development of this type of Mach number variation is its continuation in part to flows which include 
a region of supersonic flow terminating in a shock wave. It is found that the pressure distribution 
some distance downstream of a shock can be approximately estimated from that in a wholly subsonic 
flow in the same way. This is noticeable for both measured and calculated transonic pressure 
distributions. A possible explanation of the phenomenon is given in Section 5 of Part II. 

1.4. Basic Method for Constructing Transonic Pressure Distributions. The analysis of mixed 
subsonic/supersonic pressure distributions in Section 1.3 suggests that the estimation of pressure 
distributions might be usefully approached in the three stages considered. For a given aerofoil the 
sonic-range p~essure distribution can be used as a first approximation to the supersonic distribution 
in flows with shock waves upstream of the trailing edge. This M 0 = 1.0 distribution would then 
represent the locus of pressures immediately upstream of shock waves occurring at lower Mach 

numbers. Also, if it is assumed that the simple variation of the subsonic pressures near the trailing 
edge discussed above, can be extended upstream to the shock positions, then a family of distributions, 
dependent on M0, can be estimated. This position is summarised in Fig. 3a. To determine the 
pressure distribution for a given shock position (or given M0) the appropriate shock pressure-rise 
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relation is required, for this, together wkh the assumed Pl locus, will define a P2 locus. The 
intersections of the p~ locus with the members of the shock-free flow family, then gives the shock 
movement with free-stream Mach number and the associated pressure distributions. Results 
obtained by the above scheme are shown in Fig. 3b. Here the classical normal-shock pressure-rise 
equation has been used to derive the p ,  locus from the sonic-range pressure distribution calculated 
by the method of Ref. 5. The shock-free flow family of downstream pressure distributions were 

calculated from the measured distribution at M 0 = 0.70 by the Glauert compressibility rule. 
An analysis on these lines might give an indication of the rate of change of shock movement with 

free-stream Mach number. However, the comparison of shock positions given in Fig. 4 shows that 
pressuredistributions estimated in this way are of little value: reference to Fig. 1 also shows that the 
M 0 = 1.0 distribution is but a poor approximation to the supersonic flow at lower Mach numbers. 
The cause of the large differences in shock position for a given Mach number is evident in the 
comparison of the assumed (exact normal-shock equation) and measured shock pressure-rise ratios 
shown in Fig. 5. It is clearly necessary to establish a shock pressure-rise relation which includes the 

effects of non-uniform flow normal to the aerofoil surface and of shock-wave boundary-layer 
interaction discussed in Section 1.3.2. The major part of the analysis of Part II is directed towards 
this end. It is also shown in Part II  that an improved method for the estimation of supersonic-flow 

regions can be derived. 

1.5. Concluding Remarks. This introductory Section describes the development of mixed 

subsonic/supersonic flows, and discusses a possible approach to the analysis of measured pressure 

distributions. The ideas of Sections 1.3 and 1.4 are used in Part II as a guide to the analysis of a 
large volume of two-dimensional aerofoil data. A method for the prediction of pressure distributions 

which include shock waves is derived and shown to give usefully accurate results. The empirical 
relations established by the analysis are considered in relation to the physical mechanism governing 
the development of transonic flows, and a close link with the corresponding shock-free flow is 
suggested. In Part III  of the present series of papers solutions calculated by the theoretical method 
of ReL 3 are compared with experiment. It is shown how the poor physical representation of certain 

features of transonic flow inherent in the theory lead to large discrepancies from experimental 
results. Replacement of part of the theoretical solution by results of the empirical analysis of Part II 
is shown to give much improved correlation with experiment. It is suggested how these modifications 
may be included in the theoretical representation of the flow so that improved solutions may be 

obtained by direct calculation. 
One aim of this study of transonic pressure distributions over aerofoils was the desire to gain an 

insight into the factors affecting aerofoil characteristics at high subsonic speeds; particularly those 
related to the onset of the transonic drag-rise and of shock-induced boundary-layer separation. 
The transonic drag-rise is due not only to the development of a low-pressure region On the rearward 
facing part of an aerofoil surface, but also to the loss of leading-edge suction. This arises partly from 
the local Mach-number freeze over the forward part of an aerofoil when a supersonic-flow region 
has developed, and partly from the forward movement of the stagnation point if the aerofoil is at 
incidence~ The present methods of calculating pressure distributions are only relevant when the 
conception of a Mach-number freeze is approximately true over all or nearly all the aerofoil chord, 

and therefore the influence of the leading-edge flow on the drag-risecannot be estimated. The method 
should, however, prove valuable in the assessment of the onset of shock-induced separation. Existing 



criteria for the onset of separation are based on two different interpretations of shock strength, the 
shock pressure-rise ratio and the upstream pressure. That based on pressure ratio, P~/Pl, will clearly 
need to be redefined in terms of%he convention for p~ used in the present analysis. However, the 
analysis of Part II leads directly to values for shock upstream pressure, so that methods for the 
prediction of the onset of separation based on critical values of this quantity should be directly 
relevant. 

Although no method of design for a desired form of transonic pressure distribution can be 

suggested, it is possible to compare properties of alternative aerofoil sections, and to assess the 
importance of particular geometrical features, by use of the present analysis. These problems a r e  
closely related to that of estimating the flow characteristics mentioned above, and will be considered 
in a later paper on applications of the present scheme for the prediction of transonic pressure 
distributions. 
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PART II 

ANALYSIS OF MEASURED PRESSURE DISTRIBUTIONS 

2.1. Introduction. A metho~t for the prediction of two-dimensional aerofoil pressure distributions 
which include a region of  supersonic flow terminated by a shock wave is derived from an analysis of 

measured pressure distributions. The basis of the analysis is described in Part I. It is suggested 

there that a transonic pressure distribution may be usefully considered as divided into three parts: 

that ahead of the shock wave, the shock pressure rise, and that downstream of the shock wave. 

Quantitative' features of these regions are correlated with known flows and with representative 
parameters of the overall flow about an aerofoil. 

In Part I it is noted that the sonic-range pressure distribution over an aerofoil surface may be 

taken as a first approximation to the supersonic part of the pressure distribution at lower Mach 
numbers. Indeed the similarity in form of supersonic distributions at high subsonic speeds to that 

at M 0 = 1 suggests that the effects of aerofoil shape are well represented by the M 0 = 1 distribution; 
effects of free-stream Mach number and of the overall flow pattern would then be expected to 

determine differences in magnitude. This approach is adopted for the analysis of the supersonic 
part of transonic pressure distributions. Firstly, an analysis is made of differences between the 
pressure immediately upstream of shock waves, Pl, and the corresponding sonic-range value, and an 
empirical relation is established. This is followed by a similar analysis for the pressure difference 
at the crest of aerofoil surfaces. It is then found that linear interpolation between the pressure 
differences at crest and shock position leads to a good estimate of the supersonic pressure distribution 

in this region. The analysis for (Pl - Ps~) /Ho and (Po~ - PsR) /Ho is described in Section 2.2.1. 
It is emphasised in Part I that discrepancies between measured shock pressure-rise ratios and the 

classical normal-shock equation is one of the most disturbing features in attempts to predict transonic 
pressure distributions. Although Emmons G (1946) has suggested a physical mechanism which can 

account for these differences, the additional direct effects of shock-wave boundary-layer interaction 

appear to frustrate any attempt to relate this mechanism to observed flows. Shock pressure rises 

obtained from wind-tunnel tests are difficuk to define accurately, and appear sensitive to the test 
conditions. Therefore before an analysis of experimental results could be undertaken it was essential 

to choose a consistent method of interpreting the data. The relation between the pressure distribution 

over an aerofoil surface downstream of a shock wave to the corresponding low,speed flow discussed 

in Part I, Section 1.3.3, suggests a possible approach to this problem. It is shown in Ref. 14 that 

the Prandtl-Glauert rule gives the best representation of this type of flow behaviour near the trailing- 

edge, and this simple rule is used to define the pressure immediately downstream Of observed 
shock waves. That is, in the analysis of wind-tunnel results the pressure immediately downstream 

of the shock waves is defined as the value predicted at that position by the Glauert compressibility 
formula (applied to results for some lower Mach number) for the Mach number corresponding to 
the observed shock position; this pressure is denoted P2e. This convention is regarded as a means of 
interpolating in the neighbourhood of the shock wave in a consistent manner. To ensure consistency 
only results which follow the Glauert compressibility variation at least at the trailing edge are used in 
the analysis% 

As would be expected, in all but a few of the examples consideredp2e differs from the measured, 

* In Section 2.5.2 it is shown that useful results can be obtained in cases where this condition is not satisfied. 
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or more correctly, estimated values of p~, and it has not been possible to relate the differences to 

any flow or aerofoil parameter. However, it is shown in Section 2.2.2 that P2G/Pl can be directly 
related to pl/Ho to give a relation qualitatively similar to the classical normal-shock relation. The 
significance of this result in relation to the establishment of transonic flows is discussed in 

Section 2.5.1. 
The usefulness of simple compressibility formulae for estimating the pressure distribution 

downstream of a shockwave is considered in detail in Ref. 14; results so obtained are illustrated by 
the examples of the application of the scheme for predicting transonic pressure distributions discussed 

later. 
The next Section describes the analysis of measured pressure distributions, and the empirical 

relationships established ~rom this analysis. The significance of these results in relation to the develop- 

ment of transonic flows and to theoretical methods is discussed in Section 2.5.! and in Part III  of 
the present paper. In Section 2.3 a scheme for the calculation of mixed subsonic/super~0nic pressure 

distributions based on the empirical relations is described. Results are obtained for a number of 

examples, and the accuracy and applicability of the method is discussed in Section 2.5.2. Details of 

the experimental results used are given in Section 2.4. 

2.2. Analysis of Measured Pressure Distributions. 2.2.1. Supersonic region. Theoretical and 

experimental studies of transonic flow have shown that the rate of change with free-stream Mach 
number of the local supersonic pressure distribution over an aerofoil surface is small for free-stream 
Mach numbers near one. The typical families of measured pressure distributions of Figs. 6 to 9 

illustrate that the supersonic pressure distributions are in consequence similar in form to the 
corresponding sonic-range (or M 0 = 1.0) pressure distribution. Analysis of this part of transonic 
pressure distrib.utions has therefore been based on the study of the differences between local pressure 

at high-subsonic values of M 0 and that at the same chordwise position at M 0 = 1.0. 
A prime requirement of the present scheme for the prediction of pressure distributions is the 

estimation of the pressure immediately upstream of a shock wave, Pr  As suggested above it is 
Supposed that the major flow and geometrical parameters which determine this are included in the 
sonic-range distribution so that the analysis can be restricted to the pressure (ratio) difference 
(Pl - P~)/Ho" Values of this quantity obtained from a wide range of wind-tunnel tests are shown 
plotted against M 0 in Fig. 10; apart from tile expected decrease in the pressure difference as M o 
approaches unity, little consistency can be detected in this plot. It should be mentioned that no 
significance could be attached to shock position, except in so far as it is related to M 0 for each 
aerofoil configuration. However, one source of tile scatter has become apparent from the results 
of tests on one aerofoil section in all the high-speed tunnel configurations of the Aerodynamics 
Division, National Physical Laboratory. It is found that the 'solidity' of the Mach-number freeze is 

greatly affected by the tunnel slotted-wall open/total area ratio used in the tests; moreover, the 

significance in this respect of a given open area is dependent on model incidence. To avoid confusion 

due to these tunnel-wall effects the analysis of tile supersonic region is confined to results obtained 

from the N.P.L. 20 in. x 8 in. High-Speed Tunnel with 1/30th open/total area walls, and for 

zero-incidence tests only. These test conditions were chosen for detailed study because they are 
known to give smaller interference effects in the transonic range than the other tunnel configurations 
used (see Refs. 15 and 16). In Fig. 11 these pressure differences are plotted against the quantity 
( M  0 - M*)/(1 - M*), where_M* is defined as the free-stream Mach number for which local 
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sonic speed is first reached at the aerofoil-surface crest, on the assumption of shock-free flow. 
"@flisparameteris'introctuc-ed-~-re~-r-dsent i : I r ~  aerofoil thickness and profile, and to assist 
in the comparison of results measured over different ranges of M 0. A useful mean curve can be 
drawn through the points of Fig. 11, and this is used to determine pl/Ho for a given free-stream 
Mach number from the corresponding sonic-range distribution. Fig. 12 shows this curve with 
pressure differences obtained under other test conditions. 

In the following shock pressure-rise 'analysis, which is based on results obtained from all tunnel 
configurations, it is shown that pl/Ho is not an important parameter in the determination of shock 
position. In the application of the present scheme for the calculation of transonic pressure 
distributions a value of pl/Ho is essential in the estimation of the supersonic region, and the use 
of Fig. 11 is suggested to give consistent, and approximately tunnel-interference free, results. 

To assist in the estimation of the supersonic pressure distribution upstream of a shock wave an 

analysis, similar to that described above for pl/Ho, was carried out for the pressure differences at 
aerofoil surface crests. Again only results obtained in 1/30th. open-area tunnel walls with zero model 
incidence were used. Fig. 13 shows these pressure differences, ( P e R -  P,s~)/Ho, plotted against 

(M 0 - M*)/(1 - M*); it is seen that a useful mean curve can be drawn through the results. 
Pressure differences obtained from other tests are compared with this mean in Fig. 14. 

2.2.2. Shockpressure-rise. A large number of measured shock pressure-rise ratios p~/pl are shown 
plotted againstpl/H o in Fig. 15. No consistent trends in these results with respect to flow or geometric 
parameters is evident, and it is thought that much of the scatter is due to uncertainties in the analysis 
of measured pressure distributions. It is clear from the typical distributions shown in Figs. 6 to 9 

that p~/H o can usually only be obtained by graphical interpolation between pressure-hole positions, 
and values so obtained clearly cannot define detailed local pressure changes in the. neighbourhood 

of a shock wave. Also the chordwise extent of shock-wave boundary-layer interaction probably 
differs from case to case. To overcome these difficulties in the interpretation of experimental results, 

the pressure immediately behind a shock is defined as that given by the Glauert compressibility rule 

applied at tile same chordwise position to a corresponding measured shock-free flow. Values obtained 

in this way are denoted P2g, and throughout this analysis were obtained from pressure distributions 
measured at M o = 0.70. It is suggested in the Introduction that it is consistent to analyse measured 
distributions on this basis, using observed shock positions, provided that the pressure changes for 
some region downstream of the shock position are in accordance with those estimated by the Glauert 
rule. Only experimental results which satisfy this condition are considered. In fact, as no wake 
pressure-distribution measurements were available, only results which agree with those derived 
by the Glauert formulae at least at the trailing edge are used. The significance of these assumptions 
as regards the pressure distribution behind a shock wave on an aerofoil surface and the wake flow is 
discussed in Section 2.5.1. 

In Fig'. 16 the shock pressure-rise ratio P2a/Pl is shown plotted against pl/Ho, the results being 
obtained from a number of observed shock positions on sixteen different aerofoil configt/rations. 
It is seen that a reasonable correlation is obtained, independent of aerofoil section or other flow 
characteristics. A mean curve is drawn through the points and the shock pressure-rise relation given 
by this is used in the prediction of transonic pressure distributions described in the following Section. 
It is interesting to note that this empirical relation is not greatly different from that obtained on the 

assumption that p2g/Ho has the constant value 0.52. This similarity explains the previously 
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mentioned insensitivity to pl/Ho of the comparison of values ofp2o/pl. An assessment of the signifi- 
cance of the scatter of the values on Fig. 16 in terms of aerofoil shock position is gi;cen later. To 
assist in the later discussion of the result the mean curve of Fig. 16 is shown i n Fig. 17, together with 

curves obtained with constant p~o/Ho and from the exact normal-shock equation. 

2.3. Application of the Empirical Scheme for the Prediction of Transonic Pressure Distributions. 
In this Section it is shown how the results of the analysis of Section 2.2 can be used to predict 

transonic pressure distributions from a knowledge of the geometry of an aerofoil and its pressure 

distribution in wholly subsonic flow. The method is described by proceeding through the stages of a 

typical calculation. 
The calculation of the upper-surface pressure distribution over a 9½ per cent thick aerofoil at 

2 deg incidence for free-stream Mach numbers of 0.75, 0.80 and 0.82 is set out in Tables 1 to 4, 

and is illustrated for M 0 = 0.80 in Fig. 18. Table 1 gives the M 0 = 1.0 (sonic-range) pressure 

distribution from crest to trailing edge as calculated by the theory of Ref. 2; this is also shown on 

Fig. 18. Table 2 lists the pressure distribution measured at M 0 = 0.70 for the NACA 00095 at 

2 deg incidence followed by the distributions calculated from this by the Glauert rule for M 0 = 0.75, 

0.80 and 0.82. The results for M 0 = 0.80 are also shown on Fig. 18. The next stages in the calcula- 

tion are based on the empirical relationships established in the preceding Sections of this paper. 

Table 3(a) shows the quantity (M 0 - M e ) / ( 1  = M e) tabulated against M0; the corresponding 

values of (Pl -- PsR)/Ho and (Pc~ - PsR)/Ho are then read off from the mean curves of Figs. 11 and 
13. In Table 3(b) values o fp l /H  o for each Mach number derived from Tables 1 and 3(a) are listed 

for the appropriate chordwise positions. It should be emphasised that, on the basis of the preceding 

analysis, the difference (Pl - PsR)/Ho has significance only at the relevant shock position. However, 
in the construction of a solution for a given M0, it will be seen to be convenient to derive a locus of 

possible values ofp l /H o for the prescribed M o for a small chordwise region. The calculation can be 
limited to a few points from the knowledge that the shock pressure-rise relation leads to only small 
changes in p~o/Ho with changes in pl/Ho. To return to Table 3(b), the shock pressure-rise ratio 

P2a/Pl corresponding to each value of pl/Ho is taken from Fig. 16, and p2e/Ho calculated. In this 
way a p2e/H o locus for each free-stream Mach number is derived from the corresponding pl/Ho 
locus. The broken lines on Fig. 18 define these loci for M 0 = 0- 80. Now from the assumptions in the 
analysis leading to the empirical relationships the intersection of the p~e/Ho locus with the down- 

stream distribution estimated by the Glauert rule for the appropriate free-stream Mach number 

defines the shock position for that Mach number; also at this position, xs/c , the assumption in the 

anaiysis for pl/Ho holds, and hence 1)1/I-lo is determined. There remains the calculation of the 

pressure distribution between the crest and shock position. The pressure at the crest for each free- 

stream Mach number is obtained from the values of (PeR - Ps~)/Ho given in Table 3(a), and the 
sonic-range value. To estimate the pressure distribution from crest to shock position, that is, from 

'peg/Ho to pl/Ho, it is sufficient to interpolate linearly with respect to chordwise position for the 

pressure differences from the sonic-range distribution. If X = (x - xeR)/(Xs - xcg), then 

(P - PzR)/Ho = (Pc~ - Pz~)/Ho + {~Pl - P,sR)/Ho - (Pc~ - PaR)/Ho} X .  

In the example considered this calculation is trivial for M 0 = 0.75 and is only set out for M 0 = 0.80 

and 0" 82 in Table 4. 
The estimated pressure distributions for M 0 = 0.75, 0.80 and 0.82 are shown on Fig. 19 together 

with the corresponding measured values. 
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2.4. Details of the Experimental Results Analysed. The two-dimensional aerofoil pressure 
distributions analysed in this paper were all obtained in the high-speed wind tunnels of the 

Aerodynamics Division, N.P.L. The tests on the NPL 491 section are described in Ref. 17. Detailed 

results for the 4, 6 and 10 per cent RAE 104 sections and for the NACA 00095 with two modifications, 

the 6 per cent RAE 102, the 4 per cent biconvex and the 9 per cent thick cambered section, are 
as yet unpublished. Some comments on these tests are given below; the profiles of the above aerofoils 
are shown in Fig. 20. 

All tests were made with boundary-layer transition fixed near the leading edge by a strip of 

carborundum powder. The basic and modified NACA 0009s, the 4, 6 and 10 per cent RAE 104, 
and the 6 per cent RAE 102 sections were tested in the N.P.L. 20 in. x 8 in. High-Speed Wind 
Tunnel with slotted walls of open/total area ratio of 0. 033. The 10 per cent RAE 104 profile has 
also been tested in this tunnel with 0. 125 open walls and with solid walls. It is these tests which have 
shown the importance of test conditions in the correlation of measured aerofoil data. The NPL 491 

and 4 per cent biconvex sections were tested in the N.P.L. 36 in. x 14 in. Wind Tunnel with 
slotted walls of 0.1 open/total area ratio. 

The semi-empirical method of Ref. 2, which is used to calculate the sonic-range pressure 

distribution as part of the mixed-flow method of this paper was also based mainly on results obtained 
in the N.P.L. 20 in. x 8 in. Wind Tunnel. 

2.5. Discussion. In this Section the significance of the analysis of Section 2.2 is considered in 

relation to the physical mechanism of transonic flows. The applicabilky of the method for calculating 
transonic pressure distributions is discussed, and the accuracy of the results obtained is assessed by 
comparison with the initial experimental data. 

2.5.1. Physical mechanism of mixed subsonic~supersonic flows. Before discussing the significance 

of the empirical relations established in this paper the following convention will be adopted. It is 

noted in Part I that the pressure fall associated with the normal pressure-gradient reversal through a 

normal shock wave on an aerofoil surface is distributed over a limited chordwise region, and that 

this effect is probably influenced by the shock-wave boundary-layer interaction in a real flow. As it is 
not possible to calculate this pressure distribution reliably, it is convenient to suppose that the total 

pressure change can be represented as occurring at the shock position. This convention is i!lustrated 
below in Sketch A. 

Ho 

c 

5keL~h A 
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The full line represents the true pressure distribution and the hatched area the pressure changes 
due to the curvature singularity ~ followingthe shock. The assumption that this pressure distribution 

is concentrated at the shock position is equb?alent to the replacement of the true distribution 

downstream of the shock by that shown by the broken line. 
It is suggested that the empirical relations established are consistent with the attainment of the 

equivalent shock-free flow~ downstream of a shock wave. The pressure distribution downstream 

of a shock given by the convention defined above would thus be that obtained on the assumption of 

shock-free flow. This hypothesis accounts for the finding that measured pressure distributions in 

the vicinity of the trailing edge of an aer6foil are related by a simple compressibility correction 

formula, even though shock waves are present in the flow upstream. Also the relation for the shock 

downstream pressure defined on the same basis (as p2~/Ho) established in Section 2.2.2, suggests 

that the equivalent shock-free flow has some significance at this position. It is suggested that for a 

given shock upstream pressure (pl/Ho) the difference between the value ofp2/H o given by the exact 

normal-shock equation and that estimated on the assumption of shock-free flow (p~e/Ho) is the total 

effect of the pressure changes due to the curvature singularity at the shock position. The physical 

mechanism of the flow can then be deduced as follows: The pressure changes through a shock wave 

are to be thought of as including a full normal-shock pressure rise followed by a pressure fall dependent 

on the bounding-streamline curvature singularity. The shock position for a given free-stream Mach 

number is then determined by the necessity for the resultant shock downstream pressure to be 

continuous with the shock-free flow consistent with the prescribed free-stream conditions. This 

hypothesis implies that the replacement of an artificial, smoothly decelerating, supersonic flow by a 
real supersonic flow terminating in a shock wave does not significantly affect the subsonic flow 

downstream. 
Attention is drawn to the measured pressure distributions shown in Figs. 21a and 2lb. In Fig. 21a 

wholly subsonic flow results for the basic NACA 0009~ section are compared with those at the same 
Mach number and incidence for two modified forms of this section. The modifications consist of 

different forms of drooped leading-edge extension (see Fig. 20) which give large changes from the 

basic pressure distribution forward of the crest of the surfaces, but are seen to have a negligible 

effect over the rear part of the sections. Fig. 21b shows a similar comparison between the subsonic- 

flow pressure distributions over a 14 per cent thick aerofoil with two leading-edge shapes (see 
Fig. 20); again, although there are large differences in the pressure distribution near the leading 

edge, there is no effect of the change in leading-edge shape on the rest of the pressure distribution. 

The significance of the change in the type of supersonic flow over the forward part of an aerofoil 

mentioned above is thus suggested as analogous to a change in aerofoil shape under conditions in 

which the flow type is unchanged, in that neither has a significant effect on the downstream flow. 

In either case it would seem necessary that the flow or geometry change has no more than a local 

effect on the boundary-layer development, particularly for flows with circulation. 
The assumption that the pressure changes due to the boundary curvature singularity at a shock 

occur at the shock position is not essential to the above discussion. The chordwise distribution 

* Whether these pressure changes are directly due to the singularity or to some other local flow behaviour 
is irrelevant to this discussion. 

t The 'equivalent shock-free' flow is that obtained for the prescribed free-stream Mach number on the 
assumption of subsonic flow, although it will usually include a (unreal) region of supersonic flow; here it is 
taken as that given by the Glauert rule applied to a wholly subsonic flow. 
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associated with the singularity can be regarded as superimposed on the pressure distribution 
associated with the geometry of the surface. 

Consideration of the wake flow can also go some way towards the explanation of the relation 
between real transonic flows and the corresponding shock-free flows. The coincidence of the pressure 
distribution from some distance downstream of a shock wave with that predicted for shock-free 

flow can be explained on the basis of the similarity of the pressure changes along the wake in the 
two flows. 

C 

B 

'. M =  1.0. 

0 1"0 
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In Sketch B three pressure distributions are sketched. That denoted A represents the wholly 
subsonic flow at some free-stream Mach number Mx; pressure changes along the wake are shown 
and the broken line indicates the attainment of the free-stream conditions. Distribution B is that 

estimated for Ms from distribution A on the assumption of shock-free, subsonic-type, flow; distribu- 
tion C corresponds to the real flow at Ms. It is supposed that the difference in flow between B and C 
does not significantly affect the boundary-layer parameters, which then will be similar to those 

associated with curve A. The wake characteristics associated with distribution C will therefore be the 
same as those assaciated with B, so that the pressure changes along the wake (see Ref. 1) in flow 

types B and C will be the same, and related to those associated with distribution A by simple 
compressibility considerations. It follows that the trailing-edge pressure of distributions C and A 

will also be so related. Moreover, since the stream-tube pattern must then be similar at the trailing 

edge, and the surface geometry ahead of the trailing edge is unaltered, the pressure distribution for 
some distance ahead of the trailing edge would be expected to be simply related. This wake flow 
mechanism cannot, however, be seen to lead to t he  significance of shock-free-type flow from 

immediately downstream of a transonic shock wave. Nevertheless, the satisfaction of the downstream 

boundary conditions via similar wake flows may account in some part for the correlation between 

16 



real and shock-free transonic flows, and between wholly subsonic flows with limited geometric 
modifications. 

The hypothesis that the shock pressure-rise ratio P2G/Pl represents the overall pressure changes 
associated with a transonic shock wave would seem to be supported by the dose agreement with the 
empirical curve forp2o/pl of Emmons 6 theoretical results, as shown on Fig. 17. However, the strength 
of the boundary curvature singularity associated with a normal-shock wave is simply demonstrated 
by Emmons to be related to the shock upstream pressure and to the local surface curvature. Hence 
with each possible shock position the overall shock pressure changes should be related to both the 

local pl/Ho and surface curvature; the shock downstream pressure so obtained may be denoted 
~ / H  o. Then for a particular free-stream Mach number and aerofoil surface the locus of possible 

values ofpt/H o gives a unique ~2/Ho locus, as illustrated in Sketch C. In the sketch the equivalent 
shock-free pressure distribution over the rear part of the surface is also shown, and the previous 

Exact: norrn&l 5 h o c k / - u ' - ' t ' - "  
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/ 
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Skel~ch C 
hypothesis is equivalent to assuming that the shock position is determined by the condition that 
/~2 = PG (=  P2~). It is hence difficult to see why P~a/Pl appears as a function of pl/Ho only, and is 
not also dependent on the surface curvature at the shock position. For it is clearly possible to conceive 
cases with the same Pl, and hence (Fig. 16) the same P2o, but with different surface curvatures at the 
shock positions. 

In the hypothesis discussed earlier it is clearly not necessary to suppose that the pressure changes 
following a transonic shock wave on an aerofoil surface are due to an effective boundary curvature 
singularity, and indeed it appears that some other flow mechanism must be of equal or greater 
importance. The analysis of Gadd 13 (1957) suggests an alternative explanation of the non-attainment 

of the exact normal-shock pressure rise in observed flows. He suggests that as the boundary layer 

cannot withstand an abrupt pressure change it distorts to give a continuous simple-wave supersonic 
deceleration adjacent to the surface, which must clearly terminate at M = 1.0. Downstream of this 

supersonic compression region the flow must satisfy the conditions imposed by (i) the geometry of 
surface, (ii) the pressure changes above the boundary layer, and (iii) the locally disturbed boundary 
layer. Condition (ii) is determined by the f lowabove the surface passing through a normal shock, 

and would be expected to lead to higher pressures than result directly from the compression to 
sonic conditions at the surface; this behaviour is illustrated in Fig. 22. This boundary-layer distortion 
mechanism avoids the necessity of a surface curvature s.ingularity implicit in the assumption of a 
normal shock wave at the surface. 
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It is perhaps significant that the empirical shock pressure-rise relation gives values ofp2G/H o that 
correspond to near sonic flow downstream of shock waves. Thus the influence of conditions (ii) and 
(iii) above may be regarded as superimposed on the pressure distribution associated with the surface 
geometry, in the same way that the effects of a supposed curvature singularity have been treated. 
Shock-wave position would on this basis be determined from the necessity for the (sonic) pressure 
at the end of the supersonic compression region to be continuous with the 'geometry-dependent' 
pressure distribution, which has earlier been suggested as the equivalent shock-free subsonic-type 
distribution. Sketch D, which is analogous to Sketch A for the curvature singularity argument, 
illustrates this argument. 

p 
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C 
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The full line represents an observed pressure distribution and the broken line the corresponding 

shock-free (geometry-dependent) distribution. The hatched area represents the pressure changes 
due to a high-pressure region behind the shock wave above the surface, and to other local effects at 

the shock position. 
Thepreceding discussions of the physical mechanism of transonic flows clearly do not in either 

case fully explain the large discrepancies between measured shock-wave pressure changes and those 
given by exact shock-wave theory. Nevertheless, it is thought that the empirical shock pressure-rise 
relation gives useful results in conjunction with the rest of the empirical scheme for the prediction 
of transonic pressure distributions, and may also be valuable if suitably introduced into theoretical 
methods. However, t he  problem of shock waves on aerofoil surfaces will be further studied by 
experimental and theoretical methods. Flow studies of the type shown in Fig. 22 will form an 
important part of this research; it is interesting that these results suggest that the Gadd-type flow 
pattern is realised very near the surface, but that above the surface the pressure changes along stream- 
lines are more in accordance with the mechanism suggested by Emmons. 

2.5.2. Applicability of empirical scheme. In the analysis leading to the empirical relationships 
described in Section 2.2 only selected experimental results are used. Measured pressure distributions 
which appear to be incompatible with the physical basis of the analysis are excluded. Firstly, only 
results for which the conception of a Mach-number freeze is approximately valid have been used, 
so that pressure distributions which include leading-edge suction peaks are not included in the 
analysis. Such flows are closely related to aerofoil leading-edge geometry, and cannot be simply 
related to the sonic-range distribution by a function of free-stream Mach number only. Also, in the 
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analysis of supersonic regions empirical relations are derived from results obtained under one set of 
wind-tunnel- conditions. This restriction was necessary to avoid the complicated and not fully 
understood effects of slotted-wall tunnel interference. The second major restriction follows from 
the discussion in Section 2.1 on the validity of using observed shock-wave positions in the analysis 

for the shock pressure-rise ratio. It is shown to be sufficient for the pressure recovery from some 

distance downstream of an observed shock position to be coincident with the assumed equivalent 

shock-free pressure distribution. In many cases this condition may only be satisfied in the wake 

flow, but as no wake pressure distributions were available the present analysis is restricted to results 
for which the condition appears to be satisfied at the trailing edge. 

It is appropriate here to comment on the use of the Glauert compressibility rule for tt~e calculation 
of shock-free transonic flows. The analysis of Ref. 14 suggests that this is the most useful of the 
well-known compressibility formulae for the estimation of pressure distributions in the trailing-edge 
region. For this reason, and because of its simplicity, the Glauert rule is used to estimate equivalent 
shock-free flows at other chordwise positions of interest. In all cases the basic, wholly subsonic, 
distribution is taken as that measured at M 0 -- 0.70. In some applications of the scheme developed 
here it might be convenient to use a theoretical subsonic pressure distribution as a starting point, 
and it is thought that results useful for comparative purpose would be obtained (see Fig. 18). However, 
as it is known that boundary-layer effects can significantly modify aerofoil pressure distributions, 
particularly for flows with circulation, it is preferable to use a measured subsonic distribution in the 
application of the scheme. It then follows from the nature of the scheme that major viscous effects 
are included throughout. 

The analysis has also been limited to pressure distributions between the crest and trailing edge of 
aerofoil surfaces, primarily because it is only possible to estimate the sonic-range distribution for 
round-nosed aerofoils at incidence over this region. Also, no separate consideration of the lower 
surface of an aerofoit at incidence is included. In cases when the flow is of mixed subsonic/supersonic 
type the present analysis is relevant; if the lower-surface flow is wholly subsonic, the pressure 
distribution can again be estimated approximately by the Glauert rule. 

To illustrate the accuracy of the method for estimating transonic pressure distributions Figs. 23 to 
40 show comparisons between distributions calculated by the method and those used in its derivation. 

Some comparisons for results not used in the analysis are also shown. These measured distributions 

were excluded because they did not satisfy the 'shock-free flow at trailing edge' condition; such 

comparisons are distinguished by an asterisk. In nearly all cases good agreement for shock position 

is obtained, and this is further illiastrated by direct comparison in Fig. 41. The large error in the 

calculated shock position for the 6 per cent RAE 104 at 2 deg incidence and M 0 = 0.85 (denoted 
-< in Fig. 41) is probably associated with the very small chordwise variation of the shock-free flow 

pressure distribution in the region 0.2 < x/c < 0.6 in this example, for a small error inthe estimated 

values ofp2•/H o can then lead to a large error in shock position. The discrepancies between theory 
and experiment for the supersonic parts of the pressure distributions can mainly be attributed to 
the varied test conditions of the experimental results. It is interesting to note that errors in this 
part of the calculation do not necessarily lead to large errors in shock position, a feature of the method 
that is emphasised in Fig. 40, where results are compared for a high aerofoil incidence case with 
leading-edge suction peaks in the measured distributions. Differences between the calculated and 
measured distributions downstream of the shock waves are considered in detail in the previous 
Section. 
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It is encouraging that the method appears to give a good estimat~ of shock position even in those 
cases for which the estimated pressure distribution is less satisfactory. Shock position is probably 
the most importantparameter in the assessment of high-speed aerofoil sections as it is closely related 
to the onset of the transonic drag-rise. 
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Aerofoil chord 

Free-stream stagnation pressure 

Local and free-stream Mach number, respectively 

Crest critical Mach number 

Local static pressure 

Ordinate in free-stream direction, origin at aerofoil leading edge 

Distance normal to aerofoil surface 

(x - x c ~ ) / ( * *  - x c ~ )  

aerofoil incidence 

Values immediately upstream and downstream of a shock wave, respectively 

Equivalent sonic-range value 

Crest value 

Shock-wave value 

Value calculated by Glauert compressibility rule. 
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Application of Method 

Calculations for N A C A  00095, ~ = 2 deg, M o = 0.75, 0.80 and 0 .82 

T A B L E  1 

Sonic-range pressure distribution. 
Calculated by the method of Ref. 6 

x/c 0.22 0"30 0.40 0"50 0.60 0-70 0"80 0.90 1"00 

p/H o 0.383 0.364 0.345 0-334 0.332 0-330 0"330 0-337 0.342 

T A B L E  2 

Subsonic (downstream of shock)part of pressure distribution. 
Calculated from measured distribution for M o = 0.70 by the 

Glauert compressibility correction formula 

M o 0.70 0"75 0- 80 0" 82 

x/c p/H o p/H o p/H o p/H o 

0"22 

0"30 

0"40 

0"50 

0"60 

0"70 

0"80 

0"90 

1 "00 

0. 565 

0.588 

0.618 

0. 645 

0. 667 

0. 668 

0.708 

0.730 

0.756 

0- 506 

0-530 

0-568 

0.600 

0.625 

0.650 

0.675 

0.699 

0-730 

0.508 

0-550 

0-580 

0.610 

0.639 

0.669 

0.705 

0.527 

0.561 

0.594 

0.625 

0- 657 

0- 695 
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T A B L E  3 

Estimation of Shock Position 
(Fo r  the N A C A  00095, ~ = 2 deg, M *  = 0 .730)  

(a) Use of Figs. 11 and 13 

M o - M ~. 

0 '75 

0"80 

0"82 

(M o - M*)/(1 - M*) 

0.02 

0"07 

0"09 

Mo 

0 '074 

0"269 

0"334 

(Pl - Psi~)/Ho 

0.075 

0-037 

0-029 

(Pc~ - Pz@/Ho 

0.054 

0-023 

0-017 

Pc~/Ho 

0.437 

0.406 

0.400 

(b) Calculation of p t /H o and pzo/H o loci 

M o = 0 " 7 5  M o =  0"80 M o =  0"82 
x/c 

Pl/Ho P~a/Pl  P~G/Ho Pl/Ho P2a/Pl  P2a/Ho Pl/Ho P2a/Pl  P2a/Ho 

O" 22 

0"30 

0 '40  

0"50 

0"60 

0.458 

0.439 

1.115 

1.183 

0.511 

0.519 

0-382 

0.371 

1.387 

1.427 

0.530 

0-530 0.363 

0.361 

1.455 

1.462 

0-529 

0.528 

M o = 0 .80  

T A B L E  4 

Calculation of supersonic pressures between crest and shock 

M o = 0 . 8 2  

x/c 

0.22 

0"30 

0"40 

0.455 

x (p - Ps~) /Ho 

0 0.023 

0.34 0-028 

0.77 0.034 

1.00 0.037 

P~o 

0-406 

0.392 

0.379 

0.375 

x/c 

0"22 

0"30 

0"40 

0"50 

0"505 

X 

0 

0.28 

0.63 

0.98 

1.00 

(P Ps•)/Ho 

0.017 

O. 020 

O. 025 

O- 029 

O- 029 

P/Ho 

O. 400 

0-384 

0.370 

O. 363 

O. 362 
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PART III  

ANALYSIS OF THEORETICAL SOLUTIONS 

3.1. Introduction. To supplement the empirical analysis described in Part II of the present paper 
some calculations of transonic flows based on the theory of Spreiter and Alksne a (1955) have been 
made. In Part I it is suggested that this theory, which leads to an iterative solution of an integral 
form of the transonic flow equations, is the most advanced theoretical method available. It is shown 
here that results obtained by the method, although exhibiting some of the important features of 
transonic flow, do not compare well with experiment. This failure of the method is discussed, and 
it is shown how the empirical relations established in Part II can be combined with part of the 
theoretical solutions to give results in close agreement with experiment. It is suggested that these 
modifications could be directly incorporated into the analysis and thereby included in the iterative 

method of solution. 
The derivation of the theory is given in Ref. 3 with additional results in Ref. 19. The general 

form of the equation soived for the local reduced) perturbation velocity is given below: 

= u5 + 2 2w ~-~ln ds ¢d~ + 
R 

l f s l [ l n ~ ( g  ~ ) -  ( g - ~ )  81nl]  - + - ;jo 

_ [ln l 8 ( g _  ~ ) =  ( ~ _  ~)  8 1 
r ~ ~ In rib + 

+ [(ln 1) / 18~ ~ 1)] x Fcos(n, ~)] t d~. (4)" 

The symbols are the same as those used in Ref. 3 and are defined in Section 3.6 of the present paper. 
The term g~ is the corresponding velocity perturbation for subsonic flow as defined by linearized 
theory. The first integral is taken over the whole flow field, R, and the second round the surface of 
the shock wave, S. However, this term is shown to be identically zero on the assumption of a normal 
shock wave with flow parallel to the x-axis. The integral over R is reduced to a single integral along 

= 0 by the following assumption for velocity variations normal to the y-axis: 

e) = G ( y ,  o)/(1 + (s) 

where f ( 2 )  is chosen to satisfy the irrotationality condition at ~ = O. It is found that 

1/f(~) = - 2~,o/(~22/~y~).  

The function Z is simply derived from the equation of the aerofoil surface, so that f(y) is approxi- 
mately proportional to surface curvature, and is therefore infinite upstream and downstream of the 
aerofoil. Equation (1) is thus reduced to the following form for the velocity on the surface 

~w 2 fc  ~w 2 
, ~w = ~,~ + ~ -  o ~ E ( f ~ -  Y) d~. (6) 
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E is a known function of f ( ~  - ~). An iterative scheme is used to derive uw for given initial 
conditions. 

The presence of the term i~5 w follows from the analysis, and the method does not consist explicitly 
of the derivation of second-order effects on the linearized solution. However, the form of this term 
does follow the assumptiori of only small perturbations about free-stream velocity, and also limits 
the sensible application of the method to aerofoils with finite leading-edge gradient. More accurate 

methods for the estimation of incompressible-flow velocity distributions exist, and if the Contribution 
of the term ~ ~ in equation (6) is replaced by values derived from such a solution, not only might 

more accurate results be obtained but also the application of the method to round-nosed aerofoils 
presents no further difficulties. In the solutions calculated for this paper the term ~L ~0 was replaced 

by corresponding values derived from Woods's 20 (i950) Polygon method for incompressible flow. 
This method is shown to give accurate solutions for zero-circulation flows in Ref. 21. 

The theory of Ref. 3 postulates inviscid flow, so to examine its usefulness by comparison with 
experiment it is clearly necessary to reduce viscous effects in the experiments to a minimum. Viscous 

effects assume great importance in the study of flows which include shock waves as it is well known 
that shock-wave boundary-layer interaction can considerably affect the development of transonic 
flows, particularly if separation of the boundary layer is induced. The theory has therefore been 
applied to two profiles for which measured pressure distributions are available which do not include 
large effects of shock-wave boundary-layer interaction. The NPL 491 section was designed to give 
relatively low supersonic speeds over its surface at low incidence for ~/11 transonic free-stream speeds, 
so that shock waves on the surface would not induce separation. The Kaplan 10 per cent thick 
bi-cusped-profile model has a porous surface so that the boundary-layer thickness can be greatly 
reduced, and separation eliminated, by suction. Experimental results have also been obtained for 
a 4 per cent thick biconvex section for comparison with the solutions given in Ref. 3. 

As a further check on the transonic theory sub-critical pressure distributions for these profiles 
have also been calculated by the Polygon method. From the excellent agreement with the method 
of Ref. 3 obtained it appears that the approximations introduced into the later method to permit 
mixed-flow solutions with shock wayes do not lead to errors in the calctilation of wholly subsonic 
flOWS. , 

In Section 3.2 the comparisons between theory and experiment for transonic flow are discussed 
with reference to the simplifying assumptions introduced into the mathematical analysis. It is 
demonstrated that the large discrepancies between theory and experiment can be associated with 

the assumption of a full normal-shock pressure rise in the theory. Combination of the theoretical 
solutions with the results of the empirical analysis of Part II is shown to improve greatly the 
correlation between the calculated and measured pressure distributions. The use of these results 
follows from the discussion of the physical mechanism of transonic flows given in Part II, and the 
success obtained is evidence in favour of the suggested flow mechanism. 

i 

3.2. Comparisons Between Theory and Experiment. Before considering in detail the comparisons 
between calculated and measured pressure distributions the following points must be noted. Firstly, 
the theoretical solutions are obtained at ten chordwise positions only, equally spaced from 0.05c to 
0- 95c. Secondly, the assumption of a particular form for the velocity variation normal to the chord- 
line (see equation (5)) may not be valid for supersonic flow at positions of zero surface curvature. 
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Because of this no detailed consideration is given to a solution for the NPL 491 profile with trailing- 
edge shock position; in the other transonic solutions for that profile the supersonic flow is confined 
to regions of non-zero curvature. Similarly, in the transonic solution for the bi-cusped profile the 
points of ir/flexion of the profile are in regions of subsonic flow. 

Figs. 42a, 42b and 42c show the calculated and measured pressure distributions for the NPL 491, 
biconvex and bi-cusped profiles respectively. Where sufficient data are available experimental 
results are given for the free-stream Mach numbers of the calculated pressure distributions, and 
for the Mach numbers for which the observed shock positions coincide with those predicted by the 

theory. 
A consistent feature of the comparisons is the finding that the observed shock position for a given 

free-stream Mach number is upstream of that predicted by the theory. The calculated pressure 
distributions upstream of the observed shock positions and downstream of the theoretical shock 
positions are, however, in good agreement with experiment. This is not so if the comparisons are 
made for the same shock positions, and the comparisons cannot be usefully considered from this 

aspect. 
It is suggested that the large discrepancies in shock position for a given free-stream Mach number 

can be attributed to the assumption in the analysis that the pressure rise in the vicinity of the shock is 
that given by the normal-shock equation, as this is incompatible with the assumed pressure variation 
normal to the chord-line. The mechanism of normal-shock-wave bounding-streamline interaction 
i~ fully discussed in Part I. It is shown that the presence of a normal shock on a curved surface 

6 ecessarily leads to a reversal of the pressure gradient normal to the surface, and hence to a 
~tiscontinuity in bounding-streamline curvature and a consequent pressure fall. Now in the theory no 

/solution is obtained at the shock-wave position itself, and following the assumption of a normal shock 
the shock integral vanishes identically; equation (5) is also clearly incompatible with a reversal in 
the normal pressure gradient. Hence the analysis permits no representation of local flow changes at 
the shock position, and by prescribing a boundary condition which is more relevant to shock-free 
flow tends to give pressure changes from immediately behind the assumed shock position in accord- 
ance with the equivalent shock-free flow. It is shown in Part I that these assumptions will inevitably 
lead to shock positions downstream of those observed in tunnel tests at the same free-stream Mach 

numbers. 
The empirical shock pressure-rise relation established in Part II is shown there to be defined in 

such a way as to take into account the overall local pressure changes due to shock-wave bounding- 
streamline interaction. This relation would appear more appropriate to the theory of Ref. 3 than the 
classical normal-shock relatidn, and is not necessarily incompatible with the assumption implied by 
equation (5). It is suggested in Section 3.3 that this relation could be incorporated into the method 
of solution of Ref. 3 ; however, it is possible to derive the corresponding solutions by modifying those 

already obtained. 
Fig. 43 shows the pressure distributions downstream of the assumed shock positions as calculated 

by Spreiter and Alksne's theory compared with those estimated for the same values of M 0 by the 
Glauert compressibility formula from a wholly subsonic-flow solution. It is seen that other than 
immediately downstream of the theoretical shock positions good agreement is obtained; this is in 
accordance with the suggestions of Part II. It appears that for more forward shock positions the 
theory would give pressure distributions downstream of shocks similar to those calculated by the 

Glauert rule, and hence that they may be simply estimated. 
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The physical mechanism of the supersonic-flow development at a prescribed free-stream Mach 
number suggests that the associated surface-pressure distribution is little affected by shock position, 
and the analysis of Section 2.2.1 confirms this view. The supersonic distribution calculated by the 
method of Ref. 3 may thus be taken as a locus of possible values of the shock upstream pressure, 

pl, for the prescribed free-stream Mach number. Then in a similar way to the construction of pressure 
distributions described in Part II, the empirical shock pressure-rise relation defines ap2 a locus whose 
intersection with the appropriat e shock-free flow distribution defines the shock position. This 
procedure has been applied to the theoretical results shown in Fig. 42, and the resultant pressure 
distributions are shown in Fig. 44 together with the appropriate experimental results. It is seen 
that a great improvement over the unmodified theoretical results is obtained. To illustrate further 
the comparison of both the direct and modified theory with experiment the shock positions are 
shown in Fig. 45 as a function of free-stream Mach number. 

The theory of Spreiter and Alksne is valid only for the flow about a symmetrical aerofoil at zero 
incidence, but for this case when modified as above it has the advantage over the empirical method 
developed in Part II of giving the whole of the chordwise pressure distribution. Part II, while not 
restricted to zero-circulation flows, considers the pressure distribution downstream of an aerofoil 
surface crest only. 

3.3. Possible Introduction of Empirical Shock Relation into Theoretical Method. In Section 3.1 
equation (4) gives the form of the transonic flow equation solved by Spreiter and Alksne after two 
further approximations to the real flow*; the assumption of the normal-shock equation and of a 
certain form of velocity variation normal to the surface. The authors of Ref. 3 note that these two 
assumptions are mutually incompatible except at the surface, but suggest that this is only of import- 
ance for relatively strong shock waves. However, wind-tunnel results suggest that the local flow 

behaviour in the neighbourhood of a shock wave is of great importance, even though the shock 
strength be small. It has been suggested earlier that these effects are included in the empirical shock 
relation established in Part II, and shown that when this is introduced into the theoretical solutions 

by graphical methods more realistic results are obtained. In this Section the inclusion of the empirical 
relation directly into the numerical method of solution is briefly considered. 

In Ref. 3 it is shown that the normal-shock equation (in normalised form and for small perturba- 
tions) is equivalent to stating that 

Ua 2 Ub 2 

u~ 2 - u b -  ~ - ,  

where a and b denote values immediately upstream and downstream of a shock, respectively. Also, 
from the equation of continuity, 

* Other approximations are introduced to facilitate the numerical solution of the equation by an iterative 
process. 
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It is clear that these two relations, and the assumption that the shock is normal to the streamlines, 
eliminate the shock integral of equation (4). If a normal-shock wave, but not the classical shock 

pressure-rise relation, is assumed, the following shock integral remains: 

2~r - -2 ]~ ln l ] , ,  - [(u - ~ ) ~  rJ~} d~. (7) 

The inclusion of this integral in numerical solutions requires firstly a relation for ~b in terms of 
~,~, and secondly some means of determining the limits of integration. For a normal shock wave 
with flow parallel to the x axis the contour S is a straight line normal to the g axis and the limits of 
integration are ~ = 0 and ~ = ~,., where £8 is the height of the shock wave. It appears sensible on 
physical grounds to choose g~ as the value of g which gives local sonic conditions ahead of the shock 
wave on the basis of equation (5). The empirical shock relation established in Part II of the present 
paper is derived from surface-pressure distributions and would not be expected to be valid above the 

surface of an aerofoil. Indeed the static-pressure traverses through a shock wave shown in Fig. 22 
and those obtained by Ackeret, Feldman and Rott 2z (1946) indicate that the pressure rise through a 
shock some distance above the surface is more in accordance with that given by the classical normal 

shock equation. It is suggested therefore that the shock integral be evaluated as follows: 

(i) uw ~ is determined from a solution in which the shock integral is neglected. 

(ii) uw b is calculated from ~w ~ and the empirical shock relation. 

(iii) ~ is calculated from ~ ~ and equation (5). 

(iv) The exact normal shock equation (transonic approximation) can be used to calculate values 

Of ub from ~ ;  let values so obtained be denoted ~ ' .  

(v) Values of ~b may also be calculated from ~w b by equation (5), these will be denoted ~".  
Then if ~b' = ub" at ~ = Ks', it is suggested that for the evaluation of the shock integral 
ub be taken as ub" for 0 ~ ~ ~ ~,' and as ub' for ~ '  ~ ~ ~ Ks. This approach should give a 
reasonable approximation to the physics of the flow in the neighbourhood of a shock wave, 
whilst retaining the assumptions implied by the use of equation (5) to simplify the original 
integral equation derived by Spreiter and Alksne. The shock integral, equation (7), now 

reduces to 

2 1 f i ~ ' l ( I ~ - 2 Z ] ~ l n ~ ) -  ( I ~ - ~ l  ~ l n l ) b  I d~. 

3.4. Concluding Remarks. In Part I of the present paper it is suggested that the transonic theory 
of Spreiter and Alksne is the most advanced analytical method for the prediction of mixed subsonic/ 
supersonic pressure distributions. In this paper it is shown that the application of the theory can be 
simply modified to extend its applicability to round-nosed aerofoils. Calculated solutions are, 
howeve~r, found to differ greatly from those obtained by experiment, and it is suggested that this 
can be attributed to misrepresentation of the shock waves and associated flow changes. Nevertheless, 
by the introduction of the results of the analysis of Part II, and application of the suggested flow 

mechanism following the analysis, useful results are obtained. 

3.5. Acknowledgements. The authors are indebtedto Mr. W. E. A. Acum, of the Aerodynamics 
Division, N.P.L., for his supervision of the calculations by the method of Ref. 3 reported here. 
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NOTATION 

c Aerofoil chord 

f Function of ~; related to boundary condition on wing 

H 0 Free-stream stagnationpressure 

'k Coefficient of non-linear term in differential equation for velocity potential 

M o Free-stream Mach number 

n Normal to-shock surface 

p Static pressure 

, __- { ( ~ -  ~)~ + ( ~ -  ~:)~}~ 

u Perturbation velocity component parallel to x-axis 

x, z Cartesian ordinates, x-axis in direction of free stream 

O~ ~ X 

2 --- /3z 

o~ Aerofoil incidence 

/3 - (1  - M 0 ~ ) l / 2  

~, ~ Variables of integration corresponding to x, z 

,r - Mo2@ + 1)/(1 - Mo2)3/2 

S u f f i c e s  

a, b : 1, 2 

G 

Z, 

8 

W 

Values immediately ,upstream and downstream of a shock wave respectively 

Calculated by Glauert rule from a corresponding subcritical flow 

Values given by linear theory 

Value at shock position 

Values at wing surface 
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FIGS. 23 - -40  

COMPARISONS OF CALCULATED AND 

MEASURED PRESSURE DISTRIBUTIONS 

In the following figures calculated 

pressure distributions arc shown by full 

line curves and experimental results by 

symbols joined by broken lines to indicate 

shock position. Fr¢¢-strcarn Mach number 

(x I00) is shown on each at the shock 

position. 

Cases not used in the shock 

pressure rise analysis arc distinquished by 

an asterisk. 

The calculated distributions for 

Mo= 1.0 were ob'cained by the method 

of Rcf. 2. 
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