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Summary.---The paper describes an investigation of the effect of structural damping in the torsion mode on wing 
flutter with the object of finding circumstances in which damping reduces the flutter speed. The drop in flutter speed 
can be considerable (25 per cent) and extend to very large values of structural damping. The effect is most apparent 
when the relative density (wing to air) is high, and when the wing bending mode involves a relatively large aerodynamic 
stiffness. 

The rate of decrease of flutter speed with damping in small, and for the amounts of damping normally encountered 
in practice the effect is unlikely to be important. Possible practical cases are, however, part-full under-wing fuel tanks, 
which can supplyhigh structural damping, and large tailplane amplitudes in the wing torsion mode, which can supply 
considerable aerodynamic damping ; in both cases the effect could be appreciably adverse. 

1. Introduction.--It is well k n o w n  t h a t  if a small  a m o u n t  of s t ruc tu ra l  d a m p i n g  is added  t o  
one degree of f r eedom in a b inary- f lu t t e r  p rob lem the  crit ical f lu t ter  speed can be r educed  thereby .  
If  control-surface f lu t ter  is to  be p r e v e n t e d  by  hydrau l i c  d a m p i n g  r a the r  t h a n  mass-balance,  for 
example ,  the  curve  of f lu t ter  speed agains t  d a m p i n g  of ten  falls for a l i t t le way.  The  examples  
considered la ter  are r a the r  more  academic  t h a n  this, since t h e y  are concerned  wi th  f lexure-torsion 
wing  f lu t ter  where  the  del ibera te  va r ia t ion  of s t ruc tu ra l  d a m p i n g  is no t  no rma l ly  possible, b u t  
t h e y  are n o t e w o r t h y  because  a ve ry  large value  of the  s t ruc tu ra l  d a m p i n g  is necessary  before 
the  f lu t te r  speed s tar t s  to  increase. Certain cases where  the  effect m i g h t  be i m p o r t a n t  are 
discussed in the  conclusions to  the  pape r  ; t h e y  include an  under -wing  fuel t a n k  pa r t l y  full, 
and  the  effect of tai l  a e rodynamic  d a m p i n g  on a wing mode.  

The  first example  was d iscovered dur ing  the  rou t ine  solut ion by  means  of the  Roya l  Aircraf t  
E s t a b l i s h m e n t  F l u t t e r  S imula to r  of a wing f lut ter  p rob lem on a pa r t i cu la r  aircraft .  W h e n  
opera t ing  the  s imula to r  it  is of ten  desirable to reduce  the  a m p l i t u d e  of the  lnot]on,  and  a c o m m o n  
wa y  of doing this is to in t roduce  a large a m o u n t  of s t ruc tu ra l  d a m p i n g  in to  the  direct  t e r m  of 
one of the  essential  degrees of f reedom. In  the  p resen t  case this  was found  to increase the  
oscillations, and  subsequen t  inves t iga t ion  showed t h a t  the  same effect occurred  even  in a b ina ry  
calculat ion.  In  a larger  calculat ion,  such as the  qu ina ry  f rom which  this  b ina ry  was t aken ,  
s t ruc tu ra l  d a m p i n g  in one degree of f reedom could have  an  adverse  effect mere ly  by  suppress ing  
a stabil izing degree of f reedom ; this  exp lana t ion  canno t  hold  for a b ina ry  in which  each degree 
of f r eedom is essential  to  the  flutter .  The  presen t  pape r  describes this  b ina ry  calculat ion,  which  
was carr ied ou t  on a desk machine ,  and  some later  inves t iga t ions  m a d e  to decide how general  the  
effect is l ikely to be as well as to consider  its character is t ics  in more  detail.  A cri ter ion for the  
fall of f lu t ter  speed w i th  d a m p i n g  is discussed and  an example  shows t h a t  the  effect can occur  
in the  bend ing  m o d e  as well as the  tors ion mode .  

* R.A.E. Report Structures 212, received 27th December, 1956. 



2. The Binary Calculations for Wing Flutter.--The calculations discussed in this and the next 
Section are primarily of academic interest. The results have had no repercussions on the aircraft 
to which they relate, because a serious drop in flutter speed with structural danlping only occurs 
at high altitude (the specific calculations quoted relate to 55,000 ft) where the flutter speed 
is in any case far outside the capabilities of the aircraft. This need not always be so, however, 
as an increase in altitude differs in only a minor way (due to the aerodynamic inertias) from an 
overall increase in the wing density and in this case the wing density was not particularly high. 
I t  is shown in a later section (Section 4.2) that  the flutter speed of a Meteor wing carrying a heavy 
mass falls rapidly with structural damping at quite moderate heights, so that  the problem itself 
may have practical importance in other examples. 

In this case it is only in the torsional mode that  an increase in structural damping causes a 
reduction in the flutter speed, so the direct torsional damping of the structure is the parameter 
which has been varied in the calculations. The more general implications are discussed in 
Section G, but  it is worth noting that  the torsional mode, which involves shear distortion, is 
likely to contain more structural damping than the bending mode. Although the phenomenon 
was first noticed, in this particular case, on the R.A.E. Flut ter  Simulator during a larger calcula- 
tion, the binaries of this Section were solved on a desk machine for greater precision. 

The wing concerned possesses moderate sweepback and carries no large concentrated masses. 
The modes are antisymmetric resonance modes and possess no unusual features ; the nodal line 
in the torsion mode runs along the span at roughly the half-chord location. 

2.1. The Flutter Coef/icients.--The equations of motion at the flutter speed, appropriate to the 
generalised co-ordinates ql for bending and q~ for torsion, are 

I842 ~ -- 264 -- 826, 7182 ~ -}- 864 -- 432 -}- llOOy q2 

Here a~ = -- f~ 

~ is the frequency parameter a~c,,/V based on a reference~ chord c,, 

is the flutter frequency 

K is the flutter speed 

y - -  (VolV)~= (1Iv) ~ 
Vo is a reference speed. 

This is the standard way of Writing the flutter equations in Great Britain, and assumes that  the 
aerodynamic coefficients are independent of frequency parameter. This assumption does not 
lead to serious error as a rule, particularly when the aspect ratio is not large 1. Equation (1) is 
written in the form suitable for solution on a desk machine, for which purpose the determinant 
of the second-order matrix is equated to zero, but the coefficients have been derived from the 
values prepared for the simulator. To change the coefficients from one form of the equations to 
another" (i.e., from being suitable to the simulator to being suitable for desk solution, and vice 
versa) is a simple matter  and in the present case only involved a correction for the time constant 
of } used in degree of freedom (1). The solution of equation (1) is usually carried out for y and 
2 only ; y gives the flutter speed (it is inversely proportional to the square of the flutter speed) 
and 2 gives the frequency parameter, Ir0m which, the flutter speed being known, the f l u t t e r  
frequency can be found. 

I t  may be noted that  each degree of freedom contains positive aerodynamic damping (+  210 
and q- 86 units respectively) and that  the cross-dampings are small. The direct aerodynamic 
stiffness for bending (-t- 493 units) is positive and of reasonable size, as befits the bending mode 
of a swept-back wing, while that  for torsion (-- 432 units) is typically negative. The direct 
inertias (aerodynamic and structural) are large and positive (+  4400 and q- 718 units) and so 



are the direct structural stiffnesses ( +  941 and + 1100 units), but the cross-inertias although 
small are not zero as they should be for true normal modes. The values quoted (+  17 and 
+ 84 units) are not important  in the flutter and probably owe their existence (in part, at least) 
to the difference between tile aerodynamic inertias at 55,000 ft and sea level. 

The aerodynamic cross stiffnesses are typical for this type of flutter calculation, being large 
and positive (+  389 units) for the bending force due to wing torsion, and large and negative 
(-- 826 units) for the torsional moment due to wing bending. I t  is these terms which promote 
the flutter, and the reason for this is mathematically easy to see. Suppose the coupling co- 
efficients were all zero, then the determinant of the direct terms only can be expanded as 

+ 3 + + + = 0 ,  . . . . . . . . . . . .  ( 2 )  

where the coefficients p~ are independent of ,~. Clearly equation (2) must represent stable motion 
since each equation of (1) is positively damped and there is no coupling. I t  follows from the 
well known stability criteria (see, for example, Ref. 3 or Ref. 4) that  all the coefficients Pl. must 
be positive*, and also that  the determinant 

0 = T 3  _-- -  0p3 - p?p  . . . . . .  (3) 
P3 

must be positive. The vanishing of the test function T3 as y is reduced from infinity gives the 
lowest flutter speed. So far the motion must be stable at all speeds above zero* but we may now 
introduce the effect of the aerodynamic cross-stiffness coefficients. These coefficients can only 
affect p~, and since their product is negative they must increase the algebraic value of p,. In 
the expanded form of T3, therefore, only the  last term is affected by the aerodynamic couplings 
now introduced, and this term is changed in the sense of reducing stability. 

Equating (3) to zero gives an equation that  is quadratic in y, say, 

y~ + 21~y + 12 = 0 . . . . . . . . . . . . .  (4) 

where l~ must be positive and l~ must either be positive or numerically less than %/l~, since the 
equation (with zero coupling coefficients) has no positive real roots. The effect of gradually 
increasing the aerodynamic cross-stiffnesses is to make l~ tend first to zero and then become 
negative, so that  a real flutter speed exists. If l~ is positive there will be no upper critical speed, 
and if ll is negative the upper critical speed will become infinite as l~ passes through zero. For 
the values of c~ and % (the aerodynamic cross-stiffnesses) given by equation (1), it may be noted 
that  the net value of P4 is positive for all positive values of y so that  no real divergence speed 
exists. 

To conclude this diversion we may note that  if the other couplings are zero (or negligible), 
aerodynamic cross-stiffnesses of the form shown in equation (1) will promote flutter at a speed 
which reduces with the magnitude of the coupling, and as there will usually be no upper critical 
speed the flutter is likely to be violent. 

The flutter equations (1) contain no structural damping terms. In the present calculations a 
damping term has been introduced into the second degree of freedom of the form 

Torsional damping coefficient = d2~,~V'y . . . . . . . . .  . .  (5) 

In this form the damping is of velocity typel I t  is introduced in this way because many of 
the calculations described in this paper were carried out on the simulator where damping can 
only. be introduced in this form. The coefficient d22 has the additional use that  it can be related 
directly to the degree of critical damping in the torsional mode, viz., 

(d~2)~it = 2%/(a~e2~),. . . . . . . . . .  (6) 

* Below the divergence speed at which ~b 4 vanishes. 
present argument. 

(7s822) 

The existence of a finite divergence speed does not affect the 
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where a22 is the torsional inertia coefficient (718 units) and e~2 is the elastic torsional stiffness 
coefficient (1100 units). In this example (d~)or~t has the value 1780 units. The advantage of 
relating the damping to critical damping is that  it gives a measure of the rate of decay of the 
motion at zero air speed, as determined in a ground resonance test. Specifically 

d~ _ 1 (logarithmic decrement) .. . (7) . . . .  

If desired, the equivalent phase lag (hysteresis) damping can be calculated in any particular 
case, the relation depending on the frequency. Hysteresis damping is usually written in terms 
of the coefficient g (in this case g2~) by  replacing the pure stiffness term e22 by  the term e2~(1 + ig2~). 
For this to be equivalent to the damping of equation (5), we must h a v e  

d2#w/y  = ie2,g~2y, • . . . . . . . . . . .  (8) 

i.e., d22 ~c,, 
. . . . . . . . . .  ( 9 )  

e22 V 0  . . . . . .  

The aerodynamic damping, b~, is of velocity type, so that  at a given speed it is directly inter- 
changeable with the structural damping d2~, but not, however, with g~. 

2.2. Variation of Flutter Speed with Structural D a m p i n g . - - T h e  change of flutter speed with 
fractions of critical damping in the torsion mode is given in Table 1, and shown also in Fig. 1. 

TABLE 1 

d22 
(per cent crit) 

0 
10 
30 
60 

100 
200 

V 

(per cent) 

100 
91 
81 
79 
81 
96 

X = - -  ~2 = V2 

0"53 
0"49 
0- 53 
0" 52 
0"49 

] 0"37 
I 

(.o C~. 

Vo 

0"70 
0.61 
0"57 
0"55 
0"54 
0"56 

g2~ 

0 
0.099 
0.277 
0- 534 
0.874 
1.81 

I t  will be seen that  the flutter speed falls immediately on introducing the structural damping, 
in contrast to the case of the Meteor with tip mass discussed later, and reaches a minimum over 
20 per cent lower than the original speed. Even more surprising is the scale of the structural 
damping involved. 

I t  is indeed a remarkable fact that  the wing flutter speed with 100 per cent critical damping 
in the torsion mode should be 19 per cent less than for the undamped wing. This means tha t  the 
torsional oscillations of the wing change from being dead beat at zero speed to a state of growing 
violently with time at a v. of 100 per cent, by  which time the wing without structural damping 
has only just returned to its initial condition of undamped sinusoidal motion. 

To examine this fact in more detail, the roots of equation (1) were obtained at speeds below 
the flutter speed with d~ having the two values of zero and critical damping. The solutions are 
given in Figs. 2 and 3. I t  can be seen from Fig. 2 (which shows the results for no structural 
damping) tha t  one root becomes progressively more heavily damped while the other shows a 
maximum damping at about 75 per cent of the flutter speed, after which the rate of decay falls 
steeply. This is quite a typical result in itself, but what is less usual is tha t  the higher-frequency 
root, which starts as the pure torsion mode at zero speed, is the one which becomes progressively 
more damped, whereas the lower frequency root leads to flutter. With critical damping in the 
torsional mode there is no speed for which the torsional root (i.e., the root which defines pure 
torsion at zero speed) is oscillatory ; the bending root again leads to flutter after reaching a 
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maximum rate of decay at about 60 per cent. of the flutter speed. I t  is shown in a later example 
tha t  when the torsional root leads to flutter with zero structural damping in its mode, there is a 
change over and the flexural mode leads to flutter after a relatively small amount of structural 
damping has been introduced. 

3. Analysis of the Forces in the Binary of Section 2.--The results given in the previous Section 
were sufficiently surprising to the authors for an investigation 0I the balance of forces to be 
undertaken. I t  is clear that  the amount of energy extracted from the air stream must increase 
considerably as the structural damping in the torsion mode is increased ; the mechanism is of 
some interest. 

3.1. The Amplitude Ratio of the Two Co-ordinates at Flutter.--In Fig. 4 the generalised co- 
ordinate q~ is represented by a unit  vector at the critical flutter condition. The corresponding 
vectors ql are drawn on the same diagram for several solutions of the flutter equations with 
different values of the torsional structural damping. The phase difference between the two 
co-ordinates is initially very small (i.e., when d~ = 0) but becomes steadily larger as d~ is increased. 
This change is to be expected, since only by making the phase angle more favourable to flutter 
can more energy be extracted from the air stream. I t  is to be noted that  the phase angle is 
initially very small and it is probably only in such circumstances tha t  the flutter speed actually 
falls when structural damping is added. The modulus of ql also increases with torsional damping 
so that  the motion as seen by an observer would chang e from being primarily torsional in 
character to being primarily bending in character. 

3.2. The Balance of Forces at the Flutter Speed.raThe balance of forces is indicated by the 
vector diagrams of Figs. 5 and 6. Fig. 5 refers to the second Lagrangian equation, i.e., the 
equation of work done in a small torsional displacement, 

( 8 4 2 2  - -  262 -- 826)ql + (718~ ~ + 86~ -- 432 + ll00y + d2~v~y)q2 = 0 .. (10) 

The diagrams are drawn from the equation in this non-dimensional form, but for an equivalent 
displacement of q~ in each case. To do this the quant i ty  1100yq~, which is proportional to the 
strain energy in the torsional mode and therefore to the torsional displacement, is equated to 
uni ty  in each case. I t  is because the flutter equations, e.g., equation (10), are divided through 
by V ~ tha t  the speed factor y appears in this relation and q~ itself is not constant throughout 
Fig. 5 ; this method adopted in drawing the diagrams of Fig. 5 retains the non-dimensional form 
of the equation but  cancels the misleading effect of the division by V ~. 

The vector diagram for d~ =- 0 is shown in Fig. 5a. The length OA represents the term in 
phase with q~ from the second bracket of equation (10). Thus 

OA = (718z ~ -- 432 + llOOy)/llOOy = 0 .32 ,  . . . . . .  (11) 

since 2~ = -- 0.53 (see Table 1) and y ---- 1.085. The vector A B  represents the damping term 
from the same bracket acting at 90 deg phase ; in this case since d~2 = 0 the term is entirely 
aerodynamic (=  862/1100y). The vector OB represents the forces acting in the co-ordinate q~ 
due to the motion of q2 : the vector BO must therefore, for balance, represent the forces acting 
in the co-ordinate q2 due to the motion of ql. This is made up of the component BC in phase 
with ql and the small component CO at 90 deg phase. The value of BC is given by 

--~ -->. 

BC = (84Z ~ -- 826)q~, . . . . . . . . . . . .  (12) 

where ,~ = -- 0.53 as before and qz has the appropriate value given by Fig. 4. 

Figs. 5b, 5c and 5d show the corresponding diagrams with progressively increasing values of 
d2~, but a l though in Fig. 5d the value of d2~ much exceeds critical damping for the torsion mode 
the flutter speed is still rather less than in Fig. 5a. In all these examples the vector OA is 
considerably greater than in Fig. 5a, par t ly  because of the larger values of y (lower flutter speeds), 
particularly in Figs. 5b and 5c, and part ly because of the less negative values of Z 2 (see Table 1) 
particularly in Fig. 5d. The direct damping vector (A B) increases rapidly with d~ to a value of 

5 
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nearly fifty times that  of Fig. 5a by  Fig. 5d. I n t h e  meanwhile, however, the vector ql has 
increased in magnitude and phase so  tha t  BC again almost closes the diagram in each case. 
I t  may be noted that  the vector OA is positive throughout Fig. 5 because the flutter frequency 
is lower than the frequency of mode two taken alone, at the appropriate airspeed. 

Fig. 6 gives the corresponding diagram for the first equation 

(44002 ~ + 210,1 + 493 + 941y)q~ + (17,18 -- 21,t + 389)q~ = 0 . . . . . .  (13) 

in which the bending displacement, proportional to 941yql, has been made uni ty in each case. 
In these diagrams the vector OA, which again represents the direct in-phase term, is negative, 

e.g., OA = (4400,1 ~ + 493 + 941y)/941y = -- 0.54 . . . . . .  (14) 

for the condition d~ = 0 in Fig. 6a. This is so because the frequency of mode (1) taken alone, 
at the appropriate air speed, is below the flutter frequency. I t  is necessary that  this mode should 

÷ 
approach more and more closely to a resonant condition as the magnitude of q~ shrinks with 
increasing d~, since otherwise the distance BO could not be spanned by the coupling terms. 
That  this does in fact happen is indicated clearly by Fig. 6 as the point A steadily approaches 

t h e  origin. 

4. Survey of some Recent Binary Wing Flutter Calculations.--4.1. Analysis of the Results. 
Following the detailed investigation described above, a survey was carried out of a number of 
binary wing flutter calculations to decide how common is the effect of reducing flutter speed 
with increasing torsional damping. This survey indicated tha t  the effect is always much more 
pronounced at high altitude than at low, and that  the occasions on which it is important  at low 
altitude are very few. This clearly suggests tha t  it is the initial values of t h e  damping coefficients 
which have most significance in deciding whether or not the effect will exist. In particular tile 
damping in the bending mode might be expected to be the more important  since for quite large 
values of the structural damping in torsion (see Fig. 1 for example) the flutter speed is still 
falling. 

Because of the importance of the aerodynamic dampings, the results of the survey are given 
in Table 2 together with the appropriate damping coefficients. 

TABLE 2 

1 TM 

2 

3 
3a ~ 

4 

5 :  

6 

7 :  

7a > 

8 

9 

Type of aircraft 

Bomber type, moderate 
sweepback, aspect ratio 
5 t o 6 .  

Delta aircraft, fighter size 

Straight wing fighter 

Unswept bomber ; high 
aspect ratio. 

Hypothetical 

Height 
(ft) 

40,000 
sea level 
40,000 
40,000 

sea level 
40,000 

sea level 
40,000 

sea level 
40,000 

sea level 
40,000 

sea level 
40,000 

sea level 
40,000 

sea level 
40,000 

bllv 
2V(~lle11) 

0.0498 
O. 938 
0.418 
0.443 
O. 65I 
0.239 
0.789 
0.340 
0-164 
0.0797 

• 0.0939 
0.0469 
0.101 
0.0464 
0.0344 
0.0167 
0-305 
0.149 
0.00981 

b~lv 

0" 123 
0" 102 
0" 0454 
0" 193 
0"492 
0" 180 
0" 292 
0" 126 
0 "  152 
0" 0741 
0" 0994 
0" 0497 
0" 0966 
0" 0442 
0"0411 
0"0199 
0" 191 
0" 0937 
0" 0944 

v per 10% d22 

--0 .09 
+0 .283  

0-273 
0-01 
0.258 
O" 0266 
O" 072 

+0-O29 
--0.0064 
--0.  0687 
+0 -  014 
- -  O- 0536 
+0 .192  

0.0279 
+0.0115 
--0.0741 
+0 .083  
+0 .096  
- - 0 . 0 5 8  

6 



In the first column each different number refers to a different aircraft ; 3a and 7a refer to the 
same aircraft as 3 and 7 respectively, but in 3a the calculation is antisymmetric instead of sym- 
metric, and in 7a the calculation covers a different loading condition; The fourth and fifth 
columns give the aerodynamic damping in the bending and torsional modes respectively.- The 
damping is expressed as a fraction of critical damping at the flutter speed, and the large variation 
in this quant i ty  is of some interest in itself. In those cases where the dampings are large, such as 
2 and 4, a considerable phase difference will already be present at flutter so tha t  little increase 
can be expected with the addition of structural damping, and hence the flutter speed must increase. 
The change in flutter speed caused by increasing d2~ from zero to a value of 10 per cent critical 
damping is given as a fraction of the initial flutter speed in column 6. I t  can be seen that  the 
only examples of a drop in flutter speed (with the exception of 5, in which a very small drop 
occurs at sea level, and 9 in which the height datum is arbitrary) occur at 40,000 ft. This suggests 
that  the effect is unlikely to have great practical significance, but there is one exception, not 
given in Table 2, and that  is the Meteor with a heavy wing tip mass which is treated separately 
in the next Section. Aircraft 7 and 8 of Table 2 both carry tip masses, and aircraft 4 carries a 
heavy mass in the outer half of the wing. 

The change in flutter speed (column 6 of Table 2) is plotted in Fig. 7 against the damping 
values given by columns 4 and 5. There is clearly a general tendency for the low damping values 
to give the negative and low positive values of dv/v but  the scatter is considerable. In view of 
this an at tempt has been made to deduce a theoretical expression for the condition tha t  the 
flutter speed will initially fall with the addition of structural damping d2~- To simplify the analysis, 
the assumption has been made that  the only coupling terms are the aerodynamic cross-stiffnesses. 
This is justified if the coefficients are similar to those of equation (1), but  there are many  
exceptions to this,  in particular any calculations in which the modes are far from normal (e.g., 
assumed arbitrary modes), and also those cases in which the first mode involves no aerodynamic 
incidence change*. 

• With  this approximation thecondi t ion  for OV/Od~ to be negative at d~2 = 0 is tha t  tl should 
be negative, where 

tl = y{bl~b2~(a~e2~ + a~e11) + 2anb~%} + 

"@ bllb22(l~ltC22 + l~22C11) -7[-- 2~i~11b222Cll -1-- c12e21 ( ~I12 b22bll - -  1~222 blinD22] , , .  (15) 

The standard notation is used, so that  a ,  is a typical inertia coefficient, b,, a typical aerodynamic 
damping coefficient, c ,  a typical aerodynamic stiffness coefficient, and e~, a typical structural 
stiffness coefficient. 

The analysis leading to equation (15) is given in the Appendix,  as is the extended form of 
t~ when b~ is not zero. 

The term involving y in t~ is positive as long as the direct aerodynamic damping coefficients 
are positive, which they always are in practice at subsonic speeds. The term independent of y 
in .tl involves the aerodynamic stiffness coefficients (the c's) and can therefore be negative, but it 
will be noticed that  the first part of this term is identical with the term in y except that  the 
aerodynamic stiffnesses replace the corresponding elastic stiffnesses. I t  follows that  if the 
critical flutter speed is below the divergence speeds both of degree of freedom 1 by  itself and of 
degree of freedom 2 by itself, then that  part of t~ which excludes tile coupling coefficients must 
be positive. Accordingly t~ can only be negative if 

all a2~ (16) 
bl--~ > be., . . . . . . . . . . . . .  

s ince the  product c~c~ must be negative for a real flutter speed to exist. 

* For example, the flutter of an unswept wing with the flexural and inertial axes coincident at the half-chord ; in 
this case % and % will be zero (or nearly so) but b21 will be relatively large and negative. A n  extension covering this 
case is given in the Appendix. 
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From the form of (15) and (16) we may summarise the rules for an initial reduction in flutter 
speed with structural damping as : 

(1) The product c1~% should be negative and large compared with the products of the direct 
dampings, bl~ ~, bilbo2 and b~2 ~* 

(2) If (1) is true, then the flutter speed will drop with increasing d~ if 

~11 a22 

and the flutter speed will drop with increasing d~l if 

a~2 al l  

The second part of (2) follows by  interchanging the suffixes in .the expression for t ,  The first 
rule is quite rough and assumes that  the coefficients have been scaled to the same order of 
magnitude in each degree of freedom, and tha t  the flutter-speed parameter is of the order of 
unity. The effect is, however, fairly clear, as shown by Fig. 8 in which ~v/v is plotted against 
the quant i ty  (--c~c~l/bl~b~) ; the points follow the dotted curve reasonably well, and what 
scatter there is arised mainly from the different values of (a11/bl~ - -  a~/b~2). 

4.2. The Meteor with T ip  M a s s . - - T h i s  case is especially interesting because of the very large 
value of the quant i ty  (-- c~c21/bl~b22), which is, in fact, 139 units at 15,000 It, the altitude at which 
most of the calculations have been carried out. This means that  the term in c12c~1 in the expression 
(15) for tl plays a dominating part. The coefficients at 15,000 ft are given by~ 

A - 
1 0 3 2 2 ~ + 1 5 8 2 + 1 0 4 + 1 1 1 0 y ,  

8 2 + 1 1 1 0 ,  61622 

The last term of the expression for tl is 

/ ~ b2~ c 2c 1[all 

- -  1002 -- 3544 . 

+ 902 -- 80 + 2660y 
. .  ( 1 7 )  

= -  3.934(0.6067- 0.6662) × 1012 . . . . . .  (19) 

using the coefficients of equation (17). The quant i ty  t2 is clearly positive so tha t  the flutter speed 
increases with the addition of d~2. Unless the speed is changing very rapidly, however, an increase 
in d~. will have the same general effect as an increase in b~ at a slightly different rate. Now, 
because of the small difference in equation (19), an increase in b22 soon makes t~ negative, and 
because tl in this example depends principally on the value of t~ it follows that  tl also soon becomes 
negative. I t  is therefore to be expected that  although the flutter speed increases with d~ initially 
it will soon start  to fall as the controlling term t2 effectively becomes negative on allowing for d2~. 
The graph of V against d~ therefore shows an initial increase followed by a prolonged decrease, 
as shown in Fig. 9, with a minimum flutter speed about 75 per cent of the basic value. 

* In  wing flutter, the equivalent air-speed at the critical flutter condition does not vary much with height, and this 
speed (rather than the true speed) is obtained if the height variation is effected by multiplying the b's by ~/~ and the 
~'s by a ; where ~ is the air density ratio and d the aerodynamic inertia (the change in the d's is often neglected). In  
applying,rule (1); therefore, b%/~ should be used rather than b itself if the altitude is other than sea level. This has 
been done in the text and in plotting Figs. 7 and 8. 

These coefficients correspond to --q2%/bllb2~ = 9.77, because they have been corrected for time constants.  
Strictly, however, this quanti ty should be compared on the basis of coefficients scaled to give unit critical speed 
(y = 1) and frequency (2 = i). If  this is done the ratio drops to 69. For the purpose of applying the rough rule of 
Section 4.1 it is good enough to take the coefficients directly as scaled for the simulator since the mean frequency (and 
the flutter speed) should be not very far from unity ; this gave 139 units as quoted in the text. 
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On the same Figure is plotted the effect of an increase in d~. In this case the flutter speed 
falls immediately with increase in damping, as would be expected from the application of the 
rules given in the last Section, but the maximum drop in flutter speed is less with d~l than with 
d2~, the minimum speed being about 85 per cent of the value with no damping. By the time 
d~l has been increased to 2.04 times critical damping, the flutter speed has returned to its initial 
value, and thereafter rises steadily. For comparison the flutter speed is below its initial value 
when d2, lies between 0. 054 and 3- 66 times critical damping. 

Although a large drop in flutter speed can be obtained by the introduction of structural 
damping either in mode 1 or in mode 2, the form of equation (15) shows that  the two effects are 
not additive. The result of adding a constant proportion of critical damping in each degree of 
freedom is shown in Fig. 9, and it can be seen that  the increase of flutter speed is quite steady. 

The amplitude ratio (q~/q~) is plotted in Fig. 10 (and the amplitude ratio q~/ql in Fig. 11) for 
those values of d2~ which give the same flutter speed as when d2~ = 0. The effect is much the 
same as for the example of Section 3, the initial phase difference between -- q~ and q~ is about 
10 deg and by the time d~ has increased to 3.66 times critical damping this phase angle has 
reached about 80 deg. The sign of the co-ordinate q~ relative to q~ is, of course, just a mat ter  
of the initial choice, and in the present example the choice made was clearly the opposite of that  
made for the example of Sections 2 and 3 (compare the sign of the aerodynamic cross-stiffnesses 
in equations 1 and 17). At the same time as the phase angle is increasing through 70 deg, 
the amplitude ratio increases about 16 times. 

The converse, for increasing d11, is shown in Fig. 11. Again the phase difference increases, to 
about 75 deg by the time the flutter speed has returned to its original value. At the same time 
the amplitude of the undamped mode (q, in this case) increases several times. The increase is 
not so marked as when d~2 is increased, being about 5 times compared with 16. Another interesting 
effect is on the flutter frequency ; in the examples where d~, is increased this frequency falls 
steadily, but  when dll is increased the flutter frequency increases ; in general it appears that  the 
flutter frequency tends towards the natural  frequency of the mode whose amplitude is increasing. 

As in the example of Section 2 the complex latent roots of the binary calculation have been 
evaluated at speeds below the critical flutter speed for dll ----- 0 and d2, = 0, 0.054 and 3.66 times 
critical damping respectively; these three conditions all give the same flutter speed. When 
d2~ = 0 the torsion mode leads to flutter whilst the bending mode becomes progressively more 
damped, but  between d~ = 0 and d~ = 0.054 times critical damping, the two change over as 
shown in Fig. 12b. For some intermediate damping ratio the behavlour would be such as to 
render flight flutter tests difficult to analyse, because of the rapid change in frequency of the 
two roots, and the sudden drop in damping to the flutter condition. For the largest value of d2s, 
as shown in Fig. 12c the torsional root is dead beat all the way. 

5. Binary Investigations of a Hypothetical Wing.--In an at tempt to understand what type of 
normal modes give rise to a form of flutter in which the critical speed falls with structural damping 
in one of the modes, some calculations were made in the reverse direction starting with a range of 
coefficients known to cause the required effect, and, assuming standard derivatives, working back 
to the modes. A certain amount of trial and error was involved, and the resulting modes for a 
rectangular wing do not look very plausible (see Fig. 13). The flutter equations are 

[ 
• - -  844 -- 225, 250~ ~ ~- 63~ -- 313 + 1000yJ~Jq~ 

and the resulting fall in flutter speed with d,, is indicated in Fig. 14. 
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If the flexural and inertial axes coincide for an unswept wing,  then c21 is nearly zero but  b21 
will provide sufficient coupling to promote flutter if the combined axis is sufficiently far aft of 
the aerodynamic centre. The expression corresponding to t~ for this case is given in the Appendix 
and it is only for most unlikely conditions that  the value becomes negative. A particular example 
of an unswept wing with an extreme frequency ratio (favourable to negative tl) has been worked 
out on the assumption of pure bending for mode one and pure torsion for mode two, but the 
flutter speed increases with d,2 at all practical heights. 

I t  is concluded from these investigations that  the conditions in which the flutter speed may 
fall on the addition of structural damping are : 

(1) The relative density (wing toa i r )  must be h i g h  

(2) The wing normal modes must involve coupled flexure and torsion*, either 
(i) through sweepback 

(ii) through a wide separation between the flexural and inertial axes 
(iii) through the presence of large concentrated masses with offset c.g.s. 

All the examples of Table 2 in which dv/v is negative satisfy both these conditions, although 
it is to be noted that  deltas must be classed as swept-back aircraft for this purpose. 

6. Comlusio~s.--The results quoted in the present paper show t h a t :  

(1) The binary wing flutter speed may fall on the addition of structural damping in either 
the torsional mode or the bending mode, but  more often in the torsional mode. 

(2) The effect, if it occurs at all, gets worse with height, and often only takes effect at heights 
for which wing flutter .presents no problem. 

(3) The drop in flutter speed may continue to very high values of the damping, and in some 
cases more than three times critical damping is necessary to raise the flutter speed 
above its initial value. 

(4) The drop in flutter speed for practical values of purely structural damping is small. 

(5) If damping is added in the same proportion in each mode the flutter speed always increases. 

I t  can be concluded that  in a routine wing flutter investigation the effect of structural damping 
is unlikely to be sel"ious, but  there are some circumstances in which damping is neglected, because 
it is thought to be beneficial, tha t  could be dangerous. An example is that  of a wing carrying 
under-wing fuel tanks part ly full. I t  is usually considered that  for the first few cycles of a flutter 
oscillation the damping effect of the fluid is small, and this is regarded as the dangerous period. 
When turbulence is set up in the fluid after a few cycles quite large values of structural damping 
in the wing torsion mode can occur (see Refs. 5 and 6, for example) ; if the flutter is of similar 
form to that  of the Meteor with tip mass, for example, this, far from being beneficial, could have 
a serious adverse effect. 

Another way in which one mode may have a large degree of damping associated with it is if 
the damping is aerodynamic, which would have the same basic effect as structural damping. 
Suppose the wing torsional frequency coincides with tile tailplane bending resonance, for example. 
The tailplane effect might be neglected in flutter calculations by the argument that  the wing 
torsion mode is supplied with a damper (aerodynamic in this case) which would be expected to 
be favourable ; again this could be dangerous. 

Finally any device, or type of construction, intended to introduce a high degree of damping 
artificially as a wing flutter preventive must be carefully considered in relation to the particular 
application concerned. 

* The torsion to be unders tood in an aerodynamic sense. 
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Should a wing torsion mode be associated with very heavy structural damping in practice, it 
might lead to many  difficulties which could be serious if the wing flutter was of the type discussed 
in the present paper. In the first place the mode would be very difficult to excite and measure 
accurately in a ground resonance test. Similarly any flight vibration work Would be difficult to 
carry out on such a mode. This would not be so serious in one sense because the heavily damped 
mode is not the root which leads to flutter in the examples considered here, but on the other 
hand the bending mode might not be suspected as a possible dangerous mode. Added to these 
difficulties is the fact tha t  the approach to flutter is rapid as shown in Figs. 3 and 12c, for example. 

Mention should perhaps be made of the fact tha t  in the present paper the effect of the damping 
forces on the mode itself has been neglected. Clearly this assumption might  be seriously wrong 
when the dampii~g reaches the order of critical damping, but  unless there is a marked discontinuity 
in the distribution of damping the qualitative effects given in the paper are unlikely to be affected. 
In any case, whatever the source of the damping, values greater than about a quarter of critical 
are unlikely to be reached, but this amount can still give a substantial drop in flutter speed. 
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LIST OF SYMBOLS 

Generalized co-ordinate 

Frequency parameter ---- ~c~/V based on a reference chord c~ 

iv 

Flutter frequency 

Flutter speed 

Coefficient of ~'~ in the expan~on of the flutter determinant (see equation (2)) 

The 3rd test function 

The coefficient of 2 2 in T3 

The constant term in T3 

cLs + cLs 

Typical structural inertia coefficient 

Typical .aerodynamic inertia coefficient 

Typical aerodynamic damping coefficient 

Typical aerodynamic stiffness coefficient 

Typical structural stiffness coefficient 

Typical structural damping coefficient 

Coefficient used in expressing hysteresis damping when the stiffness term e 
is replaced by e(1 + ig) 

tl < 0 gives the condition that (~V/~d~)d~ = 0 < 0, and is expressed in terms 
of a, b, c, e and y (see Appendix and equation (15) in text) 

Principal negative term in the expression tl (see equation (16) in text) 

Air density ratio 
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A P P E N D I X  

Expressions for ,the Initial Variation of Flutter Speed w#h Damping in the 
Torsion Mode of a Wing Binary Calculation 

In the first case considered the only coupling terms are assumed to be the  aerodynamic 
cross-stiffnesses. The flutter determinant is then 

a ~ + b ~ ; ~ + c ~ ; e ~ y ,  C~ [ . . . .  (a.1) 

c21 a~# ~ + b ~  + c~2 + d~#~/y + e2~y 

This is expanded to give 

and the penultimate test function is given by 
T~ = plp=p~ -- pop~ ~ -- plop, . . . . . . . . .  ~. . (A.2) 

The lowest critical flutter speed occurs when Ta Passes through zero from positive to negative. 
If we consider the condition T3 = 0 for d2~ = 0 (the critical flutter condition for zero structural 
damping), then 

T3 
ad2~ > 0 . . . . . . . . . . . .  (a.3) 

gives the condition that  an increment in d22 will lead to a stable condition, i.e., the flutter speed 
is rising with d22 in this case, and conversely. 

With d~2 ---- 0 we have 

T3 1/2 I Od~2 -- y b~.y~(a~e~2 -- a22e~) ~ + 
l 

+ a=~b~(2b2~e,~ + b,~e~)l + 
t 

+ + 

+ ~ ( ~  + 2~1~) + ~ ( 2 ~ 1 ~  + ~ ) I 1  " " (A.4) 

and also with d~ ---- 0 the condition T~ = 0 gives, after dividing by bnb~, 

y~(ane2~- a~en) ~ 

yt2(~lle22- ~2'2~11)(~11e22- ~22eli) + (~11522 + a22b11)(blle22 + b22e11) I + + 

/ l ( ~ -  ~ ) ~  + ~ . ~  _~ + ~ ~ / +  ~ ( ~  + ~ ) +  + 

a~b~c~c~ I = 0 . (A.5) + a~b~2(b~c~ + b~c~) + b~ . . . . . . . . . .  

After dividing A~ by ff/~b~ (which is essentially positive and cannot affect the sign of ~ Ta/~d2~) 
and subtracting A~ we have 

b~y ~/~ ~d~ = y b~b~(a~e~ + a~e~) + 2a~b~e~ + 

(A.6) 
b~ b J ,  . . . . .  

This equation is identical with equation (15) of the main text, where t~ = (0 T,/Od~)/bn.y 1/~. 
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If the total stiffness at the flutter speed (= c -key)  is denoted by ~; equation (A.6) simplifies to 

1 ~T3 bllb2~(a11~2~ + a 2 ~ )  + 2a~ib~2c~ -I- C12C21 (all 2 b22 ' b ~  (A.7) 
b ~ y  ~/~ ~d~  - -  b~-~ - -  a ~  b J  " "" "" 

If b21 is not zero, the additional term to be added to the right-hand side of equation (A.7) is 

( a~2 , a~a~b~c~2 t (A.8) 
b21c12 I b2-22 (~110'22 - -  0~220"11) @ b11622 t . . . . . . . . .  

In general c~ (equation (A.7)) and b~l (equation (A.8)) will be negative. 
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