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Summary. A theory of the Mach-Zehnder interferometer is developed using the approach of investigating 
the history of a wave front produced by an element of an extended light source. Account is taken of the effects 
of imperfections of the optical components including all the first-order aberrations of the collimating and 
collecting lenses or mirrors and of the camera lens. The theory can also be applied to other two-beam inter- 
ferometers. 

1. Introduction. The Mach-Zehnder interferometer is one of a large class of instruments in 
which two-beam interference is produced by division of amplitude. Its principle of operation is 
simple and can be stated very briefly, if the components of the instrument are assumed to be optically 
perfect. Referring to Fig. 1, S, a point source of monochromatic light in the focal plane of a perfect 
collimating lens L produces a parallel beam of light which meets a semi-reflecting mirror M 1. 
This mirror divides the amplitude of the incident light equally between one transmitted and one 
reflected beam, which are in turn reflected by the fully reflecting mirrors M~and Ms, respectively, 
andreunited by the second semi-reflecting mirror M s. Since under the idealised conditions assumed 
the two semi-reflecting mirrors have zero thickness, observable interference would take place beyond 
M s wherever the two beams overlap*. The fringe pattern would depend only on the relative incli- 
nation of the two beams; any desired fringe spacing and direction could be obtained by rotating 
any one of the mirrors about two mutually perpendicular axes in its own plane. Therefore, the theory 
of the ideal instrument (with a point source of monochromatic light) consists merely of the relation 

between the displacements of one of the mirrors and the corresponding fringe spacing and direction. 
Complications arise when one attempts to take into account departures of a real instrument from_ 

the ideal model. It is convenient to classify these departures under the following headings: 

(a) Light source 

(i) Finite band width 

(ii) Finite size 

* We shall not be concerned, in this paper, with the other pair of beams (shown dotted in Fig. 1) also,. 
produced by M 2. In this pair, one beam has been reflected once and the other three times; in consequence 
there is a difference of phase and polarisation between them. 



(b) Mirrors (and other glass plates such as wind tunnel windows) 

(i) Finite thickness of semi-reflecting mirrors 

(ii) Differences of thickness and refractive index between the two semi-reflecting mirrors 

(iii) Non-uniform thickness ('wedge shaped' plates) 

(iv) Surface irregularities 

(c) Aberrations of lenses 

(i) Collimating lens (or mirror) 

(ii) Collecting lens (or mirror) and camera lens. 

The effects of imperfections of mirrors and lenses are linked with those of the light source in 
the sense that their importance depends on their effects being different for different points (and 
wavelengths) of the light source. With a point source of monochromatic light, the only effect of 
mirror and lens imperfections would be a distortion of the fringe pattern. On the other hand, the 
spectral characteristics and the band width of the source would have very important effects even in 
the absence of mirror and lens imperfections. For, every element of the source produces a fringe 
pattern of its own; these patterns overlap and their combined effect depends on the spectrum and 

the dimensions of the source, as well as on the arrangement of the mirrors. This has the following 
most important consequences: first, observable interference will be produced only provided the 
difference in the optical path length along the two routes between the source and a point on the 

screen is not too great, and second, the fringes are localised, i.e., there is an optimum position for 
observing interference where the contrast of the fringes is highest; to this corresponds an optimum 

adjustment of the mirrors which minimizes the effects of the size and the spectrum of the source. 
The fact that the fringe contrast is governed by the characteristics of the source, the adjustment 

of the mirrors and the quality of the optical components stresses the importance of an adequate 

and yet reasonably simple theory which takes into account all the essential features of the instrument. 
The need for such a theory arises both in the design of a new instrument and in the efficient operation 
of an existing one. In the past, many extravagant notions as to the cost of construction and 
complexity of adjustment of a Mach-Zehnder interferometer have been widely entertained, largely 
because of the lack of detailed understanding of the optics of the instrument. 

The early theoretical work on the subject, reviewed by Tanner (1956), was unnecessarily restricted 
to various special cases and many of the results were wrong. The first attempt to give a comprehensive 
theory was made by Winkler (1947), who considered the aspects listed above under the headings 

'(a) and (b). In common with his predecessors, Winkler used laborious ray tracing methods leading to 
complicated geometrical arguments, some of which the present writer must confess to having failed 
to follow. The aspects of the theory considered by Winkler and the earlier writers were put on a 
sound basis by Tanner who, in his 1956 paper, rederived the results obtained previously, correcting 
those that were in error (in particular, Winkler's conclusions on the effects of the finite" and non- 
uniform thickness of the semi-reflecting mirrors). Instead of using the conventional ray tracing 
methods, Tanner expressed the optical path difference between the two beams, at a point on the 
screen, in terms of the separation of the two images of the point as seen by an observer situated 
between the collimating lens and the first mirror. This ingenious device leads to a valuable simplifica- 
tion of the theory; it has, however, obvious didactic drawbacks. 
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The purpose of the present paper is tO put forward an alternative theory based on the physically 

direct approach of investigating the history of a wave-front produced by a point of the (extended) 
light source. The use of elementary vector notation considerably simplifies the analysis and helps 
to clarify the physical significance of the equations derived. In Section 2 is given the theory of the 

ideal interferometer with an extended light source, whilst Section 3 deals with the effects of im- 
perfections of mirrors and windows. Section 4 is devoted to what the writer believes to be the first 
complete account of the effects of first-order aberrations of the collimating, collecting and camera 
lenses. Tanner (1956) considered only the effects of the spherical and of the longitudinal chromatic 
aberrations of the collimating lens~ In interferometers with a large field of view (greater than, say, 
10 cm square), it may be necessary to use spherical mirrors rather than lenses (as good lenses of such 
dimensions are very costly) and the effects of oblique monochromatic aberrations (coma, astigmatism, 

curvature and distortion) may become important. 

2. Ideal Interferometer with Extended Light Source. Any point of an extended light source may 
be regarded as the origin of spherical wave-fronts% If the point is situated in the focal plane of a 
perfect collimating lens (or mirror) L (Fig. 1), the lens transforms the spherical front F, into a plane 
front F~. The plane front is divided by the first semi-reflecting mirror into two coherent wave 

fronts; of these one istransmitted by M1, reflected by M 4 and M~ and emerges as F '  in Fig. 1, the 

other front is reflected by M 1 and M3, transmitted by M~ and emerges as F. Displacements between 

the corresponding points of F and F'  determine the interference pattern on the screen, as will be 

shown below. No observable interference can take place between fronts originating from different 

point s of the source. 
Suppose now that the mirrors are so adjusted that F and F'  coincide. Then, an observer looking 

into M~ would not be conscious of the particular arrangement of the mirrors. Beyond M~ he would 

see M 3 together with the images of the mirrors M~ and M 1 and the image of the lens L (Fig. 2); 
the coincident wave-fronts would appear to have travelled from O, the centre of the collimating lens, 
with their centres moving along the straight line joining O to S, the point in the source from which 
the wave-fronts originated. This 'linear' representation of the interferometer is optically completely 

equivalent to the actual arrangement. 
Consider now a point S o of the source which may be regarded as the 'centre' of the source (it need 

not be its geometric centre, but merely a convenient reference point). Then, F0 is a wave-front 
originating from S o and we take the path of propagation of its centre (i.e., its central ray) as the 
optical axis of the interferometer and as the z axis of a cartesian co-ordinate system, origin at O, 
the y axis perpendicular to the plane of the centres of the mirrors~, positive upwards, with the x axis 
completing the right-handed system; the centres of the mirrors are the points of intersection of the 

central ray of F 0 with the mirror planes. 
Suppose M~ is rotated through a small angle c ~  about an axis in the plane of M 2 passing thro_ugh 

its centre. Then, from the laws of reflection it follows that the wave-front F '  reflected by M 2 will 
be rotated about the same axis through twice the angle; this may be represented by the vector 

* The term 'wave' is used here in the sense of a train of surfaces of constant phase which are orthogonal 
to and propagate along the rays of geometrical optics. This view takes no account of diffraction which is of no 
significance in our problem (cf. Hopkins, 1950). 

It is not necessary for the centres of the mirrors to be co-planar, but it is usually convenient to arrange 
them so and such arrangement will be assumed throughout the paper. 
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a2 ( =  2c%2), Fig. 2. Similarly, a small translation r,,~ in the direction of the mirror unit normal 
m~ will result in the wave-front translation ,~ = 2%, 2 ( =  2%,2 m~). 

Consider a point P' on F', position vector p (Fig. 3). The displacement of P' due to the rotation 
¢z2 and translation -c 2 is, to first order in a and % 

d 2 = 0 t 2 A ( p  - -  z2k ) + "c 2 

where k is the unit  vector in the z direction. Since all the displacements are assumed to be small, 

and their squares and higher-order powers are neglected, they are additive. Further, since we are 

only concerned with tile relative displacements of the wave-fronts, the displacement of one of the 

fronts is equivalent to a displacement of tile other front of equal magnitude but  opposite direction. 

Thus,  for convenience, we may regard F as the 'undisturbed'  front and F '  as being affected by 

adjustments of all the mirrors (with the signs of a,~1, a~3, %a and -¢~a reversed).-The combined effect 
of all the mirrors is then a displacement of F '  given by 

D =  

where 
k 

T =  

If  n is the unit  normal at C, 

n I 

Then, referring to Fig. 4, if P 
difference 1 at P is*": 

l =  

or, by equation (2.2), 
l =  

A a p  + T - Xz ia iAk;  i = 1, 2, 3, 4 ,  (2.1) 
i 

Xa, = 2 X ( -  1) ~ ~,~,, 

27.~ = 2 27( -  1)i % ~ .  

the centre of F, n' ,  the corresponding miit normal of F '  is 

n + AAn.  (2.2) 

is a point (on the screen S) whose position vector is p~ the pa th  

PR 

D .  n' 

n . n  + O(A2p, A T ) .  (2.3) 

Now, D can be shown to be also the displacement between the two images of P in M3, M1 and 

in M2, M4, respectively, due to the image rotation A and translation T. Interpreted this way our 
expression for l is precisely equivalent to  Tanner's.  

To investigate the dependance of I on source size it is convenient to write n as 

n = k cos co + s sin co , (2.4) 

where co is the angle between n and the z axis and s is the unit  vector in the direction of projection 

onto a z = const plane of SoS , the line joining the source point S to the centre of the source (see 
Fig. 2). Further,  if Cs is tile point of intersection of the screen with tile z axis, or the 'centre' of the 
screen, position vector z~k, equation (2.1) may be written 

D = A A r  + T + T s ,  (2.5) 

where r = p - z,k, is the position vector of the point P relative to C,, AAr is the rotational 
displacement of the point P on F due to the rotation A with the axis of rotation passing through the 
centre of the screen C8, and T~ = 27 (z 8 - zi) ~/xk, is the translation of Cs due to the fact that, in 
general, tile effective total rotation A is not about an axis passing through C, (Note that T~ has no 
z component). 

* Positive value of I implies that F lags behind FT, i.e., l = path length in beam LM1MaM 2 - path length 
in beam LM1M4M 2. 



With these changes of notation, equation (2.3) becomes 

l = (AAr + T + T , ) .  (k cos ~o + s sin oJ). (2.6) 

T o  make 1 independent  of the source size to first order in ~o ( 'opt imum adjustment') ,  we must make 

D .  s = 0, i.e., there must be no lateral displacement of the wave fronts. This  requires: 

(1) T .  s = 0, i.e., translation in the z direction only. 

(2) T~ = 0, i.e., mirror rotations must be such that the effective total rotation is about 

the centre of the screen; this determines the mirror rotations necessary to 

'focus' the fringes onto the screen. 

(3) s .  AAr = 0; for this triple scalar p r o d u c t t o  vanish we can either: 

(i) make s, A, and r co-planar, i.e., the screen must  be the z = z, plane and 

A must have no z component,  or 

(ii) A~ = 0, s parallel to A, i.e., the source must be a line (or narrow slit) 

parallel to A. 

With a non-parallelogram interferometer it is always possible to make A~ = 0, independently of 

the other components  of A. In a parallelogram interferometer  all m i are equal, which results in A~ 

being proportional to A~. Then,  for a given source size, an A~ rotation inevitably involves some loss 

of fringe contrast. The  effect of Az may be minimised by inclining the screen so that it contains A 

(then s .  AAr = 0 where r is parallel to A), but  this is seldom practicable. 

T h e  theory of this Section can be applied to other two-beam interferometers. For  instance, 

Fig. 5 shows the Twyman-Green  modification of the Michelson interferometer and its linear 

representation. Here, the fringes are always localised in the plane coincident with the images of the 

mir rors  2 a n d  3; also, A can have no z component,  so that fringe contrast is, to first order, 

independent  of the source size. 

3. Effects of Finite Thickness and Imperfections of Gla:ss Plates. 3.1. Flat Plates of Uniform 
Thickness an d Refractive Index. Consider a plane wave-front F which is t ransmitted by a flat 

glass plate of uniform thickness t and refractive index /x (Fig. 6). F is incident at an angle/3 on 

the plate whose unit normal is m,  so that m .  n = cos fi, where as before n is the unit normal 

to the wave-front. Refraction in the plate produces two effects (ignoring changes of phase and 

polarisation). 

(i) Increase of optical path of amount  tF(u, t~), where F(u, /x) = ~/{(t~ ~ - 1) + u ~} - u; 
u = cos/3 = m .  n. This  corresponds to a backward displacement of F along its normal 

equal to - tFn. 

(ii) Transverse shift of F of amount  - tF~ sin/3 in the direction normal to n and in the plane 

of n and m,  i.e.; in the direction of (m  - un). This  corresponds to a displacement 

- t (m  - un)F~, where F~, = OF/~u. 

Let  the pr imed quantities refer to the corresponding plate through which the wave-front F '  is 

transmitted. Then,  the change of the optical path difference is 

81 = tF(u, t~) - t'F'(u', t~'). (3.1.1) 

(78998) A* 2 



Suppose that t, /z and u of the two plates differ slightly*, so that we may write 

t' = t + ~ t , ~ '  = ~ + ~ ,  u' = u + ~ u .  

Now, 3u = 3 ( m .  n) = n .  3m + m .  3n. Of these~ 3n is produced either by mirror  rotations or 

by the presence of a disturbance in one of the beams; in either case its effect is qualitatively similar 

to that of 3m, the change of incidence due to a slight departure f rom the parallelogram arrangement.  

Here,  we shall consider only the effects of 3m, so that (3.1.1) becomes 

_ 3__lt = F(u, 1~)3--t t +F~(u, i~) 31z + F~(u, /z)(n . 3m) . (3.1.2) 

This  depends on the position of the source point, since u = ' m .  n and 

n = k c o s w +  ssin~o 

= k + (~os - ½oJZk) + 0(w ~) (3.1.3) 

= k + 3~n ,  
so that 

u = Uo + m .  3,on = u o + [~o(m. s) - ½cO2Uo] , 

the suffix o indicating that the quantity concerned refers to the wave fronts from the centre of the 

light source. Thus ,  to second order in the source size, any function G(u, tz) may be written in the form 

G (u, I-0 = a (Uo, I z) + Gu (Uo, t ~) [eo(m. s) - ½~O~Uo] 

1 (%, ( m .  + ~ G ~  t~)~o ~ s)  2 
o r  

G = G O + ~o(m. s)Go~ , + ½~o~[(rn. s)~Go~ - uoGo,  ] . (3.1.4) 

Difference of thickness. 
By equations (3.1.2) and (3.1.4), 

by identifying G with F. Then,  

l =  

l may be made independent  of 3t 

displacement 3D such that 

3D = [kF 0 + ( m  - u0k)F0~ ] St .  
T h e n  

l =  l~--  ½co~[Fo-- u o F o ~  " + ( r e . s )  2Fouu] at,  

where li is the path difference of the ideal interferometer.  

t h e p a t h  difference produced by a difference of thickness is obtained 

using (2.3) and (3.1.3), the path difference on the screen is 

( D -  k F  0 3 t ) . k  + ~ o ( D -  m F  0 ~ 3 0  . s  

- ½oJ 2 [(D - m F  o~ 3t) .  k + ( m .  s )2F0~  St] .  (3.1.5) 

to first order in co by an adjustment of the mirrors giving a wave-front 

(3.1.6) 

(3.1.7) 

Note that SD is equal to minus the relative displacement (longitudinal and transverse) between 

the two wave-fronts f rom the centre of the source, due to tile difference of thickness of the two plates. 

Effect of dispersion. 
I t  can be shown (see, for example, Tanner ,  1956) that as a result of dispersion caused by the 

different thicknesses of glass in the two beams, fringes produced by the wavelengths of the source 

* In Section 2 we shall be concerned with parallelogram interferometers only. 



near )t will reinforce not when l = 0 but when 1 = - )tFa St. Therefore, tO keep the fringe of 

highest contrast in the middle of the screen requires a wave-front translation ST = - AF 0 a k St 

whose effect is to introduce the term - AF 0 a into the square bracket of equation (3.1.7)~ 

Difference of refractive index. 
The effects of differences, of/~ of the two plates may be found simply by replacing' in equations 

(3.1.5) to (3.1.7) St, F, F~ and Fuu by t S/z, F~, Fro, and F~u~ respectively. 

Difference of incidence. 
Identifying G in equation (3.1.4) with F~, and substituting for F ,  and (n .  Sm) in equation 

(3.1.2), we find that the compensating Wave-front displacement 

SD = t[Fo~ ~m + (m - u0k ) Fo~, (k .  Sm)] (3.1.8) 

makes I independent of 8rn to first order in 02, leaving a quadratic dependence on 02: 

l = li - ½02~t([Fo~u~(s • m) 2 - u0F0~] k .  8m + 2(s.  m) F0~(S .  8m)}. (3.1.9) 

At zero incidence (i.e., windows normal to the optical axis), m = k, so that s .  m = 0 and since 
~m must be perpendicular to m, k .  8 m =  0 and the quadratic term in o~ vanishes, making l 

independent of difference of incidence to second order in source size. 

3.2. Wedge-shaped Plates. A glass plate with plane sides which include a small angle ~ is 

equivalent to a plate of uniform thickness equal to the thickness at the centre of the real plate, plus 

a thin wedge or prism of angle ~6 whose apex lies along the constant-thickness line passing through 
the centre of the plate (one half of the prism must, of course, be regarded as a 'negative' prism). 
From the law of refraction it follows that the effect of such a prism (Fig. 7) is to rotate the incident 
wave-front through an angle ~,  = ~6 F(u, i~)/u about the apex of the wedge. This rotation can be 

represented by the vector 

~ = ~ : ~ w ,  (3.2.1) 

where w is the unit vector along the apex of the wedge. This displaces the emergent wave front by 

the amount 
3~D = ~ A ( p  - z~k), (3.2.2) 

(zi being the co-ordinate of the centre of the plate in question) and the corresponding path difference 

is 

s~l = 6 ~ w A ( p  - ~,k). [k + (02s - ~02~k)J. 

Expanding F'/u in powers of 02 [cf. equation (3.1.4)], we have, to second order in 02, 

s j =  ~o[wpk] + 02(~[wpk] + ~o[~(p _ z,k)s]} 

1 2 "  / u p + ~ ,  ~ _ ~o) [~pk ]  + 2~w[~(p - z~k)s]} ,  

where [abc] denotes the triple scalar product of a, b and e and 

a° = ~ Fo, a~o = ~ (Fo~ - Fo/uo) m .  s 

7~.~ {[1 + ( m .  s)2/u~](Fo - uoFo~,) + ( m .  s)~ Fo~,} 
~o 

(3.2.3) 

. (3.2.4) 
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Mirrors. 
To first order in co we may write 

• 0 w A ( p  - z , k ) ] ,  s + co ~ [ w p h ]  (3.2.5) l =  [D + a ° ( w / \ p ) ]  k + co[D + c~,~ ' . 

T h e  te rm independent  of co may be eliminated by a mirror  rotation producing the displacement 

3D = - ~o wA(p - z~k), 

leaving a first-order dependence of l on co: 

l = l~ + co~; [wph]. (3.2.6) 

Windows. 

At zero incidence, u 0 = 1, s ° = (/z - 1)¢, ~ = 0, c~ - /~ - 1 ¢, hence, 
/z 

l =  [D + (~ - 1 ) ¢ ( w a p ) ] .  k + co[D + (t* - 1 )¢wa(p  - z # ) ] .  s 

- ~ [D ~ - 1 4 ( w ~ p ) ] .  k .  
/z 

TO eliminate the zeroth and first-order te rms in co would require a wave-front  rotation - (/~ - 1)¢ 

about  the axis w through the centre of the wedge-shaped plate. In  a parallelogram interferometer  

this is possible only if the wedge apex is parallel to the y axis. For, a wave-front  rotation about the 

x axis necessarily involves a proport ional  rotation about  the z axis (A~ = A~ tan/3o). Thus ,  the 

co te rm can be eliminated only when w = j.  Otherwise, the compensat ing wave-front  displacement 

3D = - (/x - 1)¢(w + kw.. tan/30) A (p - zik) 

again leaves a first-order dependence of l on co: 

l = l~ + a,(~ - 1)¢w.. tan/30 [sph]. (3.2.7) 

For  direct comparison of the theory of this Section with the corresponding results of Tanne r  we 

note that if the x and y co-ordinates of the source point S are x', y '  and f is the focal length of the 

collimating lens, 

c o s =  - 7 i -  j [1 + O(e2)], 

where ~ is the angle between the axis of the lens and the z axis. Further ,  the mirror  unit  normals 

m i = - -  i sin/30 + J cos/30, 

where our/30 corresponds to Tanner ' s  /3. With  these substitutions our results can be shown to be 

equivalent to Tanner ' s ,  thus providing a complete confirmation of Tanner ' s  conclusions, including 

those that  differ f rom Winkler 's .  

4. Effects of Lens Aberrations. 4.1. Introduction. Consider a lens (or a system of lenses in 

contact) so thin that  its two principal planes may be assumed to coincide (Fig. 8). Le t  F '  be a 

spherical wave-front  emanating f rom an object point P' .  I f  the lens were perfect, F' would be 

t ransformed into the spherical front  F v converging towards the Gaussian image point  P. A real lens 

t ransforms the spherical front  F' into a wave-front  F~ which, in general, is not spherical but  suffers 

f rom aberrations. T h e  measure of the aberration at a point on the wave-front  is the perpendicular  



distance at that point, that is, the path difference, between F~ and F~, which will be denoted here 
by w (positive when F~ is lagging behind F~). What part of F~ reaches the image point is determined 

by the position of the diaphragm, or stop, D ; the ray P'QpQDP is the principal ray for the object 
point P', i.e., the ray from P' which passes through the point of intersection of the plane of the 

diaphragm with the axis of the lens. 
For a detailed account of the wave theory of aberrations the reader is referred to the book by 

Hopkins (1950). For our purpose it will suffice to note that the first order, or Seidel, monochromatic 

aberrations of the wave front may be expressed as a power series 

W = Z w ~ , ~ ,  (4.1.1) 

where the general term is of the form 

~ _  C(2~+~,2,~,,o(~/f)2~+,,~(p/f)2'~(~-f~; 2 (l + m + n) '= 4 .  

7, P and ¢ are defined* in Fig. 8, and the C coefficients depend on the characteristics of the lens and 

on the image and stop positions relative to the lens. 
To (4.1.1) should be added the longitudinal and transverse chromatic aberration terms; then 

(4.1.1) becomes 

W - 
f _ Co,toO~ + C~1~0~¢ + C 2 0 ~ ¢  2 + C2~oa202 + C30~3¢ + C,~O 2 + Ct~a¢, (4.1.2) 

where 

respectively, spherical aberration, 
transverse chromatic aberrations. 

a = t~/f, 0 =- p/f, ~b = 0 cos ¢ = 9.  ~/ f  (see Fig. 8). The various terms of (4.1.2) represent, 
coma, astigmatism, curvature, distortion, longitudinal and 

4.2. Collimating Lens or Mirror. In the case of the collimating lens, the effective stop is the 

lens itself. Therefore, the principal ray from any source point passes through the centre of the 
lens (which is also the origin of our co-ordinate system). Further, since a wave-front emerging from a 
perfect collimating lens would be plane, p and ¢ may be taken to be the polar qo-ordinates of a 
point on the wave-front, not only when the front is at the lens, but also anywhere beyond the lens. 

Referring to Fig. 9, consider the situation at a point P on the screen (which is taken to be normal 
to the z axis) ; as in Section 2, F is the undisturbed front and F'  is the coherent front which has been 
displaced by mirror adjustments. In the absence of aberrations, the path difference at P would be 

li = P R  (=  D . n). With aberrations, the path difference is 

I =  P S -  PQ 

= P s -  w p  

-'~ P U  - Wp (neglecting terms of the same order as the higher-order 

aberrations) 

= l~ + w R -  w p .  

* There are several possible ways of defining ~7, the only essential requirement being that ~7 should provide a 
measure of the obliquity of the principal ray. 



Therefore, since D is small, 

l = l ~ + D . V W  } .  

= D .  (n + v w )  
(4.2.1) 

I t  can be shown that V W, the gradient of W, is given by 

f V W  = Wo-p + W,p~, (4.2.2) 

where ~ is the unit vector defined in Fig. 8, and the suffices on W indicate partial differentiation. 
Now, let the unit normal to the lens surface, at the centre of the lens (Fig. 2) be 

, 1 = e t  + k + 0 ( e 2 ) ,  

where e is the small angle that the axis Of the lens makes with the z axis. For wave-fronts originating 
from the centre of the source (suffix 0), 

so that 
p = too = r ;~ l '=~ lo  = ef t ,~  = ~o = t ,  

), Oo, 0"0 = G, 0 0 

• (4.2.3) 

f V o W  oWo r_ + oW, p t 
t" 

For wave-fronts originating from other points of the source we may write to the first order in 

V W  = V oW  + ~ - - -  . (4.2.4) 

The contribution of aberrations to l, independent of the source size, is 3°l = D .  VoW. When the 

interferometer is in the optimum adjustment (cf. Section 2), D ( =  A Ar + T) is in the z direction 
only and S°l = O, for VoW has no z component. If  A has a z component, then 

f (4.2.5) 

The  effects of the size of the source depend on the valuc of (0VW/O~)~=0, which can be shown 
to be given by 

f \~]~=o(SVW] = ( t .  s)[efVoW o - (ez 8 + r . t)VoW~] 

ez, V o Wo] + ( r .  s) v0w~  - -~- 

6.g,s ) 
+ °W'P r °W° s (4.2.6) 
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(where terms of the order of r/z= times those displayed have been neglected ). This also has no 
z component and contributes nothing to l if D is in the z direction only. When S/z # 0, its contribu- 

tion is 

S~l = toe A~ t .  s) e 0W,~ f 0W~ 

( ) 1 • . s  ~=~ oW~o - ( t  s ) o W , ,  
+ - f -  0w~ ~ • f 

' ( _ eZ. o W o ) ~ l  (4.2.7) 
+ t °W" 7 

Lens. 
When the collimating element is a lens, there is no reason, apart from the possibility Of a slight 

misalignment, why the centre of the source should not coincide with, the focal point of the lens. 
Then, E = 0 and the only terms in (4.1.2) are the two axial aberrations, the spherical and the 

longitudinal chromatic aberrations, i.e., W depends on 0 only. Since W~ = 0, S°l = 0 whether or 
not A~ = 0, which means that the fringe pattern is not affected by the quality of the collimating 

lens (this, of course, excludes local defects of the lens which would lead to fringe deformation in the 

presence of A,). 
When ~ = 0, the expansion on which equation i4.2.7) is based is not valid, but the corresponding 

result for E = 0 may be obtained formally from (4.2.7) by retaining only the 0 derivative of W. Then, 

z= [krs] . (4.2.8) 
S~l = - o~A, r °W° f ' 

where 

f - 4Co40 + 

For an equiconvex collimating lens of refractive index ff (at the mean wavelength of the source), 

the spherical aberration coefficient is (see for example, Hopkins, Ch. IX) 

= _1  pfl [(3+ 
0.4, taking/~ = 1 .5 ,  

whilst the longitudinal chromatic aberration coefficient is 

11) 
C z , - ~ f f ~ l  = 2 V  ' 

where ~/~ is the change of/~ over the range of wavelengths of the source. For many glasses,V ~ 50 

with a 'white' light source, so that C~o ~- 0.01, and oWo(r) / f  ~ 1 .7  (r / f )  ~ + 0.02 (r/f) .  If 2b is the 

aperture of the collimating lens, the maximum value of S~l is, clearly 

oWo(b) 
(SJ)m = ~oA~z= f 

As was shown in Section 2, an A= rotation produces a linear dependence of the path difference on 
the source size even in an ideal interferometer with a perfect collimating lens; the maximum value 

of the corresponding additional path difference l' is (l'),~ = ~oA=b. 

11 
A* 

(78998} 



Therefore 

( ~ J ) . , = _  ~./oWo(b) 
(l')~ f b f 

( ; ;  + o.o j . 
Now, z , / f  = 0(1), so that even for an f /3  lens (b/f = 1/6) this ratio is less than about 0.07. This  
shows that the aberrations of a simple collimating lens with aperture as large as f/3 are of little 
significance. 

Mirror. 

When the collimating element is a spherical mirror, e, the angle between the axis of the mirror 
and the optical axis of the interferometer cannot be less than ½a, if a is the angular aperture of the 
mirror; in practice it is likely that e ~ a. Then, as is clear from equations (4.2.5), (4.2.3) and (4.1.2) 

(with the chromatic aberration terms absent), there is a distortion of the fringe pattern which 

depends on the coma, astigmatism and distortion coefficients of the mirror. In this paper 

we shall only estimate the order of magnitude of the effects of mirror aberrations. A fuller 
discussion, including details of derivation of the equations quoted here wi thout  proof will be 
given elsewhere. 

In terms of a and e, oWe = 0[(a + e)af], so that by equation'(4.2.5) the fringe number  error 
introduced by the aberrations is 

In a 'rectangular' interferometer (/9 o = 45 deg) with N fringes parallel to the x axis in the field of 
view 

Therefore 

3N 
~ -  = 0 ( a  + e)  3 . 

Taking e = a, the fringe number  error will not exceed a few per cent if a < 1/6, say, i.e., if the 
aperture of the mirror is not more than f /6.  An f /3  collimating mirror would produce fringe number  
errors of the order of 10 per cent; a large offset angle e (m 20 deg) with a small aperture mirror 
would have similar effects. 

Turning now to the effects of source size, we note that all the terms within the curly brackets of 
equation (4.2.7) are 0[(a + e)af]. Therefore, taking e = a, 

8~1 = O(oozsA~a~), 

whilst for a collimating lens with e = 0, the corresponding term is O(~ozsA~aa). Thus  an" f /6  
collimating mirror would produce roughly similar loss of fringe contrast as an f /3  simple equiconvex 
lens. 
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4.3. Collecting Lens (or Mirror) and Camera Lens. 

Per~fect lenses. 
Referring to Fig. 10, consider the system formed by the. collecting lens (or mirror) L~, whose axis 

makes a small angle q with the z axis,• and the camera lens L2, whose axis coincides with the z axis. 

The image plane of this system of two lenses is the screen Sc. The  plane I is the conjugate plane of 

Sc in L 1 and L~, i.e., the object plane of L 1 and L~. If  L 1 and Lo. form a perfect optical system, the 

• plane I is mapped onto Sc without additional optical path differences being introduced in the process. 

The interference pattern observed on the screen is then, apart from a magnification factor, the 

(virtual) interference pattern in the plane I. 
I f  11 = e l t  a + k + 0 (e~) is the unit  normal to the plane of L 1, lz, the unit normal to the plane of 

interference (plane I) can be shown to be 

l i  = e i t l +  k ,  

where 

and m 1 = - ft/u~ is the (transverse) magnification factor of/-a (u and v are, respectively, the distances 

of the cent'res of the object and image planes from the corresponding focal points of the lens 

(cf. Fig. 10), so that the perfect thin lens equation is uv = f").  Thus,  an inclination of the axis 

of  the perfect collecting lens relative to the axis of the interferometer is equivalent in effect to a 

tilting of the virtual plane at which interference is observed. 
Let  ~ be the position vector of a point on the screen relative to the centre of the screen Cs (zs, O, 0). 

Then, the ideal path difference is 

l' I li = m A A [re - ( n .  tl)ez] + T + T I . (k cos oJ + s sin co), (4.3.1) 

where m = m 1 m 2 = fa/zq, fz/u~ is the combined magnification factor of L 1 and L 2 and 

T z  = Z' ( z i  - z~) ,x~/ ,  k .  

Imperfect collecting lens (or mirror). 
To investigate the effects of aberrations on the mapping of the virtual interference plane onto the 

screen, it is convenient to regard, in accordance with Huygens principle, any point P1 On I as the 
origin of a spherical wave-front which in the absence of aberrations would converge towards Ps, 
the image point of PI on Sc. We then calculate the difference, due to aberrations, between the optical 
paths along a ray leaving PI in the direction of n (the ray P~Q in Fig. 10) and the coherent ray 

disturbed by the mirror adjustments, leavilig PI in the direction of n '  (=  n + AAn) (the ray PIQ' 
in Fig. 10). The  exit stop of L t is formed by the image of the source;' whose centre lies at 86 on the 

z axis and not on the axis of L 1. Therefore, it is necessary to construct the auxiliary principal ray 
P~QrF{ which leaves P1 in the direction of 1 v It can be shown that the change of path difference 

due to aberrations of L 1 is, to first order in q,  

3~1 ( =  3°l + 3~l)= 31:. VW,  (4.3.2) 
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where W is the aberration function of L 1 expressed in the form of equation (4.1.2) 

flV p ~  ~ O  p~O + - -  

p = QpQ, 3 0 = QQ' (Fig. 10) 

0 = o/f~ 

Oz,Q,; ,~ = Oz~Qv = ozPz[1 + 0(e12)] 

¢' -  f~(7 
[Note than p = O(eldl) , ~p = 0(Adl) (@ Fig. 10]. 

In what follows we shall be concerned with only the x and y components of A and it will be found 
convenient to define Aq and q such that A = A~q + A~k. Calculating the various quantities in 
equation (4.3.2) to first order in o~/e 1 yields ~ 

3°1 = ~ AeV (4.3.3) 

where 

8J  = 

g = - -  

o W =  

O" 

l ] cl ~ ]  q v~ - (s .  tl)Vo 

+ [[qks]-(t  1.s) [qktl] ]f1-~1 I '  °W° 

[@3] ~ _ [qkh] oWo 

W @, 0o, ¢o), (tile form of W is still given by (4.1.2)) 

(4.3.4) 

(4.3.s)  

Cldt 
Oo = Po/A - A 

A " 

and v I may be approximated by ~1 = r + qdlt~, where r is the two-dimensional position vector of the 
point Pz shown in Fig. 10. 

Mirror. 
In the case of a collecting mirror, of angular aperture al, V involves all the monochromatic 

aberrations and is 0[(a 1 + Cl)afl], since dl/fl = ()(1). Therefore, the relative fringe number error is 

3N [ ( a  1 + el)31 
- R _ 0  - 

al  A 

* In  deriving (4.3.4) two terms (proportional to Az) whose order is ~?/ft times those displayed have been 
neglected. 
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(Note that for the collimating mirror this was only 0[(a + e)a]. Thus, the aperture of the collecting 

mirror should not exceed fl/10 and e I should be kept as small as possible. With q = a 1, the terms in 
the curly bracket of equation (4.3.4) are O(f~az3), so that as for the collimating mirror 3J  = O(oJfxAa~ 2) 
and this will not have any significant effects on fringe contrast if the aperture of the collecting 

mirror is small enough to avoid appreciable fringe distortion. 

Lens. 
When the collecting element is a lens, we take q = 0. Then, p and 3p are both 0(Adl), so that 

0 and ~b are both 0(A). Since we have neglected terms 0(A) z throughout the analysis, in equations 
(4.3.3) and (4.3.4) we need only retain the derivatives of 0W which are of zeroth order in A (i.e., 
zeroth order in 0 and ~b). As a result, these equations become 

d~ [qkr] W, (4.3.6) 
r o 

{dl] ~ I r " s [qhr] oWv,;l (4.3.7) aJ=o A, fj [@s]0w00+ r 7 ' 

where 0W~ involves only distortion and transverse chromatism, 

oWoo involves only curvature and longitudinal chromatism, 

0W~ involves only astigmatism, 

the two chromatic aberrations being of little importance except, perhaps, with white light fringes. 

Assuming that the collecting lens has not been specially designed, the orders of magnitude of its 

3°l and 3~1 will be the same as for a spherical mirror of equal aperture, and the same gloss applies. 

Imperfect camera lens. 
The equations expressing the effects of aberrations of the camera lens Lz may be obtained directly 

from those for the collecting lens if d 1 is replaced by - d2/ml and f l  is replaced by f2, where 
d 2 = u~ + f2 (see Fig. 10) and m 1 = - f~/ul is the (transverse) magnification factor of L 1. 

It is usually necessary and convenient to arrange the lenses so that L~ is near the image of the 

light source formed by L 1 i n its focal plan e. This has two advantages: 

(i) L 2 need only have a small aperture (f2/40 is not uncommon), 

(ii) When the 'undisturbed' image of the centre of the source coincides with the centre of Lz, 
the principal ray of L 2 (the ray PIQoP'I in Fig. 10) passes through the centre of L~; then, the 

distortion and the transverse chromatic aberration of the lens are zero. 
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Latin symbols 

a 

= (A~, A~, A )  
= (A~, Az)J 

C 

D 

d ( = .  + f )  

f 
F (., ~) 

Fu, )V, etc. 

F , F '  

i , j , k  

l 

l, 
l = e t + k  

lr = ezt 1 + k 

m ~  

m = - f / ¢ l  

= k c os o~+ ssin:l 
N 

T, T~, Tx 

u 

N O T A T I O N  

Angular aperture of lens or mirror 

Vector specifying resultant rotation of wave-front 

Aberration. coefficients [see equation (4.1.2)] 

Vector displacement between corresponding points on coherent wave- 
fronts [equation (2.1)]. 

Object distance for a lens or mirror (Fig. 10) 

Focal length of lens or mirror 

~/{(~ - 1) + u 2} - u 

Partial derivatives of F 

Disturbed and undisturbed wave-fronts 

Arbitrary function of u and /, 

Unit vectors in x, y, z directions, respectively 

Optical path difference 

Optical path difference for ideal interferometer 

Unit normal at centre of lens or mirror (Figs. 2 and 10) 

Unit normal at centre of virtual interference piane (Fig. 10) 

Unit normal to mirror M i (Fig. 2) 

Transverse magnification factor 

Unit normal at centre of undisturbed wave-front 

Fringe number 

Position vector of a point on wave-front or screen 

unit vector defined in Section 4.3 

p - z k  

Unit vector, defined in Section 2 and Fig. 2, specifying position of 
source point 

Thickness of glass plate 

Unit vector in tangential plane of lens and normal to leps axis 
(Section 4) 

Translational components of D (Sections 2 and 4, equation (2.1)) 

m .  n = cos fi (Section 3) 

Distance between centre of object plane and corresponding focal point 
(Section 4, Fig. 10) 

Distance between centre of image plane and corresponding focal 
point (Section 4, Fig. 10) 
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V 

W 

W 

wo, w.,w  
X, y ,  2; 

Zi ,  ~s, Z I  

Quantity related to W and defined in equation (4.3.5) 

Unit vector along wedge apex (Section 3.2, Fig. 7) 

Aberration function (Section 4) 

Partial derivatives bf W 

Co-ordinates in cartesian system of axes defined in Section 2 

Co-ordinates of centres of mirrors, screen and virtual interference 
plane, respectively 

Greek symbols 

O~ w 
= ¢ F  ?w(= 

0 t ++ 

B 

S 

£ 

0 

7~ 

G 

,¢ 

¢ 

¢ 

¢O 

Vector specifying rotation of wave-front due to rotation of mirror 
M 1 (Section 2) 

Rotation of wave-front produced by refraction in a wedge-shaped 
plate 

Quantities related to a w and defined by equation (3.2.4) 

Angle of incidence of undisturbed wave-front on mirror or plate 
(i.e., angle between m and n) 

Denotes increment of quantity it precedes 

Angle between lens axis and z axis 

Object height vector defined in Section 4 and Figs. 8 and 10 

o/f 
Wavelength of light 

Refractive index 

Unit vector defined in Fig. 8 

Position vector of a point on the screen relative to the centre of the 
screen (Section 4.3 and Fig. 10) 

Vector defined in Section 4 and Figs. 8 and 10 

n/f 
Vector specifying translation of wave-front due to translation of 

mirror M~ (Section 2) 

Wedge angle (Section 3) 

Angle defined in Sections 4.1 and 4.2 and in Fig. 8 

0 cos ¢ = P-f~ in Sections 4.1 and 4.2 

0 Y1 in Section 4.3 
- f l"  ~/ 
Angle between central ray of wave-front and z axis, i.e., angle between 

n and k 

oJ/e 
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Suffices 

1, 2 

S, I 

i ---- 1, 2, 3, 4 

Prime (') is used 

Vector notation 

A 

[abc] - aAb .  c 

Denotes quantities related to wave-fronts from the centre of the light 
source (point S o in Fig. 2)" 

Denote, respectively, 'quantities associated with lenses L 1 and L~ 

Refer to the screen and the virtual interference plane, respectively 

Identifies quantities associated with mirrors M~, also used as a 
summation suffix 

(i) to distinguish between disturbed and undisturbed wave-fronts 

(ii) to denote, in Section 4, those contributions of aberrations to the 
optical path difference which are proportional to co. 

Scalar multiplication 

Vector multiplication 

Triple scalar product of a, b a n d  c 

No. Author 

1 H .H .  Hopkins .. 

2 L . H .  Tanner .. 

3 E .H.  Winkler .. 

REFERENCES 

Title, etc. 

Wave Theory of Aberrations. Oxford University Press. 1950. 

The optics of the Mach-Zehnder interferometer. 

R. & M. 3069. October, 1956. 

Analytical studies of the Maeh-Zehnder interferometer. 
(Unpublished Report.) 
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Focal plane of L 

L M, 

/ 
/ / 

I / 
,/ I/ 
I I  I I  

M5 I I !i 

z / 

Fie. 1. Lay-out of an ideal two-beam interferometer. 

. . Waxefronhs 
~e . F and F f 

~-axispos~t: ive M5 M2 F o aria Fo 
upwards 

FIG. 2. Linear representation of the ideal interferometer. 

FJe. ~ ~&vefronL F' 

- r 

P 

PR = L = pabh difference 
a/: P 

g,o. 4.  

Wavefrong g t 

C' , ~DC ri. 

P 

R P 
frong F 

~,~t'Cs ~ -axis 

Fins. 3 and 4. Illustrating notation of Section 2. 

Note.--Symbols with a wavy line underneath correspond to bold type in the text. 
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/ 

l///z z~ H/H M Z 

. j  M~ 

C 

\ 
\ 

/ 

' 5  

Irna~e, o f  L 

\ 
lma~e, o f  N I in M2. 

M z a n d  ima~m og M3 

FIQ. 5- Ideal Twyman-Green interferometer 
and its linear representation. 

~ Pos bion of 
i t  / 

• / / / / ~  I wavefronl; in i~he 

\ / / /  I ,  a~senooof 
~_ h 2 ~ / _ ~ _  L ~ ro~roo~,o~ - 

\ /  

7 ~ .  L Refracbed 
wavefrorlb . 

FIG. 6. Refraction of a plane wave-front. 

/ apex and';s direcbed upwards 

FIG. 7. Th in  pr ism representing effect of 
• refraction in a wedge-shaped plate. 



FiG, 8 (o.) Fig. 8 (b) TanBankia p one 
[-'~oF bhe lens for khe 

Fp_ perfecF, wa,va~ron I" I~g obj~-ck poinL pr 
F~- aberraJ;ed w&vefronl: 'N 

LPrinc.if al FLI an~ a (Sbp) " ~  
oF lens) (Im&ge poinL) 

View oF.wave~:ronL'. Fp from P 
Iookin.q a,ion 9 FincipaJ ra~j.~ 

N.15.__: In fig. 8 (~) V_he plane oF V_he paper conEains Eh~ axis of the lens and Ehe pri0cipal 
.rag from PJ and is bJne~F-a.ngankiaJ pla,ne"ol = ~ha lens for P-he obje.c,~ poinh_ pt. 

FIGS. 8a and 8b. Wave-front aberration produced by a thin lens. 

4b 

A bcr ra'c.c.d. ~ ~ ~,v,,""~;/~# 
wa ,,,e,{ro rib5 'bT. ~ 

UJ( . ~-, 

P 

~P~rf~cb 
wav~4:conb5 

FIQ. 9. Effect of wave-front aberration on path difference. 
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bO 
bO 

(CollecBincj lens) ( Con]ugabe plane t .  , , 
Lj (. Focal plane, / of L~) ~ of I inin L2L I )and 5 c l. bamera.L2 lens) . . ('bcreens!Z- , 

(InBerference plane') .~ 

Pi QP FI' P~' - -  principal ray of -Lj for objec~ pohB PI 

P~ Q PI' 
P~ ~'P~, 
P~ ~oP~, 

Plane of Fig. IO(a) 

(b) 

- -  undbburbed r~aLj fr~om any source poinB 

- -  disburbed coherBn~ raLj from b~e same source point, as P~eP I, 

- -  undisturbed ray from cenBre of source ('princip&J raLj of L 2 for obj'ec~, poinb P~ ) 

(&-) P.lane of p_2per conb.ain5 axis of L, and princ.ip~l ray__Pa3p~'_P ~, 

Plane Z (c) Plane of L r 

Flos. lOa to lOc. Collecting and camera lens system. 
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