NOYAL AIRCEATT STABLISHMENT BEDFORD.

R. & M. No. 3186

R. & M. No. 3186 (20,727) A.R.C. Technical Report

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Low-Speed Wind-Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges

By D. H. PECKHAM, B.Sc., A.F.R.Ae.S.

Moskell Ref.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1961

PRICE £2 7s. 6d. NET

Low-Speed Wind-Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges

By D. H. PECKHAM, B.Sc., A.F.R.Ae.S.

Communicated by the Deputy Controller Aircraft (Research and Development), Ministry of Supply

Reports and Memoranda No. 3186* December, 1958

Summary. A series of three thick uncambered slender wings and twelve flat-plate slender wings, all with sharp edges, have been tested in the 13 ft \times 9 ft Low-Speed Wind Tunnel at the Royal Aircraft Establishment, Bedford.

Pressure plotting, balance measurements and flow-visualisation tests were made to investigate the effects of plan-form shape, thickness, and aspect ratio on their aerodynamic characteristics at low speeds.

1. Introduction. Slender pointed wings whose leading edges are subsonic and swept at an angle of 60 deg or more are of interest for supersonic flight. To obtain a high lift/drag ratio at the cruise condition, such wings can be cambered to give attached flow at a small incidence, but then flow separations are certain to occur at conditions other than the cruise, particularly at the high incidences associated with take-off and landing. On slender pointed wings, these flow separations usually take the form of two free vortex layers joined to the leading edges of the wing, which roll up to form spiral-shaped vortex sheets above the upper surface^{1, 2}; in some cases, with highly cambered wings, for instance, more complicated forms are possible.

It has been argued that though these separations are inevitable, they are not necessarily undesirable provided their primary lines of separation are fixed. The flow should then be steady and of one type throughout the range of flight conditions at which flow separations from the leading edges occur. This argument leads naturally to the slender pointed wing with sharp leading edges as one type of wing on which such properties can be realised.

Slender wings are not limited to the delta plan-form shape, so that the effects of varying the plan-form shape, cross-section shape and area distribution need to be considered. Various cross-section shapes have been suggested, a simple family of wings being obtained, for example, by defining the cross-section of the wing as a diamond. One such wing is the delta proposed by Newby³, which has a biconvex parabolic-arc streamwise section of linearly decreasing thickness/chord ratio across the span; its geometry is discussed in Ref. 4. These plan-form and cross-section shapes can

^{*} R.A.E. Report Aero. 2613, received 27th January, 1959.

be profitably combined with a favourable area distribution^{5, 6, 7, 8}. For instance, a curved parabolic and convex leading-edge plan shape can be combined with a biconvex parabolic-arc shape at the centre-line and diamond cross-sections, to give a suitable area distribution.

The object of the present tests was to investigate the effects at low speeds of leading-edge shape, trailing-edge sweep, thickness and aspect ratio on the aerodynamics of sharp-edged slender pointed wings with zero or small camber.

The tests were made in the 13 ft \times 9 ft Low-Speed Wind Tunnel at the Royal Aircraft Establishment, Bedford.

2. Description of Models and Tests. Fifteen models of slender pointed wings were tested, all of which had sharp edges and were uncambered, or nearly so.

R.

s 🍗

The three wings, A, B and C illustrated in Fig. 1, all have a symmetrical 12 per cent biconvex parabolic-arc section at the centre-line, straight unswept trailing edges and an aspect ratio of 1. Wing A is a gothic, in which the leading-edge plan-form shape is a parabola with its vertex at the wing tip. The wing surface is generated by straight lines which are parallel to the trailing edge (in plan-form projection) and so produce section shapes and thickness/chord ratios which vary across the span. Wing B is a delta with its surface generated by radial straight lines from the tips, giving a constant section shape and thickness/chord ratio across the span. Wing C is a delta with its surface generated by two sets of straight lines which, in plan-form projection, are parallel to the trailing edge and the leading edge respectively, so as to give a constant section shape across the span and a thickness/chord ratio which decreases linearly across the span. The geometry of these wings is discussed in detail in Ref. 4.

Wings A, B and C were used for six-component balance measurements, pressure plotting and flow-visualisation tests. One set of pressure holes was located along the centre-line, the others being arranged in spanwise rows on both upper and lower surfaces at a spacing of 1/10th of the local span (Fig. 2), with additional holes at a spacing of 1/20th of the local span in the region 0.5 > y/s(x) > 0.9 on wings A and B. These extra holes allowed more accurate location of the suction peaks at low incidence. Pressure measurements were made over an incidence range of 0 deg to 30 deg at zero yaw, and also at 5 deg yaw in the case of wing C.

Six-component balance measurements were made on wings A and C at speeds ranging from 80 ft/sec to 300 ft/sec, corresponding to a Reynolds-number range of $2 \cdot 3 \times 10^6$ to $8 \cdot 6 \times 10^6$ based on mean chord; the ranges of incidence covered at the higher speeds were restricted by the strength limitations of the wire supporting rig. No significant Reynolds-number effects were apparent and, for this reason, tests over a range of tunnel speeds were not made with wing B, the last model of the series to be tested. Force and moment coefficients are quoted relative to stability axes (*see* Fig. 3) with the mean quarter-chord point as the origin of the axes system. Corrections to the measured forces and moments for tunnel wall effects have been made by the method described in Ref. 9.

Two flow-visualisation techniques were used, the oil-flow method, and the smoke technique described in Ref. 10.

The twelve wings shown in Fig. 4 were flat-plate models with sharp edges and a thickness/chord ratio of 0.01. To simplify investigations on the effects of the coiled vortex sheets, the upper surfaces of these models were kept completely flat, only the lower surfaces of the wings being bevelled (at 14 deg) to give the sharp edges. However, since this bevel on only one surface introduced a camber effect, two extra models (models 2A and 8A) with equal amounts of bevel on each surface were also tested. This series of fourteen flat-plate wings was made up from four basic models, sets

of leading and trailing edges being quickly interchangeable to give a fresh plan-form shape with the model still rigged in the tunnel working-section. In this way, a wide range of plan-form shapes was tested without using tunnel time in rigging separate models.

These flat-plate models were designed to provide basic information as follows:

- (i) Wings 1, 2, 3, 8, 9 and 10: the effect of changing aspect ratio (and the ratio of span to root chord) on the behaviour of gothic and delta wings.
- (ii) Wings 4, 2, 5, 6 and 7: the effect of varying the trailing-edge sweep on a wing with a gothic leading-edge shape.
- (iii) Wings 11 and 12: the effect of modifying the gothic shape by increasing the leading-edge sweep at the nose to produce a combination of gothic and delta plan-forms.
- (iv) Wings 2A and 8A: the effect of wing thickness (when compared with wings A, B and C).

Three-component balance measurements were made on all the models, with six-component measurements on wings 2A and 8A where a comparison with the thick wings A, B and C was required. The tests were limited to a maximum incidence of about 20 deg and a tunnel speed of 100 ft/sec because of the flexibility of the models. Flow-visualisation tests were also made, and the position of the cores of the vortex sheets measured using smoke.

3. Flow Observations. 3.1. General. The nature of the flow with free leading-edge vortex sheets that occurs on slender delta wings is well known and has been described, for instance, by Weber and Maskell in Refs. 1 and 2 respectively, and a description of flow-visualisation experiments on a gothic wing (wing A of this report) is given in Ref. 9. In general, the description of the flow given in these references applies also to the wings described in this report.

However, on the thick delta wing of constant thickness/chord ratio (wing B), flow visualisation indicated that although the flow separated at the sharp leading edges, the coiled vortex sheets did not develop as rapidly at low angles of incidence as on the comparable flat-plate wing. It would appear that the effects of the separations were so localised, in this range, that the flow external to the boundary layer was not significantly different from the so-called 'attached flow' which would have been expected with rounded leading edges; this is discussed more fully in the next Section.

3.2. Flow at Very Low Angles of Incidence. On an uncambered wing with sharp leading edges at a non-zero angle of incidence, the stagnation line must be on the lower surface, with the flow consequently separating to form a free shear layer joined to each leading edge. These layers then curl above the upper surface of the wing and concentrate a region of vorticity above and inside each leading edge. Evidence of the existence of coiled vortex layers of this kind was well marked in the oil flow pattern on wing A at an incidence of only 1 deg* (Figs. 6 and 7), this gothic wing having a shallow diamond cross-sectional shape. The behaviour of the flow over wing C, a delta wing of diamond cross-sectional shape, was similar. For wing B, however, a delta similar to wing C but with a more convex cross-sectional shape, the appropriate part of the oil-flow pattern was only just evident at an incidence of 2 deg (Fig. 5), suggesting that the initial rate of growth of the vortex sheets was significantly less in this case.

This phenomenon is not yet well understood and requires further investigation, particularly on cambered wings, which may have complicated edge shapes. The growth of the coiled vortex sheets

(80625)

^{*} The angles of incidence quoted in the text are given to the nearest degree for simplicity; the exact values are given in the Tables and Figures.

from the leading edges of wing B seems to occur in two distinct phases, though not necessarily with a discontinuous change from the one to the other. It appears likely that this is due to the larger edge-angle of wing B (88 deg in the cross-flow plane) as compared with the other two wings on which the angle is 88 deg at the front decreasing to zero at the tip.

3.3. Flow with Well-developed Coiled Leading-Edge Vortex Sheets. 3.3.1. Unyawed wing. With reservations regarding the behaviour of wing B at very low angles of incidence, it can be said that for the slender wings described in this report the flow separates at the sharp leading edges when the wing is at incidence to form coiled vortex sheets with a 'core' of high vorticity above and inside the leading edges of the wing. The size and strength of the coiled vortex sheets increase with increasing incidence and they become a dominating feature of the flow, which remains steady throughout the range of practical flight attitudes of the wing.

The effects of the coiled vortex sheets on the flow direction at the wing upper surface were investigated by the oil-flow technique. A photograph of a typical surface oil-flow pattern is given in Fig. 8 with the main features identified, and a set of photographs of patterns on wing C covering an incidence range of 5 deg to 40 deg (at 5 deg intervals) is given in Fig. 9. From such photographs, and pressure-plotting results when available, the mean spanwise positions of the attachment line, peak-suction line and secondary-separation line have been estimated. The least certain of these is the estimated position of the attachment line. However, any errors involved should be consistent between the various models, and the results show the qualitative effects of plan-form shape and aspect ratio on the location of the attachment line. Within the approximate limit $0 < x/c_0 < 0.5$ the values obtained are reasonably independent of chordwise position and are the ones plotted in Figs. 10 to 17; aft of $x/c_0 = 0.5$ the effect of the trailing edge becomes noticeable. Results of measurements on both thick wings and flat-plate wings of aspect ratio 1 are plotted in Figs. 10 to 13, and on flat-plate gothic and delta wings covering a range of aspect ratios in Figs. 14 to 17.

From these results, the following conclusions can be drawn regarding the non-dimensional spanwise positions y/s(x) of the attachment line, peak-suction line and secondary-separation line:

- (a) For the same incidence, they lie farther inboard on the delta wing than on the gothic wing of the same aspect ratio (or the same slenderness ratio, semi-span/root chord);
- (b) The effect of increasing the aspect ratio is to move the attachment line and the peak-suction line farther outboard;
- (c) The effect of increasing the wing thickness is to move them farther outboard.

The position of the cores of the coiled vortex sheets was measured at a number of chordwise stations on the delta and gothic wings by using the smoke technique. Results for angles of incidence of approximately 15 deg and 30 deg are plotted in Figs. 18 to 22. In side elevation, the paths of the cores of the vortex sheets on the gothic wings are approximately straight from the wing apex back as far as the vicinity of the trailing edge, where they curve to a streamwise direction. If straight paths are assumed, the angle between the cores and the wing chordal plane can be calculated at each measured point as $\theta = \tan^{-1} z/x$. Values of θ/α are plotted in Fig. 19, and it can be seen that this ratio is reasonably constant for each aspect ratio, values of about 0.31, 0.34 and 0.38 being obtained for wings of aspect ratio 0.75, 1.0 and 1.25 respectively. With the delta wings (Fig. 20), the paths of the vortex cores are also approximately straight from the wing apex to the trailing edge, but remain closer to the wing than with the gothics, giving a mean θ/α of about 0.25. Comparing the results for thick wings B and C in Fig. 18, it can be seen that, for the same incidence, the fatter

cross-section shape of wing B causes the cores of the vortex sheets to be slightly farther away from the wing chordal plane over the central region of the wing; if the comparison is made at the same lift coefficient, this effect is more marked.

Plan views of the paths of the vortex sheet cores on wings A, B and C are shown in Fig. 22, and it is found that the cores lie farther outboard on the gothic wing than on the delta wings. The position of the cores is related to the position of the peak suctions on a wing. For a flat-plate wing the vortex cores lie on normals from the wing surface at the peak-suction line. This appears to be approximately true also for the wings with diamond cross-sections (A and C), the cores being farther outboard than the peak-suction lines. However, this is not the case with wing B where it is found that the cores are actually inboard of the peak-suction line.

3.3.2. Yawed wing. Photographs are given in Figs. 23 and 24 showing the effect of yaw on the surface-flow pattern, and the smoke pattern, for wing C at an incidence of 20 deg; a corresponding surface-flow pattern for wing A is given in Ref. 9. Unfortunately the flow pattern in Fig. 24 is less distinct because the tunnel speed had to be reduced with the larger angle of yaw.

Both with 5 deg and with 10 deg yaw the surface-flow patterns show no basic differences from the unyawed case except for the presence of a separation and its associated coiled vortex sheet springing from the centre-line ridge, although the secondary separations are yawed with respect to the symmetry of the model. Smoke tests show that the paths of the vortex cores change with angle of yaw both in plan and height although, with 5 deg yaw, the spanwise position of the suction peaks (Fig. 25) and the estimated positions of the points of inflexion on the surface-flow patterns (Fig. 23) remain symmetrically disposed about the centre-line. This suggests that the vortex cores have moved along normals to the sloping surface of the wing in the cross-flow plane.

Fig. 20 of Ref. 9 showed a breakdown of flow in the vortex core of wing A on the leading side when yawed. Fig. 26 in the present report shows the change in position of the breakdown with yaw at an incidence of 23 deg and illustrates its great sensitivity to small angles of yaw. With model C, the breakdown occurs near to the trailing edge for the conditions represented in Fig. 24 and its position is indicated by the sudden change of slope in the secondary separation line.

4. Balance Measurements. 4.1. Wings with Straight Unswept Trailing Edges. Results of balance measurements on wings B and C are given in Tables 2 to 7; the results for wing A have already been published in Ref. 9. Tables 8 to 10 give the results for the flat-plate wings.

Lift and pitching-moment characteristics of the thick wings of aspect ratio 1 (A, B and C) are compared in Fig. 27. It is seen that more lift is obtained from the gothic wing at a given incidence than with the delta wings, and that the delta of the greater mean thickness (wing B) gives the least lift. Results for these thick wings compared with those for their flat-plate counterparts (Figs. 28 and 29), show that thickness causes a reduction in lift and a more negative pitching moment, which indicates that a greater proportion of the loss of lift occurs over the forward parts of the wings, where their cross-section shapes are most steep-sided. This is consistent with the flow-visualisation experiments, where it was found that cross-section shape affected the rate of growth of the coiled vortex sheets and presumably the lift obtained from their effect on the upper surface of the wing. In addition, pressure plotting tests on the deltas (B and C) showed somewhat lower local cross-load coefficients over the forward parts of the wings than over their central region, particularly at higher incidences (Figs. 67 and 68). The Jones value of $\pi A/2$ for the linear-lift slope $(dC_L/d\alpha \text{ at } \alpha = 0)$ is included in both Figs. 27 and 28, and is found to be high relative to all the experimental results. However, the value for the linear-lift slope for delta wings given by Weber¹ appears to be in reasonable agreement with the results for the flat-plate delta wings (Fig. 28); admittedly the slope at zero lift is difficult to estimate from the experimental curves.

Although theory gives nearly the same linear-lift contribution for delta and gothic wings of the same aspect ratio, the overall lift coefficients are not the same. Instead, it is found that they are the same for gothic and delta wings of the same slenderness ratio (semi-span/root chord) (Fig. 30). Furthermore, this can also be said of slender wings with mixed curved and straight leading-edge plan-form shapes (Fig. 31).

To investigate further the significance of slenderness ratio, the results for the flat-plate wings 1, 2, 3, 8, 9 and 10 are plotted in Fig. 32, the C_L values having been corrected to give zero lift at zero incidence in order to eliminate the effect of the cambered edges. These values are plotted in Fig. 33 in terms of (slenderness ratio)^{1/2} and they collapse satisfactorily onto a single curve. This result does not have any known theoretical basis, but nevertheless it should be useful for estimation purposes within the range of aspect ratios tested.

۲.

The positions of the centres of pressure calculated from balance measurements on the gothic and delta wings of aspect ratio 1 are plotted in Fig. 34 as percentages of the aerodynamic mean chord. They remain fairly constant at lift coefficients greater than about 0.4, being about 32 per cent $\overline{\overline{c}}$ and 40 per cent $\overline{\overline{c}}$ on the flat-plate gothic and delta wings respectively; the centroid of the plan-form shape is at 50 per cent $\overline{\overline{c}}$ by definition. On the delta wings, the effect of thickness is to cause a 5 per cent $\overline{\overline{c}}$ rearward shift of the centre-of-pressure position; on the gothic wing the rearward shift is only 3 per cent $\overline{\overline{c}}$.

The drag due to lift of a thin flat wing is $L \tan \alpha$, giving an L/D ratio of $\cot \alpha$ (in the absence of skin friction), which is independent of aspect ratio. Profile drag actually reduces the L/D ratio below this value, but with a thick wing an opposite effect can occur due to the suctions induced by the coiled vortex sheets acting on forward-sloping parts of the wing upper surface to give a thrust force. At the larger incidences, this can be sufficient to raise the L/D ratio above $\cot \alpha$. At any given incidence, the L/D ratios of the thick gothic and delta wings (A = 1) are about the same (Fig. 35a) and for incidences greater than 10 deg give values above $\cot \alpha$. But, since the gothic has the higher lift at a given incidence, its maximum L/D occurs at a slightly higher C_L and, at high lift coefficients, it has larger L/D ratios than the delta. A further analysis of the drag characteristics of these wings is given in Fig. 36.

The effects of the coiled vortex sheets on the drag-due-to-lift factor, are illustrated in Fig. 37 for wing C. Curve (a) shows the theoretical values which would be obtained from a thin flat wing giving linear-lift only. The effect of the vortex sheets is to produce a non-linear lift increment which reduces the incidence at which a given lift is obtained, and therefore the drag contribution $\tan \alpha$, leading to curve (b). With a thick wing, the axial force which results from the suctions due to the vortex sheets acting on forward-sloping surfaces reduces the drag still further below the values of curve (b). The axial force is plotted in Fig. 38.

When the wings are yawed there is no significant change in their longitudinal force and moment characteristics, which agrees with the indication from flow-visualisation tests that yaw did not upset the basic flow pattern. Fig. 25 shows that higher peak suctions are obtained on the leading half of the wing, and lower ones on the trailing half, but their spanwise position is almost unaffected.

This pressure distribution gives a negative rolling moment with a positive sideslip, so that $dC_l/d\beta$ is negative, which is equivalent to the effect of dihedral. As the suctions caused by the vortex sheets act on sideways-sloping surfaces, a positive sideslip gives a positive side force and a positive $dC_u/d\beta$. The resulting yawing moment obtained from this side force depends on the relative positions of the centre of pressure of the side force and the yawing-moment axis; about a likely centre-of-gravity position for these wings, this side force would give a small stable yawing-moment contribution. On a cambered wing, part of the mean surface will probably have a sideways slope and these effects may then be more pronounced. Lateral force and moment measurements on wing C at angles of yaw up to 15 deg are plotted in Figs. 39 and 40, and are typical of the behaviour of the three thick wings, the forces and moments varying linearly over a yaw range of \pm 5 deg up to very high incidences. The static sideslip derivatives for the three thick wings are compared in Fig. 41; it should be noted that all the wings have the same side area but that the side force and yawingmoment coefficients are referred to wing area and to wing area and span, respectively. This has the effect of exaggerating the difference between the gothic and delta wings, the side force and yawing moment being more dependent on side area and cross-section shape. The effect of wing thickness on the rolling and yawing static sideslip derivatives is shown in Fig. 42, no significant side force arising from the flat-plate wings. The rolling-moment derivatives are slightly less for the flat-plate wings, which is consistent with the vortex sheets being farther inboard and the suctions induced by them acting at a smaller moment arm.

The effect of aspect ratio and slenderness ratio on the lift and pitching-moment characteristics of gothic and delta wings is shown in Figs. 43 and 44. As shown earlier, the lift characteristics of gothic and delta wings of the same slenderness ratio are the same. Increasing aspect ratio causes a slight forward shift of the aerodynamic centre, amounting to about 3 per cent of the aerodynamic mean chord for the range of aspect ratio covered.

A possible method of increasing the low-speed lifting ability of slender wings for take-off and landing is to have leading-edge flaps which can be extended in a spanwise direction over part, or all, of the length of the leading edge. The lift-coefficient increments this could produce, for a full-length leading-edge flap, are shown in Figs. 45 and 46 where the results from Figs. 43 and 44 are shown based on the most slender gothic and delta wing, respectively. Lift-coefficient increments of approximately 0.3 and 0.6 are obtained at an incidence of 15 deg for increases in span of $33\frac{1}{3}$ and $66\frac{2}{3}$ per cent respectively, for both the gothic and delta wings (allowing for the zero-lift angle of these flat-plate wings).

4.2. Wings with Swept Trailing Edges. The effect of trailing-edge sweep on the lift and pitchingmoment characteristics of slender wings was investigated on a flat-plate with a parabolic leading-edge plan-form shape which, in the case of zero trailing-edge sweep, gave a gothic wing of aspect ratio 1. The range of sweep angles covered was -15 deg to $56\cdot3$ deg, corresponding to an aspect ratio range of 0.94 to $1\cdot6$. Fig. 47 shows that, with increasing sweepback of the trailing edge, the lift curves become straighter with a greater slope at zero lift which more than compensates for any loss of the non-linear lift contribution. Pitching moments, taken about the mean quarter-chord point of each wing, are plotted in Fig. 48. A slight pitch-up is first manifest with 30 deg trailing-edge sweep, and occurs at an incidence of about 20 deg. On the wing of $56\cdot3$ deg trailing-edge sweep this develops into a strong pitch-up commencing at an incidence of about 6 deg.

5. Pressure Measurements. 5.1. General. Results of surface-pressure measurements on wings A, B and C are given in Tables 11 to 14, and the values derived for the local cross-load coefficient

 $C_N(x)$ in Tables 15 to 17. The incidence range covered was 0 to 30 deg, measurements being made at 5 deg yaw as well as zero yaw in the case of wing C. Selected measurements are plotted in Figs. 49 to 65 to illustrate the nature of the pressure distribution, and in Figs. 66 to 72 to show the local load distributions.

5.2. Pressure Distribution at Zero Incidence. The supervelocity distributions at zero incidence on the centre-lines of wings A, B and C are compared in Fig. 49, the theoretical estimate by Newby³ for wing C being shown by a broken line. It is seen that the experimental supervelocities are lower than the theoretical values, though the shape of the distribution agrees quite well with theory. This is because Ref. 3 assumes that the wing thickness is small compared with the span, which clearly does not hold here.

Isobar patterns at zero incidence for the three wings are given in Figs. 50 to 52. The main differences between the patterns on delta and gothic wings, are that on the delta wing:

- (a) The isobars are more highly swept over the rear third of the wing;
- (b) The isobars are more closely spaced in the region close to the trailing edge, indicating a steeper adverse pressure gradient there.

On gothic and delta wings of diamond cross-section shape (A and C), the supervelocity distributions at the maximum thickness line are very similar (Fig. 53a).

The main effect of thickness distribution on the isobar patterns for delta wings, is that on the constant thickness/chord ratio wing the supervelocities are higher outboard of the centre-line, while on the wing with a decreasing thickness/chord ratio spanwise, the supervelocities are lower than these at the centre-line. The supervelocities at the maximum thickness lines on delta wings B and C are compared in Fig. 53b.

5.3. Pressure Distribution at Incidence. In Figs. 54 to 59, the results for wings A, B and C at incidences of about 15 deg have been chosen to illustrate the effects of the coiled vortex sheets on the pressure distribution on gothic and delta wings. Pressure coefficients on lines of constant y/s(x) are plotted in Figs. 54, 56 and 58 while in Figs. 55, 57 and 59 pressure coefficients are shown plotted at constant values of x/c_0 for various chordwise locations on the wing. From these plots, isobar patterns of the upper-surface pressure distribution on the wings have been produced, and are given in Figs. 60, 61 and 62.

The suctions over the central region of the wings, between the attachment lines, are seen to be slightly higher than the values obtained at zero incidence, as predicted by slender-wing theory. The positions of the attachment lines are clearly defined over the forward part of the wing and the pressure distributions of Figs. 63 to 65 show a dip at this line.

The main differences between the pressure distributions for the two plan-form shapes occur in the region beneath the coiled vortex sheets and are as follows:

- (a) Where, as on the delta wing, the suctions on rays from the apex reach a peak at an x/c_0 between about 0.7 and 0.8 and then decrease, on the gothic wing the suctions are highest near the apex of the wing and decrease steadily towards the trailing-edge, as slender-wing theory suggests.
- (b) On the gothic wing, the attachment lines and peak-suction lines are farther outboard than on the delta wing, and the peak suctions obtained are much higher.

The variation of the upper-surface pressure distribution with incidence on gothic and delta wings is illustrated in Figs. 63, 64 and 65. At high incidences, the effects of the secondary separation

become apparent, a further suction peak developing close to the leading edge of the wing just outboard of the secondary separation line.

The differences ΔC_p , between the upper-surface and lower-surface pressure coefficients have been integrated with respect to y/s(x) at various chordwise locations (constant x/c_0), to give a local cross-load coefficient, $C_N(x)$. The longitudinal variations of this coefficient on the three wings A, B and C are plotted in Figs. 66, 67 and 68 for a range of incidence up to about 30 deg. It is found that with the delta wings (B and C), the effect of the trailing edge is noticeable aft of $x/c_0 = 0.6$, and that ahead of this the load is nearly constant, the flow being approximately conical at the lower incidences. On the gothic wing, the effect of the trailing edge is not marked ahead of $x/c_0 = 0.8$; from the apex of the wing to this position the local cross-load coefficient decreases almost linearly with distance from the wing apex. A comparison of the longitudinal distribution of local cross-load coefficients on gothic wing A and delta wing C is given in Fig. 69a for an incidence of 15 deg, and in Fig. 69b for a lift coefficient of 0.5.

The product of cross-load coefficient and local semi-span, s(x)/(b/2), to give the local cross-load*, $C_N(x) \cdot s(x)/(b/2)$, is plotted in Figs. 70, 71 and 72 for the three wings A, B and C.

6. Conclusions. (a) The flow with coiled leading-edge vortex sheets is perfectly steady and gives a smooth variation of overall forces and moments over the whole range of attitudes likely to be encountered in flight conditions. Nevertheless, certain combinations of leading-edge sweep and cross-section shape retard the initial growth of coiled vortex sheets, as discussed in Sections 3.1 and 3.2.

(b) Increasing aspect ratio, increasing thickness, and increasing convexity of the leading-edge plan-form shape, all have the effect of moving the attachment line, peak-suction line and secondary separation line farther outboard. They also have the effect of moving the cores of the coiled vortex sheets farther away from the wing chordal plane (these conclusions are not necessarily true for increasing thickness if it has the effect of retarding the rate of growth of the coiled vortex sheets).

(c) A gothic wing gives more lift coefficient at a given incidence than a delta wing of the same aspect ratio. However, gothic and delta wings of the same slenderness ratio (semi-span/root chord) and similar thickness distribution, have the same lift characteristics. This is also true for wings with a mixed curved/straight leading-edge plan-form shape. The effect of increase in wing thickness is to reduce lift.

(d) The theoretical linear-lift slope given by Weber for delta wings agrees reasonably well with the experimental results for flat-plate delta wings near zero incidence. To a close approximation, the overall lift of gothic, delta and mixed gothic/delta plan-form shapes is proportional to (slenderness ratio)^{1/2}.

(e) The centres of pressure on flat-plate gothic and delta wings of aspect ratio 1 are at 32 per cent and 40 per cent aerodynamic mean chord, respectively; a root thickness/chord ratio of 12 per cent causes a rearward shift of 3 per cent \overline{c} and 5 per cent \overline{c} , respectively. Increase of aspect ratio causes a small forward shift of the centre of pressure.

* Note that the overall normal force is given by the relation

$$C_N = rac{bc_0}{S} \int_0^1 C_N(x) \, rac{s(x)}{b/2} \, d\left(rac{x}{c_0}
ight) \, ,$$

where the plan-form parameter $bc_0/S = 3/2$ for the gothic wings and 2 for the delta wings.

(f) On a thick slender wing, suctions induced on the wing upper surface by the coiled vortex sheets act on forward-facing surfaces to give a thrust force, which increases the L/D ratio above $\cot \alpha$ at angles of incidence beyond about 10 deg for wings of 12 per cent thickness/chord ratio. The drag-due-to-lift factor, K, is also reduced by this effect. Similarly, when the wing is yawed, suctions acting on sideways-facing surfaces give a side force in a direction such as to give a positive $dC_y/d\beta$. These effects may be more marked on a cambered wing.

(g) Positive sideslip gives a large negative rolling moment. That is, $dC_l/d\beta$ is negative, which is equivalent to the effect of dihedral.

(h) Lower supervelocities are obtained on thick delta wings at zero incidence than predicted by thin-wing theory³, though the shape of the distribution agrees well with the theory.

(i) The cross-load distributions on gothic and delta wings differ mainly in that on a gothic wing the local cross-load coefficient is at its maximum at the wing apex and decreases steadily towards the trailing edge, while on a delta the local cross-load coefficient is approximately constant over the front two-thirds of the wing before falling to zero at the trailing edge.

LIST OF SYMBOLS

x, y, z Rectangular body co-ordinates, x chordwise from apex, y spanwise

b Wing span

c Wing chord

Ē

 c_0 Centre-line chord of wings without trailing-edge sweep (for wings with trailingedge sweep the value for the basic wing is used)

Aerodynamic mean chord =
$$\frac{\int_{-b/2}^{b/2} c^2 dy}{\int_{-b/2}^{b/2} c dy}$$

 $l_{1.4}$ Distance of mean quarter-chord point from wing apex

s Wing semi-span

s(x) Wing local semi-span

 t_0 Maximum thickness of centre-line aerofoil section

 $v_x(x)$ Chordwise supervelocity component

A Aspect ratio

$$K = \frac{C_D - C_{D0}}{C_L^2 / \pi A}$$
, drag-due-to-lift factor

R Reynolds number, based on aerodynamic mean chord

S Wing area

 α Angle of incidence

 β Angle of sideslip

 ψ Angle of yaw (= $-\beta$)

 θ Angle between vortex core path and wing chordal plane (in side elevation)

 ϕ Edge sweep

 C_L Overall lift coefficient

 ΔC_L Lift coefficient increment

 C_p Overall drag coefficient

 C_A Overall axial-force coefficient

 C_N Overall normal-force coefficient

 $C_{\rm F}$ Overall side-force coefficient, positive to starboard

C_c Overall cross-wind-force coefficient

$$C_l$$
 Rolling moment coefficient $= \frac{l}{\frac{1}{2}\rho V^2 S b}$

 C_m Pitching-moment coefficient $= \frac{m}{\frac{1}{2}\rho V^2 S\overline{c}}$ taken about mean quarter-chord

LIST OF SYMBOLS—continued

 $\begin{array}{ll} C_n & \text{Yawing-moment coefficient} = \frac{n}{\frac{1}{2}\rho V^2 Sb} \text{ taken about mean quarter-chord} \\ \\ \frac{dC_i}{d\beta} & \text{Per radian} \\ \\ \frac{dC_n}{d\beta} & \text{Per radian} \\ \\ \frac{dC_y}{d\beta} & \text{Per radian} \\ \\ C_p & \text{Pressure coefficient} \\ \\ \Delta C_p & = C_{p \text{ U.S.}} - C_{p \text{ L.S.}} \\ \\ C_N(x) & \text{Local cross-load coefficient} = \int_0^1 \Delta C_p d\left[\frac{y}{s(x)}\right] \end{array}$

Suffixes

U.S.	Upper surface
L.S.	Lower surface
L.E.	Leading edge
T.E.	Trailing edge

	REFERENCES							
No.	Author	Title, etc.						
1	J. Weber	Some effects of flow separation on slender delta wings. A.R.C. 18,073. November, 1955.						
2	E. C. Maskell	Flow separation in three dimensions. A.R.C. 18,063. November, 1955.						
3	K. W. Newby	The effects of taper on the supervelocities on three-dimensional wings at zero incidence. A.R.C. 18,205. June, 1955.						
4	D. H. Peckham	The geometry of wing surfaces generated by straight lines and with a high rate of thickness taper at the root. A.R.C. 19,548. May, 1957.						
5	W. T. Lord and B. Green	Some thickness distributions for narrow wings. A.R.C. 19,459. February, 1957.						
6	W. T. Lord and G. G. Brebner	Supersonic flow past narrow wings with 'similar' cross-sections at zero lift. (Unpublished M.o.S. Report.)						
7	J. Weber	Slender delta wings with sharp edges at zero lift. A.R.C. 19,549. May, 1957.						
8	J. Weber	The pressure distribution over a 'gothic wing' at zero lift in supersonic flow. A.R.C. 19,457. February, 1957.						
9	D. H. Peckham and S. A. Atkinson	 Preliminary results of low-speed wind-tunnel tests on a gothic wing of aspect ratio 1.0. A.R.C. 19,632. April, 1957. 						
10	R. L. Maltby and D. H. Peckham	Low-speed flow studies of the vortex patterns above inclined slender bodies using a new smoke technique. A.R.C. 19,541. November, 1956.						

· · · ·		•	· · · · · · · · · · · · · · · · · · ·				
Model	A	$\frac{s}{c_0}$	$\frac{S}{bc_0}$	$\frac{\overline{c}}{c_0}$	$\frac{l_{1/4}}{c_0}$	$\varphi_{L.F.}$ (deg)	$arphi_{\Gamma. ext{E.}} \ (ext{deg})$
1	0.75	0.250	0.667	0.750	0.438	63.4	0
2, 2A	1.00	0.333	0.667	0.750	0.438	56-3	0
3	1.25	0.417	0.667	0.750	0.438	49.1	0
4	0.94	0.333	0.711	0.816	0.449	56.3	-15
5	1.07	0.333	0.622	0.693	0.427	56.3	15
6	1.17	0.333	0.571	0.628	0.416	56.3	30
· 7	1.60	0.333	0.417	0.440	0.390	56.3	56.3
8, 8A	1.00	0.250	0.500	0.667	0.500	76.0	0
9	1.33	0.333	0.500	0.667	0.500	71.6	0
10	1.67	0.417	0.500	0.667	0.500	67.4	0
11	1.13	0.333	0.592	0.693	0.480	67 • 4	0
12	0.76	0.250	0.657	0.739	0.446	67.4	0

Details of Flat-Plate Wings

Note.—For gothic wings, $\varphi_{\text{L.E.}}$ is the sweep of the leading edge at the wing apex.

TABLE 2

Wing	B	
Wing	B	

V = 152 ft/sec		$R = 3 \cdot 8 \times 10^6$		
α				
$\begin{array}{c} \alpha \\ \hline - & 2 \cdot 02 \\ - & 1 \cdot 01 \\ 0 \\ + & 1 \cdot 01 \\ 2 \cdot 02 \\ 3 \cdot 04 \\ 4 \cdot 05 \\ 5 \cdot 07 \\ 6 \cdot 09 \\ 7 \cdot 11 \\ 8 \cdot 13 \\ 10 \cdot 17 \\ 12 \cdot 22 \\ 14 \cdot 26 \\ 16 \cdot 31 \\ 18 \cdot 36 \\ 20 \cdot 42 \\ 22 \cdot 47 \end{array}$	$\begin{array}{c} C_L \\ \hline -0.031 \\ -0.013 \\ +0.002 \\ 0.020 \\ 0.033 \\ 0.054 \\ 0.077 \\ 0.102 \\ 0.130 \\ 0.158 \\ 0.187 \\ 0.250 \\ 0.316 \\ 0.385 \\ 0.458 \\ 0.531 \\ 0.611 \\ 0.694 \end{array}$	$\begin{array}{c} C_{\mathcal{D}} \\ \hline \\ 0 \cdot 0077 \\ 0 \cdot 0074 \\ 0 \cdot 0068 \\ 0 \cdot 0075 \\ 0 \cdot 0083 \\ 0 \cdot 0091 \\ 0 \cdot 0106 \\ 0 \cdot 0131 \\ 0 \cdot 0168 \\ 0 \cdot 0213 \\ 0 \cdot 0270 \\ 0 \cdot 0420 \\ 0 \cdot 0623 \\ 0 \cdot 0877 \\ 0 \cdot 1198 \\ 0 \cdot 1573 \\ 0 \cdot 2036 \\ 0 \cdot 2588 \end{array}$	$\begin{array}{c} C_m \\ + 0 \cdot 0015 \\ - 0 \cdot 0008 \\ - 0 \cdot 0016 \\ - 0 \cdot 0046 \\ - 0 \cdot 0044 \\ - 0 \cdot 0076 \\ - 0 \cdot 0120 \\ - 0 \cdot 0120 \\ - 0 \cdot 0176 \\ - 0 \cdot 0244 \\ - 0 \cdot 0303 \\ - 0 \cdot 0368 \\ - 0 \cdot 0368 \\ - 0 \cdot 0506 \\ - 0 \cdot 0633 \\ - 0 \cdot 0764 \\ - 0 \cdot 0900 \\ - 0 \cdot 1033 \\ - 0 \cdot 1181 \\ - 0 \cdot 1342 \end{array}$	
24.53	0.782	0.3232	-0.1512	
$26 \cdot 59$ $28 \cdot 64$ $+ 30 \cdot 70$	$0.864 \\ 0.943 \\ + 1.022$	$0.3935 \\ 0.4700 \\ 0.5587$	-0.1663 -0.1808 -0.1972	

Coefficients of Overall Lift, Drag and Pitching Moment at Zero Yaw

V = 102 ft/sec

 $R = 2 \cdot 6 \times 10^6$

α		C _D	
32.75 34.80 36.84	$ \begin{array}{r} 1 \cdot 101 \\ 1 \cdot 168 \\ 1 \cdot 233 \\ \cdot \end{array} $	$ \begin{array}{c} 0 \cdot 6475 \\ 0 \cdot 7484 \\ 0 \cdot 8557 \end{array} $	$ \begin{array}{r} -0.2105 \\ -0.2225 \\ -0.2340 \end{array} $

Wing B

$\alpha = 0$) deg	V	= 152 ft/sec	į	$R = 3 \cdot 8 \times 10^6$	3
β		C _D	C_m	Cy	C _l	C_n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \end{array} $	$ \begin{array}{c} 0 \\ + 0.001 \\ + 0.003 \\ 0 \\ 0 \\ - 0.001 \end{array} $	$\begin{array}{c} 0 \cdot 0075 \\ 0 \cdot 0070 \\ 0 \cdot 0061 \\ 0 \cdot 0066 \\ 0 \cdot 0066 \\ 0 \cdot 0063 \\ 0 \cdot 0064 \end{array}$	$ \begin{array}{c} -0.0007 \\ -0.0008 \\ -0.0013 \\ 0 \\ -0.0003 \\ -0.0004 \\ -0.0001 \end{array} $	$ \begin{array}{r} -0.0019 \\ -0.0007 \\ +0.0004 \\ 0.0011 \\ 0.0023 \\ 0.0062 \\ +0.0136 \end{array} $	$ \begin{array}{c} +0.0002 \\ +0.0001 \\ 0 \\ 0 \\ 0 \\ -0.0002 \\ -0.0003 \end{array} $	$ \begin{array}{r} -0.0032 \\ -0.0019 \\ 0 \\ +0.0022 \\ 0.0044 \\ 0.0097 \\ +0.0154 \end{array} $
			· .			
$\alpha =$	4.05 deg	V	= 152 ft/sec		$R = 3 \cdot 8 \times 10$) ^{6.}
β		C_D	C_m	C _Y	C _l	C _n
$ \begin{array}{r} + 5.0 \\ + 2.5 \\ 0 \\ - 2.5 \\ - 5.0 \\ - 10.0 \\ - 15.0 \end{array} $	$\begin{array}{c} 0.082\\ 0.080\\ 0.076\\ 0.079\\ 0.080\\ 0.079\\ 0.079\\ 0.078\\ \end{array}$	$\begin{array}{c} 0.0113\\ 0.0105\\ 0.0095\\ 0.0099\\ 0.0100\\ 0.0102\\ 0.0104\\ \end{array}$	$\begin{array}{c} -0.0142 \\ -0.0132 \\ -0.0115 \\ -0.0129 \\ -0.0134 \\ -0.0138 \\ -0.0145 \end{array}$	$ \begin{array}{r} -0.0027 \\ -0.0005 \\ +0.0004 \\ 0.0012 \\ 0.0021 \\ 0.0059 \\ +0.0131 \end{array} $	$ \begin{array}{c} -0.0031 \\ -0.0016 \\ 0 \\ +0.0015 \\ 0.0032 \\ 0.0062 \\ +0.0092 \end{array} $	$ \begin{array}{r} -0.0027 \\ -0.0014 \\ +0.0007 \\ 0.0028 \\ 0.0051 \\ 0.0102 \\ +0.0159 \end{array} $
$\alpha = 8.13 \text{ deg}$ $V = 152 \text{ ft/sec}$ $R = 3.8 \times 10^6$						De
β	C_L	C _D	C_m	Cy	C _l	C _n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \end{array} $	$\begin{array}{c} 0.192 \\ 0.192 \\ 0.188 \\ 0.190 \\ 0.191 \\ 0.183 \\ 0.174 \end{array}$	$\begin{array}{c} 0.0274 \\ 0.0268 \\ 0.0261 \\ 0.0262 \\ 0.0260 \\ 0.0250 \\ 0.0250 \\ 0.0242 \end{array}$	$\begin{array}{r} -0.0391 \\ -0.0384 \\ -0.0365 \\ -0.0378 \\ -0.0385 \\ -0.0355 \\ -0.0336 \end{array}$	$ \begin{array}{c} + 0 \cdot 0001 \\ + 0 \cdot 0009 \\ 0 \\ - 0 \cdot 0006 \\ - 0 \cdot 0006 \\ + 0 \cdot 0011 \\ + 0 \cdot 0024 \end{array} $	$\begin{array}{c} -0.0072 \\ -0.0024 \\ +0.0008 \\ 0.0038 \\ 0.0075 \\ 0.0148 \\ +0.0204 \end{array}$	$\begin{array}{c} -0.0032 \\ -0.0016 \\ +0.0008 \\ 0.0033 \\ 0.0056 \\ 0.0117 \\ +0.0178 \end{array}$

Coefficients of Overall Side Force, Rolling Moment and Yawing Moment

Wing	B
wing	\boldsymbol{D}

0.200			1		
0.322	0.0631	-0.0659	+0.0040	-0.0139	-0.001
0.321	0.0624	-0.0651	+0.0027	-0.0072	-0.000
0.317	0.0613	-0.0630	-0.0004	+0.0004	+0.001
0.320	0.0620	-0.0653	-0.0035	0.0079	0.002
0.322	0.0621	-0.0653	-0.0057	0.0150	0.004
0.313	0.0598	-0.0636	-0.0082	0.0269	0.009
0.293	0.0555	-0.0569	-0.0059	+0.0351	+0.015
	$\begin{array}{c} 0.321 \\ 0.317 \\ 0.320 \\ 0.322 \\ 0.313 \\ 0.293 \end{array}$	$\begin{array}{c ccccc} 0.321 & 0.0624 \\ 0.317 & 0.0613 \\ 0.320 & 0.0620 \\ 0.322 & 0.0621 \\ 0.313 & 0.0598 \\ 0.293 & 0.0555 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	·					
β	C_L	C_D	C_m	C_{Y}	C_l	C _n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \end{array} $	$\begin{array}{c} 0.467 \\ 0.461 \\ 0.458 \\ 0.460 \\ 0.462 \\ 0.460 \\ 0.460 \end{array}$	$\begin{array}{c} 0.1217\\ 0.1200\\ 0.1185\\ 0.1195\\ 0.1204\\ 0.1189\end{array}$	$ \begin{array}{r} -0.0940 \\ -0.0917 \\ -0.0898 \\ -0.0917 \\ -0.0940 \\ -0.0951 \end{array} $	$\begin{array}{r} + 0 \cdot 0113 \\ + 0 \cdot 0059 \\ - 0 \cdot 0017 \\ - 0 \cdot 0093 \\ - 0 \cdot 0157 \\ - 0 \cdot 0248 \end{array}$	$ \begin{array}{r} -0.0221 \\ -0.0116 \\ +0.0002 \\ 0.0124 \\ 0.0246 \\ +0.0424 \end{array} $	$\begin{array}{c} 0 \cdot 0005 \\ 0 \cdot 0005 \\ 0 \cdot 0012 \\ 0 \cdot 0021 \\ 0 \cdot 0030 \\ 0 \cdot 0052 \end{array}$

 $\alpha = 20.42 \deg$

V = 152 ft/sec

 $R = 3 \cdot 8 \times 10^6$

β		C _D	C _m	C _Y	C _l	C _n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \end{array} $	$\begin{array}{c} 0.623 \\ 0.620 \\ 0.613 \\ 0.618 \\ 0.620 \\ 0.608 \end{array}$	$\begin{array}{c} 0 \cdot 2085 \\ 0 \cdot 2069 \\ 0 \cdot 2035 \\ 0 \cdot 2055 \\ 0 \cdot 2060 \\ 0 \cdot 2011 \end{array}$	$\begin{array}{c} -0.1233 \\ -0.1219 \\ -0.1181 \\ -0.1215 \\ -0.1231 \\ -0.1191 \end{array}$	$\begin{array}{c} + 0 \cdot 0220 \\ + 0 \cdot 0092 \\ - 0 \cdot 0050 \\ - 0 \cdot 0184 \\ - 0 \cdot 0310 \\ - 0 \cdot 0494 \end{array}$	$-0.0302 \\ -0.0148 \\ +0.0014 \\ 0.0175 \\ 0.0326 \\ +0.0556$	$ \begin{array}{r} + 0 \cdot 0042 \\ 0 \cdot 0030 \\ 0 \cdot 0019 \\ 0 \cdot 0009 \\ + 0 \cdot 0003 \\ - 0 \cdot 0005 \end{array} $

(80625)

17

в

TABLE 3—continued

Wing B

٥	$\alpha = 24.53 \deg$			ec	R = 2.6 >	< 10 ⁶		
β	C_L	C _D	C_m	C_Y	Cı	C _n		
$\begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \end{array}$	0.780 0.778 0.780 0.774 0.779	$\begin{array}{c} 0.3201 \\ 0.3172 \\ 0.3161 \\ 0.3142 \\ 0.3152 \end{array}$	$ \begin{array}{r} -0.1501 \\ -0.1487 \\ -0.1489 \\ -0.1478 \\ -0.1490 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 0378 \\ + 0 \cdot 0176 \\ - 0 \cdot 0074 \\ - 0 \cdot 0317 \\ - 0 \cdot 0541 \end{array}$	$ \begin{array}{r} -0.0378 \\ -0.0187 \\ +0.0025 \\ 0.0231 \\ +0.0428 \end{array} $	$ \begin{array}{r} +0.0087 \\ 0.0043 \\ +0.0010 \\ -0.0020 \\ -0.0049 \end{array} $		
	· · · · · · · · · · · · · · · · · · ·							
α =	= 28.64 deg	i	V = 102 ft/sec		$R = 2.6 \times$	106		
β	C_L	C_D	C_m	C_Y	Cl	C_n		
$\begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \end{array}$	0.944 0.943 0.944 0.938 0.932	0.4646 0.4631 0.4634 0.4617 0.4584	$\begin{array}{c} -0.1911 \\ -0.1923 \\ -0.1924 \\ -0.1913 \\ -0.1892 \end{array}$	+0.0557 +0.0233 -0.0148 -0.0704 -0.1220	$ \begin{array}{r} -0.0444 \\ -0.0218 \\ +0.0047 \\ 0.0287 \\ +0.0518 \end{array} $	$\begin{array}{c} + 0.0155 \\ 0.0077 \\ + 0.0007 \\ - 0.0054 \\ - 0.0115 \end{array}$		
α :	$\alpha = 32.75 \text{ deg}$ $V = 102 \text{ ft/sec}$ $R = 2.6 \times 10^6$					10 ⁶		
β		C _D			Cı	C _n		
$\begin{array}{r} + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \end{array}$	$ \begin{array}{c} 1 \cdot 111 \\ 1 \cdot 106 \\ 1 \cdot 100 \end{array} $	$0.653 \\ 0.649 \\ 0.647$	$ \begin{array}{c} -0.2141 \\ -0.2116 \\ -0.2121 \end{array} $	+0.0306 -0.0260 -0.0764	$- 0.0249 \\ + 0.0084 \\ + 0.0382$	+0.0148 + 0.0025 - 0.0082		

.18

۴,

Wing B

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	C_L	$\frac{dC_Y}{d\beta}$	$rac{dC_l}{deta}$	$rac{dC_n}{deta}$
52·75 1·100 T1·227 -0·724 +0·201	$\begin{array}{c} 0 \\ 4 \cdot 05 \\ 8 \cdot 13 \\ 12 \cdot 22 \\ 16 \cdot 31 \\ 20 \cdot 42 \\ 24 \cdot 53 \\ 28 \cdot 64 \\ 32 \cdot 75 \end{array}$	$\begin{array}{c} 0.003\\ 0.076\\ 0.188\\ 0.317\\ 0.458\\ 0.613\\ 0.780\\ 0.944\\ 1.106\end{array}$	$\begin{array}{c} -0.021 \\ -0.020 \\ +0.017 \\ 0.071 \\ 0.174 \\ 0.316 \\ 0.565 \\ 1.075 \\ +1.227 \end{array}$	$\begin{array}{c} 0 \\ -0.036 \\ -0.071 \\ -0.173 \\ -0.275 \\ -0.370 \\ -0.479 \\ -0.579 \\ -0.724 \end{array}$	$ \begin{array}{r} -0.047 \\ -0.048 \\ -0.056 \\ -0.038 \\ -0.018 \\ +0.024 \\ 0.072 \\ 0.150 \\ +0.264 \\ \end{array} $

Lateral Derivatives

(80625)

В2

...

Wing C

V = 10	02 ft/sec	$R = 2 \cdot 6 \times 10^6$		
α	C_L	C_D	C_m	
$\begin{array}{r} - & 1 \cdot 82 \\ - & 0 \cdot 81 \\ + & 0 \cdot 20 \\ & 1 \cdot 22 \\ 2 \cdot 23 \\ 3 \cdot 25 \\ 4 \cdot 27 \\ 5 \cdot 29 \\ 6 \cdot 31 \\ 7 \cdot 33 \\ 8 \cdot 35 \\ 10 \cdot 40 \\ 12 \cdot 45 \\ 14 \cdot 50 \\ 16 \cdot 56 \\ 18 \cdot 62 \\ 20 \cdot 68 \\ 22 \cdot 74 \\ 24 \cdot 80 \\ 26 \cdot 86 \\ 28 \cdot 92 \\ 30 \cdot 97 \\ 33 \cdot 03 \\ 35 \cdot 09 \\ 37 \cdot 11 \\ + 39 \cdot 14 \end{array}$	$\begin{array}{c} -0.037 \\ -0.009 \\ +0.006 \\ 0.024 \\ 0.046 \\ 0.071 \\ 0.100 \\ 0.128 \\ 0.160 \\ 0.189 \\ 0.225 \\ 0.292 \\ 0.365 \\ 0.446 \\ 0.524 \\ 0.608 \\ 0.697 \\ 0.784 \\ 0.608 \\ 0.697 \\ 0.784 \\ 0.959 \\ 1.047 \\ 1.128 \\ 1.208 \\ 1.268 \\ 1.334 \\ +1.381 \end{array}$	0.0089 0.0078 0.0078 0.0065 0.0085 0.0099 0.0115 0.0142 0.0142 0.0228 0.0277 0.0350 0.0532 0.0773 0.1090 0.1467 0.1917 0.2478 0.3060 0.3767 0.4532 0.5423 0.6334 0.7326 0.8305 0.9360 1.0488	$\begin{array}{c} + 0 \cdot 0048 \\ - 0 \cdot 0004 \\ - 0 \cdot 0033 \\ - 0 \cdot 0049 \\ - 0 \cdot 0094 \\ - 0 \cdot 0148 \\ - 0 \cdot 0211 \\ - 0 \cdot 0269 \\ - 0 \cdot 0336 \\ - 0 \cdot 0396 \\ - 0 \cdot 2390 \\ - 0 \cdot 2390 \\ - 0 \cdot 2390 \\ - 0 \cdot 2517 \\ - 0 \cdot 2665 \\ - 0 \cdot 2779 $	
17 2	02 ft/202	· D 76	106	
V = 3		R = 7.0	× 10°	
α	<i>C_L</i>	<i>C</i> _D	<i>C_m</i>	
$\begin{array}{r} - 1.93 \\ - 0.91 \\ + 0.15 \\ 1.17 \\ 2.23 \\ 3.30 \\ 4.32 \\ 5.29 \\ 6.41 \\ 7.43 \\ 8.56 \\ + 10.60 \end{array}$	$\begin{array}{c} -0.044 \\ -0.020 \\ +0.003 \\ 0.025 \\ 0.049 \\ 0.076 \\ 0.103 \\ 0.132 \\ 0.162 \\ 0.195 \\ 0.229 \\ +0.299 \end{array}$	$\begin{array}{c} 0 \cdot 0078 \\ 0 \cdot 0068 \\ 0 \cdot 0065 \\ 0 \cdot 0070 \\ 0 \cdot 0078 \\ 0 \cdot 0097 \\ 0 \cdot 0124 \\ 0 \cdot 0162 \\ 0 \cdot 0211 \\ 0 \cdot 0271 \\ 0 \cdot 0347 \\ 0 \cdot 0541 \end{array}$	$\begin{array}{c} + 0 \cdot 0096 \\ 0 \cdot 0047 \\ + 0 \cdot 0003 \\ - 0 \cdot 0039 \\ - 0 \cdot 0088 \\ - 0 \cdot 0144 \\ - 0 \cdot 0199 \\ - 0 \cdot 0258 \\ - 0 \cdot 0320 \\ - 0 \cdot 0386 \\ - 0 \cdot 0453 \\ - 0 \cdot 0591 \end{array}$	

Coefficients of	Overall Lift,	Drag and	Pitching	Moment	at Zero	Yaw
JJ				21201100100		1 0000

V = 152 ft/sec		$R = 3 \cdot 8 \times 10^{6}$		
α	α C _L		C_m .	
-1.83	-0.040	0.0095	+0.0071	
- 0.81	-0.016	0.0085	0.0021	
+ 0.20	+0.004	0.0075	+0.0016	
$1 \cdot 22$	0.024	0.0089	-0.0049	
2.23	0.047	0.0100	-0.0099	
3.25	0.073	0.0121	-0.0159	
4.27	0.101	0.0146	-0.0218	
5.29	0.129	0.0182	-0.0275	
6.31	0.161	0.0229	-0.0341	
7.33	0.191	0.0284	-0.0403	
8.35	0.225	0.0356	-0.0473	
$10 \cdot 40$	0.295	0.0540	-0.0609	
12.45	0.368	0.0780	-0.0751	
14.51	0.448	0.1103	-0.0906	
16.56	0.530	0.1485	-0.1060	
$18 \cdot 62$	0.615	0.1944	-0.1222	
20.68	0.701	0.2489	-0.1383	
22.74	0.790	0.3109	-0.1558	
$24 \cdot 80$	0.878	0.3818	-0.1731	
$26 \cdot 86$	0.967	0.4612	-0.1905	
+28.92	+1.053	0.5494	-0.2071	
V = 2	02 ft/sec	$R = 5 \cdot 1$	× 10 ⁶	
α	C_L	<i>C</i> _D	C _m	
- 1.83	-0.043	0.0069	+0.0079	
- 0.81	-0.018	0.0060	+0.0023	
+ 0.20	+0.004	0.0054	-0.0020	
$1 \cdot 22$	0.025	0.0064	-0.0057	
$2 \cdot 23$	0.049	0.0073	-0.0098	
3.25	0.075	0.0093	-0.0165	
4.27	0.102	0.0119	-0.0222	
$5 \cdot 29$	0.132	0.0157	-0.0282	
6.31	0.162	0.0204	-0.0346	

20

 $7 \cdot 33$

8·35 10·40

12.45

 $14 \cdot 51$

 $16 \cdot 56$ $18 \cdot 62$ $+ 20 \cdot 68$

 $0 \cdot 193$

0.2270.2960.370

0.451

 $0.533 \\ 0.619 \\ +0.706$

0.0262

 $0.0336 \\ 0.0524$

0.0767 0·1094 0·1482

 $0 \cdot 1950$ 0.2508 -0.0409

-0.0477 - 0.0615

-0.0013-0.0759-0.0917-0.1073-0.1234

-0.1400

Wing C

	$\alpha = 0 \deg$		$V = 152 {\rm ft}/{\rm s}$	sec	$R = 3 \cdot 8$	× 10 ⁶
β		C_D	C_m	Cr	C _l	C_n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ -10 \cdot 0 \\ -15 \cdot 0 \end{array} $	$ \begin{array}{r} +0.003 \\ 0.003 \\ 0.003 \\ 0.002 \\ +0.001 \\ 0 \\ -0.002 \\ \end{array} $	0.0083 0.0080 0.0072 0.0077 0.0076 0.0074 0.0074	$ \begin{array}{r} -0.0012 \\ -0.0013 \\ -0.0018 \\ -0.0010 \\ -0.0006 \\ -0.0001 \\ +0.0005 \\ \end{array} $	$ \begin{array}{r} -0.0028 \\ -0.0011 \\ -0.0004 \\ +0.0007 \\ 0.0028 \\ 0.0102 \\ +0.0239 \end{array} $	$ \begin{array}{r} -0.0004 \\ -0.0004 \\ -0.0004 \\ -0.0005 \\ -0.0006 \\ -0.0007 \\ -0.0008 \\ \end{array} $	$\begin{array}{c} -0.0024 \\ -0.0002 \\ +0.0019 \\ 0.0039 \\ 0.0061 \\ 0.0111 \\ +0.0166 \end{array}$
	$\alpha = 4 \cdot 07 \deg$		$V = 152 {\rm ft}/{\rm s}$	sec	$R=3\cdot8$	× 106
β	C _L	CD	C_m	Cr	C _l	
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \end{array} $	$\begin{array}{c} 0 \cdot 102 \\ 0 \cdot 101 \\ 0 \cdot 101 \\ 0 \cdot 101 \\ 0 \cdot 100 \\ 0 \cdot 096 \\ 0 \cdot 091 \end{array}$	$\begin{array}{c} 0\cdot 0141 \\ 0\cdot 0139 \\ 0\cdot 0137 \\ 0\cdot 0137 \\ 0\cdot 0136 \\ 0\cdot 0138 \\ 0\cdot 0136 \end{array}$	$\begin{array}{c} -0.0216\\ -0.0216\\ -0.0213\\ -0.0213\\ -0.0215\\ -0.0212\\ -0.0203\\ -0.0196\end{array}$	$\begin{array}{c} -0.0034 \\ -0.0014 \\ -0.0004 \\ +0.0002 \\ 0.0020 \\ 0.0096 \\ +0.0229 \end{array}$	$\begin{array}{c} -0.0047 \\ -0.0026 \\ -0.0004 \\ +0.0019 \\ 0.0040 \\ 0.0079 \\ +0.0108 \end{array}$	$\begin{array}{c} -0.0019 \\ +0.0001 \\ 0.0019 \\ 0.0040 \\ 0.0059 \\ 0.0106 \\ +0.0162 \end{array}$
($\alpha = 8 \cdot 15 \deg$		$V = 152 ext{ ft/s}$	sec	$R = 3 \cdot 8$	× 10 ⁶
β	C_L	C_D	C_m	Cr	C_l	C _n
$ \begin{array}{r} + 5.0 \\ + 2.5 \\ 0 \\ - 2.5 \\ - 5.0 \\ - 10.0 \\ - 15.0 \end{array} $	$\begin{array}{c} 0 \cdot 222 \\ 0 \cdot 221 \\ 0 \cdot 220 \\ 0 \cdot 220 \\ 0 \cdot 220 \\ 0 \cdot 220 \\ 0 \cdot 215 \\ 0 \cdot 207 \end{array}$	$\begin{array}{c} 0\cdot 0339\\ 0\cdot 0338\\ 0\cdot 0335\\ 0\cdot 0337\\ 0\cdot 0336\\ 0\cdot 0334\\ 0\cdot 0368\end{array}$	$\begin{array}{c} -0.0468 \\ -0.0465 \\ -0.0458 \\ -0.0462 \\ -0.0463 \\ -0.0456 \\ -0.0452 \end{array}$	$ \begin{array}{r} -0.0022 \\ -0.0011 \\ -0.0012 \\ -0.0010 \\ -0.0004 \\ +0.0055 \\ +0.0009 \\ \end{array} $	$-0.0098 \\ -0.0051 \\ 0 \\ +0.0050 \\ 0.0097 \\ 0.0183 \\ +0.0250$	$ \begin{array}{r} -0.0013 \\ +0.0006 \\ 0.0021 \\ 0.0038 \\ 0.0056 \\ 0.0101 \\ +0.0192 \end{array} $

Coefficients of Overall Side Force, Rolling Moment and Yawing Moment

·β	C_L	C_D	C_m	$C_{\mathbf{Y}}$	C_l	C_n
+ 5.0	0.222	0.0339	-0.0468	-0.0022	-0.0098	-0.0
+ 2.5	0.221	0.0338	-0.0465	-0.0011	-0.0051	+0.0
0	0.220	0.0335	-0.0458	-0.0012	0	0.0
-2.5	0.220	0.0337	-0.0462	-0.0010	+0.0050	0.0
- 5.0	0.220	0.0336	-0.0463	-0.0004	0.0097	0.0
-10.0	0.215	0.0334	-0.0456	+0.0055	0.0183	0.0
$-15 \cdot 0$	0.207	0.0368	-0.0452	+0.0009	+0.0250	+0.0
•						1

Wing (C
--------	---

	$\alpha = 12 \cdot 25 \deg$		V = 152 ft/sec		$R = 3 \cdot 8 \times 10^6$	
β		C_D	C_m	C_{Y}	C _l	C_n
+ 5.0	0.364	0.0749	-0.0793	+0.0014	-0.0159	0.0004
+ 2.5	0.364	0.0748	-0.0795	0	-0.0078	0.0016
0	0.362	0.0746	-0.0796	-0.0017	+0.0004	0.0024
-2.5	0.362	0.0744	-0.0791	-0.0039	0.0085	0.0033
$- 5 \cdot 0$	0.361	0.0742	-0.0783	-0.0048	0.0166	0.0045
-10.0	0.355	0.0733	-0.0768	-0.0028	0.0304	0.0077
$-15 \cdot 0$	0.342	0.0708	-0.0735	+0.0060	+0.0410	0.0122

 $\alpha = 16 \cdot 36 \deg$

V = 152 ft/sec

 $R = 3 \cdot 8 \times 10^6$

β	C_L	C _D	C_m	Cr	C_l	C _n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \end{array} $	$\begin{array}{c} 0.524 \\ 0.522 \\ 0.521 \\ 0.521 \\ 0.522 \\ 0.512 \\ 0.509 \end{array}$	$\begin{array}{c} 0 \cdot 1427 \\ 0 \cdot 1425 \\ 0 \cdot 1421 \\ 0 \cdot 1425 \\ 0 \cdot 1421 \\ 0 \cdot 1394 \\ 0 \cdot 1400 \end{array}$	$\begin{array}{c} -0.1063 \\ -0.1056 \\ -0.1045 \\ -0.1055 \\ -0.1062 \\ -0.1043 \\ -0.0880 \end{array}$	$\begin{array}{c} +0.0071\\ +0.0025\\ -0.0025\\ -0.0079\\ -0.0120\\ -0.0161\\ -0.0066\end{array}$	$\begin{array}{c} -0.0226\\ -0.0109\\ +0.0009\\ 0.0128\\ 0.0242\\ 0.0441\\ +0.0433\end{array}$	$\begin{array}{c} 0 \cdot 0029 \\ 0 \cdot 0029 \\ 0 \cdot 0025 \\ 0 \cdot 0022 \\ 0 \cdot 0020 \\ 0 \cdot 0033 \\ 0 \cdot 0016 \end{array}$

 $\alpha = 20 \cdot 47 \text{ deg}$

V = 152 ft/sec

R =

 $R = 3 \cdot 8 \times 10^6$

β	C_L	C_D	C_m	Cr	C_l	C_n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \\ \end{array} $	$\begin{array}{c} 0.695 \\ 0.695 \\ 0.693 \\ 0.692 \\ 0.694 \\ 0.662 \\ 0.599 \end{array}$	$\begin{array}{c} 0.2412\\ 0.2409\\ 0.2397\\ 0.2398\\ 0.2396\\ 0.2287\\ 0.2113\\ \end{array}$	$\begin{array}{r} -0.1380 \\ -0.1377 \\ -0.1368 \\ -0.1372 \\ -0.1379 \\ -0.1246 \\ -0.1071 \end{array}$	$\begin{array}{r} + 0 \cdot 0137 \\ + 0 \cdot 0044 \\ - 0 \cdot 0066 \\ - 0 \cdot 0162 \\ - 0 \cdot 0250 \\ - 0 \cdot 0351 \\ - 0 \cdot 0317 \end{array}$	$\begin{array}{c} -0.0237\\ -0.0136\\ +0.0026\\ 0.0183\\ 0.0330\\ 0.0544\\ +0.0591\end{array}$	$\begin{array}{c} + 0 \cdot 0072 \\ 0 \cdot 0055 \\ 0 \cdot 0032 \\ + 0 \cdot 0008 \\ - 0 \cdot 0010 \\ - 0 \cdot 0029 \\ - 0 \cdot 0011 \end{array}$

TAZing	\sim
wing	U

```
\alpha = 24 \cdot 59 \, \deg
```

V = 102 ft/sec

 $R = 2 \cdot 6 \times 10^6$

β	C_L	C_D	C_m	C_{Y}	C_l	C_n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ - 10 \cdot 0 \\ - 15 \cdot 0 \end{array} $	0 · 862 0 · 869 0 · 863 0 · 861 0 · 861 0 · 783 0 · 708	$\begin{array}{c} 0\cdot 3622\\ 0\cdot 3644\\ 0\cdot 3612\\ 0\cdot 3617\\ 0\cdot 3617\\ 0\cdot 3617\\ 0\cdot 3325\\ 0\cdot 3071\\ \end{array}$	$\begin{array}{c} -0.1684 \\ -0.1704 \\ -0.1687 \\ -0.1686 \\ -0.1689 \\ -0.1406 \\ -0.1196 \end{array}$	$\begin{array}{r} + 0 \cdot 0251 \\ + 0 \cdot 0091 \\ - 0 \cdot 0102 \\ - 0 \cdot 0297 \\ - 0 \cdot 0447 \\ - 0 \cdot 0553 \\ - 0 \cdot 0484 \end{array}$	$ \begin{array}{r} -0.0351 \\ -0.0167 \\ +0.0046 \\ 0.0243 \\ 0.0428 \\ 0.0556 \\ +0.0573 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 0122 \\ 0 \cdot 0082 \\ + 0 \cdot 0040 \\ - 0 \cdot 0011 \\ - 0 \cdot 0052 \\ - 0 \cdot 0101 \\ - 0 \cdot 0101 \end{array}$

$$\alpha = 28.71 \text{ deg}$$

8·71 deg

V = 102 ft/sec

 $R = 2 \cdot 6 \times 10^6$

β	C_L		C _m	Cr	C_l	C _n
$ \begin{array}{r} + 5.0 \\ + 2.5 \\ 0 \\ - 2.5 \\ - 5.0 \\ - 10.0 \end{array} $	1 · 033 1 · 043 1 · 041 1 · 036 1 · 031 0 · 878	$\begin{array}{c} 0.5213\\ 0.5266\\ 0.5253\\ 0.5229\\ 0.5198\\ 0.4536\end{array}$	$\begin{array}{c} -0.2006\\ -0.2052\\ -0.2052\\ -0.2028\\ -0.2028\\ -0.2002\\ -0.1507\end{array}$	$\begin{array}{r} + 0 \cdot 0400 \\ + 0 \cdot 0151 \\ - 0 \cdot 0158 \\ - 0 \cdot 0440 \\ - 0 \cdot 0691 \\ - 0 \cdot 0670 \end{array}$	$ \begin{array}{r} -0.0420 \\ -0.0201 \\ +0.0064 \\ 0.0315 \\ 0.0530 \\ +0.0500 \end{array} $	$\begin{array}{c} + 0 \cdot 0186 \\ 0 \cdot 0116 \\ + 0 \cdot 0029 \\ - 0 \cdot 0051 \\ - 0 \cdot 0122 \\ - 0 \cdot 0187 \end{array}$

 $\alpha = 32 \cdot 82 \deg$

```
V = 102 ft/sec
```

 $R = 2 \cdot 6 \times 10^6$

β	C_L	C _D .	C_m	Cr	C_l	C_n
$ \begin{array}{r} + 5 \cdot 0 \\ + 2 \cdot 5 \\ 0 \\ - 2 \cdot 5 \\ - 5 \cdot 0 \\ \end{array} $	$ \begin{array}{r} 1 \cdot 118 \\ 1 \cdot 200 \\ 1 \cdot 197 \\ 1 \cdot 197 \\ 1 \cdot 075 \\ \end{array} $	$\begin{array}{c} 0.6683 \\ 0.7157 \\ 0.7131 \\ 0.7139 \\ 0.6480 \end{array}$	$ \begin{array}{r} -0.2084 \\ -0.2366 \\ -0.2368 \\ -0.2362 \\ -0.1973 \\ \end{array} $	$\begin{array}{r} + 0.0430 \\ + 0.0226 \\ - 0.0223 \\ - 0.0635 \\ - 0.0718 \end{array}$	$ \begin{array}{r} -0.0334 \\ -0.0231 \\ +0.0094 \\ 0.0404 \\ +0.0414 \end{array} $	$\begin{array}{c} +0.0254\\ 0.0161\\ +0.0016\\ -0.0109\\ -0.0178\end{array}$

Wing C

α	C_L	$\frac{dC_{Y}}{d\beta}$	$\frac{dC_l}{d\beta}$	$\frac{dC_n}{d\beta}$
$\begin{array}{c} 0 & & \\ 4 \cdot 07 \\ 8 \cdot 15 \\ 12 \cdot 25 \\ 16 \cdot 36 \\ 20 \cdot 47 \\ 24 \cdot 59 \\ 28 \cdot 71 \\ 32 \cdot 82 \end{array}$	$\begin{array}{c} 0.003 \\ 0.101 \\ 0.220 \\ 0.362 \\ 0.521 \\ 0.693 \\ 0.863 \\ 1.041 \\ 1.197 \end{array}$	$ \begin{array}{r} -0.021 \\ -0.018 \\ -0.001 \\ +0.045 \\ 0.120 \\ 0.236 \\ 0.445 \\ 0.675 \\ +0.986 \end{array} $	$\begin{array}{c} 0 \\ -0.052 \\ -0.115 \\ -0.187 \\ -0.271 \\ -0.365 \\ -0.470 \\ -0.590 \\ -0.726 \end{array}$	$\begin{array}{c} -0.047 \\ -0.045 \\ -0.037 \\ -0.019 \\ +0.008 \\ 0.054 \\ 0.108 \\ 0.192 \\ +0.310 \end{array}$

Lateral Derivatives

Flat-Plate Wings 1 to 12. Coefficients of Overall Lift, Drag and Pitching Moment at Zero Yaw

Wing 1				
- α	C_L	CD	C_m	
$\begin{array}{r} - 1 \cdot 07 \\ - 0 \cdot 05 \\ + 0 \cdot 97 \\ 2 \cdot 00 \\ 3 \cdot 02 \\ 4 \cdot 05 \\ 5 \cdot 08 \\ 6 \cdot 11 \\ 7 \cdot 15 \\ 8 \cdot 18 \\ 10 \cdot 26 \\ 12 \cdot 33 \\ 14 \cdot 42 \\ 16 \cdot 51 \\ 16 \cdot 51 \end{array}$	$\begin{array}{c} -0.071 \\ -0.051 \\ -0.028 \\ -0.002 \\ +0.024 \\ 0.054 \\ 0.086 \\ 0.119 \\ 0.155 \\ 0.191 \\ 0.266 \\ 0.349 \\ 0.438 \\ 0.532 \\ 0.620 \end{array}$	$\begin{array}{c} 0.0082\\ 0.0077\\ 0.0075\\ 0.0081\\ 0.0097\\ 0.0125\\ 0.0167\\ 0.0219\\ 0.0286\\ 0.0366\\ 0.0366\\ 0.0578\\ 0.0863\\ 0.1229\\ 0.1695\\ 0.252\end{array}$	$\begin{array}{c} +0\cdot0321\\ 0\cdot0314\\ 0\cdot0302\\ 0\cdot0287\\ 0\cdot0275\\ 0\cdot0253\\ 0\cdot0232\\ 0\cdot0210\\ 0\cdot0182\\ 0\cdot0161\\ 0\cdot0101\\ +0\cdot0036\\ -0\cdot0047\\ -0\cdot0128\\ 0\cdot0101\\ 0\cdot0101\\ 0\cdot0101\\ 0\cdot0101\\ 0\cdot0101\\ 0\cdot0101\\ 0\cdot00047\\ 0\cdot$	
+20.70	+0.030 +0.730	0.2905	-0.0311	

		• •	
α		C_D	C_m
- 1.12	-0.097	0.0090	+0.0432
- 0.09	-0.070	0.0082	0.0420
+ 0.95	-0.042	0.0078	0.0402
1.99	-0.012	0.0083	0.0396
3.03	+0.022	0.0102	0.0378
4.07	0.057	0.0143	0.0359
$5 \cdot 12$	0.095	0.0189	0.0334
6.17	0.134	0.0251	0.0309
$7 \cdot 22$	0.173	0.0324	0.0294
8.27	0.213	0.0414	0.0273
10.39	0.303	0.0664	0.0212
$12 \cdot 51$	0.400	0.1000	0.0144
14.64	0.497	0.1409	+0.0062
16.77	0.602	0.1927	-0.0014
+18.91	+0.711	0.2551	-0.0100
	10 C		

Wing	3
------	---

	C_L	C_D	C_m
$ \begin{array}{r} - 1 \cdot 18 \\ - 0 \cdot 13 \\ + 0 \cdot 93 \\ 1 \cdot 99 \\ 3 \cdot 05 \\ 4 \cdot 12 \\ \end{array} $	$ \begin{array}{c} -0.112 \\ -0.080 \\ -0.045 \\ -0.006 \\ +0.034 \\ 0.076 \end{array} $	$ \begin{array}{c} 0.0085 \\ 0.0089 \\ 0.0090 \\ 0.0094 \\ 0.0124 \\ 0.0166 \end{array} $	$\begin{array}{c} & & \\ & 0.0377 \\ & 0.0365 \\ & 0.0359 \\ & 0.0347 \\ & 0.0335 \\ & 0.0322 \end{array}$
$5 \cdot 19 6 \cdot 26 7 \cdot 33 8 \cdot 40 10 \cdot 56 12 \cdot 72 + 14 \cdot 88$	0.119 0.164 0.207 0.252 0.348 0.450 +0.551	$\begin{array}{c} 0.0108\\ 0.0218\\ 0.0301\\ 0.0386\\ 0.0491\\ 0.0768\\ 0.1134\\ 0.1583\end{array}$	$\begin{array}{c} 0.0322\\ 0.0303\\ 0.0283\\ 0.0266\\ 0.0262\\ 0.0222\\ 0.0168\\ 0.0111 \end{array}$

Wing	4
------	---

-0.0014-0.0100

α	C_L	C_D	C_m
$\begin{array}{c} \alpha \\ - & 1 \cdot 14 \\ - & 0 \cdot 10 \\ + & 0 \cdot 94 \\ & 1 \cdot 98 \\ 3 \cdot 02 \\ 4 \cdot 07 \\ 5 \cdot 12 \\ 6 \cdot 18 \\ 7 \cdot 23 \\ 8 \cdot 29 \\ 10 \cdot 41 \\ 12 \cdot 55 \\ 14 \cdot 62 \end{array}$	$\begin{array}{c} C_L \\ \hline -0.094 \\ -0.068 \\ -0.043 \\ -0.015 \\ +0.016 \\ 0.048 \\ 0.085 \\ 0.122 \\ 0.161 \\ 0.199 \\ 0.284 \\ 0.377 \\ 0.475 \end{array}$	$\begin{array}{c} C_{\mathcal{D}} \\ \hline \\ 0.0089 \\ 0.0081 \\ 0.0075 \\ 0.0080 \\ 0.0094 \\ 0.0124 \\ 0.0124 \\ 0.0168 \\ 0.0224 \\ 0.0295 \\ 0.0379 \\ 0.0612 \\ 0.0925 \\ 0.0325 \\$	$\begin{array}{c} C_m \\ + 0.0355 \\ 0.0346 \\ 0.0340 \\ 0.0333 \\ 0.0325 \\ 0.0310 \\ 0.0297 \\ 0.0278 \\ 0.0261 \\ 0.0247 \\ 0.0139 \\ 0.0139 \\ 0.067 \end{array}$
14.69 16.84 18.99 +21.16	0.473 0.578 0.681 +0.791	0.1330 0.1838 0.2375 0.3102	-0.0011 -0.0083 -0.0168

Wing 2

25

Wing 5

α	C_L	C_D	C_m
$\begin{array}{r} - 1 \cdot 12 \\ - 0 \cdot 09 \\ + 0 \cdot 95 \\ 1 \cdot 98 \\ 3 \cdot 02 \\ 4 \cdot 06 \\ 5 \cdot 11 \\ 6 \cdot 16 \\ 7 \cdot 21 \\ 8 \cdot 26 \\ 10 \cdot 36 \\ 12 \cdot 48 \\ 14 \cdot 60 \\ 16 \cdot 73 \\ 18 \cdot 86 \\ + 20 \cdot 98 \end{array}$	$\begin{array}{c} -0.103 \\ -0.074 \\ -0.046 \\ -0.015 \\ +0.019 \\ 0.054 \\ 0.093 \\ 0.134 \\ 0.176 \\ 0.217 \\ 0.305 \\ 0.402 \\ 0.503 \\ 0.606 \\ 0.714 \\ +0.821 \end{array}$	$\begin{array}{c} 0.0091\\ 0.0083\\ 0.0077\\ 0.0083\\ 0.0100\\ 0.0130\\ 0.0176\\ 0.0239\\ 0.0316\\ 0.0405\\ 0.0653\\ 0.0979\\ 0.1404\\ 0.1918\\ 0.2531\\ 0.3186\end{array}$	$\begin{array}{c} + 0 \cdot 0403 \\ 0 \cdot 0389 \\ 0 \cdot 0378 \\ 0 \cdot 0360 \\ 0 \cdot 0342 \\ 0 \cdot 0320 \\ 0 \cdot 0299 \\ 0 \cdot 0271 \\ 0 \cdot 0248 \\ 0 \cdot 0231 \\ 0 \cdot 0121 \\ + 0 \cdot 0045 \\ - 0 \cdot 0024 \\ - 0 \cdot 0100 \\ - 0 \cdot 0170 \end{array}$

	C		C
α		D	
- 1.11	-0.101	0.0088	+0.0411
- 0.08	-0.071	0.0081	0.0386
+ 0.95	-0.043	0.0077	0.0368
1.99	-0.009	0.0083	0.0339
3.03	+0.026	0.0102	0.0309
4.07	0.064	0.0136	0.0275
$5 \cdot 11$	0.104	0.0186	0.0240
6.16	0.148	0.0253	0.0205
$7 \cdot 20$	0.190	0.0330	0.0175
8.25	0.232	0.0426	0.0145
10.35	0.324	0.0682	0.0076
12.45	0.418	0.1021	+0.0005
14.56	0.520	0.1441	-0.0077
16.67	0.624	0.1961	-0.0162
1 8·78	0.732	0.2585	-0.0247
+20.89	+0.826	0.3261	-0.0292
	1		

*

氞

Wing 6

Wing 7

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α		C_m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 090 & 0 \cdot 0074 \\ 058 & 0 \cdot 0071 \\ 025 & 0 \cdot 0073 \\ 013 & 0 \cdot 0086 \\ 053 & 0 \cdot 0114 \\ 095 & 0 \cdot 0160 \\ 140 & 0 \cdot 0222 \end{array}$	$\begin{array}{c} 0.0289\\ 0.0272\\ 0.0269\\ 0.0249\\ 0.0233\\ 0.0210\\ 0.0190\end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccc} 184 & 0.0298 \\ 229 & 0.0389 \\ 272 & 0.0495 \\ 365 & 0.0772 \\ 458 & 0.1126 \\ 548 & 0.1543 \\ 642 & 0.2047 \\ 732 & 0.2614 \\ 823 & 0.3276 \\ \end{array}$	$\begin{array}{c} 0.0184\\ 0.0176\\ 0.0195\\ 0.0216\\ 0.0263\\ 0.0333\\ 0.0384\\ 0.0481\\ 0.0580\\ \end{array}$

Wing 8

		(
α	C_L	C_D	C_m
$ \begin{array}{c} \alpha \\ - 1.06 \\ - 0.05 \\ + 0.97 \\ 1.99 \\ 3.01 \\ 4.03 \\ 5.05 \\ 6.07 \\ 7.10 \end{array} $	$\begin{array}{c} C_L \\ \hline -0.092 \\ -0.071 \\ -0.046 \\ -0.018 \\ +0.012 \\ 0.041 \\ 0.073 \\ 0.107 \\ 0.141 \end{array}$	$\begin{array}{c} C_{D} \\ \hline 0.0087 \\ 0.0080 \\ 0.0075 \\ 0.0082 \\ 0.0096 \\ 0.0122 \\ 0.0161 \\ 0.0226 \\ 0.0280 \end{array}$	$\begin{array}{c} & & & \\ & & \\ \hline & + 0 \cdot 0448 \\ & & 0 \cdot 0421 \\ & & 0 \cdot 0333 \\ & 0 \cdot 0333 \\ & 0 \cdot 0289 \\ & & 0 \cdot 0243 \\ & & 0 \cdot 0197 \\ & & 0 \cdot 0101 \end{array}$
$8 \cdot 12 \\ 10 \cdot 17 \\ 12 \cdot 23 \\ 14 \cdot 28 \\ 16 \cdot 34 \\ 18 \cdot 41 \\ + 20 \cdot 47$	$\begin{array}{c} 0.178\\ 0.251\\ 0.334\\ 0.416\\ 0.504\\ 0.594\\ + 0.684\end{array}$	$\begin{array}{c} 0.0364\\ 0.0575\\ 0.0853\\ 0.1188\\ 0.1615\\ 0.2114\\ 0.2710\\ \end{array}$	$\begin{array}{c} + 0 \cdot 0050 \\ - 0 \cdot 0044 \\ - 0 \cdot 0151 \\ - 0 \cdot 0258 \\ - 0 \cdot 0368 \\ - 0 \cdot 0483 \\ - 0 \cdot 0596 \end{array}$

TABLE 8-continued

Wing 9

α	C _L	C_D	C_m
$\begin{array}{r} - 1 \cdot 10 \\ - 0 \cdot 07 \\ + 0 \cdot 96 \\ 1 \cdot 99 \\ 3 \cdot 02 \\ 4 \cdot 05 \\ 5 \cdot 09 \\ 6 \cdot 13 \\ 7 \cdot 17 \\ 8 \cdot 21 \\ 10 \cdot 29 \\ 12 \cdot 31 \\ 14 \cdot 47 \\ 16 \cdot 56 \\ 18 \cdot 66 \\ 18 \cdot 66 \\ 20 \cdot 76 \end{array}$	$\begin{array}{c} -0.102 \\ -0.075 \\ -0.047 \\ -0.014 \\ +0.022 \\ 0.056 \\ 0.094 \\ 0.134 \\ 0.175 \\ 0.214 \\ 0.303 \\ 0.395 \\ 0.490 \\ 0.586 \\ 0.690 \\ 0.701 \end{array}$	$\begin{array}{c} 0.0083\\ 0.0079\\ 0.0077\\ 0.0087\\ 0.0106\\ 0.0143\\ 0.0191\\ 0.0254\\ 0.0336\\ 0.0429\\ 0.0680\\ 0.0997\\ 0.1408\\ 0.1902\\ 0.2492\\ 0.2492\\ 0.2492\\ 0.2492\\ 0.2492\\ 0.2108\end{array}$	$\begin{array}{c} + 0.0496\\ 0.0457\\ 0.0457\\ 0.0326\\ 0.0326\\ 0.0283\\ 0.0236\\ 0.0184\\ 0.0136\\ + 0.0093\\ - 0.0010\\ - 0.0107\\ - 0.0203\\ - 0.0203\\ - 0.0299\\ - 0.0401\\ 0.0400\end{array}$
T 20170		0 5170	0 0177

α	C_L	C_D	C_m
$ \begin{array}{r} - 1.15 \\ - 0.11 \\ + 0.93 \\ 1.97 \\ 3.02 \\ 4.07 \\ 5.13 \\ 6.18 \\ \end{array} $	$ \begin{array}{c} -0.129 \\ -0.095 \\ -0.060 \\ -0.022 \\ +0.019 \\ 0.060 \\ 0.105 \\ 0.151 \\ \end{array} $	$\begin{array}{c} 0.0091\\ 0.0086\\ 0.0083\\ 0.0089\\ 0.0111\\ 0.0149\\ 0.0203\\ 0.0278\end{array}$	$ \begin{array}{c} +0.0556\\ 0.0515\\ 0.0472\\ 0.0422\\ 0.0376\\ 0.0326\\ 0.0279\\ 0.0229 \end{array} $
$7 \cdot 24$ $8 \cdot 29$ $10 \cdot 41$ $12 \cdot 53$ $14 \cdot 66$ $16 \cdot 79$ $18 \cdot 92$ $+ 21 \cdot 04$	$\begin{array}{c} 0.196\\ 0.242\\ 0.339\\ 0.441\\ 0.547\\ 0.655\\ 0.760\\ +0.863\end{array}$	$\begin{array}{c} 0.0368\\ 0.0473\\ 0.0748\\ 0.1110\\ 0.1568\\ 0.2125\\ 0.2700\\ 0.3434\\ \end{array}$	$\begin{array}{c} 0 \cdot 0183 \\ 0 \cdot 0135 \\ + 0 \cdot 0041 \\ - 0 \cdot 0057 \\ - 0 \cdot 0150 \\ - 0 \cdot 0238 \\ - 0 \cdot 0310 \\ - 0 \cdot 0378 \end{array}$

Wing 10

Wing 11

α	C_L	C_D	C_m
- 1.12	-0.106	0.0086	+0.0434
- 0.09	-0.078	0.0084	0.0407
+ 0.95	-0.048	0.0078	0.0388
1.98	-0.016	0.0085	0.0360
3.02	+0.014	0.0098	0.0336
4.06	0.056	0.0136	0.0303
$5 \cdot 11$	0.095	0.0183	0.0271
6.15	0.136	0.0246	0.0238
$7 \cdot 20$	0.178	0.0325	0.0200
8.25	0.220	0.0423	0.0170
10.35	0.309	0.0668	0.0094
12.46	0.404	0.0998	+0.0009
14.58	0.507	0.1429	-0.0077
16.70	0.612	0.1955	-0.0167
18.82	0.716	0.2568	-0.0253
+20.93	+0.816	0.3236	-0.0344
		-	

α	α C_L		C_m
- 1.08	-0.080	0.0080	+0.0339
- 0.06	-0.061	0.0075	0.0330
+ 0.96	-0.039	0.0070	0.0320
1.99	-0.014	0.0074	0.0308
3.01	+0.011	0.0087	0.0295
4.04	0.041	0.0111	0.0268
5.07	0.071	0.0147	0.0254
$6 \cdot 10$	0.105	0.0200	0.0230
$7 \cdot 13$	0.139	0.0262	0.0204
$8 \cdot 17$	0.175	0.0342	0.0174
10.24	0.250	0.0547	0.0111
12.31	0.331	0.0817	+0.0041

 $\begin{array}{c} 0 \cdot 331 \\ 0 \cdot 420 \end{array}$

0.512

 $0 \cdot 609$

+0.701

0.1177

 $0 \cdot 1624$ $0 \cdot 2160$

0.2742

+0.0041-0.0039-0.0125-0.0215-0.0311

Wing 12

 $12 \cdot 31$ 14 \cdot 40

16.48

18.58

+20.66

27

TABLE 9	
---------	--

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Wing	g 2A				Win	g 8A	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α	<i>C</i> _L	C _D	C_m	- -	α			
	$\begin{array}{r} - 1 \cdot 04 \\ - 0 \cdot 01 \\ + 1 \cdot 03 \\ 2 \cdot 06 \\ 3 \cdot 10 \\ 4 \cdot 14 \\ 5 \cdot 19 \\ 6 \cdot 24 \\ 7 \cdot 29 \\ 8 \cdot 34 \\ 10 \cdot 46 \\ 12 \cdot 57 \\ 14 \cdot 70 \\ 16 \cdot 83 \\ + 18 \cdot 97 \end{array}$	$\begin{array}{c} -0.035\\ -0.005\\ +0.027\\ 0.050\\ 0.077\\ 0.111\\ 0.149\\ 0.187\\ 0.226\\ 0.267\\ 0.355\\ 0.447\\ 0.546\\ 0.649\\ +0.753\end{array}$	$\begin{array}{c} 0\cdot 0059\\ 0\cdot 0042\\ 0\cdot 0057\\ 0\cdot 0068\\ 0\cdot 0088\\ 0\cdot 0122\\ 0\cdot 0173\\ 0\cdot 0236\\ 0\cdot 0316\\ 0\cdot 0414\\ 0\cdot 0661\\ 0\cdot 0989\\ 0\cdot 1403\\ 0\cdot 1919\\ 0\cdot 2514\end{array}$	$\begin{array}{c} + 0 \cdot 0043 \\ + 0 \cdot 0005 \\ - 0 \cdot 0018 \\ - 0 \cdot 0032 \\ - 0 \cdot 0038 \\ - 0 \cdot 0058 \\ - 0 \cdot 0084 \\ - 0 \cdot 0112 \\ - 0 \cdot 0136 \\ - 0 \cdot 0136 \\ - 0 \cdot 0232 \\ - 0 \cdot 0303 \\ - 0 \cdot 0380 \\ - 0 \cdot 0465 \\ - 0 \cdot 0531 \end{array}$		$-1.02 \\ 0 \\ +1.02 \\ 2.03 \\ 3.05 \\ 4.07 \\ 5.09 \\ 6.11 \\ 7.13 \\ 8.16 \\ 10.21 \\ 12.26 \\ 14.32 \\ 16.38 \\ 18.44 \\ 18.44 \\ -7.12 \\ 10.21 \\ -7.12 \\$	$\begin{array}{c} -0.028\\ 0\\ +0.025\\ 0.042\\ 0.068\\ 0.100\\ 0.129\\ 0.163\\ 0.197\\ 0.233\\ 0.308\\ 0.383\\ 0.467\\ 0.553\\ 0.639\end{array}$	$\begin{array}{c} 0\cdot 0065\\ 0\cdot 0051\\ 0\cdot 0065\\ 0\cdot 0073\\ 0\cdot 0096\\ 0\cdot 0128\\ 0\cdot 0171\\ 0\cdot 0228\\ 0\cdot 0295\\ 0\cdot 0383\\ 0\cdot 0596\\ 0\cdot 0868\\ 0\cdot 1216\\ 0\cdot 1639\\ 0\cdot 2149\\ \end{array}$	$\begin{array}{c} + 0.0052 \\ - 0.0005 \\ - 0.0048 \\ - 0.0060 \\ - 0.0103 \\ - 0.0162 \\ - 0.0206 \\ - 0.0262 \\ - 0.0314 \\ - 0.0366 \\ - 0.0468 \\ - 0.0564 \\ - 0.0674 \\ - 0.0779 \\ - 0.0888 \end{array}$

Flat-Plate Wings 2A, 8A. Coefficients of Overall Lift, Drag and Pitching Moment at Zero Yaw

Flat-Plate Wings 2A, 8A. Lateral Derivatives

Wing 2A

α	$\frac{dC_Y}{d\beta}$	$\frac{dC_1}{d\beta}$	$rac{dC_n}{deta}$
$ \begin{array}{r} 0 \\ 6 \cdot 24 \\ 12 \cdot 57 \\ 18 \cdot 97 \end{array} $	$0 \\ -0.006 \\ -0.009 \\ -0.018$	$ \begin{array}{r} -0.010 \\ -0.105 \\ -0.194 \\ -0.287 \end{array} $	$0.005 \\ 0.013 \\ 0.044 \\ 0.100$

Wing 8A

			-
α	$\frac{dC_{Y}}{d\beta}$	$\frac{dC_l}{d\beta}$	$\frac{dC_n}{d\beta}$
$0 \\ 6 \cdot 11 \\ 12 \cdot 26 \\ 18 \cdot 44$	$0 \\ -0.002 \\ -0.003 \\ +0.016$	$ \begin{array}{r} 0.009 \\ -0.096 \\ -0.200 \\ -0.277 \end{array} $	$ \begin{array}{c} 0.011 \\ 0.024 \\ 0.062 \\ 0.116 \end{array} $
18.44	+0.016	-0.277	0.116

k,

\$

Pressure Coefficients at Zero Yaw

WING A

۲.

1

 $\alpha = 0 \deg$

	$\frac{y}{s(r)}$		0		• 1				.3	0	•4	0	• 5	0	. 55
	0(0)		0	, v	-			ľ	č		•				
x				Ì											
$\overline{c_0}$		U.S.	L.S.	U.S	L.S.	U.S.	L.S.								
$\overline{0\cdot 2}$	ļ .	-0.003	-0.004	-0.003	-0.002	-0.003	-0.003	-0.002	+0.002	+0.006	+0.005	+0.012	+0.012	+0.016	+0.016
0.4		-0.102	-0.127	-0.126	-0.114	-0.116	-0.124	-0.111	-0.118	-0.110	-0.103	-0.101	-0.101	-0.096	-0.099
0.6		-0.148	-0.144	-0.154	-0.154	-0.149	-0.150	-0.148	-0.147	-0.145	-0.148	-0.132	-0.135	-0.126	-0.135
0.8		-0.098	-0.091	-0.099	-0.085	-0.098	-0.094	-0.098	-0.098	-0.101	-0.096	-0.096	-0.092	-0.091	-0.092
0.9				+0.002	-0.001	-0.001	-0.005	-0.012	-0.011	-0.023	-0.021	-0.019	-0.020	-0.024	-0.026
					,									•	

	$\frac{y}{s(x)}$	0	·6	0	· 65	.0	••7	0	.75	0	•8	0	· 85	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $		+0.023 -0.091 -0.122 -0.092 -0.031	+0.019 -0.092 -0.130 -0.092 -0.029	+0.028 -0.084 -0.126 -0.092 -0.029	+0.023 -0.092 -0.124 -0.090 -0.037	$ \begin{array}{r} +0.033 \\ -0.081 \\ -0.117 \\ -0.085 \\ -0.030 \end{array} $	$ \begin{array}{r} +0.024 \\ -0.083 \\ -0.114 \\ -0.085 \\ -0.038 \end{array} $	$ \begin{array}{r} + 0 \cdot 042 \\ - 0 \cdot 070 \\ - 0 \cdot 103 \\ - 0 \cdot 080 \\ - 0 \cdot 030 \end{array} $	$ \begin{array}{r} + 0 \cdot 033 \\ - 0 \cdot 076 \\ - 0 \cdot 115 \\ - 0 \cdot 079 \\ - 0 \cdot 036 \\ \end{array} $	+0.049 -0.064 -0.097 -0.077 -0.030	+0.037 -0.067 -0.108 -0.081 -0.037	$ \begin{array}{r} + 0 \cdot 063 \\ - 0 \cdot 052 \\ - 0 \cdot 092 \\ - 0 \cdot 071 \\ - 0 \cdot 026 \end{array} $	+0.050 -0.057 -0.097 -0.065 -0.034	+0.075 -0.038 -0.079 -0.062 -0.036	+0.071 -0.042 -0.087 -0.063 -0.019

. 29

TABLE 11—continued

α	_	2.	06	deg
---	---	----	----	-----

 C_p

WING A

*

1

	$\frac{y}{s(x)}$		0	0	•1	0	·Ź	0	1.3	0	•4	0	• 5	0	• 55
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
0·2 0·4 0·6 0·8 0·9		$ \begin{array}{c} -0.035 \\ -0.128 \\ -0.163 \\ -0.098 \\ \end{array} $	+0.035 -0.100 -0.129 -0.091	$ \begin{array}{r} -0.039 \\ -0.147 \\ -0.163 \\ -0.095 \\ +0.010 \\ \end{array} $	$ \begin{array}{r} + 0.039 \\ - 0.081 \\ - 0.135 \\ - 0.079 \\ - 0.001 \\ \end{array} $	$ \begin{array}{r} -0.039 \\ -0.143 \\ -0.162 \\ -0.101 \\ +0.002 \end{array} $	$ \begin{array}{r} +0.038 \\ -0.092 \\ -0.132 \\ -0.088 \\ -0.007 \\ \end{array} $	$ \begin{array}{r} -0.038 \\ -0.138 \\ -0.164 \\ -0.100 \\ -0.008 \\ \end{array} $	+0.046 -0.079 -0.125 -0.087 -0.008	$ \begin{array}{r} -0.035 \\ -0.135 \\ -0.159 \\ -0.104 \\ -0.020 \\ \end{array} $	+0.048 -0.070 -0.122 -0.082 -0.014	$ \begin{array}{r} -0.027 \\ -0.134 \\ -0.154 \\ -0.105 \\ -0.024 \end{array} $	+0.056 -0.069 -0.113 -0.080 -0.016	$ \begin{array}{r} -0.020 \\ -0.127 \\ -0.146 \\ -0.099 \\ -0.028 \end{array} $	+0.062 -0.061 -0.108 -0.078 -0.016

														1	
	$\frac{y}{s(x)}$	0.6		0	65	0	•7	0	•75	0	·8	0	· 85	0	•9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $		$ \begin{array}{r} -0.018 \\ -0.124 \\ -0.146 \\ -0.104 \\ -0.036 \end{array} $	+0.068 -0.054 -0.105 -0.074 -0.018	$ \begin{array}{r} -0.012 \\ -0.121 \\ -0.149 \\ -0.104 \\ -0.035 \end{array} $	$ \begin{array}{r} + 0 \cdot 073 \\ - 0 \cdot 049 \\ - 0 \cdot 098 \\ - 0 \cdot 071 \\ - 0 \cdot 025 \end{array} $	$ \begin{array}{r} -0.011 \\ -0.115 \\ -0.142 \\ -0.100 \\ -0.038 \end{array} $	+0.073 -0.036 -0.088 -0.068 -0.026	$ \begin{array}{r} -0.009 \\ -0.099 \\ -0.132 \\ -0.097 \\ -0.041 \\ \end{array} $	$ \begin{array}{r} + 0 \cdot 083 \\ - 0 \cdot 027 \\ - 0 \cdot 080 \\ - 0 \cdot 061 \\ - 0 \cdot 023 \end{array} $	$ \begin{array}{r} -0.011 \\ -0.094 \\ -0.124 \\ -0.094 \\ -0.040 \\ \end{array} $	$ \begin{array}{r} + 0 \cdot 090 \\ - 0 \cdot 021 \\ - 0 \cdot 068 \\ - 0 \cdot 058 \\ - 0 \cdot 021 \end{array} $	+0.012 -0.084 -0.125 -0.086 -0.035	+0.014 -0.008 -0.056 -0.044 -0.017	+0.016 -0.064 -0.093 -0.069 -0.041	+0.178 +0.012 -0.043 -0.039 -0.007

30

x _ 1

,

TABLE 11—continued

•

3

¥

¥

.

α	=	4.	14	deg
---	---	----	----	-----

C_p

	$\frac{y}{s(x)}$	0 0.1 0		·2	2 0.3			·4	0.5		0.55				
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $		$ \begin{array}{c} -0.080 \\ -0.151 \\ -0.176 \\ -0.102 \\ \end{array} $	+0.084 -0.061 -0.101 -0.074 	$ \begin{array}{r} -0.079 \\ -0.173 \\ -0.181 \\ -0.100 \\ +0.011 \\ \end{array} $	+0.085 -0.048 -0.113 -0.069 0.003	$ \begin{array}{r} -0.078 \\ -0.169 \\ -0.179 \\ -0.109 \\ +0.002 \end{array} $	$ \begin{array}{r} 0.083 \\ -0.057 \\ -0.107 \\ -0.075 \\ -0.001 \end{array} $	$ \begin{array}{r} -0.081 \\ -0.168 \\ -0.182 \\ -0.108 \\ -0.011 \\ \end{array} $	$ \begin{array}{r} 0.089 \\ -0.047 \\ -0.103 \\ -0.075 \\ -0.005 \end{array} $	$ \begin{array}{r} -0.074 \\ -0.164 \\ -0.180 \\ -0.116 \\ -0.025 \end{array} $	+0.096 -0.034 -0.099 -0.070 -0.008	$ \begin{array}{r} -0.071 \\ -0.168 \\ -0.178 \\ -0.118 \\ -0.031 \\ \end{array} $	+0.101 -0.034 -0.086 -0.065 -0.006	$ \begin{array}{r} -0.063 \\ -0.159 \\ -0.167 \\ -0.112 \\ -0.036 \end{array} $	+0.108 -0.024 -0.081 -0.061 -0.005

	$\frac{y}{s(x)}$	0	·6	0.	65	0.7		0	.75	0	•8	0.	85	0	•9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $	J. <u></u> ,	$ \begin{array}{r} -0.061 \\ -0.155 \\ -0.167 \\ -0.118 \\ -0.048 \\ \end{array} $	$ \begin{array}{r} +0.111 \\ -0.018 \\ -0.076 \\ -0.058 \\ -0.008 \\ \end{array} $	$ \begin{array}{r} -0.051 \\ -0.150 \\ -0.170 \\ -0.116 \\ -0.043 \\ \end{array} $	+0.121 -0.009 -0.068 -0.052 -0.011	$ \begin{array}{r} -0.047 \\ -0.146 \\ -0.163 \\ -0.112 \\ -0.047 \\ \end{array} $	+0.119 +0.004 -0.058 -0.048 -0.012	$ \begin{array}{r} -0.024 \\ -0.113 \\ -0.138 \\ -0.099 \\ -0.044 \\ \end{array} $	$ \begin{array}{r} +0.130 \\ +0.013 \\ -0.051 \\ -0.038 \\ -0.008 \end{array} $	$ \begin{array}{r} -0.009 \\ -0.082 \\ -0.099 \\ -0.074 \\ -0.026 \\ \end{array} $	$ \begin{array}{r} + 0.138 \\ + 0.018 \\ - 0.040 \\ - 0.040 \\ - 0.006 \\ \end{array} $	$ \begin{array}{r} -0.217 \\ -0.195 \\ -0.231 \\ -0.150 \\ -0.065 \\ \end{array} $	$ \begin{array}{c} +0.153 \\ +0.038 \\ -0.025 \\ -0.021 \\ -0.001 \end{array} $	$ \begin{array}{r} -0.334 \\ -0.429 \\ -0.421 \\ -0.356 \\ -0.269 \\ \end{array} $	+0.180 +0.054 -0.006 -0.017 +0.008

7

.

WING A

k

.

$\alpha = 6 \cdot 23 \text{ deg}$

 C_p

	$\frac{y}{s(x)}$		0		0		0		0).1 0.2		·2	•2 0•3		0.4		0.5		0	• 55
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.						
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 8 \\ 0 \cdot 8 \end{array} $		$ \begin{array}{r} -0.120 \\ -0.179 \\ -0.194 \\ -0.110 \\ \end{array} $	+0.125 -0.032 -0.082 -0.068	$ \begin{array}{r} -0.116 \\ -0.202 \\ -0.199 \\ -0.108 \\ 0.000 \end{array} $	+0.128 -0.014 -0.088 -0.057	$ \begin{array}{r} -0.117 \\ -0.199 \\ -0.196 \\ -0.115 \\ 0.002 \end{array} $	+0.130 -0.021 -0.082 -0.063	$ \begin{array}{r} -0.121 \\ -0.197 \\ -0.202 \\ -0.118 \\ \end{array} $	+0.136 -0.010 -0.074 -0.060	$ \begin{array}{r} -0.117 \\ -0.197 \\ -0.200 \\ -0.128 \\ 0.220 \end{array} $	+0.140 +0.003 -0.071 -0.051	$ \begin{array}{r} -0.108 \\ -0.197 \\ -0.196 \\ -0.130 \\ \end{array} $	+0.148 + 0.007 - 0.056 - 0.046	$ \begin{array}{r} -0.099 \\ -0.187 \\ -0.187 \\ -0.123 \\ \end{array} $	+0.154 +0.016 -0.052 -0.041						
0.9				+0.009	+0.007	+0.003	+0.003	-0.015	+0.003	-0.033	0.003	-0.038	-0.005	+0.045	+0.006						

	$\frac{\mathcal{Y}}{s(x)}$	0.6 0.65		· 65	0.7		0.75		0.8		0.85		0	•9	
$\frac{x}{c_0}$		U.S.	L.S	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9$		$ \begin{array}{r} -0.089 \\ -0.179 \\ -0.183 \\ -0.128 \\ -0.055 \\ \end{array} $	+0.159 +0.022 -0.046 -0.039 +0.006	$ \begin{array}{r} -0.064 \\ -0.161 \\ -0.180 \\ -0.124 \\ -0.048 \\ \end{array} $	+0.167 +0.030 -0.037 -0.031 +0.003	$ \begin{array}{r} -0.027 \\ -0.130 \\ -0.155 \\ -0.112 \\ -0.049 \\ \end{array} $	+0.164 +0.041 -0.028 -0.028 +0.002	$ \begin{array}{r} -0.021 \\ -0.088 \\ -0.115 \\ -0.095 \\ -0.044 \\ \end{array} $	+0.175 +0.052 -0.018 -0.017 +0.007	$ \begin{array}{r} -0.441 \\ -0.351 \\ -0.249 \\ -0.153 \\ -0.076 \\ \end{array} $	+0.184, +0.058 -0.005 -0.013 +0.009	$ \begin{array}{r} -0.623 \\ -0.639 \\ -0.618 \\ -0.438 \\ -0.263 \end{array} $	$0.195 \\ 0.075 \\ 0.005 \\ 0 \\ 0.012$	$ \begin{array}{r} -0.530 \\ -0.593 \\ -0.589 \\ -0.504 \\ -0.404 \end{array} $	$\begin{array}{c} 0.216 \\ 0.090 \\ 0.018 \\ 0.003 \\ 0.021 \end{array}$

¥

k

TABLE 11—continued

*

WING A

 $\alpha = 8 \cdot 32 \deg$

C_n	
x-	
	C_p

	$\frac{y}{s(x)}$	0		0	·1	.0	··2	0	• 3	0	•4	0	• 5	0	• 55
$\frac{x}{c_0}$		U.S.	L.S.												
0.2		-0.158	0.173	-0.158	+0.177	-0.158	+0.176	-0.163	+0.181	-0.153	+0.188	-0.141	+0.193	-0.123	+0.200
$0 \cdot 4$		-0.205	0.010	-0.230	+0.026	-0.226	+0.021	-0.226	+0.024	-0.223	+0.041	-0.222	+0.047	-0.206	+0.056
0.6		-0.209	-0.053	-0.216	-0.059	-0.214	-0.052	-0.222	-0.046	-0.218	-0.040	-0.213	-0.025	-0.200	-0.020
0.8		-0.116	-0.052	-0.117	-0.042	-0.123	-0.047	-0.130	-0.044	-0.136	-0.032	-0.142	-0.026	-0.132	-0.020
$0 \cdot 9$		-		+0.007	+0.015	-0.001	+0.012	-0.020	+0.011	-0.036	0.014	-0.045	0.018	-0.051	+0.020

	$\frac{y}{s(x)}$	0.6		0.	- 65	0	•7	0.	75	0	· 8	0.	85	0	•9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S. ⁻	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9$		$ \begin{array}{r} -0.099 \\ -0.188 \\ -0.190 \\ -0.134 \\ -0.060 \\ \end{array} $	+0.204 +0.062 -0.014 -0.017 +0.018	$ \begin{array}{r} -0.055 \\ -0.155 \\ -0.179 \\ -0.128 \\ -0.052 \end{array} $	+0.210 +0.069 -0.005 -0.009 +0.017	$ \begin{array}{r} -0.034 \\ -0.118 \\ -0.152 \\ -0.119 \\ -0.060 \\ \end{array} $	+0.209 0.080 +0.005 -0.004 +0.017	$ \begin{array}{r} -0.326 \\ -0.251 \\ -0.213 \\ -0.160 \\ -0.090 \end{array} $	$\begin{array}{c} 0 \cdot 217 \\ 0 \cdot 090 \\ 0 \cdot 012 \\ 0 \cdot 006 \\ 0 \cdot 020 \end{array}$	$ \begin{array}{r} -0.907 \\ -0.744 \\ -0.571 \\ -0.367 \\ -0.218 \end{array} $	$\begin{array}{c} 0 \cdot 227 \\ 0 \cdot 099 \\ 0 \cdot 029 \\ 0 \cdot 012 \\ 0 \cdot 029 \end{array}$	$ \begin{array}{r} -0.980 \\ -0.977 \\ -0.914 \\ -0.666 \\ -0.441 \end{array} $	$\begin{array}{c} 0 \cdot 234 \\ 0 \cdot 108 \\ 0 \cdot 033 \\ 0 \cdot 021 \\ 0 \cdot 027 \end{array}$	$ \begin{array}{r} -0.693 \\ -0.708 \\ -0.645 \\ -0.530 \\ -0.441 \end{array} $	$\begin{array}{c} 0 \cdot 248 \\ 0 \cdot 119 \\ 0 \cdot 045 \\ 0 \cdot 023 \\ 0 \cdot 035 \end{array}$

33

Ω

TABLE	11-cont	tinued

.

к ¥

*

•

$$\alpha = 10.43 \text{ deg}$$

 C_p

	$\frac{y}{s(x)}$	j 0 .		0	·1	0	-2	0		0	•4	0	. 5	0.	• 55
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9$		$ \begin{array}{r} -0.203 \\ -0.233 \\ -0.230 \\ -0.129 \\ \\ \end{array} $	+0.221 +0.048 -0.024 -0.037	$ \begin{array}{r} -0.199 \\ -0.259 \\ -0.235 \\ -0.127 \\ 0 \end{array} $	$ \begin{array}{r} + 0 \cdot 224 \\ + 0 \cdot 063 \\ - 0 \cdot 032 \\ - 0 \cdot 026 \\ + 0 \cdot 022 \end{array} $	$ \begin{array}{r} -0.201 \\ -0.254 \\ -0.233 \\ -0.135 \\ -0.007 \\ \end{array} $	+0.225 +0.061 -0.019 -0.025 +0.022	$ \begin{array}{r} -0.205 \\ -0.254 \\ -0.242 \\ -0.143 \\ -0.028 \end{array} $	$ \begin{array}{r} +0.227 \\ +0.063 \\ -0.012 \\ -0.020 \\ +0.025 \end{array} $	$ \begin{array}{r} -0.196 \\ -0.254 \\ -0.239 \\ -0.154 \\ -0.048 \\ \end{array} $	+0.232 +0.075 -0.008 -0.010 +0.026	$ \begin{array}{r} -0.171 \\ -0.245 \\ -0.231 \\ -0.157 \\ -0.055 \\ \end{array} $	+0.237 0.084 +0.008 -0.006 -0.029	$ \begin{array}{r} -0.141 \\ -0.220 \\ -0.213 \\ -0.146 \\ -0.061 \end{array} $	$\begin{array}{c} 0 \cdot 243 \\ 0 \cdot 092 \\ 0 \cdot 012 \\ 0 \cdot 001 \\ 0 \cdot 034 \end{array}$

	$\frac{y}{s(x)}$	0	·6	0.	65	0	-7	0.	75	.0	• 8	0.	85	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
0.2 0.4 0.6 0.8 0.9		$ \begin{array}{r} -0.105 \\ -0.194 \\ -0.198 \\ -0.148 \\ -0.072 \\ \end{array} $	$\begin{array}{c} 0 \cdot 249 \\ 0 \cdot 103 \\ 0 \cdot 019 \\ 0 \cdot 007 \\ 0 \cdot 034 \end{array}$	$ \begin{array}{r} -0.064 \\ -0.159 \\ -0.190 \\ -0.148 \\ -0.071 \\ \end{array} $	$\begin{array}{c} 0.255 \\ 0.109 \\ 0.027 \\ 0.015 \\ 0.031 \end{array}$	$ \begin{array}{r} -0.222 \\ -0.216 \\ -0.224 \\ -0.179 \\ -0.107 \\ \end{array} $	$\begin{array}{c} 0.252 \\ 0.118 \\ 0.036 \\ 0.018 \\ 0.032 \end{array}$	$ \begin{array}{r} -0.783 \\ -0.618 \\ -0.479 \\ -0.324 \\ -0.201 \end{array} $	$\begin{array}{c} 0 \cdot 259 \\ 0 \cdot 125 \\ 0 \cdot 044 \\ 0 \cdot 028 \\ 0 \cdot 035 \end{array}$	$ \begin{array}{r} -1 \cdot 400 \\ -1 \cdot 177 \\ -0 \cdot 938 \\ -0 \cdot 615 \\ -0 \cdot 390 \\ \end{array} $	$ \begin{array}{c} 0 \cdot 264 \\ 0 \cdot 128 \\ 0 \cdot 054 \\ 0 \cdot 029 \\ 0 \cdot 037 \end{array} $	$ \begin{array}{r} -1 \cdot 248 \\ -1 \cdot 221 \\ -1 \cdot 120 \\ -0 \cdot 916 \\ -0 \cdot 563 \end{array} $	$\begin{array}{c} 0 \cdot 268 \\ 0 \cdot 137 \\ 0 \cdot 060 \\ 0 \cdot 040 \\ 0 \cdot 041 \end{array}$	$ \begin{array}{r} -0.853 \\ -0.800 \\ -0.669 \\ -0.510 \\ -0.434 \end{array} $	0.270 0.144 0.068 0.041 0.046

TABLE 11—continued

¥

¥

WING A

5

.

 $\alpha = 15 \cdot 73 \text{ deg}$

	C_p															
		$\frac{y}{s(x)}$	(0		•1	0.2		0.3		0.4		0.5		0.55	
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S. .	L.S.
35	$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $		$ \begin{array}{r} -0.319 \\ -0.319 \\ -0.295 \\ -0.182 \\ \\ \end{array} $	0·339 0·152 0·057 0·014	$ \begin{array}{r} -0.320 \\ -0.345 \\ -0.302 \\ -0.180 \\ -0.031 \end{array} $	$\begin{array}{c} 0 \cdot 342 \\ 0 \cdot 169 \\ 0 \cdot 055 \\ 0 \cdot 025 \\ 0 \cdot 050 \end{array}$	$ \begin{array}{r} -0.319 \\ -0.344 \\ -0.306 \\ -0.191 \\ -0.043 \\ \end{array} $	$\begin{array}{c} 0 \cdot 338 \\ 0 \cdot 162 \\ 0 \cdot 060 \\ 0 \cdot 023 \\ 0 \cdot 049 \end{array}$	$ \begin{array}{r} -0.315 \\ -0.338 \\ -0.306 \\ -0.195 \\ -0.064 \end{array} $	$\begin{array}{c} 0 \cdot 340 \\ 0 \cdot 166 \\ 0 \cdot 068 \\ 0 \cdot 034 \\ 0 \cdot 052 \end{array}$	$ \begin{array}{r} -0.283 \\ -0.318 \\ -0.289 \\ -0.199 \\ -0.078 \\ \end{array} $	$\begin{array}{c} 0 \cdot 347 \\ 0 \cdot 180 \\ 0 \cdot 082 \\ 0 \cdot 053 \\ 0 \cdot 063 \end{array}$	$ \begin{array}{r} -0.239 \\ -0.299 \\ -0.284 \\ -0.214 \\ -0.102 \\ \end{array} $	$\begin{array}{c} 0 \cdot 344 \\ 0 \cdot 184 \\ 0 \cdot 087 \\ 0 \cdot 057 \\ 0 \cdot 068 \end{array}$	$ \begin{array}{r} -0.209 \\ -0.284 \\ -0.279 \\ -0.220 \\ -0.123 \end{array} $	$\begin{array}{c} 0 \cdot 346 \\ 0 \cdot 189 \\ 0 \cdot 095 \\ 0 \cdot 065 \\ 0 \cdot 071 \end{array}$

	$\frac{y}{s(x)}$	0.6		0.	65	0	7	0.	75	0	8	0.	85	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $		$ \begin{array}{r} -0.239 \\ -0.312 \\ -0.319 \\ -0.269 \\ -0.167 \\ \end{array} $	$0.346 \\ 0.193 \\ 0.101 \\ 0.068 \\ 0.069$	$ \begin{array}{r} -0.492 \\ -0.501 \\ -0.478 \\ -0.375 \\ -0.230 \end{array} $	$\begin{array}{c} 0 \cdot 349 \\ 0 \cdot 197 \\ 0 \cdot 107 \\ 0 \cdot 078 \\ 0 \cdot 070 \end{array}$	$ \begin{array}{r} -1 \cdot 276 \\ -1 \cdot 034 \\ -0 \cdot 840 \\ -0 \cdot 569 \\ -0 \cdot 365 \end{array} $	$\begin{array}{c} 0 \cdot 348 \\ 0 \cdot 202 \\ 0 \cdot 114 \\ 0 \cdot 081 \\ 0 \cdot 071 \end{array}$	$ \begin{array}{r} -2 \cdot 197 \\ -1 \cdot 783 \\ -1 \cdot 363 \\ -0 \cdot 845 \\ -0 \cdot 539 \end{array} $	$\begin{array}{c} 0 \cdot 347 \\ 0 \cdot 206 \\ 0 \cdot 119 \\ 0 \cdot 090 \\ 0 \cdot 074 \end{array}$	$ \begin{array}{r} -2 \cdot 506 \\ -1 \cdot 983 \\ -1 \cdot 557 \\ -1 \cdot 011 \\ -0 \cdot 666 \end{array} $	$\begin{array}{c} 0 \cdot 345 \\ 0 \cdot 206 \\ 0 \cdot 125 \\ 0 \cdot 093 \\ 0 \cdot 003 \end{array}$	$ \begin{array}{r} -1 \cdot 566 \\ -1 \cdot 277 \\ -1 \cdot 100 \\ -0 \cdot 854 \\ -0 \cdot 627 \end{array} $	$\begin{array}{c} 0 \cdot 336 \\ 0 \cdot 198 \\ 0 \cdot 119 \\ 0 \cdot 090 \\ 0 \cdot 076 \end{array}$	$ \begin{array}{r} -1 \cdot 379 \\ -1 \cdot 171 \\ -0 \cdot 888 \\ -0 \cdot 549 \\ -0 \cdot 379 \\ \end{array} $	$\begin{array}{c} 0 \cdot 290 \\ 0 \cdot 181 \\ 0 \cdot 109 \\ 0 \cdot 084 \\ 0 \cdot 076 \end{array}$

C 2

-
TABLE 1	1—continued
---------	-------------

WING A

3

$\alpha\,=\,21\!\cdot\!06\,\deg$

C_p

	$\frac{y}{s(x)}$	0		0.1		0.2		0.3		0.4		0.5		0.	55
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $		$ \begin{array}{r} -\dot{0}\cdot 461 \\ -0\cdot 424 \\ -0\cdot 388 \\ -0\cdot 258 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{c} 0.469 \\ 0.272 \\ 0.157 \\ 0.082 \\ \end{array} $	$ \begin{array}{r} -0.460 \\ -0.455 \\ -0.401 \\ -0.262 \\ -0.088 \end{array} $	$0.469 \\ 0.281 \\ 0.151 \\ 0.088 \\ 0.091$	$ \begin{array}{r} -0.453 \\ -0.448 \\ -0.397 \\ -0.271 \\ -0.101 \\ \end{array} $	0.461 0.276 0.158 0.094 0.094	$ \begin{array}{r} -0.442 \\ -0.443 \\ -0.405 \\ -0.281 \\ -0.123 \end{array} $	$\begin{array}{c} 0.459 \\ 0.270 \\ 0.167 \\ 0.105 \\ 0.102 \end{array}$	$ \begin{array}{r} -0.405 \\ -0.436 \\ -0.407 \\ -0.308 \\ -0.161 \end{array} $	$\begin{array}{c} 0.451 \\ 0.202 \\ 0.170 \\ 0.113 \\ 0.102 \end{array}$	$ \begin{array}{r} -0.408 \\ -0.461 \\ -0.459 \\ -0.374 \\ -0.215 \end{array} $	0.447 0.287 0.183 0.128 0.114	$ \begin{array}{r} -0.513 \\ -0.559 \\ -0.553 \\ -0.447 \\ -0.279 \end{array} $	0.443 0.288 0.186 0.134 0.117

	$\frac{y}{s(x)}$	0	·6	0.	65	o	•7	0.	•75	0	· 8	0.	85	. 0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \end{array} $	($ \begin{array}{r} -0.893 \\ -0.829 \\ -0.773 \\ -0.592 \\ -0.376 \end{array} $	$\begin{array}{c} 0.436 \\ 0.288 \\ 0.190 \\ 0.136 \\ 0.118 \end{array}$	$ \begin{array}{r} -1 \cdot 696 \\ -1 \cdot 377 \\ -1 \cdot 169 \\ -0 \cdot 795 \\ -0 \cdot 497 \end{array} $	$\begin{array}{c} 0.423 \\ 0.284 \\ 0.190 \\ 0.138 \\ 0.114 \end{array}$	$ \begin{array}{r} -2 \cdot 951 \\ -2 \cdot 185 \\ -1 \cdot 677 \\ -1 \cdot 024 \\ -0 \cdot 647 \end{array} $	0.430 0.286 0.195 0.148 0.119	$ \begin{array}{r} -3.587 \\ -2.697 \\ -2.001 \\ -1.204 \\ -0.770 \\ \end{array} $	$\begin{array}{c} 0.420 \\ 0.278 \\ 0.193 \\ 0.150 \\ 0.104 \end{array}$	$ \begin{array}{r} -3.043 \\ -2.172 \\ -1.685 \\ -1.117 \\ -0.761 \\ \end{array} $	$0.405 \\ 0.265 \\ 0.187 \\ 0.151 \\ 0.119$	$ \begin{array}{r} -2 \cdot 019 \\ -1 \cdot 588 \\ -1 \cdot 177 \\ -0 \cdot 786 \\ -0 \cdot 604 \end{array} $	$0.382 \\ 0.244 \\ 0.175 \\ 0.143 \\ 0.116$	$ \begin{array}{r} -1 \cdot 934 \\ -1 \cdot 583 \\ -1 \cdot 134 \\ -0 \cdot 646 \\ -0 \cdot 405 \end{array} $	$\begin{array}{c} 0 \cdot 271 \\ 0 \cdot 199 \\ 0 \cdot 142 \\ 0 \cdot 121 \\ 0 \cdot 102 \end{array}$

ì

TABLE 11—continued

×

WING A

3

é.

 $\alpha = 26 \cdot 46 \, \deg$

C_{-}	
\sim_p	

	$\frac{y}{s(x)}$	()	0	·1	Ö	·2	0	• 3 .	0	•4	0	· 5	0.	55
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $		$ \begin{array}{c} -0.632 \\ -0.556 \\ -0.509 \\ -0.362 \\ -\end{array} $	$\begin{array}{c} 0.577 \\ 0.376 \\ 0.243 \\ 0.142 \\ \end{array}$	$ \begin{array}{r} -0.618 \\ -0.558 \\ -0.508 \\ -0.347 \\ -0.128 \\ \end{array} $	$\begin{array}{c} 0.586\\ 0.396\\ 0.256\\ 0.160\\ 0.139\end{array}$	$ \begin{array}{r} -0.604 \\ -0.551 \\ -0.505 \\ -0.367 \\ -0.158 \end{array} $	$\begin{array}{c} 0 \cdot 573 \\ 0 \cdot 396 \\ 0 \cdot 268 \\ 0 \cdot 176 \\ 0 \cdot 158 \end{array}$	$ \begin{array}{r} -0.595 \\ -0.559 \\ -0.530 \\ -0.387 \\ -0.195 \end{array} $	0.570 0.391 0.266 0.180 0.155	$ \begin{array}{r} -0.603 \\ -0.585 \\ -0.585 \\ -0.461 \\ -0.269 \end{array} $	$\begin{array}{c} 0 \cdot 536 \\ 0 \cdot 365 \\ 0 \cdot 247 \\ 0 \cdot 173 \\ 0 \cdot 141 \end{array}$	$ \begin{array}{c} -0.858 \\ -0.743 \\ -0.754 \\ -0.606 \\ -0.358 \end{array} $	$\begin{array}{c} 0.531 \\ 0.380 \\ 0.272 \\ 0.196 \\ 0.160 \end{array}$	$ \begin{array}{r} -1 \cdot 291 \\ -1 \cdot 077 \\ -0 \cdot 966 \\ -0 \cdot 713 \\ -0 \cdot 452 \end{array} $	$\begin{array}{c} 0 \cdot 520 \\ 0 \cdot 377 \\ 0 \cdot 273 \\ 0 \cdot 202 \\ 0 \cdot 159 \end{array}$

	$\frac{y}{s(x)}$	0	·6	0.65		0.7		0.75		0.8		.0.85		. 0.9	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $		$ \begin{array}{r} -2 \cdot 226 \\ -1 \cdot 628 \\ -1 \cdot 333 \\ -0 \cdot 906 \\ -0 \cdot 560 \end{array} $	$\begin{array}{c} 0 \cdot 511 \\ 0 \cdot 376 \\ 0 \cdot 272 \\ 0 \cdot 205 \\ 0 \cdot 162 \end{array}$	$ \begin{array}{r} -3 \cdot 488 \\ -2 \cdot 341 \\ -1 \cdot 809 \\ -1 \cdot 134 \\ -0 \cdot 680 \\ \end{array} $	$ \begin{array}{c} 0.491 \\ 0.366 \\ 0.273 \\ 0.209 \\ 0.163 \end{array} $	$ \begin{array}{r} -4.621 \\ -3.276 \\ -2.244 \\ -1.251 \\ -0.781 \end{array} $	$\begin{array}{c} 0 \cdot 493 \\ 0 \cdot 358 \\ 0 \cdot 269 \\ 0 \cdot 212 \\ 0 \cdot 162 \end{array}$	$ \begin{array}{r} -4 \cdot 570 \\ -3 \cdot 674 \\ -2 \cdot 381 \\ -1 \cdot 305 \\ -0 \cdot 830 \\ \end{array} $	$\begin{array}{c} 0.470 \\ 0.338 \\ 0.263 \\ 0.216 \\ 0.166 \end{array}$	$ \begin{array}{r} -3 \cdot 452 \\ -3 \cdot 031 \\ -1 \cdot 934 \\ -1 \cdot 145 \\ -0 \cdot 784 \end{array} $	$\begin{array}{c} 0.438 \\ 0.309 \\ 0.241 \\ 0.202 \\ 0.163 \end{array}$	$ \begin{array}{r} -2.645 \\ -2.020 \\ -1.413 \\ -0.809 \\ -0.616 \end{array} $	$\begin{array}{c} 0 \cdot 395 \\ 0 \cdot 273 \\ 0 \cdot 220 \\ 0 \cdot 195 \\ 0 \cdot 163 \end{array}$	$ \begin{array}{r} -2 \cdot 546 \\ -1 \cdot 871 \\ -1 \cdot 341 \\ -0 \cdot 719 \\ -0 \cdot 450 \end{array} $	0.210 0.200 0.165 0.161 0.150

1

•

 $\alpha = 31 \cdot 65 \deg$

$$C_p$$

x $\frac{y}{s(x)}$		0	0	·1	0	·2	0	•3	0	•4	0	• 5	0.	55
$\overline{c_0}$	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $	$ \begin{array}{r} -0.748 \\ -0.639 \\ -0.632 \\ -0.480 \\ -0.4$	$ \begin{array}{c} 0.710 \\ 0.513 \\ 0.365 \\ 0.245 \\ \end{array} $	$ \begin{array}{r} -0.750 \\ -0.666 \\ -0.652 \\ -0.482 \\ -0.224 \end{array} $	$ \begin{array}{c} 0.696 \\ 0.511 \\ 0.358 \\ 0.246 \\ 0.208 \end{array} $	$ \begin{array}{r} -0.745 \\ -0.664 \\ -0.664 \\ -0.510 \\ -0.247 \end{array} $	$\begin{array}{c} 0.679 \\ 0.504 \\ 0.364 \\ 0.251 \\ 0.209 \end{array}$	$ \begin{array}{r} -0.766 \\ -0.696 \\ -0.734 \\ -0.556 \\ -0.296 \end{array} $	$ \begin{array}{r} 0.669 \\ 0.497 \\ 0.367 \\ 0.258 \\ 0.213 \end{array} $	$ \begin{array}{r} -0.885 \\ -0.794 \\ -0.871 \\ -0.675 \\ -0.387 \\ \end{array} $	$\begin{array}{c} 0.641 \\ 0.490 \\ 0.371 \\ 0.272 \\ 0.216 \end{array}$	$ \begin{array}{r} -1 \cdot 509 \\ -1 \cdot 197 \\ -1 \cdot 239 \\ -0 \cdot 892 \\ -0 \cdot 530 \end{array} $	$\begin{array}{c} 0.615 \\ 0.488 \\ 0.374 \\ 0.279 \\ 0.222 \end{array}$	$ \begin{array}{r} -2 \cdot 311 \\ -1 \cdot 716 \\ -1 \cdot 544 \\ -1 \cdot 047 \\ -0 \cdot 642 \end{array} $	$\begin{array}{c} 0.590 \\ 0.467 \\ 0.361 \\ 0.273 \\ 0.213 \end{array}$

-	$\frac{y}{s(x)}$	0	·6	0.	65	0	•7	0.	-75	0	·8	0.	85	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9$	1	$ \begin{array}{r} -3.580 \\ -2.406 \\ -1.861 \\ -1.176 \\ -0.718 \end{array} $	$\begin{array}{c} 0.593 \\ 0.481 \\ 0.387 \\ 0.299 \\ 0.233 \end{array}$	$ \begin{array}{r} -4 \cdot 958 \\ -3 \cdot 199 \\ -2 \cdot 189 \\ -1 \cdot 315 \\ -0 \cdot 823 \end{array} $	$ \begin{array}{c} 0.548 \\ 0.450 \\ 0.362 \\ 0.289 \\ 0.216 \end{array} $	$ \begin{array}{r} -5 \cdot 936 \\ -3 \cdot 787 \\ -2 \cdot 293 \\ -1 \cdot 324 \\ -0 \cdot 854 \\ \end{array} $	$\begin{array}{c} 0.553 \\ 0.431 \\ 0.358 \\ 0.288 \\ 0.222 \end{array}$	$ \begin{array}{r} -5 \cdot 600 \\ -3 \cdot 642 \\ -2 \cdot 128 \\ -1 \cdot 258 \\ -0 \cdot 843 \end{array} $	$ \begin{array}{c} 0.513 \\ 0.411 \\ 0.340 \\ 0.284 \\ 0.220 \end{array} $	$ \begin{array}{r} -4 \cdot 102 \\ -2 \cdot 594 \\ -1 \cdot 647 \\ -1 \cdot 029 \\ -0 \cdot 741 \end{array} $	$ \begin{array}{r} 0.465 \\ 0.367 \\ 0.314 \\ 0.269 \\ 0.220 \end{array} $	$ \begin{array}{r} -3 \cdot 099 \\ -2 \cdot 120 \\ -1 \cdot 401 \\ -0 \cdot 819 \\ -0 \cdot 598 \end{array} $	$\begin{array}{c} 0 \cdot 399 \\ 0 \cdot 311 \\ 0 \cdot 272 \\ 0 \cdot 248 \\ 0 \cdot 213 \end{array}$	$ \begin{array}{r} -3.030 \\ -2.125 \\ -1.383 \\ -0.800 \\ -0.517 \end{array} $	$\begin{array}{c} 0 \cdot 126 \\ 0 \cdot 207 \\ 0 \cdot 193 \\ 0 \cdot 200 \\ 0 \cdot 182 \end{array}$

ł.

¥

TABLE 12

>

.

*

٠

Pressure Coefficients at Zero Yaw

WING B

.

.

$\alpha\,=\,0\,\,deg$

 C_p

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ò
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	> _

TABLE 12—continued

$\alpha = 0 \deg$

WING B

ţ

1

 C_p

_		$\frac{y}{s(x)}$	0	1.6	0.65		0.7		0.75		0.8		0.85		0	1.9
	$\frac{x}{c_0}$		U.S.	L.S.												
0) • 10		+0.094	+0.103	+0.094	+0.091	+0.094	+0.093	+0.094	+0.095	+0.095	+0.097	+0.101	+0.100	+0.106	+0.108
0):20		0.048	0.050	0.054	0.050	0.053	0.052	0.064	0.054	0.060	0.059	0.065	0.061	0.059	0.065
0)•30		+0.014	+0.007	+0.012	+0.018	+0.016	+0.019	+0.020	+0.022	+0.029	+0.029	+0.032	+0.030	0.035	0.038
0)•40		-0.037	-0.040	-0.030	-0.034	-0.024	-0.025	-0.013	-0.021	-0.009	-0.011	-0.001	-0.005	+0.007	+0.008
0)·50		-0.084	-0.088	-0.075	-0.076	-0.071	-0.068	-0.059	-0.059	-0.046	-0.048	-0.038	-0.039	-0.024	-0.022
0)·60		-0.133	-0.137	-0.127	-0.126	-0.119	-0.122	-0.105	-0.109	-0.087	-0.091	-0.074	-0.076	-0.052	-0.059
C)·70		-0.181	-0.177	-0.176	-0.173	-0.170	-0.165	-0.158	-0.158	-0.141	-0.141	-0.123	-0.125	-0.093	-0.095
0)·80		-0.202	-0.195	-0.205	-0.199	-0.205	-0.201	-0.202	-0.202	-0.195	-0.196	-0.180	-0.178	-0.145	-0.151
0)•90		-0.133	-0.125	-0.147	-0.137	-0.169	-0.161	-0.184	-0.185	-0.206	-0.197	-0.213	-0.213	-0.209	-0.214
0	1.95		-0.013		-0.036		-0.062		-0.197		-0.124		-0.164		-0.206	
C	•98		+0.132		+0.117		+0.206		+0.080	—	+0.046	—	+0.003		-0.075	
										Į			1			

5

TABLE	12—continued	

×

WING B

×

 $\alpha = 2 \cdot 02 \deg$

 C_p

		$\frac{y}{s(x)}$		0	0	·1	0	·2	0	•3	0	·4	0	·5	0.	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
41	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} + 0 \cdot 082 \\ + 0 \cdot 030 \\ - 0 \cdot 029 \\ - 0 \cdot 070 \\ - 0 \cdot 115 \\ - 0 \cdot 150 \\ - 0 \cdot 162 \\ - 0 \cdot 136 \\ + 0 \cdot 005 \\ + 0 \cdot 110 \end{array}$	$\begin{array}{c} +0.120\\ 0.063\\ +0.011\\ -0.038\\ -0.081\\ -0.122\\ -0.141\\ -0.124\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{r} +0.077\\ +0.023\\ -0.028\\ -0.073\\ -0.115\\ -0.151\\ -0.165\\ -0.137\\ -0.020\\ +0.103\\ +0.194\end{array}$	$\begin{array}{c} +0\cdot 121\\ 0\cdot 065\\ +0\cdot 012\\ -0\cdot 037\\ -0\cdot 086\\ -0\cdot 124\\ -0\cdot 124\\ -0\cdot 124\\ -0\cdot 124\\ -0\cdot 021\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} + 0 \cdot 076 \\ + 0 \cdot 024 \\ - 0 \cdot 026 \\ - 0 \cdot 076 \\ - 0 \cdot 120 \\ - 0 \cdot 159 \\ - 0 \cdot 153 \\ - 0 \cdot 153 \\ - 0 \cdot 033 \\ + 0 \cdot 094 \\ + 0 \cdot 186 \end{array}$	$\begin{array}{c} +0\cdot 117\\ 0\cdot 064\\ +0\cdot 012\\ -0\cdot 036\\ -0\cdot 085\\ -0\cdot 123\\ -0\cdot 149\\ -0\cdot 133\\ -0\cdot 033\\ -\end{array}$	$\begin{array}{r} +0\cdot073\\ +0\cdot022\\ -0\cdot028\\ -0\cdot077\\ -0\cdot124\\ -0\cdot163\\ -0\cdot185\\ -0\cdot165\\ -0\cdot049\\ +0\cdot076\\ +0\cdot179\end{array}$	$\begin{array}{c} + 0 \cdot 104 \\ 0 \cdot 065 \\ + 0 \cdot 020 \\ - 0 \cdot 037 \\ - 0 \cdot 082 \\ - 0 \cdot 127 \\ - 0 \cdot 153 \\ - 0 \cdot 141 \\ - 0 \cdot 047 \\ - \\ - \\ \end{array}$	$\begin{array}{c} + 0 \cdot 073 \\ + 0 \cdot 024 \\ - 0 \cdot 024 \\ - 0 \cdot 073 \\ - 0 \cdot 122 \\ - 0 \cdot 166 \\ - 0 \cdot 193 \\ - 0 \cdot 180 \\ - 0 \cdot 070 \\ + 0 \cdot 060 \\ + 0 \cdot 172 \end{array}$	$\begin{array}{c} + 0.115 \\ 0.067 \\ + 0.044 \\ - 0.026 \\ - 0.078 \\ - 0.125 \\ - 0.155 \\ - 0.153 \\ - 0.070 \\ - \\ - \end{array}$	$\begin{array}{c} + 0 \cdot 075 \\ + 0 \cdot 028 \\ - 0 \cdot 022 \\ - 0 \cdot 067 \\ - 0 \cdot 119 \\ - 0 \cdot 165 \\ - 0 \cdot 199 \\ - 0 \cdot 198 \\ - 0 \cdot 100 \\ + 0 \cdot 034 \\ + 0 \cdot 160 \end{array}$	$\begin{array}{c} + 0 \cdot 110 \\ 0 \cdot 064 \\ + 0 \cdot 010 \\ - 0 \cdot 025 \\ - 0 \cdot 069 \\ - 0 \cdot 114 \\ - 0 \cdot 154 \\ - 0 \cdot 164 \\ - 0 \cdot 096 \\ \hline \end{array}$	$\begin{array}{c} + 0 \cdot 073 \\ + 0 \cdot 029 \\ - 0 \cdot 018 \\ - 0 \cdot 065 \\ - 0 \cdot 114 \\ - 0 \cdot 164 \\ - 0 \cdot 201 \\ - 0 \cdot 209 \\ - 0 \cdot 112 \\ + 0 \cdot 018 \\ + 0 \cdot 156 \end{array}$	$\begin{array}{c} + 0 \cdot 114 \\ 0 \cdot 068 \\ + 0 \cdot 038 \\ - 0 \cdot 017 \\ - 0 \cdot 065 \\ - 0 \cdot 112 \\ - 0 \cdot 154 \\ - 0 \cdot 167 \\ - 0 \cdot 105 \\ - \\ - \\ \end{array}$

TABLE 12—continued

$\alpha = 2 \cdot 02 \deg$

WING B

Ŧ

٠

C_p

		$\frac{y}{s(x)}$	0	· 6	0	· 65	0	•7	0	•75	0	•8	0	· 85	· 0	9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
42	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} + 0 \cdot 074 \\ + 0 \cdot 029 \\ - 0 \cdot 012 \\ - 0 \cdot 064 \\ - 0 \cdot 112 \\ - 0 \cdot 159 \\ - 0 \cdot 206 \\ - 0 \cdot 219 \\ - 0 \cdot 133 \\ - 0 \cdot 002 \\ + 0 \cdot 145 \end{array}$	$\begin{array}{c} +0\cdot 112\\ 0\cdot 071\\ +0\cdot 035\\ -0\cdot 014\\ -0\cdot 051\\ -0\cdot 108\\ -0\cdot 151\\ -0\cdot 176\\ -0\cdot 121\\ -\end{array}$	$\begin{array}{c} + 0 \cdot 077 \\ + 0 \cdot 032 \\ - 0 \cdot 014 \\ - 0 \cdot 059 \\ - 0 \cdot 103 \\ - 0 \cdot 158 \\ - 0 \cdot 203 \\ - 0 \cdot 227 \\ - 0 \cdot 155 \\ - 0 \cdot 027 \\ + 0 \cdot 133 \end{array}$	$\begin{array}{c} + 0 \cdot 110 \\ 0 \cdot 072 \\ + 0 \cdot 041 \\ - 0 \cdot 008 \\ - 0 \cdot 048 \\ - 0 \cdot 100 \\ - 0 \cdot 146 \\ - 0 \cdot 176 \\ - 0 \cdot 127 \\ - \end{array}$	$\begin{array}{c} + 0 \cdot 078 \\ + 0 \cdot 037 \\ - 0 \cdot 010 \\ - 0 \cdot 049 \\ - 0 \cdot 101 \\ - 0 \cdot 151 \\ - 0 \cdot 201 \\ - 0 \cdot 231 \\ - 0 \cdot 178 \\ - 0 \cdot 055 \\ + 0 \cdot 114 \end{array}$	$\begin{array}{c} +0\cdot 113\\ 0\cdot 073\\ +0\cdot 040\\ -0\cdot 001\\ -0\cdot 036\\ -0\cdot 090\\ -0\cdot 135\\ -0\cdot 175\\ -0\cdot 149\\\\ -\end{array}$	$\begin{array}{c} + 0 \cdot 074 \\ + 0 \cdot 042 \\ - 0 \cdot 003 \\ - 0 \cdot 042 \\ - 0 \cdot 090 \\ - 0 \cdot 140 \\ - 0 \cdot 194 \\ - 0 \cdot 236 \\ - 0 \cdot 202 \\ - 0 \cdot 088 \\ + 0 \cdot 085 \end{array}$	$\begin{array}{c} + 0.111 \\ 0.075 \\ 0.045 \\ + 0.003 \\ - 0.034 \\ - 0.076 \\ - 0.124 \\ - 0.170 \\ - 0.165 \\ - \\ \end{array}$	$\begin{array}{c} + 0 \cdot 075 \\ 0 \cdot 041 \\ + 0 \cdot 004 \\ - 0 \cdot 037 \\ - 0 \cdot 079 \\ - 0 \cdot 124 \\ - 0 \cdot 181 \\ - 0 \cdot 237 \\ - 0 \cdot 232 \\ - 0 \cdot 129 \\ + 0 \cdot 057 \end{array}$	$\begin{array}{c} + 0.115 \\ 0.077 \\ 0.050 \\ + 0.013 \\ - 0.022 \\ - 0.058 \\ - 0.105 \\ - 0.157 \\ - 0.171 \\ - \\ - \\ \end{array}$	$\begin{array}{c} + 0 \cdot 086 \\ 0 \cdot 044 \\ + 0 \cdot 009 \\ - 0 \cdot 028 \\ - 0 \cdot 070 \\ - 0 \cdot 110 \\ - 0 \cdot 163 \\ - 0 \cdot 227 \\ - 0 \cdot 250 \\ - 0 \cdot 180 \\ + 0 \cdot 011 \end{array}$	$\begin{array}{c} + 0.118 \\ 0.079 \\ 0.048 \\ + 0.018 \\ - 0.011 \\ - 0.043 \\ - 0.085 \\ - 0.133 \\ - 0.173 \\ - \\ - \\ - \\ \end{array}$	$\begin{array}{c} + 0.088\\ 0.052\\ + 0.015\\ - 0.021\\ - 0.053\\ - 0.093\\ - 0.136\\ - 0.200\\ - 0.268\\ - 0.238\\ - 0.075\end{array}$	$\begin{array}{c} + 0.120 \\ 0.079 \\ 0.053 \\ 0.029 \\ + 0.001 \\ - 0.029 \\ - 0.056 \\ - 0.102 \\ - 0.157 \\ - \end{array}$

٦

ie.

TABLE 12—continued

WING B

á

.

 $\alpha = 4 \cdot 05 \deg$

 C_p

		$\frac{y}{s(x)}$	(0	0	·1	0	·2	0	•3	0	·4	0	•5	0.	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
22	$\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \end{array}$		+0.058 +0.007 -0.049 -0.088 -0.130 -0.163 -0.171 -0.141 -0.017 +0.034	$\begin{array}{c} + 0.120 \\ 0.063 \\ + 0.038 \\ - 0.014 \\ - 0.060 \\ - 0.104 \\ - 0.126 \\ - 0.115 \\ - \end{array}$	+0.061 0 -0.049 -0.132 -0.166 -0.177 -0.143 -0.021 +0.102	$\begin{array}{c} + 0.146 \\ 0.089 \\ + 0.036 \\ - 0.012 \\ - 0.065 \\ - 0.107 \\ - 0.132 \\ - 0.118 \\ - 0.020 \\ 0 \end{array}$	+0.057 -0.001 -0.048 -0.097 -0.138 -0.171 -0.184 -0.157 -0.032 +0.097	$\begin{array}{c} +0.141\\ 0.088\\ +0.036\\ -0.012\\ -0.061\\ -0.103\\ -0.132\\ -0.122\\ -0.032\\ \end{array}$	$\begin{array}{c} + 0.058 \\ 0 \\ - 0.048 \\ - 0.097 \\ - 0.143 \\ - 0.178 \\ - 0.196 \\ - 0.174 \\ - 0.051 \\ + 0.080 \end{array}$	$\begin{array}{c} + 0.127 \\ 0.092 \\ + 0.046 \\ - 0.012 \\ - 0.057 \\ - 0.102 \\ - 0.134 \\ - 0.130 \\ - 0.044 \end{array}$	+0.052 0 -0.048 -0.145 -0.187 -0.207 -0.191 -0.075 +0.057	$\begin{array}{c} + 0.138 \\ 0.092 \\ + 0.067 \\ - 0.001 \\ - 0.054 \\ - 0.100 \\ - 0.136 \\ - 0.139 \\ - 0.067 \end{array}$	+0.052 +0.004 -0.046 -0.094 -0.144 -0.190 -0.221 -0.214 -0.105 +0.031	$\begin{array}{c} + 0.128 \\ 0.086 \\ + 0.052 \\ - 0.002 \\ - 0.054 \\ - 0.089 \\ - 0.131 \\ - 0.146 \\ - 0.091 \end{array}$	+0.052 +0.006 -0.044 -0.142 -0.188 -0.226 -0.226 -0.120 +0.018	$\begin{array}{c} + 0.130\\ 0.090\\ 0.056\\ + 0.008\\ - 0.039\\ - 0.085\\ - 0.128\\ - 0.147\\ - 0.100\\ - \end{array}$
	0.98				+0.197	_	+0.192		+0.183		+0.173	_	+0.160		+0.154	

TABLE 12—continue

1

.

α	=	$4 \cdot 05$	deg
			-

		$\frac{y}{s(x)}$	0	1.6	0	·65	0	•7	0	•75	0	·8	0	85	0	.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
44	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} + 0 \cdot 051 \\ + 0 \cdot 006 \\ - 0 \cdot 037 \\ - 0 \cdot 091 \\ - 0 \cdot 138 \\ - 0 \cdot 187 \\ - 0 \cdot 230 \\ - 0 \cdot 239 \\ - 0 \cdot 142 \\ - 0 \cdot 003 \\ + 0 \cdot 141 \end{array}$	$\begin{array}{c} + 0.128 \\ 0.090 \\ 0.062 \\ + 0.010 \\ - 0.032 \\ - 0.079 \\ - 0.122 \\ - 0.153 \\ - 0.112 \\ - \end{array}$	$\begin{array}{r} +0.055\\ +0.008\\ -0.038\\ -0.084\\ -0.134\\ -0.189\\ -0.233\\ -0.252\\ -0.165\\ -0.028\\ +0.128\end{array}$	$\begin{array}{c} +0.126\\ 0.092\\ 0.059\\ +0.015\\ -0.020\\ -0.069\\ -0.115\\ -0.149\\ -0.115\\ -\end{array}$	$\begin{array}{c} +0\cdot 057\\ +0\cdot 013\\ -0\cdot 034\\ -0\cdot 077\\ -0\cdot 131\\ -0\cdot 182\\ -0\cdot 232\\ -0\cdot 257\\ -0\cdot 189\\ -0\cdot 055\\ +0\cdot 112\end{array}$	$\begin{array}{c} +0.129\\ 0.093\\ 0.060\\ +0.026\\ -0.012\\ -0.058\\ -0.101\\ -0.142\\ -0.131\\ -\\ -\\ -\\ \end{array}$	$\begin{array}{c} +0.051\\ +0.020\\ -0.028\\ -0.067\\ -0.120\\ -0.172\\ -0.227\\ -0.268\\ -0.219\\ -0.091\\ +0.087\end{array}$	$\begin{array}{c} +0.129\\ 0.095\\ 0.064\\ +0.025\\ -0.007\\ -0.042\\ -0.091\\ -0.136\\ -0.142\\ -\end{array}$	$\begin{array}{c} + 0 \cdot 053 \\ + 0 \cdot 023 \\ - 0 \cdot 016 \\ - 0 \cdot 061 \\ - 0 \cdot 107 \\ - 0 \cdot 158 \\ - 0 \cdot 220 \\ - 0 \cdot 274 \\ - 0 \cdot 255 \\ - 0 \cdot 134 \\ + 0 \cdot 057 \end{array}$	$\begin{array}{c} +0.130\\ 0.095\\ 0.065\\ +0.033\\ 0\\ -0.029\\ -0.070\\ -0.120\\ -0.142\\ -\\ -\\ -\\ \end{array}$	$\begin{array}{c} + 0 \cdot 054 \\ + 0 \cdot 031 \\ - 0 \cdot 011 \\ - 0 \cdot 054 \\ - 0 \cdot 097 \\ - 0 \cdot 146 \\ - 0 \cdot 204 \\ - 0 \cdot 280 \\ - 0 \cdot 286 \\ - 0 \cdot 194 \\ + 0 \cdot 011 \end{array}$	$\begin{array}{c} +0.129\\ 0.093\\ 0.065\\ 0.036\\ +0.011\\ -0.017\\ -0.053\\ -0.096\\ -0.137\\ -\end{array}$	$\begin{array}{c} + 0 \cdot 045 \\ - 0 \cdot 024 \\ - 0 \cdot 064 \\ - 0 \cdot 080 \\ - 0 \cdot 112 \\ - 0 \cdot 137 \\ - 0 \cdot 185 \\ - 0 \cdot 255 \\ - 0 \cdot 318 \\ - 0 \cdot 271 \\ - 0 \cdot 078 \end{array}$	$\begin{array}{c} + 0 \cdot 129 \\ 0 \cdot 091 \\ 0 \cdot 066 \\ 0 \cdot 041 \\ + 0 \cdot 019 \\ - 0 \cdot 006 \\ - 0 \cdot 026 \\ - 0 \cdot 064 \\ - 0 \cdot 111 \\ - \\ - \\ - \end{array}$
			-													

A.

.

TABLE 12—continued	
--------------------	--

×

.

$\alpha = 6 \cdot 09 \deg$

 C_p

		$\frac{y}{s(x)}$		0	0	·1	0	·2	0	•3	0	•4	0	• 5	• 0•	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	⁻ L.S.	U.S.	L.S.	U.S.	L.S.
L	$\begin{array}{c} 0.10 \\ 0.20 \\ 0.30 \\ 0.40 \\ 0.50 \\ 0.60 \\ 0.70 \\ 0.80 \\ 0.90 \\ 0.95 \end{array}$		+0.035 -0.011 -0.067 -0.106 -0.147 -0.147 -0.183 -0.148 -0.004 +0.109	$\begin{array}{c} + 0.178 \\ 0.116 \\ 0.063 \\ + 0.012 \\ - 0.039 \\ - 0.084 \\ - 0.110 \\ - 0.105^{\circ} \end{array}$	$\begin{array}{c} + 0.038 \\ - 0.020 \\ - 0.069 \\ - 0.110 \\ - 0.149 \\ - 0.176 \\ - 0.186 \\ - 0.151 \\ - 0.024 \\ + 0.101 \end{array}$	$\begin{array}{c} + 0.173 \\ 0.119 \\ 0.062 \\ + 0.015 \\ - 0.041 \\ - 0.085 \\ - 0.115 \\ - 0.106 \\ - 0.011 \end{array}$	$\begin{array}{c} + 0.035 \\ - 0.023 \\ - 0.071 \\ - 0.117 \\ - 0.152 \\ - 0.187 \\ - 0.196 \\ - 0.163 \\ - 0.033 \\ + 0.100 \end{array}$	$\begin{array}{c} + 0.166\\ 0.114\\ 0.062\\ + 0.013\\ - 0.033\\ - 0.081\\ - 0.110\\ - 0.109\\ - 0.026\end{array}$	$\begin{array}{c} + 0.036 \\ - 0.023 \\ - 0.072 \\ - 0.120 \\ - 0.164 \\ - 0.197 \\ - 0.211 \\ - 0.183 \\ - 0.056 \\ + 0.083 \end{array}$	$\begin{array}{c} + 0.148 \\ 0.118 \\ 0.072 \\ + 0.015 \\ - 0.032 \\ - 0.079 \\ - 0.112 \\ - 0.113 \\ - 0.039 \end{array}$	$+0.030 \\ -0.022 \\ -0.072 \\ -0.120 \\ -0.167 \\ -0.206 \\ -0.226 \\ -0.204 \\ -0.082 \\ +0.050 \\ -$	$\begin{array}{c} + 0.160 \\ 0.116 \\ 0.091 \\ + 0.024 \\ - 0.024 \\ - 0.074 \\ - 0.111 \\ - 0.120 \\ - 0.058 \end{array}$	$\begin{array}{c} +0.031 \\ -0.022 \\ -0.071 \\ -0.120 \\ -0.169 \\ -0.214 \\ -0.232 \\ -0.121 \\ +0.015 \end{array}$	$\begin{array}{c} + 0.150 \\ 0.110 \\ 0.069 \\ + 0.028 \\ - 0.016 \\ - 0.061 \\ - 0.105 \\ - 0.126 \\ - 0.079 \\ - \end{array}$	$\begin{array}{c} +0.029\\ -0.019\\ -0.067\\ -0.116\\ -0.168\\ -0.213\\ -0.249\\ -0.249\\ -0.249\\ -0.137\\ -0.002\end{array}$	$\begin{array}{c} + 0.150 \\ 0.113 \\ 0.080 \\ + 0.033 \\ - 0.011 \\ - 0.056 \\ - 0.099 \\ - 0.125 \\ - 0.085 \end{array}$
	0.98				+0.198	_	+0.197	_	+0.191	_	+0.171		+0.147		+0.133	

TABLE 12—continued

*

.

= 6.09	deg
--------	-----

1	
v	m
	\mathbf{P}

 α

		$\frac{y}{s(x)}$	0.6 0.65		0.7 0.75			0.8		0.85		0.9				
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
46	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		+0.030 -0.017 -0.060 -0.116 -0.211 -0.258 -0.263 -0.159 -0.028 +0.119	$\begin{array}{c} + 0.148 \\ 0.111 \\ 0.079 \\ + 0.034 \\ - 0.005 \\ - 0.051 \\ - 0.094 \\ - 0.125 \\ - 0.096 \\ \end{array}$	$ \begin{array}{c} +0.034 \\ -0.014 \\ -0.059 \\ -0.105 \\ -0.154 \\ -0.210 \\ -0.259 \\ -0.276 \\ -0.188 \\ -0.056 \\ +0.105 \end{array} $	$\begin{array}{c} + 0.145 \\ 0.112 \\ 0.081 \\ 0.040 \\ + 0.006 \\ - 0.038 \\ - 0.083 \\ - 0.121 \\ - 0.098 \\ - \end{array}$	+0.042 -0.002 -0.052 -0.091 -0.147 -0.200 -0.259 -0.281 -0.218 -0.218 -0.087 +0.084	$\begin{array}{c} + 0.146 \\ 0.109 \\ 0.084 \\ 0.048 \\ + 0.016 \\ - 0.029 \\ - 0.070 \\ - 0.111 \\ - 0.109 \\ \end{array}$	$\begin{array}{c} + 0.035 \\ + 0.013 \\ - 0.033 \\ - 0.075 \\ - 0.135 \\ - 0.196 \\ - 0.258 \\ - 0.294 \\ - 0.250 \\ - 0.120 \\ + 0.064 \end{array}$	$\begin{array}{c} + 0 \cdot 141 \\ 0 \cdot 110 \\ 0 \cdot 080 \\ 0 \cdot 046 \\ + 0 \cdot 015 \\ - 0 \cdot 017 \\ - 0 \cdot 058 \\ - 0 \cdot 104 \\ - 0 \cdot 118 \\ - \end{array}$	+0.039 +0.009 -0.038 -0.096 -0.148 -0.208 -0.251 -0.314 -0.293 -0.165 +0.031	$\begin{array}{c} + 0.141 \\ 0.107 \\ 0.079 \\ 0.049 \\ + 0.023 \\ - 0.005 \\ - 0.042 \\ - 0.089 \\ - 0.113 \\ - \end{array}$	$\begin{array}{c} -0.046\\ -0.126\\ -0.126\\ -0.201\\ -0.239\\ -0.252\\ -0.292\\ -0.340\\ -0.348\\ -0.270\\ 0.095\end{array}$	$\begin{array}{c} + 0.137 \\ 0.100 \\ 0.075 \\ 0.049 \\ 0.029 \\ + 0.007 \\ - 0.022 \\ - 0.058 \\ - 0.098 \\ - \end{array}$	$\begin{array}{c} -0.089\\ -0.148\\ -0.190\\ -0.229\\ -0.251\\ -0.298\\ -0.351\\ -0.403\\ -0.469\\ -0.502\\ 0.459\end{array}$	$\begin{array}{c} + 0.130 \\ 0.096 \\ 0.072 \\ 0.048 \\ 0.028 \\ + 0.009 \\ - 0.004 \\ - 0.034 \\ - 0.070 \\ \end{array}$

x

.

.

TABLE 12—continued

*

WING B

×

4

 $\alpha = 8 \cdot 13 \deg$

 C_p

					·			· · · ·				- ·				
		$\frac{y}{s(x)}$		0	0	$\cdot 1$	0	·2	0	• 3	0	·4	0	• 5	0.	55
	$\frac{x}{c_0}$	1	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
47	0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98		$\begin{array}{c} - \\ + 0.017 \\ - 0.036 \\ - 0.084 \\ - 0.122 \\ - 0.158 \\ - 0.188 \\ - 0.191 \\ - 0.153 \\ - 0.004 \\ + 0.109 \end{array}$	$\begin{array}{c} +0.211\\ 0.147\\ 0.093\\ +0.041\\ -0.011\\ -0.059\\ -0.088\\ -0.091\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$ \begin{array}{r} +0.017 \\ -0.040 \\ -0.086 \\ -0.128 \\ -0.162 \\ -0.190 \\ -0.193 \\ -0.159 \\ -0.025 \\ +0.104 \\ +0.198 \end{array} $	$\begin{array}{c} + 0 \cdot 204 \\ 0 \cdot 148 \\ 0 \cdot 093 \\ + 0 \cdot 044 \\ - 0 \cdot 012 \\ - 0 \cdot 058 \\ - 0 \cdot 094 \\ - 0 \cdot 089 \\ - 0 \cdot 005 \\ - \end{array}$	$\begin{array}{r} + 0.016 \\ - 0.042 \\ - 0.088 \\ - 0.133 \\ - 0.168 \\ - 0.198 \\ - 0.204 \\ - 0.171 \\ - 0.034 \\ + 0.107 \\ + 0.195 \end{array}$	$\begin{array}{c} & & \\ + 0.195 \\ 0.142 \\ 0.091 \\ + 0.042 \\ - 0.008 \\ - 0.054 \\ - 0.089 \\ - 0.095 \\ - 0.020 \\ \end{array}$	$ \begin{array}{r} + 0.010 \\ - 0.045 \\ - 0.095 \\ - 0.140 \\ - 0.212 \\ - 0.222 \\ - 0.189 \\ - 0.055 \\ + 0.094 \\ + 0.194 \\ \end{array} $	$\begin{array}{c} & \\ + 0.171 \\ 0.144 \\ 0.100 \\ + 0.043 \\ - 0.004 \\ - 0.051 \\ - 0.089 \\ - 0.097 \\ - 0.031 \\ \end{array}$	-+0.007 - 0.043 - 0.096 - 0.140 - 0.189 - 0.227 - 0.241 - 0.214 - 0.083 + 0.062 + 0.183	$ \begin{array}{c} & \\ + 0.183 \\ 0.141 \\ 0.117 \\ 0.054 \\ + 0.003 \\ - 0.045 \\ - 0.086 \\ - 0.099 \\ - 0.049 \\ - \end{array} $		$\begin{array}{c} & \\ + 0.169 \\ 0.130 \\ 0.085 \\ 0.053 \\ + 0.014 \\ - 0.034 \\ - 0.077 \\ - 0.105 \\ - 0.067 \\ \end{array}$	$ \begin{array}{c} + 0.005 \\ - 0.041 \\ - 0.089 \\ - 0.138 \\ - 0.232 \\ - 0.263 \\ - 0.257 \\ - 0.139 \\ - 0.005 \\ + 0.136 \end{array} $	$\begin{array}{c} & \\ + 0 \cdot 171 \\ 0 \cdot 131 \\ 0 \cdot 100 \\ 0 \cdot 057 \\ + 0 \cdot 016 \\ - 0 \cdot 028 \\ - 0 \cdot 072 \\ - 0 \cdot 101 \\ - 0 \cdot 072 \\ \\ \end{array}$
															·	

TABLE 12—continued

WING B

1

 $\alpha = 8 \cdot 13 \deg$

		y y			1				1	,					1	
		$\overline{s(x)}$	0	·6	0.	65	0	0.7		0.75		·8	0.85		0.9	
	<u>x</u>			•												
	<i>c</i> ₀		U.S.	L.S.												
48	0.10		+0.009	+0.166	+0.018	+0.158	+0.017	+0.159	-0.070	+0.153	-0.071	+0.154	-0.128	+0.142	-0.168	+0.129
	0.20		-0.035	0.129	-0.026	0.127	-0.004	0.126	+0.001	0.122	-0.170	0.118	-0.303	0.106	-0.218	0.096
	0.30		-0.079	0.095	-0.071	0.100	-0.054	0.103	-0.052	0.098	-0.203	0.093	-0.348	0.083	-0.273	0.072
	0.40		-0.134	0.059	-0.115	0.062	-0.090	0.070	-0.105	0.067	-0.267	0.064	-0.387	0.060	-0.313	0.051
	0.50		-0.180	+0.021	-0.158	+0.031	-0.144	+0.031	-0.181	0.041	-0.336	0.041	-0.412	0.042	-0.355	0.033
	0.60		-0.222	-0.022	-0.211	-0.011	-0.202	-0.002	-0.280	+0.011	-0.392	+0.020	-0.430	0.020	-0.406	0.019
	0.70		-0.262	-0.063	-0.257	-0.055	-0.283	-0.038	-0.357	-0.024	-0.436	-0.120	-0.479	+0.001	-0.467	+0.010
	$0 \cdot 80$		-0.265	-0.100	-0.284	-0.092	-0.328	-0.081	-0.414	-0.066	-0.499	-0.163	-0.529	-0.029	-0.534	-0.008
	0.90		-0.159	-0.079	-0.199	-0.078	-0.279	-0.088	-0.409	-0.089	-0.536	-0.191	-0.597	-0.067	-0.575	-0.034
	0.95		-0.028		-0.066	—	-0.145	—	-0.322		-0.532		-0.569		-0.469	_
	0.98		+0.115		+0.092	—	+0.036		-0.151	—	-0.392		-0.370	—	-0.197	
				l												

0. F

TARF	12_{-}	_continued
IADLL	14-	–сопипиеи

. (80625) ٠

$\alpha\,=\,10\!\cdot\!17\,\deg$

 C_p

		$\frac{y}{s(x)}$)	0	·1	0	·2	0	• 3	0	•4	0	•5	0.	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
49	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} -0.004 \\ -0.047 \\ -0.102 \\ -0.139 \\ -0.175 \\ -0.201 \\ -0.201 \\ -0.161 \\ +0.002 \\ +0.114 \end{array}$	$\begin{array}{c} +0.242\\ 0.178\\ 0.125\\ 0.071\\ +0.018\\ -0.033\\ -0.066\\ -0.075\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} -0.009 \\ -0.063 \\ -0.106 \\ -0.144 \\ -0.180 \\ -0.205 \\ -0.207 \\ -0.168 \\ -0.031 \\ +0.104 \\ +0.193 \end{array}$	$\begin{array}{c} +0.238\\ 0.182\\ 0.126\\ 0.060\\ +0.016\\ -0.032\\ -0.070\\ -0.073\\ +0.002\\ \end{array}$	$-0.009 \\ -0.063 \\ -0.110 \\ -0.153 \\ -0.215 \\ -0.220 \\ -0.181 \\ -0.039 \\ +0.108 \\ +0.186$	$\begin{array}{c} +0\cdot 223\\ 0\cdot 172\\ 0\cdot 122\\ 0\cdot 071\\ +0\cdot 021\\ -0\cdot 028\\ -0\cdot 065\\ -0\cdot 077\\ -0\cdot 013\\ -\end{array}$	$ \begin{array}{r} -0.014 \\ -0.067 \\ -0.115 \\ -0.201 \\ -0.229 \\ -0.239 \\ -0.199 \\ -0.056 \\ +0.096 \\ +0.189 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 192 \\ 0 \cdot 170 \\ 0 \cdot 128 \\ 0 \cdot 073 \\ + 0 \cdot 026 \\ - 0 \cdot 023 \\ - 0 \cdot 052 \\ - 0 \cdot 077 \\ - 0 \cdot 023 \\ - \end{array}$	$ \begin{array}{r} -0.021 \\ -0.064 \\ -0.116 \\ -0.206 \\ -0.241 \\ -0.253 \\ -0.222 \\ -0.086 \\ +0.066 \\ +0.186 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 206 \\ 0 \cdot 165 \\ 0 \cdot 141 \\ 0 \cdot 082 \\ + 0 \cdot 033 \\ - 0 \cdot 018 \\ - 0 \cdot 056 \\ - 0 \cdot 077 \\ - 0 \cdot 039 \\ \hline \end{array}$	$\begin{array}{c} -0.018\\ -0.064\\ -0.113\\ -0.160\\ -0.206\\ -0.245\\ -0.272\\ -0.244\\ -0.119\\ +0.016\\ +0.150\end{array}$	$\begin{array}{c} + 0 \cdot 191 \\ 0 \cdot 155 \\ 0 \cdot 118 \\ 0 \cdot 080 \\ + 0 \cdot 042 \\ - 0 \cdot 002 \\ - 0 \cdot 047 \\ - 0 \cdot 079 \\ - 0 \cdot 056 \\ - \\ - \\ - \\ \end{array}$	$\begin{array}{c} -0.014 \\ -0.056 \\ -0.103 \\ -0.151 \\ -0.198 \\ -0.239 \\ -0.263 \\ -0.251 \\ -0.128 \\ -0.002 \\ +0.134 \end{array}$	$\begin{array}{c} + 0.190 \\ 0.153 \\ 0.083 \\ 0.043 \\ + 0.002 \\ - 0.044 \\ - 0.077 \\ - 0.058 \\ - \\ - \\ - \\ \end{array}$

Ð

TABLE 12—continued

3

٠

.

 $\alpha\,=\,10\!\cdot\!17\,\,\text{deg}$

 C_p

		$\frac{y}{s(x)}$	0	6	0	·65	0	•7	0	•75	0	·8	0	· 85	0	•9
	$\frac{x}{c_0}$		U.S.	L.S.												
л Э	' ~ 0.10		-0.008	+0.182	-0.013	+0.175	-0.096	+0.171	-0.248	+0.161	-0.247	+0.165	-0.230	+0.142	-0.259	+0.122
	0.20		-0.044	0.150	-0.024	0.147	-0.016	0.141	-0.175	0.131	-0.422	0.126	-0.448	0.108	-0.283	0.094
	0.30		-0.086	0.112	-0.070	0.119	-0.072	0.117	-0.211	0.108	-0.462	0.103	-0.498	0.087	-0.337	0.070
	0.40		-0.138	0.083	-0.110	0.085	-0.119	0.086	-0.294	0.081	-0.522	0.076	-0.535	0.065	-0.386	0.050
	0.50		-0.179	0.049	-0.147	0.058	-0.179	0.054	-0.374	0.058	-0.576	0.057	-0.578	0.051	-0.432	0.034
	0.60		-0.218	+0.008	-0.198	+0.019	-0.263	+0.025	-0.483	+0.032	-0.631	0.040	-0.602	0.034	-0.497	0.024
	0.70		-0.249	-0.034	-0.249	-0.023	-0.374	-0.009	-0.580	-0.001	-0.682	+0.015	-0.639	+0.024	-0.556	0.023
	0.80		-0.245	-0.073	-0.278	-0.063	-0.465	-0.052	-0.671	-0.041	-0.732	-0.132	-0.675	0	-0.612	+0.014
	0.90		-0.137	-0.063	-0.197	-0.059	-0.454	-0.066	-0.711	-0.069	-0.777	-0.165	-0.690	-0.036	-0.596	-0.003
	0.95		-0.021	_	-0.075		-0.325	-	-0.652	·	-0.734		-0.569		-0.424	_
	0.98		+0.107		+0.064	—	-0.127	-	-0.433	—	-0.502	—	-0.311		-0.186	
												ļ				

.

4

TABLE 12—continued

.

4

WING B

\$

4

 $\alpha\,=\,15\cdot29\,\,deg$

 C_p

		$\frac{y}{s(x)}$	\$\overline\$ 0 0 \cdot 1		0.2 0.3			0.4		0.5		0.55				
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
51	$\begin{array}{c} 0.10 \\ 0.20 \\ 0.30 \\ 0.40 \\ 0.50 \\ 0.60 \\ 0.70 \\ 0.80 \\ 0.90 \\ 0.95 \end{array}$		$ \begin{array}{c} -0.060 \\ -0.102 \\ -0.146 \\ -0.181 \\ -0.212 \\ -0.240 \\ -0.238 \\ -0.198 \\ -0.030 \\ +0.101 \\ \end{array} $	$ \begin{array}{c} + 0.336 \\ 0.270 \\ 0.215 \\ 0.159 \\ 0.103 \\ 0.047 \\ + 0.003 \\ - 0.021 \\ \end{array} $	$ \begin{array}{c} -0.065 \\ -0.090 \\ -0.152 \\ -0.187 \\ -0.219 \\ -0.244 \\ -0.204 \\ -0.204 \\ -0.060 \\ +0.089 \\ \end{array} $	$\begin{array}{c} + 0.316 \\ 0.264 \\ 0.208 \\ 0.156 \\ 0.100 \\ + 0.046 \\ - 0.002 \\ - 0.025 \\ 0.027 \end{array}$	$ \begin{array}{r} -0.069 \\ -0.111 \\ -0.155 \\ -0.195 \\ -0.224 \\ -0.254 \\ -0.256 \\ -0.214 \\ -0.065 \\ +0.094 \end{array} $	$\begin{array}{c} + \ 0 \cdot 297 \\ 0 \cdot 253 \\ 0 \cdot 205 \\ 0 \cdot 159 \\ 0 \cdot 107 \\ 0 \cdot 052 \\ + \ 0 \cdot 008 \\ - \ 0 \cdot 021 \\ + \ 0 \cdot 016 \end{array}$	$ \begin{array}{c} -0.075 \\ -0.115 \\ -0.205 \\ -0.205 \\ -0.244 \\ -0.267 \\ -0.276 \\ -0.240 \\ -0.94 \\ +0.073 \\ \end{array} $	$ \begin{array}{c} + 0.261 \\ 0.238 \\ 0.202 \\ 0.156 \\ 0.008 \\ + 0.008 \\ - 0.021 \\ + 0.006 \end{array} $	$ \begin{array}{c} -0.073 \\ -0.111 \\ -0.159 \\ -0.203 \\ -0.242 \\ -0.271 \\ -0.282 \\ -0.255 \\ -0.130 \\ +0.016 \\ \end{array} $	$\begin{array}{c} + 0.259 \\ 0.229 \\ 0.200 \\ 0.156 \\ 0.108 \\ 0.064 \\ + 0.017 \\ - 0.019 \\ - 0.013 \end{array}$	$ \begin{array}{r} -0.069 \\ -0.088 \\ -0.136 \\ -0.172 \\ -0.211 \\ -0.245 \\ -0.270 \\ -0.261 \\ -0.178 \\ -0.065 \\ \end{array} $	$ \begin{array}{c} + 0.238 \\ 0.211 \\ 0.180 \\ 0.152 \\ 0.117 \\ 0.071 \\ + 0.027 \\ - 0.013 \\ - 0.017 \end{array} $	$ \begin{array}{r} -0.100 \\ -0.077 \\ -0.123 \\ -0.165 \\ -0.203 \\ -0.244 \\ -0.280 \\ -0.294 \\ -0.236 \\ -0.134 \end{array} $	$\begin{array}{c} + \ 0 \cdot 236 \\ 0 \cdot 206 \\ 0 \cdot 175 \\ 0 \cdot 146 \\ 0 \cdot 117 \\ 0 \cdot 081 \\ + \ 0 \cdot 039 \\ - \ 0 \cdot 011 \\ - \ 0 \cdot 019 \end{array}$
	0.98				+0.185	_	+0.184	_	+0.179		+0.160		+0.088	-	+0.031	-

D2

TABLE	12—continued
$\alpha =$	15·29 deg

.

Ŧ

۲

,

C_p

-		$\frac{y}{s(x)}$	0.6		0.65		0.7		0.75		0.8		0.85		0	.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
-	$\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \end{array}$		$\begin{array}{c} -0.225 \\ -0.098 \\ -0.136 \\ -0.207 \\ -0.246 \\ -0.309 \\ -0.380 \\ -0.419 \\ -0.380 \end{array}$	$\begin{array}{c} + 0 \cdot 223 \\ 0 \cdot 196 \\ 0 \cdot 167 \\ 0 \cdot 142 \\ 0 \cdot 115 \\ 0 \cdot 081 \\ + 0 \cdot 042 \\ - 0 \cdot 006 \\ - 0 \cdot 025 \end{array}$	$\begin{array}{c} -0.451 \\ -0.264 \\ -0.289 \\ -0.380 \\ -0.449 \\ -0.553 \\ -0.661 \\ -0.723 \\ -0.661 \end{array}$	$\begin{array}{c} + 0 \cdot 205 \\ 0 \cdot 179 \\ 0 \cdot 160 \\ 0 \cdot 137 \\ 0 \cdot 118 \\ 0 \cdot 087 \\ 0 \cdot 054 \\ + 0 \cdot 012 \\ - 0 \cdot 017 \end{array}$	$ \begin{array}{r} -0.566 \\ -0.590 \\ -0.609 \\ -0.713 \\ -0.805 \\ -0.918 \\ -1.026 \\ -1.079 \\ -0.974 \\ \end{array} $	$\begin{array}{c} + 0.198 \\ 0.169 \\ 0.149 \\ 0.129 \\ 0.106 \\ 0.087 \\ 0.061 \\ + 0.021 \\ - 0.017 \end{array}$	$\begin{array}{c} -0.548 \\ -0.899 \\ -0.932 \\ -1.008 \\ -1.081 \\ -1.164 \\ -1.215 \\ -1.213 \\ -1.056 \end{array}$	$\begin{array}{c} + 0.184 \\ 0.157 \\ 0.136 \\ 0.119 \\ 0.104 \\ 0.088 \\ 0.069 \\ + 0.035 \\ - 0.013 \end{array}$	$ \begin{array}{r} -0.546 \\ -0.820 \\ -0.891 \\ -0.928 \\ -0.960 \\ -0.951 \\ -0.953 \\ -0.910 \\ -0.757 \\ -0.757 \\ -0.2$	$\begin{array}{c} 0.182\\ 0.138\\ 0.115\\ 0.102\\ 0.086\\ 0.081\\ 0.073\\ 0.048\\ 0\end{array}$	$ \begin{array}{r} -0.514 \\ -0.562 \\ -0.613 \\ -0.650 \\ -0.696 \\ -0.751 \\ -0.792 \\ -0.792 \\ -0.638 \\ -0.6$	$\begin{array}{c} 0.131\\ 0.102\\ 0.081\\ 0.071\\ 0.065\\ 0.056\\ 0.058\\ 0.054\\ 0.023\\ \end{array}$	$ \begin{array}{r} -0.473 \\ -0.514 \\ -0.585 \\ -0.631 \\ -0.688 \\ -0.744 \\ -0.788 \\ -0.797 \\ -0.642 \\ -0.525 \\ \end{array} $	$\begin{array}{c} 0 \cdot 085 \\ 0 \cdot 079 \\ 0 \cdot 044 \\ 0 \cdot 031 \\ 0 \cdot 021 \\ 0 \cdot 021 \\ 0 \cdot 031 \\ 0 \cdot 042 \\ 0 \cdot 046 \end{array}$
	0.95		-0.273 -0.079	_	-0.513 -0.245		-0.738 -0.399		-0.422		-0.489 -0.255	_	-0.308 -0.184		-0.330 -0.167	`.

4

٩

IABLE IZ-CONTIN

4

WING B

.

4

 $\alpha = 20 \cdot 42 \, \deg$

 C_p

		$\frac{y}{s(x)}$ 0		0.1		0.2		0.3		0.4		0.5		0.	55	
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
л Э	$\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \\ 0 \cdot 98 \end{array}$		$\begin{array}{c} -0.119\\ -0.154\\ -0.232\\ -0.232\\ -0.272\\ -0.307\\ -0.315\\ -0.285\\ -0.104\\ +0.053\end{array}$	0.434 0.368 0.312 0.253 0.197 0.138 0.086 0.043 	$ \begin{array}{r} -0.129 \\ -0.163 \\ -0.206 \\ -0.244 \\ -0.279 \\ -0.314 \\ -0.323 \\ -0.310 \\ -0.142 \\ +0.041 \\ +0.189 \end{array} $	0.400 0.351 0.249 0.191 0.135 0.080 0.045 0.066	$ \begin{array}{r} -0.124 \\ -0.160 \\ -0.206 \\ -0.249 \\ -0.285 \\ -0.318 \\ -0.333 \\ -0.310 \\ -0.160 \\ +0.026 \\ +0.181 \\ \end{array} $	0.369 0.326 0.290 0.242 0.198 0.142 0.085 0.043 0.054	$\begin{array}{c} -0.132 \\ -0.159 \\ -0.211 \\ -0.253 \\ -0.294 \\ -0.327 \\ -0.353 \\ -0.338 \\ -0.205 \\ -0.024 \\ +0.158 \end{array}$	0.320 0.306 0.280 0.237 0.195 0.143 0.091 0.045 0.045 	$\begin{array}{c} -0.157\\ -0.147\\ -0.201\\ -0.245\\ -0.287\\ -0.335\\ -0.366\\ -0.376\\ -0.280\\ -0.113\\ +0.091\\ \end{array}$	0.315 0.291 0.267 0.233 0.195 0.150 0.102 0.050 0.031	$ \begin{array}{r} -0.343 \\ -0.191 \\ -0.243 \\ -0.309 \\ -0.364 \\ -0.435 \\ -0.435 \\ -0.495 \\ -0.529 \\ -0.464 \\ -0.489 \\ -0.049 \end{array} $	$\begin{array}{c} 0.283\\ 0.262\\ 0.237\\ 0.219\\ 0.185\\ 0.158\\ 0.158\\ 0.060\\ 0.026\\\\\\\\\\\\\\\\ -$	$ \begin{array}{r} -0.566 \\ -0.343 \\ -0.372 \\ -0.466 \\ -0.539 \\ -0.634 \\ -0.715 \\ -0.742 \\ -0.645 \\ -0.435 \\ -0.435 \\ -0.152 \\ \end{array} $	0·272 0·249 0·226 0·211 0·182 0·153 0·120 0·066 0·028

00

-

TABLE 12-continued

WING B

۲

۲

 $\alpha = 20 \cdot 42 \deg$ C_p

		$\frac{y}{s(x)}$	0	·6	0.	65	0	•7	0.	75	0	•8	0.	.85	0	.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
лд	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$-0.852 \\ -0.683 \\ -0.650 \\ -0.785 \\ -0.975 \\ -1.057 \\ -1.052 \\ -0.867 \\ -0.585 \\ 0.257$	$\begin{array}{c} 0 \cdot 254 \\ 0 \cdot 235 \\ 0 \cdot 216 \\ 0 \cdot 196 \\ 0 \cdot 177 \\ 0 \cdot 148 \\ 0 \cdot 122 \\ 0 \cdot 075 \\ 0 \cdot 027 \end{array}$	$ \begin{array}{r} -0.948 \\ -1.123 \\ -1.092 \\ -1.217 \\ -1.308 \\ -1.387 \\ -1.435 \\ -1.358 \\ -1.358 \\ -0.688 \\ 0.222 \\ \end{array} $	$\begin{array}{c} 0.231 \\ 0.212 \\ 0.197 \\ 0.179 \\ 0.172 \\ 0.145 \\ 0.120 \\ 0.081 \\ 0.031 \\ \end{array}$	$\begin{array}{c} -0.925\\ -1.391\\ -1.416\\ -1.467\\ -1.529\\ -1.544\\ -1.515\\ -1.389\\ -1.025\\ -0.647\\ 0.335\end{array}$	0.209 0.192 0.177 0.164 0.154 0.144 0.119 0.087 0.035	$\begin{array}{c} -0.898\\ -1.233\\ -1.337\\ -1.295\\ -1.264\\ -1.218\\ -1.166\\ -1.064\\ -0.763\\ -0.462\\ -0.258\end{array}$	$\begin{array}{c} 0.186\\ 0.164\\ 0.149\\ 0.135\\ 0.134\\ 0.132\\ 0.120\\ 0.091\\ 0.037\\\\\\ \end{array}$	$\begin{array}{c} -0.888\\ -0.888\\ -0.919\\ -0.929\\ -0.952\\ -0.984\\ -0.986\\ -0.915\\ -0.625\\ -0.337\\ -0.203\end{array}$	$\begin{array}{c} 0.181\\ 0.129\\ 0.114\\ 0.104\\ 0.100\\ 0.104\\ 0.100\\ 0.095\\ 0.049\\$	$\begin{array}{c} -0.787\\ -0.793\\ -0.858\\ -0.898\\ -0.944\\ -0.986\\ -0.986\\ -0.923\\ -0.616\\ -0.314\\ -0.218\end{array}$	$0.108 \\ 0.089 \\ 0.070 \\ 0.056 \\ 0.052 \\ 0.064 \\ 0.085 \\ 0.091 \\ 0.070 $	$\begin{array}{c} -0.740\\ -0.771\\ -0.840\\ -0.890\\ -0.931\\ -0.967\\ -0.973\\ -0.921\\ -0.625\\ -0.302\\ -0.211\end{array}$	$\begin{array}{c} + 0 \cdot 029 \\ + 0 \cdot 020 \\ - 0 \cdot 003 \\ - 0 \cdot 009 \\ - 0 \cdot 015 \\ - 0 \cdot 009 \\ + 0 \cdot 027 \\ 0 \cdot 052 \\ + 0 \cdot 083 \\ - \end{array}$
	0 90		-0 237		0 332											

4

۹

TABLE 12	2-continued
----------	-------------

£

\$

Ŧ

WING B

ĸ

.

 $\alpha\,=\,25\cdot 56\,\,deg$

 C_p

		$\frac{y}{s(x)}$		0	0	·1	0	·2	0	.3	0	•4	0	•5	0.	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
55	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} -0.195\\ -0.130\\ -0.270\\ -0.313\\ -0.370\\ -0.420\\ -0.440\\ -0.416\\ -0.195\\ -0.003\\ -\end{array}$	$\begin{array}{c} 0.535\\ 0.473\\ 0.417\\ 0.361\\ 0.302\\ 0.241\\ 0.181\\ 0.126\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} -0\cdot 201 \\ -0\cdot 230 \\ -0\cdot 274 \\ -0\cdot 318 \\ -0\cdot 372 \\ -0\cdot 422 \\ -0\cdot 443 \\ -0\cdot 414 \\ -0\cdot 245 \\ -0\cdot 028 \\ +0\cdot 175 \end{array}$	0.492 0.450 0.398 0.354 0.298 0.241 0.179 0.126 0.124 	$\begin{array}{c} -0 \cdot 219 \\ -0 \cdot 234 \\ -0 \cdot 282 \\ -0 \cdot 338 \\ -0 \cdot 384 \\ -0 \cdot 440 \\ -0 \cdot 472 \\ -0 \cdot 457 \\ -0 \cdot 292 \\ -0 \cdot 076 \\ +0 \cdot 139 \end{array}$	$\begin{array}{c} 0.447\\ 0.414\\ 0.384\\ 0.337\\ 0.293\\ 0.237\\ 0.182\\ 0.122\\ 0.110\\$	$\begin{array}{c} -0.263 \\ -0.232 \\ -0.284 \\ -0.344 \\ -0.407 \\ -0.467 \\ -0.513 \\ -0.513 \\ -0.513 \\ -0.369 \\ -0.153 \\ +0.085 \end{array}$	0.387 0.382 0.362 0.291 0.245 0.191 0.132 0.101	$\begin{array}{c} -0.489 \\ -0.320 \\ -0.368 \\ -0.456 \\ -0.525 \\ -0.600 \\ -0.665 \\ -0.673 \\ -0.533 \\ -0.299 \\ -0.024 \end{array}$	$\begin{array}{c} 0.369\\ 0.350\\ 0.333\\ 0.310\\ 0.281\\ 0.245\\ 0.200\\ 0.139\\ 0.091\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} -1\cdot 038\\ -0\cdot 775\\ -0\cdot 782\\ -0\cdot 905\\ -0\cdot 973\\ -1\cdot 051\\ -1\cdot 088\\ -1\cdot 051\\ -0\cdot 811\\ -0\cdot 510\\ -0\cdot 176\end{array}$	$\begin{array}{c} 0.327\\ 0.312\\ 0.296\\ 0.287\\ 0.266\\ 0.243\\ 0.206\\ 0.149\\ 0.085\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} -1\cdot 264\\ -1\cdot 219\\ -1\cdot 154\\ -1\cdot 233\\ -1\cdot 302\\ -1\cdot 381\\ -1\cdot 404\\ -1\cdot 308\\ -0\cdot 974\\ -0\cdot 612\\ -0\cdot 261\end{array}$	$\begin{array}{c} 0 \cdot 305 \\ 0 \cdot 292 \\ 0 \cdot 276 \\ 0 \cdot 269 \\ 0 \cdot 247 \\ 0 \cdot 234 \\ 0 \cdot 207 \\ 0 \cdot 153 \\ 0 \cdot 084 \\ \\ \\ \end{array}$

T	AB	LE	12 -	-continued
---	----	----	------	------------

٤

¥

 $\alpha = 25 \cdot 56 \text{ deg}$ C_p

	$\frac{y}{s(x)}$	0	·6	0.	65	0	•7	0.	75	0	·8	0.	85	0	•9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
5 0 · 10 0 · 20 0 · 30 0 · 40 0 · 50 0 · 60 0 · 70 0 · 80 0 · 90 0 · 95		$\begin{array}{c} -1\cdot 376 \\ -1\cdot 690 \\ -1\cdot 634 \\ -1\cdot 702 \\ -1\cdot 728 \\ -1\cdot 723 \\ -1\cdot 688 \\ -1\cdot 525 \\ -1\cdot 076 \\ -0\cdot 676 \end{array}$	0.274 0.262 0.253 0.247 0.232 0.224 0.208 0.157 0.087	$\begin{array}{c} -1\cdot 304 \\ -1\cdot 965 \\ -2\cdot 002 \\ -1\cdot 984 \\ -1\cdot 930 \\ -1\cdot 849 \\ -1\cdot 755 \\ -1\cdot 560 \\ -1\cdot 057 \\ -0\cdot 660 \end{array}$	0.238 0.232 0.219 0.219 0.211 0.209 0.201 0.163 0.095	$\begin{array}{c} -1\cdot 273 \\ -1\cdot 771 \\ -1\cdot 917 \\ -1\cdot 827 \\ -1\cdot 732 \\ -1\cdot 588 \\ -1\cdot 494 \\ -1\cdot 334 \\ -0\cdot 886 \\ -0\cdot 551 \\ 0 \end{array}$	0 · 212 0 · 199 0 · 193 0 · 191 0 · 187 0 · 185 0 · 189 0 · 168 0 · 099	$\begin{array}{c} -1\cdot 317 \\ -1\cdot 278 \\ -1\cdot 415 \\ -1\cdot 346 \\ -1\cdot 273 \\ -1\cdot 226 \\ -1\cdot 194 \\ -1\cdot 065 \\ -0\cdot 663 \\ -0\cdot 415 \\ -276 \end{array}$	$\begin{array}{c} 0.174\\ 0.158\\ 0.149\\ 0.145\\ 0.155\\ 0.153\\ 0.170\\ 0.164\\ 0.105\\\end{array}$	$\begin{array}{c} -1\cdot 299\\ -1\cdot 140\\ -1\cdot 145\\ -1\cdot 182\\ -1\cdot 199\\ -1\cdot 203\\ -1\cdot 178\\ -1\cdot 040\\ -0\cdot 627\\ -0\cdot 397\\ -2 66\end{array}$	0.174 0.112 0.103 0.099 0.104 0.108 0.137 0.154 0.122	$\begin{array}{c} -1\cdot 105 \\ -1\cdot 101 \\ -1\cdot 128 \\ -1\cdot 120 \\ -1\cdot 220 \\ -1\cdot 239 \\ -1\cdot 207 \\ -1\cdot 059 \\ -0\cdot 608 \\ -0\cdot 395 \\ 0\cdot 297 \end{array}$	$\begin{array}{c} 0.062\\ 0.045\\ 0.031\\ 0.028\\ 0.030\\ 0.043\\ 0.078\\ 0.118\\ 0.126\\\end{array}$	$\begin{array}{c} -1\cdot055\\ -1\cdot055\\ -1\cdot098\\ -1\cdot138\\ -1\cdot171\\ -1\cdot188\\ -1\cdot171\\ -1\cdot055\\ -0\cdot612\\ -0\cdot396\\ 0\ 202\end{array}$	$\begin{array}{c} -0.053\\ -0.053\\ -0.063\\ -0.073\\ -0.073\\ -0.073\\ -0.067\\ -0.019\\ +0.039\\ +0.112\\ -\end{array}$

.

ŧ

TABLE 12—continued

۲

1

WING B

 $\alpha = 30 \cdot 70 \, \deg$

 C_p

		$\frac{y}{s(x)}$	()	0	-1	0	-2	0	-3	0	•4	0	• 5	0.	55
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
57	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} -0.278\\ -0.318\\ -0.356\\ -0.394\\ -0.468\\ -0.521\\ -0.556\\ -0.531\\ -0.272\\ -0.051\\ \end{array}$	$\begin{array}{c} 0.636\\ 0.574\\ 0.525\\ 0.469\\ 0.409\\ 0.353\\ 0.286\\ 0.220\\\\\\\\\\\\\\\\ $	$\begin{array}{c} -0.307 \\ -0.336 \\ -0.374 \\ -0.421 \\ -0.476 \\ -0.540 \\ -0.573 \\ -0.548 \\ -0.340 \\ -0.082 \\ +0.160 \end{array}$	0.575 0.537 0.498 0.452 0.405 0.342 0.287 0.215 0.181	$\begin{array}{c} -0.383\\ -0.387\\ -0.409\\ -0.448\\ -0.517\\ -0.578\\ -0.617\\ -0.608\\ -0.413\\ -0.149\\ +0.089\end{array}$	0.518 0.500 0.470 0.435 0.396 0.340 0.297 0.210 0.171	$\begin{array}{c} -0.574 \\ -0.487 \\ -0.500 \\ -0.543 \\ -0.608 \\ -0.678 \\ -0.729 \\ -0.725 \\ -0.530 \\ -0.266 \\ +0.020 \end{array}$	0 · 461 0 · 457 0 · 453 0 · 422 0 · 388 0 · 345 0 · 306 0 · 228 0 · 167	$\begin{array}{c} -1\cdot096\\ -0\cdot874\\ -0\cdot895\\ -0\cdot878\\ -0\cdot912\\ -0\cdot985\\ -1\cdot019\\ -0\cdot993\\ -0\cdot737\\ -0\cdot433\\ -0\cdot109\end{array}$	$\begin{array}{c} 0.413 \\ 0.409 \\ 0.400 \\ 0.379 \\ 0.370 \\ 0.332 \\ 0.289 \\ 0.225 \\ 0.161 \\ \\ \\ \\ \end{array}$	$\begin{array}{c} -1\cdot716\\ -1\cdot768\\ -1\cdot708\\ -1\cdot695\\ -1\cdot670\\ -1\cdot674\\ -1\cdot619\\ -1\cdot444\\ -1\cdot023\\ -0\cdot631\\ -0\cdot253\end{array}$	$\begin{array}{c} 0.347\\ 0.347\\ 0.347\\ 0.343\\ 0.335\\ 0.322\\ 0.309\\ 0.232\\ 0.156\\\\\\\\\\ \end{array}$	$\begin{array}{c} -1\cdot795\\ -2\cdot080\\ -2\cdot227\\ -2\cdot244\\ -2\cdot179\\ -2\cdot123\\ -1\cdot989\\ -1\cdot701\\ -1\cdot157\\ -0\cdot709\\ -0\cdot317\end{array}$	0.322 0.317 0.322 0.313 0.304 0.296 0.240 0.158

TABLE 12—continued

WING B

.

;

æ

 $\alpha = 30.70 \text{ deg}$

\mathcal{C}	p
	A

	$\frac{y}{s(x)}$	0	·6	0.	65	0	•7	0.	75	0	· 8	0	· 85	C).9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
 $\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \end{array}$		$ \begin{array}{r} -1 \cdot 707 \\ -1 \cdot 998 \\ -2 \cdot 446 \\ -2 \cdot 570 \\ -2 \cdot 532 \\ -2 \cdot 404 \\ -2 \cdot 216 \\ -1 \cdot 844 \\ -1 \cdot 186 \\ 0 \cdot 727 \\ \end{array} $	0.285 0.276 0.280 0.285 0.276 0.285 0.285 0.285 0.242 0.161	$\begin{array}{c} -1 \cdot 702 \\ -1 \cdot 985 \\ -2 \cdot 371 \\ -2 \cdot 543 \\ -2 \cdot 500 \\ -2 \cdot 380 \\ -2 \cdot 174 \\ -1 \cdot 783 \\ -1 \cdot 096 \\ 0 607 \end{array}$	0.226 0.226 0.239 0.247 0.252 0.264 0.239 0.264 0.239 0.161	$ \begin{array}{r} -1 \cdot 712 \\ -1 \cdot 746 \\ -1 \cdot 882 \\ -1 \cdot 959 \\ -2 \cdot 036 \\ -2 \cdot 057 \\ -1 \cdot 793 \\ -1 \cdot 482 \\ -0 \cdot 908 \\ -5 \cdot 76 \\ \end{array} $	$\begin{array}{c} 0.186\\ 0.186\\ 0.194\\ 0.203\\ 0.220\\ 0.220\\ 0.245\\ 0.237\\ 0.169\\ \end{array}$	$\begin{array}{c} -1.813\\ -1.675\\ -1.576\\ -1.554\\ -1.511\\ -1.507\\ -1.455\\ -1.244\\ -0.713\\ -1.244\end{array}$	$\begin{array}{c} 0.136\\ 0.132\\ 0.132\\ 0.140\\ 0.149\\ 0.175\\ 0.214\\ 0.222\\ 0.171\\ \end{array}$	$\begin{array}{c} -1.789 \\ -1.565 \\ -1.501 \\ -1.463 \\ -1.412 \\ -1.434 \\ -1.383 \\ -1.196 \\ -0.679 \\ 0.480 \end{array}$	$\begin{array}{c} 0.138\\ 0.062\\ 0.071\\ 0.075\\ 0.079\\ 0.104\\ 0.160\\ 0.193\\ 0.181 \end{array}$	$\begin{array}{c} -1 \cdot 457 \\ -1 \cdot 482 \\ -1 \cdot 478 \\ -1 \cdot 478 \\ -1 \cdot 444 \\ -1 \cdot 419 \\ -1 \cdot 444 \\ -1 \cdot 398 \\ -1 \cdot 204 \\ -0 \cdot 659 \\ 0 492 \end{array}$	$\begin{array}{c} -0.018\\ -0.022\\ -0.039\\ -0.027\\ -0.014\\ 0\\ +0.062\\ 0.125\\ +0.167\end{array}$	$ \begin{array}{r} -1 \cdot 386 \\ -1 \cdot 404 \\ -1 \cdot 395 \\ -1 \cdot 391 \\ -1 \cdot 404 \\ -1 \cdot 416 \\ -1 \cdot 378 \\ -1 \cdot 211 \\ -0 \cdot 651 \\ -4 \cdot 476 \\ \end{array} $	
0.95		-0.361	_	-0.375		-0.370 -0.351	_	-0.470 -0.368	_	-0.480 -0.319	_	-0.482 -0.343		-0.476 -0.335	

.

Ę

TABLE 1	13
---------	----

1

ſ

Pressure Coefficients at Zero Yaw

WING C

٠

\$

 $\alpha\,=\,0\,\,deg$

 C_p

<u> </u>	$\frac{y}{s(x)}$	0.		0.1		0	·2	0	•3	0.4	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} 0.10 \\ 0.20 \\ 0.30 \\ 0.40 \\ 0.50 \\ 0.60 \\ 0.70 \\ 0.80 \\ 0.90 \\ 0.95 \\ 0.98 \end{array}$		$ \begin{array}{c} +0.092 \\ +0.033 \\ -0.004 \\ -0.052 \\ -0.082 \\ -0.094 \\ -0.103 \\ -0.082 \\ -0 \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} +0.092 \\ +0.033 \\ -0.004 \\ -0.052 \\ -0.081 \\ -0.107 \\ -0.110 \\ -0.081 \\ \hline -0 \\ -0 \\ -0 \\ -0.081 \\ \hline -0$	$\begin{array}{c} +0.090\\ +0.028\\ -0.012\\ -0.052\\ -0.080\\ -0.102\\ -0.110\\ -0.084\\ +0.002\\ 0.096\\ +0.169\end{array}$	$\begin{array}{c} + 0.082 \\ - 0.008 \\ - 0.058 \\ - 0.082 \\ - 0.104 \\ - 0.106 \\ - 0.083 \\ + 0.001 \\ 0.091 \\ + 0.171 \end{array}$	$\begin{array}{r} + 0 \cdot 083 \\ + 0 \cdot 029 \\ - 0 \cdot 009 \\ - 0 \cdot 053 \\ - 0 \cdot 082 \\ - 0 \cdot 104 \\ - 0 \cdot 112 \\ - 0 \cdot 091 \\ - 0 \cdot 012 \\ + 0 \cdot 076 \\ + 0 \cdot 154 \end{array}$	$\begin{array}{c} +0.083 \\ -0.005 \\ -0.059 \\ -0.084 \\ -0.107 \\ -0.108 \\ -0.089 \\ -0.013 \\ +0.070 \\ +0.153 \end{array}$	$\begin{array}{r} +0.082\\ +0.028\\ -0.012\\ -0.052\\ -0.085\\ -0.112\\ -0.121\\ -0.103\\ -0.025\\ +0.058\\ +0.140\end{array}$	$\begin{array}{c} +0.080\\ -0.011\\ -0.059\\ -0.083\\ -0.110\\ -0.116\\ -0.095\\ -0.026\\ +0.054\\ +0.135\end{array}$	$\begin{array}{r} + 0.081 \\ + 0.028 \\ - 0.012 \\ - 0.051 \\ - 0.083 \\ - 0.107 \\ - 0.118 \\ - 0.102 \\ - 0.036 \\ + 0.037 \\ + 0.117 \end{array}$	$\begin{array}{c} + 0.080 \\ - 0.009 \\ - 0.054 \\ - 0.084 \\ - 0.107 \\ - 0.114 \\ - 0.101 \\ - 0.039 \\ + 0.033 \\ + 0.110 \end{array}$

TABLE	13—co	ontinued

WING C

4

7

 $\alpha\,=\,0\,\,\text{deg}$

C_p

	$\frac{y}{s(x)}$	0.5		0.6		0.7		0.8		0.9	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \\ 0 \cdot 98 \end{array}$		$\begin{array}{c} + 0.080 \\ + 0.029 \\ - 0.093 \\ - 0.045 \\ - 0.080 \\ - 0.110 \\ - 0.126 \\ - 0.106 \\ - 0.046 \\ + 0.017 \\ + 0.096 \end{array}$	$\begin{array}{c} +0.081 \\ -0.006 \\ -0.051 \\ -0.081 \\ -0.105 \\ -0.114 \\ -0.100 \\ -0.045 \\ +0.016 \\ +0.082 \end{array}$	$\begin{array}{r} + 0 \cdot 084 \\ + 0 \cdot 038 \\ - 0 \cdot 003 \\ - 0 \cdot 042 \\ - 0 \cdot 069 \\ - 0 \cdot 094 \\ - 0 \cdot 110 \\ - 0 \cdot 102 \\ - 0 \cdot 050 \\ + 0 \cdot 006 \\ + 0 \cdot 080 \end{array}$	$\begin{array}{c} +0.081 \\ -0.005 \\ -0.042 \\ -0.073 \\ -0.094 \\ -0.107 \\ -0.100 \\ -0.050 \\ +0.002 \\ +0.060 \end{array}$	$\begin{array}{r} + 0.083 \\ + 0.042 \\ - 0.007 \\ - 0.034 \\ - 0.066 \\ - 0.089 \\ - 0.106 \\ - 0.106 \\ - 0.055 \\ - 0.004 \end{array}$	$\begin{array}{c} +0.080 \\ -0.003 \\ -0.038 \\ -0.066 \\ -0.092 \\ -0.107 \\ -0.098 \\ -0.025 \\ -0.010 \end{array}$	$\begin{array}{r} + 0 \cdot 089 \\ + 0 \cdot 047 \\ + 0 \cdot 012 \\ - 0 \cdot 026 \\ - 0 \cdot 049 \\ - 0 \cdot 083 \\ - 0 \cdot 091 \\ - 0 \cdot 086 \\ - 0 \cdot 057 \\ - 0 \cdot 015 \end{array}$	$\begin{array}{r} + 0 \cdot 090 \\ \\ + 0 \cdot 013 \\ - 0 \cdot 027 \\ - 0 \cdot 054 \\ - 0 \cdot 078 \\ - 0 \cdot 086 \\ - 0 \cdot 082 \\ - 0 \cdot 038 \\ - 0 \cdot 017 \end{array}$	$\begin{array}{c} + 0 \cdot 100 \\ 0 \cdot 053 \\ + 0 \cdot 018 \\ - 0 \cdot 013 \\ - 0 \cdot 038 \\ - 0 \cdot 058 \\ - 0 \cdot 069 \\ - 0 \cdot 069 \\ - 0 \cdot 069 \\ - 0 \cdot 045 \\ - 0 \cdot 019 \end{array}$	$\begin{array}{c} +0.099 \\ -0.025 \\ -0.008 \\ -0.041 \\ -0.058 \\ -0.071 \\ -0.071 \\ -0.048 \\ -0.038 \end{array}$

.

i

ų

1

4

WING C

¥

Ł

$\alpha = 2 \cdot 03 \deg$

 C_p

	$\frac{y}{s(x)}$	0		0.1		0.2		0	• 3	0.4	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$	·	$ \begin{array}{c} +0.066 \\ +0.013 \\ -0.033 \\ -0.070 \\ -0.099 \\ -0.109 \\ -0.112 \\ -0.090 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -$	$\begin{array}{c} +0.119\\ 0.055\\ +0.011\\ -0.034\\ -0.066\\ -0.091\\ -0.098\\ -0.077\\ \hline \end{array}$	$\begin{array}{r} + 0 \cdot 064 \\ + 0 \cdot 008 \\ - 0 \cdot 035 \\ - 0 \cdot 073 \\ - 0 \cdot 099 \\ - 0 \cdot 116 \\ - 0 \cdot 118 \\ - 0 \cdot 093 \\ - 0 \cdot 003 \\ + 0 \cdot 094 \\ + 0 \cdot 167 \end{array}$	$+0.105 \\ +0.014 \\ -0.038 \\ -0.062 \\ -0.089 \\ -0.093 \\ -0.075 \\ 0 \\ +0.088 \\ +0.167$	$\begin{array}{r} + 0 \cdot 063 \\ + 0 \cdot 010 \\ - 0 \cdot 032 \\ - 0 \cdot 073 \\ - 0 \cdot 101 \\ - 0 \cdot 121 \\ - 0 \cdot 123 \\ - 0 \cdot 101 \\ - 0 \cdot 014 \\ + 0 \cdot 079 \\ + 0 \cdot 158 \end{array}$	$\begin{array}{c} + 0.104 \\ - 0.039 \\ - 0.039 \\ - 0.070 \\ - 0.090 \\ - 0.094 \\ - 0.081 \\ - 0.013 \\ + 0.069 \\ + 0.147 \end{array}$	$\begin{array}{r} + 0 \cdot 062 \\ + 0 \cdot 009 \\ - 0 \cdot 035 \\ - 0 \cdot 073 \\ - 0 \cdot 104 \\ - 0 \cdot 128 \\ - 0 \cdot 135 \\ - 0 \cdot 113 \\ - 0 \cdot 028 \\ + 0 \cdot 060 \\ + 0 \cdot 144 \end{array}$	$ \begin{array}{r} +0.103 \\ +0.011 \\ -0.036 \\ -0.061 \\ -0.089 \\ -0.099 \\ -0.082 \\ -0.022 \\ +0.051 \\ +0.128 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 061 \\ + 0 \cdot 007 \\ - 0 \cdot 035 \\ - 0 \cdot 066 \\ - 0 \cdot 103 \\ - 0 \cdot 126 \\ - 0 \cdot 135 \\ - 0 \cdot 115 \\ - 0 \cdot 042 \\ + 0 \cdot 036 \\ + 0 \cdot 118 \end{array}$	$\begin{array}{c} +0.103 \\ -0.012 \\ -0.030 \\ -0.066 \\ -0.086 \\ -0.096 \\ -0.087 \\ -0.030 \\ +0.035 \\ +0.108 \end{array}$

TABLE 13—continued

~

WING C

*

7

 $\alpha = 2 \cdot 03 \, \deg$ C_p

		$\frac{y}{s(x)}$	0	•5	0	·6	0	•7	0	· 8	0	.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
62	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{r} + 0 \cdot 059 \\ + 0 \cdot 012 \\ - 0 \cdot 025 \\ - 0 \cdot 067 \\ - 0 \cdot 102 \\ - 0 \cdot 131 \\ - 0 \cdot 148 \\ - 0 \cdot 124 \\ - 0 \cdot 058 \\ + 0 \cdot 015 \\ + 0 \cdot 095 \end{array}$	$\begin{array}{r} +0.102 \\ +0.015 \\ -0.028 \\ -0.061 \\ -0.082 \\ -9.092 \\ -0.082 \\ -0.037 \\ +0.016 \\ +0.081 \end{array}$	$\begin{array}{r} + 0 \cdot 071 \\ + 0 \cdot 014 \\ - 0 \cdot 026 \\ - 0 \cdot 066 \\ - 0 \cdot 093 \\ - 0 \cdot 119 \\ - 0 \cdot 133 \\ - 0 \cdot 125 \\ - 0 \cdot 066 \\ - 0 \cdot 003 \\ + 0 \cdot 072 \end{array}$	$\begin{array}{c} +0.104 \\ -0.027 \\ -0.016 \\ -0.049 \\ -0.070 \\ -0.081 \\ -0.079 \\ -0.037 \\ +0.008 \\ +0.065 \end{array}$	$\begin{array}{c} + 0 \cdot 058 \\ + 0 \cdot 018 \\ - 0 \cdot 035 \\ - 0 \cdot 061 \\ - 0 \cdot 094 \\ - 0 \cdot 118 \\ - 0 \cdot 134 \\ - 0 \cdot 133 \\ - 0 \cdot 072 \\ - 0 \cdot 015 \end{array}$	$\begin{array}{c} +0.101 \\ +0.027 \\ -0.014 \\ -0.044 \\ -0.061 \\ -0.078 \\ -0.069 \\ -0.005 \\ +0.005 \\ -0.005 \\ \end{array}$	$\begin{array}{c} +0.071 \\ +0.022 \\ -0.015 \\ -0.056 \\ -0.080 \\ -0.118 \\ -0.122 \\ -0.114 \\ -0.079 \\ -0.031 \\ -\end{array}$	$\begin{array}{c} +0.105 \\ -0.035 \\ -0.003 \\ -0.030 \\ -0.047 \\ -0.055 \\ -0.051 \\ -0.016 \\ -0.001 \\ -\end{array}$	$\begin{array}{c} + 0 \cdot 080 \\ + 0 \cdot 030 \\ - 0 \cdot 008 \\ - 0 \cdot 044 \\ - 0 \cdot 073 \\ - 0 \cdot 102 \\ - 0 \cdot 100 \\ - 0 \cdot 110 \\ - 0 \cdot 091 \\ - 0 \cdot 080 \end{array}$	$\begin{array}{c} +0.112 \\ \hline \\ 0.039 \\ +0.017 \\ -0.015 \\ -0.024 \\ -0.037 \\ -0.031 \\ -0.018 \\ -0.012 \\ \hline \end{array}$

÷

1

ŧ

TABLE 13—continued

t

۲

WING C

.

$\alpha = 4 \cdot 07 \, \deg$

 C_p

		$\frac{y}{s(x)}$		0	0	·1	0	·2	0	•3	0	•4
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
63	0.10		+0.046	+0.148	+0.045	+0.134	+0.044	+0.131	+0.037	+0.125	+0.043	+0.126
	0.20		-0.008	0.084	-0.013		-0.013	<u> </u>	-0.014		-0.015	
	0.30		-0.050	+0.034	-0.052	+0.038	-0.052	+0.039	-0.056	+0.038	-0.055	+0.037
	0.40		-0.087	-0.010	-0.090	-0.016	-0.092	-0.014	-0.093	-0.011	-0.081	-0.004
	0.50		-0.115	-0.040	-0.115	-0.043	-0.116	-0.045	-0.126	-0.048	-0.124	-0.038
	0.60		-0.122	-0.073	-0.131	-0.070	-0.135	-0.068	-0.148	-0.066	-0.145	-0.060
	0.70		-0.125	-0.082	-0.130	-0.079	-0.137	-0.078	-0.152	-0.080	-0.152	-0.072
	0.80		-0.098	-0.063	-0.106	-0.063	-0.110	-0.066	-0.126	-0.067	-0.130	-0.067
	0.90				-0.004	+0.006	-0.016	-0.006	-0.033	-0.015	-0.047	-0.019
	0.95				+0.094	0.091	+0.082	+0.070	+0.060	+0.053	+0.033	+0.039
	0.98			_	+0.169	+0.170	+0.165	+0.144	+0.148	+0.127	+0.122	+0.112

-4

TABLE	13—continued
-------	--------------

ι

ţ.

4

÷.

WING C

.

7

 $\alpha = 4 \cdot 07 \deg$

1	
\mathcal{C}	\boldsymbol{v}
	A.,

	$\frac{y}{s(x)}$	0.5		0.6		0.7		0	·8	0.9	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	_ U.S.	L.S.
$\begin{array}{c} & 0 \cdot 10 \\ & 0 \cdot 20 \\ & 0 \cdot 30 \\ & 0 \cdot 40 \\ & 0 \cdot 50 \\ & 0 \cdot 60 \\ & 0 \cdot 60 \\ & 0 \cdot 70 \\ & 0 \cdot 80 \\ & 0 \cdot 90 \\ & 0 \cdot 95 \\ & 0 \cdot 98 \end{array}$, <u>, , , , , , , , , , , , , , , , , , </u>	$\begin{array}{c} +0.030\\ -0.015\\ -0.050\\ -0.092\\ -0.128\\ -0.157\\ -0.172\\ -0.142\\ -0.067\\ +0.007\\ +0.091\end{array}$	$\begin{array}{c} +0.125\\ -0.028\\ -0.005\\ -0.037\\ -0.058\\ -0.070\\ -0.066\\ -0.024\\ +0.026\\ +0.088\end{array}$	$\begin{array}{r} + 0 \cdot 048 \\ - 0 \cdot 055 \\ - 0 \cdot 049 \\ - 0 \cdot 079 \\ - 0 \cdot 118 \\ - 0 \cdot 143 \\ - 0 \cdot 155 \\ - 0 \cdot 140 \\ - 0 \cdot 074 \\ - 0 \cdot 003 \\ + 0 \cdot 071 \end{array}$	$\begin{array}{c} +0.122 \\ 0.049 \\ +0.005 \\ -0.024 \\ -0.046 \\ -0.058 \\ -0.058 \\ -0.019 \\ +0.018 \\ +0.072 \end{array}$	$\begin{array}{c} +0.033\\ -0.002\\ -0.056\\ -0.080\\ -0.113\\ -0.132\\ -0.146\\ -0.134\\ -0.063\\ -0.003\\ -\end{array}$	$\begin{array}{c} +0.118 \\ -0.050 \\ +0.015 \\ -0.013 \\ -0.031 \\ -0.045 \\ -0.041 \\ +0.016 \\ +0.020 \end{array}$	$\begin{array}{r} + 0 \cdot 045 \\ + 0 \cdot 009 \\ - 0 \cdot 024 \\ - 0 \cdot 069 \\ - 0 \cdot 096 \\ - 0 \cdot 144 \\ - 0 \cdot 149 \\ - 0 \cdot 151 \\ - 0 \cdot 130 \\ - 0 \cdot 082 \end{array}$	$\begin{array}{c} +0.229 \\ \hline 0.052 \\ +0.018 \\ -0.008 \\ -0.019 \\ -0.026 \\ -0.024 \\ +0.006 \\ +0.014 \\ \hline \end{array}$	$\begin{array}{c} + 0 \cdot 011 \\ - 0 \cdot 102 \\ - 0 \cdot 160 \\ - 0 \cdot 206 \\ - 0 \cdot 254 \\ - 0 \cdot 306 \\ - 0 \cdot 328 \\ - 0 \cdot 328 \\ - 0 \cdot 343 \\ - 0 \cdot 304 \\ - 0 \cdot 248 \\ - \end{array}$	$ \begin{array}{c} +0.119 \\ \\ 0.058 \\ 0.034 \\ 0.010 \\ +0.005 \\ -0.004 \\ 0 \\ +0.010 \\ +0.010 \\ \\ \end{array} $

· 64

TABLE 13—continued

ł

.

4

WING C

÷

$\alpha = 6 \cdot 11 \deg$

 C_p

	$\frac{y}{s(x)}$		0 ·	0	·1	0	•2	0	•3	0	•4
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \\ 0 \cdot 98 \end{array}$		$\begin{array}{c} + 0 \cdot 023 \\ - 0 \cdot 031 \\ - 0 \cdot 067 \\ - 0 \cdot 102 \\ - 0 \cdot 130 \\ - 0 \cdot 136 \\ - 0 \cdot 138 \\ - 0 \cdot 107 \\ - \\ - \\ - \\ - \\ - \\ - \end{array}$	$ \begin{array}{c} + 0.180 \\ 0.117 \\ 0.065 \\ + 0.015 \\ - 0.020 \\ - 0.050 \\ - 0.063 \\ - 0.048 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} + 0 \cdot 021 \\ - 0 \cdot 035 \\ - 0 \cdot 074 \\ - 0 \cdot 111 \\ - 0 \cdot 133 \\ - 0 \cdot 148 \\ - 0 \cdot 145 \\ - 0 \cdot 145 \\ - 0 \cdot 112 \\ - 0 \cdot 008 \\ + 0 \cdot 094 \\ + 0 \cdot 168 \end{array}$	+0.162 $$	$\begin{array}{c} +0.019\\ -0.035\\ -0.074\\ -0.113\\ -0.137\\ -0.155\\ -0.154\\ -0.122\\ -0.020\\ +0.083\\ +0.166\end{array}$	+0.157 -0.064 $+0.009$ -0.019 -0.045 -0.057 -0.051 0 $+0.071$ $+0.140$	$\begin{array}{c} + 0 \cdot 012 \\ - 0 \cdot 039 \\ - 0 \cdot 080 \\ - 0 \cdot 116 \\ - 0 \cdot 147 \\ - 0 \cdot 168 \\ - 0 \cdot 170 \\ - 0 \cdot 139 \\ - 0 \cdot 039 \\ + 0 \cdot 060 \\ + 0 \cdot 162 \end{array}$	$ \begin{array}{r} + 0.150 \\ \hline 0.063 \\ + 0.013 \\ - 0.023 \\ - 0.043 \\ - 0.058 \\ - 0.051 \\ - 0.006 \\ + 0.057 \\ + 0.125 \end{array} $	$\begin{array}{c} +0\cdot 017\\ -0\cdot 040\\ -0\cdot 080\\ -0\cdot 092\\ -0\cdot 147\\ -0\cdot 167\\ -0\cdot 169\\ -0\cdot 143\\ -0\cdot 056\\ +0\cdot 030\\ +0\cdot 123\end{array}$	$\begin{array}{c} + 0.147 \\ - \\ 0.061 \\ + 0.021 \\ - 0.013 \\ - 0.036 \\ - 0.048 \\ - 0.047 \\ - 0.008 \\ + 0.047 \\ + 0.113 \end{array}$

Ħ

TABLE	13-continued
1111111	10 0000000000

.

.

ŧ

WING C

*

.

.

 $\alpha = 6 \cdot 11 \deg$

 C_p

			0	0.5		0.6		0.7		•8	0.9	
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	10 20 30 40 50 60 70 80 90 95 98		$\begin{array}{r} + 0 \cdot 007 \\ - 0 \cdot 036 \\ - 0 \cdot 071 \\ - 0 \cdot 114 \\ - 0 \cdot 150 \\ - 0 \cdot 179 \\ - 0 \cdot 190 \\ - 0 \cdot 154 \\ - 0 \cdot 070 \\ + 0 \cdot 008 \\ + 0 \cdot 092 \end{array}$	$\begin{array}{c} +0.143 \\ \hline \\ 0.062 \\ +0.019 \\ -0.008 \\ -0.030 \\ -0.046 \\ -0.041 \\ -0.007 \\ +0.032 \\ +0.094 \end{array}$	$\begin{array}{r} + 0 \cdot 026 \\ - 0 \cdot 034 \\ - 0 \cdot 070 \\ - 0 \cdot 108 \\ - 0 \cdot 135 \\ - 0 \cdot 156 \\ - 0 \cdot 162 \\ - 0 \cdot 145 \\ - 0 \cdot 081 \\ - 0 \cdot 005 \\ + 0 \cdot 076 \end{array}$	$ \begin{array}{r} +0.139 \\ \hline 0.070 \\ +0.028 \\ -0.016 \\ -0.030 \\ -0.035 \\ -0.004 \\ +0.028 \\ +0.079 \\ \end{array} $	$\begin{array}{c} + 0 \cdot 016 \\ - 0 \cdot 013 \\ - 0 \cdot 067 \\ - 0 \cdot 085 \\ - 0 \cdot 112 \\ - 0 \cdot 124 \\ - 0 \cdot 137 \\ - 0 \cdot 121 \\ - 0 \cdot 044 \\ + 0 \cdot 017 \end{array}$	+0.133 -0.072 0.037 0.013 $+0.014$ -0.018 -0.014 $+0.031$ $+0.031$	$\begin{array}{c} + 0 \cdot 013 \\ - 0 \cdot 066 \\ - 0 \cdot 134 \\ - 0 \cdot 217 \\ - 0 \cdot 287 \\ - 0 \cdot 384 \\ - 0 \cdot 423 \\ - 0 \cdot 423 \\ - 0 \cdot 440 \\ - 0 \cdot 415 \\ - 0 \cdot 349 \\ - \end{array}$	$\begin{array}{c} 0.132 \\ \\ 0.073 \\ 0.040 \\ 0.025 \\ 0.009 \\ 0.002 \\ 0.004 \\ 0.028 \\ 0.027 \\ \end{array}$	$\begin{array}{c} -0.128 \\ -0.200 \\ -0.258 \\ -0.306 \\ -0.350 \\ -0.397 \\ -0.408 \\ -0.403 \\ -0.331 \\ -0.239 \\ \end{array}$	0.120 0.069 0.047 0.028 0.024 0.019 0.028 0.028 0.034 0.024 0.024

WING C

.

.

TABLE 13—continued

t

x

$\alpha = 8 \cdot 15 \text{ deg}$

α	
\mathbf{c}_p	

		$\frac{y}{s(x)}$	0		0.1		0.2		0.3		0.4	
-	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
7	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95 \end{array}$		$\begin{array}{c} +0.001 \\ -0.051 \\ -0.086 \\ -0.120 \\ -0.144 \\ -0.150 \\ -0.149 \\ -0.118 \\ \\ \\ \end{array}$	$ \begin{array}{c} +0.214\\ 0.148\\ 0.095\\ 0.041\\ +0.005\\ -0.025\\ -0.040\\ -0.029\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} + 0 \cdot 001 \\ - 0 \cdot 056 \\ - 0 \cdot 094 \\ - 0 \cdot 127 \\ - 0 \cdot 149 \\ - 0 \cdot 164 \\ - 0 \cdot 161 \\ - 0 \cdot 125 \\ - 0 \cdot 017 \\ + 0 \cdot 092 \end{array}$	$ \begin{array}{c} +0.192 \\ \hline 0.094 \\ 0.040 \\ +0.009 \\ -0.020 \\ -0.035 \\ -0.030 \\ +0.027 \\ 0.096 \\ \end{array} $	$\begin{array}{c} -0.003 \\ -0.056 \\ -0.095 \\ -0.133 \\ -0.155 \\ -0.171 \\ -0.167 \\ -0.132 \\ -0.025 \\ +0.084 \end{array}$	+0.184 $$ 0.094 0.040 $+0.005$ -0.019 -0.034 -0.033 $+0.013$ 0.075	$\begin{array}{c} -0.011 \\ -0.060 \\ -0.103 \\ -0.136 \\ -0.188 \\ -0.188 \\ -0.188 \\ -0.153 \\ -0.045 \\ +0.059 \end{array}$	$ \begin{array}{r} + 0.165 \\ - 0.092 \\ 0.042 \\ + 0.004 \\ - 0.016 \\ - 0.031 \\ - 0.029 \\ + 0.007 \\ 0.064 \end{array} $	$\begin{array}{c} -0.005 \\ -0.063 \\ -0.100 \\ -0.109 \\ -0.168 \\ -0.186 \\ -0.187 \\ -0.156 \\ -0.063 \\ +0.028 \end{array}$	$\begin{array}{c} .+0.172 \\ \hline \\ 0.089 \\ 0.047 \\ +0.015 \\ -0.007 \\ -0.023 \\ -0.025 \\ +0.006 \\ 0.055 \end{array}$
	0.98			_	+0.167	+0.173	+0.168	+0.141	+0.154	+0.130	+0.121	+0.119

E 2

TABLE (13—continued
---------	--------------

.

WING C

.

8

.

 $\alpha = 8 \cdot 15 \deg$ C_p

		$\frac{y}{s(x)}$. 0	·5 ·	0.6		0.7		0.8		0.9	
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
89	$\begin{array}{c} 0.10 \\ 0.20 \\ 0.30 \\ 0.40 \\ 0.50 \\ 0.60 \\ 0.70 \\ 0.80 \\ 0.90 \\ 0.95 \\ 0.98 \end{array}$		$\begin{array}{c} -0.016\\ -0.058\\ -0.093\\ -0.134\\ -0.166\\ -0.193\\ -0.203\\ -0.158\\ -0.071\\ +0.008\\ +0.094 \end{array}$	$\begin{array}{c} +0.161 \\ \hline \\ 0.087 \\ 0.048 \\ +0.018 \\ -0.004 \\ -0.016 \\ -0.017 \\ +0.008 \\ 0.046 \\ +0.101 \end{array}$	$\begin{array}{r} + 0 \cdot 005 \\ - 0 \cdot 048 \\ - 0 \cdot 083 \\ - 0 \cdot 121 \\ - 0 \cdot 144 \\ - 0 \cdot 158 \\ - 0 \cdot 164 \\ - 0 \cdot 137 \\ - 0 \cdot 062 \\ + 0 \cdot 005 \\ + 0 \cdot 082 \end{array}$	$\begin{array}{c} +0.158 \\ \hline 0.092 \\ 0.055 \\ 0.030 \\ +0.009 \\ -0.003 \\ -0.007 \\ +0.015 \\ 0.039 \\ +0.083 \end{array}$	$\begin{array}{c} +0\cdot 009\\ -0\cdot 014\\ -0\cdot 072\\ -0\cdot 099\\ -0\cdot 146\\ -0\cdot 176\\ -0\cdot 218\\ -0\cdot 218\\ -0\cdot 219\\ -0\cdot 151\\ -0\cdot 089\\ -\end{array}$	$\begin{array}{c} 0.145 \\$	$\begin{array}{c} -0.221 \\ -0.318 \\ -0.396 \\ -0.492 \\ -0.577 \\ -0.684 \\ -0.711 \\ -0.725 \\ -0.645 \\ -0.533 \end{array}$	$\begin{array}{c} 0.139 \\$	$\begin{array}{c} -0.193 \\ -0.267 \\ -0.322 \\ -0.374 \\ -0.419 \\ -0.463 \\ -0.479 \\ -0.460 \\ -0.362 \\ -0.248 \end{array}$	0.117 0.072 0.054 0.040 0.041 0.043 0.049 0.056 0.035

x

4

1

WING C

4

$\alpha = 10 \cdot 20$	deg
------------------------	-----

 C_p

	$\frac{y}{s(x)}$;)	• 0		0.1		0.2		0.3		0.4	
$\frac{\partial}{\partial c}$	<u>v</u> o		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
	10 20 30 40 50 60 70 80 90 95 98		$ \begin{array}{c} -0.024 \\ -0.075 \\ -0.109 \\ -0.140 \\ -0.165 \\ -0.172 \\ -0.170 \\ -0.133 \\ \end{array} $	$ \begin{array}{c} +0.248 \\ 0.180 \\ 0.125 \\ 0.075 \\ +0.036 \\ -0.001 \\ -0.018 \\ -0.014 \\ \\ \\ \\ \\ \\ \\ \\ -$	$\begin{array}{c} -0.023\\ -0.077\\ -0.115\\ -0.147\\ -0.168\\ -0.183\\ -0.177\\ -0.136\\ -0.024\\ +0.092\\ +0.168\end{array}$	$\begin{array}{c} +0.223\\ \hline \\0.124\\ 0.072\\ 0.040\\ +0.007\\ -0.012\\ -0.014\\ +0.038\\ 0.104\\ +0.174\end{array}$	$\begin{array}{c} -0.025\\ -0.075\\ -0.114\\ -0.152\\ -0.175\\ -0.188\\ -0.181\\ -0.145\\ -0.036\\ +0.082\\ +0.167\end{array}$	+0.211 $$	$ \begin{array}{r} -0.034 \\ -0.082 \\ -0.124 \\ -0.158 \\ -0.189 \\ -0.207 \\ -0.204 \\ -0.168 \\ -0.056 \\ +0.052 \\ \end{array} $	+0.201 $$	$\begin{array}{c} -0.030\\ -0.083\\ -0.121\\ -0.154\\ -0.185\\ -0.199\\ -0.198\\ -0.165\\ -0.067\\ +0.024\\ +0.119\end{array}$	$ \begin{array}{c} +0.196 \\ \hline 0.116 \\ 0.076 \\ 0.056 \\ 0.023 \\ +0.004 \\ -0.002 \\ +0.021 \\ 0.065 \\ +0.126 \\ \end{array} $

TABLE 13—continued

WING C

4

.

 $\alpha = 10 \cdot 20 \deg$

	$\frac{y}{s(x)}$ 0.5		0.6		0.7		0.8		0.9		
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \cdot 10 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \\ 0 \cdot 98 \end{array}$		$\begin{array}{c} -0.034\\ -0.075\\ -0.110\\ -0.147\\ -0.179\\ -0.203\\ -0.211\\ -0.163\\ -0.073\\ +0.008\\ +0.095\end{array}$	$\begin{array}{c} 0.183 \\ \hline 0.113 \\ 0.076 \\ 0.049 \\ 0.028 \\ 0.013 \\ 0.008 \\ 0.027 \\ 0.056 \\ 0.107 \end{array}$	$\begin{array}{c} -0.006\\ -0.058\\ -0.092\\ -0.127\\ -0.153\\ -0.172\\ -0.178\\ -0.159\\ -0.087\\ -0.021\\ +0.064\end{array}$	$\begin{array}{c} 0.174 \\ \\ 0.114 \\ 0.081 \\ 0.056 \\ 0.038 \\ 0.026 \\ 0.017 \\ 0.030 \\ 0.047 \\ 0.085 \end{array}$	$\begin{array}{c} -0.078\\ -0.083\\ -0.167\\ -0.229\\ -0.331\\ -0.382\\ -0.454\\ -0.459\\ -0.374\\ -0.282\\ \end{array}$	$\begin{array}{c} 0.156 \\ \hline \\ 0.106 \\ 0.078 \\ 0.061 \\ 0.048 \\ 0.037 \\ 0.034 \\ 0.053 \\ 0.050 \\ \hline \\ \end{array}$	$ \begin{array}{c} -0.379 \\ -0.571 \\ -0.664 \\ -0.759 \\ -0.827 \\ -0.908 \\ -0.899 \\ -0.869 \\ -0.734 \\ -0.568 \\ \end{array} $	$\begin{array}{c} 0.143 \\ \\ 0.097 \\ 0.073 \\ 0.062 \\ 0.053 \\ 0.052 \\ 0.052 \\ 0.052 \\ 0.066 \\ 0.044 \\ \end{array}$	$ \begin{array}{c} -0.282 \\ -0.350 \\ -0.407 \\ -0.464 \\ -0.459 \\ -0.556 \\ -0.561 \\ -0.524 \\ -0.396 \\ -0.260 \\ \end{array} $	$\begin{array}{c} 0.110 \\ - \\ 0.073 \\ 0.060 \\ 0.053 \\ 0.055 \\ 0.062 \\ 0.072 \\ 0.075 \\ 0.049 \\ - \end{array}$

ł

.

 \widetilde{c}

TABLE	13—conti	nued
-------	----------	------

Ť

WING C

л

$\alpha \,=\, 15 \cdot 33 \, \deg$

 C_p

	$\frac{y}{s(x)}$	0		0.1		0.2		0.3		0.4	
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \hline \\ 0 \\ \end{array} \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		$ \begin{array}{c} -0.080 \\ -0.124 \\ -0.155 \\ -0.188 \\ -0.220 \\ -0.223 \\ -0.220 \\ -0.185 \\ \\ \\ \\ \\ \\ \\ \\ -$	$\begin{array}{c} 0 \cdot 340 \\ 0 \cdot 275 \\ 0 \cdot 215 \\ 0 \cdot 165 \\ 0 \cdot 122 \\ 0 \cdot 082 \\ 0 \cdot 056 \\ 0 \cdot 046 \\$	$\begin{array}{c} -0.082\\ -0.169\\ -0.171\\ -0.203\\ -0.226\\ -0.240\\ -0.236\\ -0.194\\ -0.065\\ +0.069\\ +0.171\end{array}$	$\begin{array}{c} 0.302 \\$	$\begin{array}{c} -0.081\\ -0.129\\ -0.167\\ -0.205\\ -0.234\\ -0.242\\ -0.238\\ -0.196\\ -0.073\\ 0.064\\ 0.169\end{array}$	$\begin{array}{c} 0.283 \\ \hline \\ 0.198 \\ 0.152 \\ 0.112 \\ 0.085 \\ 0.064 \\ 0.044 \\ 0.056 \\ 0.100 \\ 0.152 \end{array}$	$\begin{array}{r} -0.088 \\ -0.138 \\ -0.175 \\ -0.210 \\ -0.240 \\ -0.258 \\ -0.254 \\ -0.212 \\ -0.090 \\ +0.029 \\ +0.144 \end{array}$	$\begin{array}{c} 0.268 \\$	$ \begin{array}{r} -0.081 \\ -0.135 \\ -0.170 \\ \hline \\ -0.215 \\ -0.257 \\ -0.256 \\ -0.221 \\ -0.112 \\ -0.010 \\ +0.097 \\ \end{array} $	$\begin{array}{c} 0.250 \\$
Τ	Ά	В	L	Æ	1	3	—continued				
---	---	---	---	---	---	---	------------				

WING C

α	=	15	•33	deg
---	---	----	-----	-----

$^{\circ}$	
\sim	Ø

	$\frac{y}{s(x)}$	0	• 5	0	·6	0	•7	0	·8	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{cccc} & 0.10 \\ & 0.20 \\ & 0.30 \\ & 0.40 \\ & 0.50 \\ & 0.60 \\ & 0.70 \\ & 0.80 \\ & 0.90 \\ & 0.95 \\ & 0.98 \end{array}$		$\begin{array}{c} -0.085\\ -0.118\\ -0.204\\ -0.204\\ -0.249\\ -0.283\\ -0.307\\ -0.256\\ -0.162\\ -0.071\\ +0.046\end{array}$	0.232 0.176 0.147 0.122 0.102 0.085 0.070 0.068 0.077 0.106	$\begin{array}{c} -0.224\\ -0.245\\ -0.261\\ -0.342\\ -0.437\\ -0.508\\ -0.535\\ -0.508\\ -0.508\\ -0.392\\ -0.270\\ -0.122\end{array}$	$\begin{array}{c} 0.227 \\$	$\begin{array}{c} -0.719\\ -0.857\\ -0.924\\ -1.007\\ -1.153\\ -1.155\\ -1.151\\ -1.078\\ -0.817\\ -0.614\end{array}$	$\begin{array}{c} 0.184 \\ \hline \\ 0.150 \\ 0.134 \\ 0.126 \\ 0.117 \\ 0.109 \\ 0.106 \\ 0.113 \\ 0.072 \\ \hline \end{array}$	$ \begin{array}{r} -0.600 \\ -0.751 \\ -0.926 \\ -0.963 \\ -0.950 \\ -0.957 \\ -0.923 \\ -0.830 \\ -0.624 \\ -0.430 \\ \end{array} $	$\begin{array}{c} 0.153 \\ \hline \\ 0.122 \\ 0.113 \\ 0.111 \\ 0.109 \\ 0.113 \\ 0.117 \\ 0.113 \\ 0.077 \\ \hline \end{array}$	$\begin{array}{c} -0.524 \\ -0.613 \\ -0.673 \\ -0.727 \\ -0.779 \\ -0.800 \\ -0.769 \\ -0.677 \\ -0.455 \\ -0.274 \end{array}$	$\begin{array}{c} 0.071 \\ \\ 0.062 \\ 0.062 \\ 0.068 \\ 0.075 \\ 0.095 \\ 0.112 \\ 0.116 \\ 0.081 \end{array}$

Ă

TABLE 13—continued

4

WING C

$\alpha = 20.48 \text{ deg}$ C_p

	$\frac{y}{s(x)}$	()	. 0	·1	0	·2	0	• 3	0	•4
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98 \end{array}$		$ \begin{array}{c} -0.140 \\ -0.185 \\ -0.219 \\ -0.260 \\ -0.296 \\ -0.307 \\ -0.310 \\ -0.271 \\ \\ \\ \\ \\ \\ \\ \\ -$	$\begin{array}{c} 0 \cdot 444 \\ 0 \cdot 372 \\ 0 \cdot 318 \\ 0 \cdot 268 \\ 0 \cdot 220 \\ 0 \cdot 173 \\ 0 \cdot 140 \\ 0 \cdot 116 \\$	$\begin{array}{r} -0.146 \\ -0.194 \\ -0.232 \\ -0.278 \\ -0.303 \\ -0.325 \\ -0.323 \\ -0.280 \\ -0.132 \\ +0.037 \\ +0.176 \end{array}$	$\begin{array}{c} 0.387 \\$	$\begin{array}{r} -0.149 \\ -0.194 \\ -0.235 \\ -0.283 \\ -0.309 \\ -0.330 \\ -0.328 \\ -0.283 \\ -0.283 \\ -0.143 \\ +0.014 \\ +0.158 \end{array}$	$\begin{array}{c} 0.360 \\ \hline \\ 0.282 \\ 0.239 \\ 0.204 \\ 0.179 \\ 0.148 \\ 0.117 \\ 0.109 \\ 0.136 \\ 0.183 \end{array}$	$\begin{array}{c} -0.156\\ -0.195\\ -0.241\\ -0.285\\ -0.330\\ -0.359\\ -0.361\\ -0.324\\ -0.175\\ -0.028\\ +0.120\end{array}$	$\begin{array}{c} 0.333\\\\ 0.271\\ 0.234\\ 0.205\\ 0.178\\ 0.153\\ 0.124\\ 0.107\\ 0.126\\ 0.163\\ \end{array}$	$\begin{array}{c} -0.168\\ -0.209\\ -0.253\\ -0.316\\ -0.370\\ -0.405\\ -0.416\\ -0.376\\ -0.241\\ -0.095\\ +0.052\end{array}$	$\begin{array}{c} 0.310 \\ \hline \\ 0.256 \\ 0.231 \\ 0.200 \\ 0.183 \\ 0.162 \\ 0.135 \\ 0.116 \\ 0.118 \\ 0.137 \end{array}$

TABLE 13—con	ntinued
--------------	---------

WING C

¥

ĸ

 $\alpha = 20 \cdot 48 \deg$ C

C_p

		$\frac{y}{s(x)}$	0	· 5	0	·6	0	•7	0	•8	0	1.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
7 /	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ \end{array}$		$\begin{array}{c} -0.378 \\ -0.299 \\ -0.389 \\ -0.518 \\ -0.597 \\ -0.660 \\ -0.685 \\ -0.587 \\ -0.420 \\ -0.251 \end{array}$	$\begin{array}{c} 0.275 \\ \\ 0.237 \\ 0.218 \\ 0.195 \\ 0.181 \\ 0.170 \\ 0.148 \\ 0.123 \\ 0.102 \end{array}$	$\begin{array}{c} -0.919 \\ -0.988 \\ -0.988 \\ -1.070 \\ -1.160 \\ -1.200 \\ -1.156 \\ -1.026 \\ -0.738 \\ -0.496 \end{array}$	$\begin{array}{c} 0.262 \\ \\ 0.232 \\ 0.214 \\ 0.209 \\ 0.195 \\ 0.192 \\ 0.174 \\ 0.151 \\ 0.113 \end{array}$	$\begin{array}{c} -0.966\\ -1.502\\ -1.642\\ -1.615\\ -1.663\\ -1.573\\ -1.487\\ -1.325\\ -0.929\\ -0.654\end{array}$	$\begin{array}{c} 0.189 \\ \hline 0.182 \\ 0.178 \\ 0.178 \\ 0.176 \\ 0.166 \\ 0.162 \\ 0.160 \\ 0.102 \end{array}$	$\begin{array}{c} -0.922 \\ -0.990 \\ -1.008 \\ -1.037 \\ -1.046 \\ -1.043 \\ -0.994 \\ -0.868 \\ -0.572 \\ -0.368 \end{array}$	$\begin{array}{c} 0.137 \\$	$ \begin{array}{r} -0.808 \\ -0.891 \\ -0.969 \\ -1.027 \\ -1.055 \\ -1.044 \\ -0.956 \\ -0.795 \\ -0.477 \\ -0.281 \\ \end{array} $	$\begin{array}{c} 0.010 \\$
	0.98		-0.070	0.099	-0.276	0.073			—			. —

3

4

XX77 N	T C	α
WIN	G	C

÷

a

TABLE 13—continued

۲

1

 $\alpha = 25 \cdot 63 \deg$

 C_p

		$\frac{y}{s(x)}$	()	0	·1	0	·2	0.	• 3	0	4
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
Ч Л	0.10		-0.226	0.543	-0.224	0.474	-0.235	0.434	-0.290	0.395	-0.512°	0.358
	$0 \cdot 20$		-0.271	0.475	-0.272		-0.273		-0.295		-0.473	
	0.30		-0.305	0.420	-0.317	0.393	-0.333	0.371	-0.376	0.349	-0.533	0.325
	0.40		-0.362	0.370	-0.372	0.345	-0·394	0.332	-0.413	0.320	-0.639	0.304
	0.50		-0.411	0.322	-0.409	0.309	-0.434	0.304	-0.517	0.293	-0.706	0.283
	0.60		-0.427	0.272	-0.440	0.272	-0.463	0.275	-0.559	0.270	-0.769	0.270
	0.70		-0.435	0.235	-0.442	0.233	-0.467	0.240	-0.561	0.243	-0.765	0.250
	$0 \cdot 80$		-0.338	0.193	-0.390	0.193	-0.411	0.198	-0.503	0.208	-0.669	0.214
	0.90				-0.213	0.178	-0.233	0.169	-0.303	0.170	-0.441	0.174
	0.95				+0.003	0.199	-0.039	0.173	-0.107	0.164	-0.230	0.152
	0.98		_		+0.172	0.237	+0.137	0.208	+0.083	0.182	-0.022	0 · 145

.

TABLE	13—continued

WING C

P.

1

.

 $\alpha = 25 \cdot 63 \text{ deg}$

\sim	
U.	2
- 7	,

<u></u>	$\frac{y}{s(x)}$	0.	5	0	0.6 0.7 0.8				· 8	0.9		
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	
$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$\begin{array}{c} -1\cdot 155 \\ -1\cdot 007 \\ -1\cdot 035 \\ -1\cdot 150 \\ -1\cdot 213 \\ -1\cdot 254 \\ -1\cdot 237 \\ -1\cdot 018 \\ -0\cdot 696 \\ -0\cdot 430 \\ -0\cdot 186 \end{array}$	$\begin{array}{c} 0.313 \\ \hline 0.296 \\ 0.285 \\ 0.271 \\ 0.266 \\ 0.254 \\ 0.228 \\ 0.186 \\ 0.142 \\ 0.104 \end{array}$	$\begin{array}{c} -1 \cdot 440 \\ -1 \cdot 861 \\ -1 \cdot 979 \\ -1 \cdot 938 \\ -1 \cdot 911 \\ 1 \cdot 825 \\ -1 \cdot 686 \\ -1 \cdot 436 \\ -0 \cdot 974 \\ -0 \cdot 655 \\ -0 \cdot 392 \end{array}$	$\begin{array}{c} 0.270 \\ \hline \\ 0.262 \\ 0.258 \\ 0.239 \\ 0.257 \\ 0.260 \\ 0.239 \\ 0.203 \\ 0.137 \\ 0.060 \end{array}$	$\begin{array}{c} -1 \cdot 360 \\ -1 \cdot 681 \\ -2 \cdot 016 \\ -1 \cdot 920 \\ -1 \cdot 870 \\ -1 \cdot 750 \\ -1 \cdot 650 \\ -1 \cdot 437 \\ -0 \cdot 965 \\ -0 \cdot 675 \end{array}$	0.191 0.212 0.214 0.227 0.231 0.247 0.235 0.216 0.141	$\begin{array}{c} -1 \cdot 316 \\ -1 \cdot 281 \\ -1 \cdot 274 \\ -1 \cdot 299 \\ -1 \cdot 293 \\ -1 \cdot 251 \\ -1 \cdot 170 \\ -0 \cdot 948 \\ -0 \cdot 584 \\ -0 \cdot 394 \end{array}$	$\begin{array}{c} 0.104 \\ \hline 0.137 \\ 0.150 \\ 0.173 \\ 0.182 \\ 0.217 \\ 0.234 \\ 0.215 \\ 0.145 \\ \hline \end{array}$	$-1 \cdot 138 \\ -1 \cdot 199 \\ -1 \cdot 293 \\ -1 \cdot 332 \\ -1 \cdot 347 \\ -1 \cdot 291 \\ -1 \cdot 166 \\ -0 \cdot 825 \\ -0 \cdot 518 \\ -0 \cdot 364 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0$	$ \begin{array}{c} -0.063 \\ -0.020 \\ -0.001 \\ +0.043 \\ 0.070 \\ 0.131 \\ 0.175 \\ 0.187 \\ +0.135 \\ \end{array} $	

2

٩

.

WING C

• 6

*

$\alpha = 30.77 \deg$

 C_p

-		$\frac{y}{s(x)}$	()	0	•1	0	2	0	• 3	0.4		
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	
77	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 0.90\\ 0.95\\ 0.98\end{array}$		$ \begin{array}{c} -0.305 \\ -0.370 \\ -0.405 \\ -0.457 \\ -0.510 \\ -0.531 \\ -0.545 \\ -0.489 \\ \\ \\ \\ \\ \\ \\ \\ -$	$\begin{array}{c} 0.645 \\ 0.580 \\ 0.530 \\ 0.485 \\ 0.435 \\ 0.385 \\ 0.335 \\ 0.295 \\$	$ \begin{array}{r} -0.329 \\ -0.379 \\ -0.421 \\ -0.480 \\ -0.535 \\ -0.573 \\ -0.577 \\ -0.505 \\ -0.279 \\ -0.031 \\ +0.167 \end{array} $	$\begin{array}{c} 0.545 \\ \hline \\ 0.486 \\ 0.452 \\ 0.423 \\ 0.377 \\ 0.343 \\ 0.284 \\ 0.242 \\ 0.247 \\ 0.268 \end{array}$	$\begin{array}{c} -0.409 \\ -0.431 \\ -0.478 \\ -0.561 \\ -0.617 \\ -0.669 \\ -0.660 \\ -0.574 \\ -0.318 \\ -0.080 \\ +0.115 \end{array}$	0.503 0.460 0.430 0.409 0.374 0.340 0.289 0.233 0.229 0.255	$ \begin{array}{r} -0.624 \\ -0.607 \\ -0.681 \\ -0.624 \\ -0.802 \\ -0.846 \\ -0.824 \\ -0.724 \\ -0.724 \\ -0.433 \\ -0.185 \\ +0.037 \end{array} $	$\begin{array}{c} 0.451 \\ \hline \\ 0.425 \\ 0.408 \\ 0.391 \\ 0.373 \\ 0.339 \\ 0.296 \\ 0.248 \\ 0.227 \\ 0.244 \end{array}$	$-1 \cdot 199 \\ -1 \cdot 143 \\ -1 \cdot 169 \\ -1 \cdot 191 \\ -1 \cdot 234 \\ -1 \cdot 247 \\ -1 \cdot 169 \\ -0 \cdot 985 \\ -0 \cdot 631 \\ -0 \cdot 343 \\ -0 \cdot 085$	$\begin{array}{c} 0.400 \\ \\ 0.387 \\ 0.374 \\ 0.365 \\ 0.356 \\ 0.343 \\ 0.304 \\ 0.238 \\ 0.199 \\ 0.186 \end{array}$	

TA	BL	Æ	13 -	-continued

WING C

۲

.

 $\alpha = 30 \cdot 77 \text{ deg}$

1	7	
C	•	\boldsymbol{n}

	$\frac{y}{s(x)}$	0	· 5	0	· 6	0	0.7 0.8				0.9		
$\frac{x}{c_0}$	-	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.		
$ \begin{array}{cccc} 72 & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \\ & 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \\ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} -1\cdot 887 \\ -1\cdot 934 \\ -2\cdot 056 \\ -2\cdot 052 \\ -1\cdot 959 \\ -1\cdot 887 \\ -1\cdot 731 \\ -1\cdot 364 \\ -0\cdot 883 \\ -0\cdot 541 \\ -0\cdot 250 \end{array}$	$\begin{array}{c} 0.340 \\ \\ 0.353 \\ 0.357 \\ 0.361 \\ 0.357 \\ 0.340 \\ 0.319 \\ 0.256 \\ 0.205 \\ 0.138 \end{array}$	$-1 \cdot 733 \\ -2 \cdot 061 \\ -2 \cdot 695 \\ -2 \cdot 716 \\ -2 \cdot 610 \\ -2 \cdot 372 \\ -2 \cdot 087 \\ -1 \cdot 670 \\ -1 \cdot 057 \\ -0 \cdot 699 \\ -0 \cdot 419$	$\begin{array}{c} 0\cdot 275 \\ \hline \\ 0\cdot 309 \\ 0\cdot 318 \\ 0\cdot 318 \\ 0\cdot 339 \\ 0\cdot 343 \\ 0\cdot 322 \\ 0\cdot 271 \\ 0\cdot 190 \\ 0\cdot 096 \end{array}$	$\begin{array}{c} -1\cdot732\\ -1\cdot888\\ -2\cdot155\\ -2\cdot338\\ -2\cdot291\\ -2\cdot116\\ -1\cdot866\\ -1\cdot508\\ -0\cdot959\\ -0\cdot670\\ -\end{array}$	$\begin{array}{c} 0.173 \\ \\ 0.224 \\ 0.257 \\ 0.270 \\ 0.292 \\ 0.309 \\ 0.313 \\ 0.283 \\ 0.202 \\ \end{array}$	$\begin{array}{c} -1 \cdot 768 \\ -1 \cdot 682 \\ -1 \cdot 619 \\ -1 \cdot 542 \\ -1 \cdot 503 \\ -1 \cdot 512 \\ -1 \cdot 383 \\ -1 \cdot 066 \\ -0 \cdot 611 \\ -0 \cdot 436 \end{array}$	$\begin{array}{c} 0.058 \\ \\ 0.113 \\ 0.160 \\ 0.185 \\ 0.232 \\ 0.274 \\ 0.296 \\ 0.274 \\ 0.202 \\ \end{array}$	$ \begin{array}{r} -1 \cdot 513 \\ -1 \cdot 586 \\ -1 \cdot 603 \\ -1 \cdot 543 \\ -1 \cdot 539 \\ -1 \cdot 526 \\ -1 \cdot 393 \\ -1 \cdot 058 \\ -0 \cdot 564 \\ -0 \cdot 422 \\ \\ \end{array} $	$\begin{array}{c} -0.186 \\ -0.083 \\ -0.023 \\ 0.015 \\ 0.071 \\ 0.148 \\ 0.213 \\ 0.234 \\ 0.191 \\ \end{array}$		

Ŗ.

×.

TABLE 14

Pressure Coefficients at $\beta = -5$ deg

٠

$\alpha = 0 \deg$

W	IN	G	С·
---	----	---	----

.

	C_{p}														
	$\frac{y}{s(x)}$		0	. 0	·1	0	·2	0	- 4	0	· 6	0	- 8	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		-0.083 -0.104 -0.081	$ \begin{array}{c} -0.098 \\ -0.114 \\ -0.077 \end{array} $	$ \begin{array}{r} -0.032 \\ -0.113 \\ -0.124 \\ -0.092 \end{array} $	$-0.120 \\ -0.126 \\ -0.089$	$ \begin{array}{c} + 0 \cdot 009 \\ - 0 \cdot 055 \\ - 0 \cdot 094 \\ - 0 \cdot 080 \end{array} $	$-0.062 \\ -0.098 \\ -0.075$	+ 0.003 - 0.059 - 0.093 - 0.077	$-0.059 \\ -0.092 \\ -0.075$	$ \begin{array}{c} + 0.005 \\ - 0.047 \\ - 0.084 \\ - 0.074 \end{array} $	$-0.052 \\ -0.086 \\ -0.074$	+0.009 - 0.041 - 0.071 - 0.061	-0.043 -0.072 -0.060	+0.006 -0.031 -0.060 -0.048	-0.027 -0.059 -0.054

	$\frac{\mathcal{Y}}{s(x)}$		_	0.1	_	0.2	_	0.4		0.6		0.8		0.9
$\frac{x}{c_0}$			U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $			+0.027 - 0.065 - 0.118 - 0.097	+0.078 -0.075 -0.124 -0.097		+0.074 -0.061 -0.127 -0.109	+0.049 -0.057 -0.121 -0.127	$ \begin{array}{c} -0.051 \\ -0.124 \\ -0.127 \end{array} $	+0.063 - 0.034 - 0.107 - 0.130	$ \begin{array}{r} -0.038 \\ -0.109 \\ -0.123 \end{array} $	+0.083 - 0.007 - 0.080 - 0.107	+0.059 - 0.011 - 0.082 - 0.110	+0.101 +0.015 -0.056 -0.081	+0.016 - 0.051 - 0.084

TABLE	14—ca	ntinued
-------	-------	---------

WING C

1

.

$\alpha = 2 \cdot 03 \deg$

C_p

	$\frac{y}{s(x)}$) 0		0	·1	0	·2	0	•4	0		0	.8	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		-0.095 -0.114 -0.087	-0.092 -0.104 -0.071	$ \begin{array}{r} -0.083 \\ -0.116 \\ -0.128 \\ -0.092 \end{array} $	$-0.096 \\ -0.113 \\ -0.078$	$ \begin{array}{r} -0.009 \\ -0.074 \\ -0.111 \\ -0.091 \\ \end{array} $	$ \begin{array}{r} -0.043 \\ -0.082 \\ -0.065 \\ \end{array} $	$ \begin{array}{r} -0.015 \\ -0.075 \\ -0.110 \\ -0.091 \end{array} $	$-0.041 \\ -0.076 \\ -0.062$	$ \begin{array}{r} -0.010 \\ -0.064 \\ -0.101 \\ -0.089 \\ \end{array} $	$ \begin{array}{c} -0.033 \\ -0.064 \\ -0.056 \end{array} $	$ \begin{array}{r} -0.006 \\ -0.061 \\ -0.094 \\ -0.082 \end{array} $	$-0.027 \\ -0.051 \\ -0.038$	$ \begin{array}{r} -0.015 \\ -0.053 \\ -0.094 \\ -0.103 \end{array} $	$ \begin{array}{c} -0.014 \\ -0.036 \\ -0.026 \end{array} $

	$\frac{y}{s(x)}$		0.1	_	0.2	_	0.4		0.6	_	0.8	_	0.9
$\frac{x}{c_0}$		 U.S.	L.S.	Ú.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		+0.004 -0.085 -0.127 -0.103	+0.080 -0.047 -0.104 -0.089	+0.015 -0.084 -0.138 -0.118	+0.079 - 0.039 - 0.107 - 0.101	+0.023 -0.056 -0.145 -0.143	-0.026 -0.101 -0.112	+0.037 -0.063 -0.136 -0.154	-0.006 -0.077 -0.084	+0.055 -0.041 -0.126 -0.139	+0.026 -0.040 -0.067	+0.071 -0.025 -0.102 -0.123	$ \begin{array}{c}$

•

;

ŧ

à

4

WING C

\$

4

.

 $\alpha = 4 \cdot 07 \deg$ C_p

• • •	$\frac{y}{s(x)}$		0	0	·1	0	·2	0	·4	0	·6	0		0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$,	$ \begin{array}{c} -0.110 \\ -0.128 \\ -0.097 \end{array} $	-0.076 -0.091 -0.062	$ \begin{array}{r} -0.099 \\ -0.128 \\ -0.142 \\ -0.103 \end{array} $		$ \begin{array}{r} -0.028 \\ -0.092 \\ -0.127 \\ -0.100 \\ \end{array} $	-0.024 -0.064 -0.052	$ \begin{array}{r} -0.032 \\ -0.096 \\ -0.129 \\ -0.103 \\ \end{array} $	-0.019 -0.055 -0.047	$ \begin{array}{r} -0.029 \\ -0.086 \\ -0.122 \\ -0.105 \\ \end{array} $	-0.014 -0.043 -0.038	$ \begin{array}{r} -0.015 \\ -0.069 \\ -0.108 \\ -0.103 \\ \end{array} $	$-0.007 \\ -0.027 \\ -0.015$	$ \begin{array}{r} -0.143 \\ -0.211 \\ -0.274 \\ -0.278 \\ \end{array} $	0.001 0.017 0.005

	$\frac{y}{s(x)}$	_	0.1		0.2)•4	_	0.6	_	0.8	_().9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		$ \begin{array}{r} -0.023 \\ -0.108 \\ -0.148 \\ -0.111 \\ \end{array} $	+0.084 -0.020 -0.085 -0.078	$ \begin{array}{r} -0.014 \\ -0.108 \\ -0.160 \\ -0.129 \end{array} $	+0.077 - 0.012 - 0.085 - 0.086	$ \begin{array}{r} -0.006 \\ -0.087 \\ -0.169 \\ -0.158 \end{array} $	$0.005 \\ 0.061 \\ 0.081$	+0.007 -0.093 -0.165 -0.175	$ \begin{array}{r} $	+0.032 -0.059 -0.133 -0.147	$ \begin{array}{c}$	$ \begin{array}{r} -0.048 \\ -0.200 \\ -0.344 \\ -0.408 \end{array} $	$0.841 \\ 0.385 \\ 0.200$

81

די

TABLE	14-	-continued

.

+

ą

 $\alpha = 6 \cdot 11 \text{ deg}$

$$C_p$$

	$\frac{y}{s(x)}$	0		. 0.1		0.2		0	·4	0	·6	0		0	1-9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.Ś.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $		-0.123 -0.141 -0.108	-0.058 -0.072 -0.049	$ \begin{array}{r} -0.109 \\ -0.140 \\ -0.154 \\ -0.113 \end{array} $	$ - 0 \cdot 041 - 0 \cdot 070 - 0 \cdot 052 $	$ \begin{array}{r} -0.053 \\ -0.116 \\ -0.146 \\ -0.116 \\ \end{array} $	-0.004 -0.042 -0.037	$ \begin{array}{r} -0.051 \\ -0.114 \\ -0.146 \\ -0.116 \end{array} $	+0.003 - 0.032 - 0.029	$ \begin{array}{r} -0.047 \\ -0.103 \\ -0.140 \\ -0.115 \end{array} $	+0.005 - 0.021 - 0.017	$ \begin{array}{r} -0.095 \\ -0.180 \\ -0.280 \\ -0.310 \end{array} $		$ \begin{array}{r} -0.191 \\ -0.245 \\ -0.299 \\ -0.290 \\ \end{array} $	

	$\frac{y}{s(x)}$		_	0.1	_	0.2		0.4	_	0.6		0.8		0.9
$\frac{x}{c_0}$		-	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $			$ \begin{array}{c} -0.046 \\ -0.126 \\ -0.163 \\ -0.118 \end{array} $	+0.081 +0.009 -0.058 -0.061	$ \begin{array}{r} -0.039 \\ -0.130 \\ -0.177 \\ -0.139 \\ \end{array} $	+0.074 +0.017 -0.057 -0.068	$ \begin{array}{r} -0.033 \\ -0.123 \\ -0.189 \\ -0.172 \end{array} $	$ \begin{array}{c} - \\ + 0.035 \\ - 0.040 \\ - 0.066 \end{array} $	$ \begin{array}{r} -0.019 \\ -0.115 \\ -0.178 \\ -0.170 \\ \end{array} $	$+0.053 \\ -0.012 \\ -0.040$	$ \begin{array}{r} -0.032 \\ -0.231 \\ -0.421 \\ -0.527 \end{array} $	$ \begin{array}{c}\\ 0.081\\ 0.026\\ 0.002 \end{array} $	$ \begin{array}{r} -0.185 \\ -0.321 \\ -0.455 \\ -0.498 \\ \end{array} $	$\begin{array}{c}\\ 0 \cdot 094\\ 0 \cdot 060\\ 0 \cdot 047 \end{array}$

82

.

*

.

٠

1

ę

- 8

 C_p

	$\frac{y}{s(x)}$		0	0	·1	0	•2•	0	•4	0	·6	0	·8	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0.20 \\ 0.40 \\ 0.60 \\ 0.80 \end{array} $		$ \begin{array}{c} -0.136 \\ -0.155 \\ -0.117 \end{array} $	-0.034 -0.048 -0.031	$ \begin{array}{r} -0.121 \\ -0.150 \\ -0.166 \\ -0.120 \end{array} $	$ \begin{array}{c} -0.006 \\ -0.038 \\ -0.031 \end{array} $	$ \begin{array}{r} -0.079 \\ -0.136 \\ -0.165 \\ -0.130 \end{array} $		$ \begin{array}{r} -0.074 \\ -0.136 \\ -0.167 \\ -0.131 \end{array} $	+0.024 -0.008 -0.010	$ \begin{array}{r} -0.068 \\ -0.120 \\ -0.154 \\ -0.126 \\ \end{array} $	$0.027 \\ 0.002 \\ 0.004$	$ \begin{array}{r} -0.295 \\ -0.418 \\ -0.514 \\ -0.514 \\ \end{array} $	$0.019 \\ 0.009 \\ 0.027$	$ \begin{array}{r} -0.239 \\ -0.311 \\ -0.367 \\ -0.341 \end{array} $	0.007 0.007 0.030

$\frac{y}{s(x)}$	-	0.1	-	0.2		0.4		0.6		0.8	().9
$\frac{x}{c_0}$	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $	$ \begin{array}{r} -0.071 \\ -0.146 \\ -0.178 \\ -0.127 \\ \end{array} $	+0.079 +0.041 -0.032 -0.045	$ \begin{array}{c} -0.065 \\ -0.151 \\ -0.195 \\ -0.151 \end{array} $	+0.077 +0.047 -0.030 -0.050	$ \begin{array}{r} -0.061 \\ -0.156 \\ -0.209 \\ -0.183 \\ \end{array} $	$ \begin{array}{c} - \\ + 0.065 \\ - 0.010 \\ - 0.044 \end{array} $	$ \begin{array}{r} -0.035 \\ -0.122 \\ -0.166 \\ -0.141 \end{array} $	+0.084 + 0.021 - 0.010	$ \begin{array}{r} -0.303 \\ -0.494 \\ -0.706 \\ -0.795 \end{array} $	$0.105 \\ 0.059 \\ 0.035$	$ \begin{array}{r} -0.172 \\ -0.435 \\ -0.567 \\ -0.565 \\ \end{array} $	$0.105 \\ 0.082 \\ 0.074$

WING C

.

$\alpha = 10 \cdot 20 \deg$

C_p

	$\frac{y}{s(x)}$	-	0	0) · 1	0	·2	0	·4	0	·6	0	• 8	0	•9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		-0.155 -0.174 -0.132	$ \begin{array}{c} -0.013 \\ -0.029 \\ -0.017 \end{array} $	$ \begin{array}{r} -0.138 \\ -0.168 \\ -0.183 \\ -0.136 \end{array} $	$ \begin{array}{c} - \\ + 0.029 \\ - 0.002 \\ - 0.013 \end{array} $	$ \begin{array}{r} -0.100 \\ -0.156 \\ -0.183 \\ -0.141 \end{array} $	$\begin{array}{c}\\ 0\cdot047\\ 0\cdot006\\ 0\end{array}$	$ \begin{array}{r} -0.096 \\ -0.158 \\ -0.187 \\ -0.146 \\ \end{array} $	$0.049 \\ 0.016 \\ 0.010$	$ \begin{array}{r} -0.197 \\ -0.140 \\ -0.180 \\ -0.155 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{r} -0.382 \\ -0.601 \\ -0.667 \\ -0.623 \end{array} $	$ \begin{array}{c}\\ 0.031\\ 0.029\\ 0.049 \end{array} $	$ \begin{array}{r} -0.306 \\ -0.385 \\ -0.439 \\ -0.387 \\ \end{array} $	$ \begin{array}{c}$

•	$\frac{y}{s(x)}$	-	$0 \cdot 1$		0.2		0·4		0.6		0.8		0.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		$ \begin{array}{r} -0.096 \\ -0.168 \\ -0.197 \\ -0.143 \end{array} $	+0.081 +0.073 -0.006 -0.027	$ \begin{array}{r} -0.087 \\ -0.175 \\ -0.213 \\ -0.164 \\ \end{array} $	+0.071 0.081 +0.003 -0.028	$ \begin{array}{r} -0.084 \\ -0.174 \\ -0.223 \\ -0.189 \\ \end{array} $	+0.097 +0.021 -0.018	$ \begin{array}{r} -0.034 \\ -0.114 \\ -0.156 \\ -0.145 \\ \end{array} $	$ \begin{array}{c}\\ 0.115\\ 0.054\\ 0.019 \end{array} $	$ \begin{array}{r} -0.546 \\ -0.764 \\ -0.977 \\ -1.016 \end{array} $	$0.128 \\ 0.091 \\ 0.065$	$ \begin{array}{r} -0.384 \\ -0.534 \\ -0.659 \\ -0.646 \\ \end{array} $	$ \begin{array}{c}\\ 0.119\\ 0.102\\ 0.113 \end{array} $

÷

r

.

.

4

WING C

.

.

 $\alpha = 15 \cdot 33 \deg$

r	¥	
C	40	
~	\boldsymbol{v}	

		$\frac{y}{s(x)}$		0	0	0.1		·2	0	•4	0	·6	0	· 8	0	.9
	$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
85	$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		-0.215 -0.233 -0.185	0.048 0.037 0.033	$ \begin{array}{r} -0.196 \\ -0.241 \\ -0.253 \\ -0.196 \end{array} $	$0.113 \\ 0.070 \\ 0.041$	$ \begin{array}{r} -0.164 \\ -0.226 \\ -0.243 \\ -0.197 \end{array} $	$0.116 \\ 0.075 \\ 0.050$	$ \begin{array}{r} -0.160 \\ -0.222 \\ -0.253 \\ -0.204 \\ \end{array} $	$0.116 \\ 0.085 \\ 0.068$	$ \begin{array}{r} -0.327 \\ -0.402 \\ -0.436 \\ -0.375 \end{array} $	$0.100 \\ 0.086 \\ 0.084$	$ \begin{array}{r} -0.592 \\ -0.725 \\ -0.834 \\ -0.689 \end{array} $	$0.054 \\ 0.068 \\ 0.086$	$ \begin{array}{r} -0.510 \\ -0.579 \\ -0.596 \\ -0.464 \end{array} $	$ \begin{array}{c}\\ 0.010\\ 0.035\\ 0.069 \end{array} $

	$\frac{y}{s(x)}$	(-0.1		0.2	()•4	()•6	(0.8	().9
$\frac{x}{c_0}$		 U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80$		$ \begin{array}{r} -0.163 \\ -0.233 \\ -0.265 \\ -0.210 \end{array} $	$0.078 \\ 0.161 \\ 0.076 \\ 0.027$	$ \begin{array}{r} -0.151 \\ -0.234 \\ -0.270 \\ -0.218 \end{array} $	$0.062 \\ 0.172 \\ 0.083 \\ 0.031$	$ \begin{array}{r} -0.123 \\ -0.204 \\ -0.249 \\ -0.206 \\ \end{array} $	$0.185 \\ 0.112 \\ 0.052$	$ \begin{array}{r} -0.126 \\ -0.333 \\ -0.536 \\ -0.616 \end{array} $	0·186 0·138 0·092	$ \begin{array}{r} -1 \cdot 069 \\ -1 \cdot 254 \\ -1 \cdot 297 \\ -1 \cdot 102 \end{array} $	$ \begin{array}{c}\\ 0.171\\ 0.152\\ 0.132 \end{array} $	$ \begin{array}{r} -0.661 \\ -0.830 \\ -0.953 \\ -0.847 \end{array} $	$0.125 \\ 0.131 \\ 0.163$

म् *

TABL	E 14	-continued

WING C

ŧ

$\alpha = 20 \cdot 48 \, \deg$

 C_p

	$\frac{y}{s(x)}$	()	0	•1	0	·2	0	• 4	0	·6	0	•8	0).9
$\frac{x}{c_0}$	•	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $		-0.316-0.350-0.283	$0.137 \\ 0.120 \\ 0.099$	$ \begin{array}{r} -0.305 \\ -0.351 \\ -0.353 \\ -0.278 \\ \end{array} $	$0.201 \\ 0.157 \\ 0.111$	$ \begin{array}{r} -0.229 \\ -0.287 \\ -0.326 \\ -0.285 \\ \end{array} $	0 · 199 0 · 159 0 · 118	$ \begin{array}{c} -0.299 \\ -0.370 \\ -0.426 \\ -0.337 \end{array} $	0·181 0·162 0·137	-0.836 -0.959 -0.881 -0.661	$0.153 \\ 0.153 \\ 0.151 $	$ \begin{array}{r} -0.786 \\ -0.847 \\ -0.813 \\ -0.662 \end{array} $	$0.085 \\ 0.113 \\ 0.153$	$ \begin{array}{r} -0.791 \\ -0.749 \\ -0.726 \\ -0.528 \end{array} $	-0.001 +0.033 +0.123

-	$\frac{y}{s(x)}$		0.1		0.2	. —	0.4	_	0.6	-	0.8	· · - (0.9
$\frac{x}{c_0}$		 U.S.	L.S.	U.S.	L.S.	U.S	· L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.Ś.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $		$ \begin{array}{r} -0.229 \\ -0.305 \\ -0.347 \\ -0.289 \end{array} $	0.070 0.261 0.170 0.097	$ \begin{array}{r} -0.210 \\ -0.293 \\ -0.341 \\ -0.291 \end{array} $	$0.053 \\ 0.271 \\ 0.182 \\ 0.109$	$ \begin{array}{r} -0.157 \\ -0.262 \\ -0.355 \\ -0.355 \\ \end{array} $	$0 \cdot 271 \\ 0 \cdot 200 \\ 0 \cdot 129$	$ \begin{array}{r} -0.884 \\ -1.223 \\ -1.481 \\ -1.408 \\ \end{array} $	0 · 256 0 · 220 0 · 174	$ \begin{array}{r} -1 \cdot 241 \\ -1 \cdot 268 \\ -1 \cdot 297 \\ -1 \cdot 066 \end{array} $	$ \begin{array}{c}\\ 0 \cdot 201\\ 0 \cdot 213\\ 0 \cdot 209 \end{array} $	$ \begin{array}{r} -1 \cdot 002 \\ -1 \cdot 191 \\ -1 \cdot 289 \\ -1 \cdot 042 \end{array} $	 0 · 106 0 · 146 0 · 204

4

.

86.

4

WING C

.

 $\alpha\,=\,25\cdot 63\,\deg$

 C_p

	$\frac{y}{s(x)}$	$\frac{y}{s(x)}$. 0		.0	·1	0	·2	0	•4	0	· 6	0	· 8	0	.9
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$		$ \begin{array}{c} -0.484 \\ -0.542 \\ -0.398 \end{array} $	$0.250 \\ 0.222 \\ 0.182$	-0.456 -0.487 -0.489 -0.381	$ \begin{array}{r} $	$ \begin{array}{r} -0.334 \\ -0.435 \\ -0.498 \\ -0.403 \end{array} $	$0.288 \\ 0.251 \\ 0.200$	$ \begin{array}{r} -0.592 \\ -0.713 \\ -0.729 \\ -0.529 \\ \end{array} $	0.252 0.245 0.212	$ \begin{array}{r} -1 \cdot 455 \\ -1 \cdot 369 \\ -1 \cdot 201 \\ -0 \cdot 829 \end{array} $	$ \begin{array}{c} 0 \cdot 210 \\ 0 \cdot 229 \\ 0 \cdot 227 \end{array} $	$ \begin{array}{r} -0.930 \\ -0.953 \\ -0.890 \\ -0.666 \\ \end{array} $	$ \begin{array}{c} $	$ \begin{array}{r} -0.938 \\ -0.996 \\ -0.886 \\ -0.590 \\ \end{array} $	-0.040 + 0.043 + 0.153

s	$\frac{y}{s(x)}$			0.1		0.2		0.4	_()·6 ·		0.8	_	0.9
$\frac{x}{c_0}$			U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$0.20 \\ 0.40 \\ 0.60 \\ 0.80$			$ \begin{array}{r} -0.293 \\ -0.387 \\ -0.441 \\ -0.379 \end{array} $	0.064 0.367 0.275 0.185	$ \begin{array}{r} -0.265 \\ -0.370 \\ -0.435 \\ -0.391 \end{array} $	$0.366 \\ 0.284 \\ 0.194$	$ \begin{array}{r} -0.301 \\ -0.529 \\ -0.708 \\ -0.706 \\ \end{array} $	$0.354 \\ 0.293 \\ 0.222$	-2.040 -2.364 -2.434 -2.024	$0 \cdot 321 \\ 0 \cdot 300 \\ 0 \cdot 248$	-1.469 -1.578 -1.584 -1.222	0.2170.2520.273	$ \begin{array}{r} -1 \cdot 384 \\ -1 \cdot 592 \\ -1 \cdot 646 \\ -1 \cdot 226 \end{array} $	$0.058 \\ 0.135 \\ 0.233$

TABLE	14 -	-continued
-------	------	------------

WING C

α	=	30)•7	1	deg
----------	---	----	-----	---	-----

 C_p

	$\frac{y}{s(x)}$	j 0 0·1		0	·2	0	• 4	0	·6	0	· 8	0	.9		
$\frac{x}{c_0}$		U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
$ \begin{array}{c} 0 \cdot 20 \\ 0 \cdot 40 \\ 0 \cdot 60 \\ 0 \cdot 80 \end{array} $		-0.721 -0.803 -0.565	0·360 0·318 0·236	$ \begin{array}{r} -0.648 \\ -0.636 \\ -0.665 \\ -0.546 \end{array} $	$0.403 \\ 0.343 \\ 0.254$	$ \begin{array}{r} -0.574 \\ -0.681 \\ -0.720 \\ -0.570 \end{array} $	$ \begin{array}{c} 0.379 \\ 0.336 \\ 0.255 \end{array} $	$ \begin{array}{r} -1 \cdot 115 \\ -1 \cdot 111 \\ -0 \cdot 981 \\ -0 \cdot 678 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{r} -1 \cdot 668 \\ -1 \cdot 429 \\ -1 \cdot 181 \\ -0 \cdot 814 \\ \end{array} $	$ \begin{array}{c}\\ 0.272\\ 0.293\\ 0.285 \end{array} $	$ \begin{array}{c} -1 \cdot 141 \\ -1 \cdot 046 \\ -0 \cdot 911 \\ -0 \cdot 673 \end{array} $	$ \begin{array}{r} & & & \\ & & & \\ 0 \cdot 111 \\ & & & \\ 0 \cdot 193 \\ & & & \\ 0 \cdot 249 \end{array} $	$ \begin{array}{r} -1 \cdot 168 \\ -1 \cdot 082 \\ -0 \cdot 895 \\ -0 \cdot 614 \end{array} $	

$\frac{y}{s(x)}$	-()•1	_()•2	-()•4	_().6	(0.8	_	0.9
$\frac{x}{c_0}$	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.	U.S.	L.S.
0.20 0.40 0.60 0.80	$ \begin{array}{r} -0.342 \\ -0.423 \\ -0.585 \\ -0.597 \end{array} $	0.020 0.479 0.364 0.232	$ \begin{array}{r} -0.318 \\ -0.425 \\ -0.656 \\ -0.703 \end{array} $	$0.468 \\ 0.379 \\ 0.246$	$ \begin{array}{r} -0.721 \\ -0.972 \\ -1.245 \\ -0.872 \\ \end{array} $	$0 \cdot 448$ $0 \cdot 388$ $0 \cdot 267$	$ \begin{array}{r} -3 \cdot 199 \\ -3 \cdot 211 \\ -1 \cdot 784 \\ -0 \cdot 959 \end{array} $	$0.400 \\ 0.383 \\ 0.315$	$ \begin{array}{r} -1.933 \\ -1.903 \\ -1.223 \\ -0.894 \end{array} $	0·249 0·323 0·297	$ \begin{array}{r} -1.780 \\ -1.848 \\ -1.197 \\ -0.819 \\ \end{array} $	$\begin{array}{c}\\ 0.049\\ 0.215\\ 0.267\end{array}$

TABLE 15

Local Cross-Load Coefficients $C_N(x)$

$\frac{x}{c_0}$	α	2.06	4.14	6.23	8.32	10.43	15.73	21.06	26.46	31.65
$ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \end{array} $		$\begin{array}{c} 0 \cdot 089 \\ 0 \cdot 064 \\ 0 \cdot 041 \\ 0 \cdot 024 \\ 0 \cdot 007 \end{array}$	$0.207 \\ 0.164 \\ 0.117 \\ 0.075 \\ 0.040$	$0.321 \\ 0.250 \\ 0.184 \\ 0.119 \\ 0.071$	$0.445 \\ 0.357 \\ 0.265 \\ 0.174 \\ 0.108$	$\begin{array}{c} 0.608 \\ 0.482 \\ 0.360 \\ 0.233 \\ 0.150 \end{array}$	$ \begin{array}{r} 1 \cdot 041 \\ 0 \cdot 815 \\ 0 \cdot 611 \\ 0 \cdot 408 \\ 0 \cdot 252 \end{array} $	$ \begin{array}{r} 1 \cdot 569 \\ 1 \cdot 217 \\ 0 \cdot 957 \\ 0 \cdot 620 \\ 0 \cdot 249 \end{array} $	$ \begin{array}{r} 2 \cdot 169 \\ 1 \cdot 677 \\ 1 \cdot 265 \\ 0 \cdot 819 \\ 0 \cdot 519 \end{array} $	$ \begin{array}{r} 2 \cdot 782 \\ 2 \cdot 023 \\ 1 \cdot 528 \\ 1 \cdot 033 \\ 0 \cdot 670 \\ \end{array} $

 $\langle j \rangle$

TABLE	16
-------	----

WING B

Local Cross-Load Coefficients $C_N(x)$

x	α	2.02	4 ∙05	6.09	8.13	10.17	15.29	20.42	25.56	30.70
$\overline{c_0}$										
0.1		0.036	0.077	0.127	0.191	0.254	0.452	0.703	1.041	1.430
$0\cdot 2$		0.036	0.085	0.137	0.194	0.258	0.461	0.709	1.040	1.428
0.3		0.043	0.097	0.148	0.204	0.270	0.476	0.723	1.062	1.469
0.4		0.043	0.093	0.148	0.209	0.276	0.494	0.745	1.086	1.480
0.5		0.046	0.097	0.152	0.215	0.281	0.507	0.758	1.090	1.484
0.6		0.047	·0·093	0.151	0.216	0.292	0.515	0.769	1.088	1.474
0.7		0.047	0.094	0.151	0.194	0.290	0.514	0.765	1.073	1.430
0.8		0.044	0.087	0.130	0.208	0.260	0.473	0.704	0.976	1.252
0.9		0.028	0.054	0.094	0.146	0.204	0.359	0.510	0.675	0.838

TABLE	17
-------	----

WING C

Local Cross-Load Coefficients $C_N(x)$

	α	2.03	4·07	6.11	8.15	10.20	15.33	20.48	25.63	30.77
$\frac{x}{c_0}$						· ·				
$0 \cdot 1$		0.038	0.095	0.139	0.202	0.267	0.453	0.742	1.079	1.438
$0 \cdot 2$		—	0.096	0.150	0.215	0.291	0.498	0.793	1.160	1.544
$0 \cdot 3$		0.048	0.098	0.160	0.226	0.311	0.537	0.838	1.222	1.619
0.4		0.043	0.100	0.168	0.236	0.326	0.566	0.875	1.262	1.669
0.5		0.047	0.102	0.175	0.245	0.340	0.587	0.902	1.279	1.684
0.6		0.047	0.104	0.180	0.252	0.348	0.596	0.903	1.260	1.648
0.7		0.046	0.104	0.176	0.253	0.350	0.583	0.867	1.203	1.512
0.8		0.043	0.095	0.162	0.233	0.318	0.521	0.758	1.047	1.274
0.9		0.031	0.069	0.124	0.170	0.227	0.365	0.532	0.699	0.845
0.95		0.014	0.042	0.078	0.109	0.144	0.228	0.335	0.450	0.484
		0.011	0 012	0.010	0 107	5 111	0 220	0 333	0 150	0 101

OX, OF BODY AXES O MEAN QUARTER-CHORD POINT

(80625)

FIG. 5. Wing B. Oil-flow patterns at low incidences.

 $\alpha = 2 \cdot 02 \text{ deg}$

 $\alpha = 2 \cdot 02 \text{ deg}$

 $\alpha = 5 \cdot 07 \deg$

 $\alpha = 1 \cdot 03 \, \deg$

 $\alpha = 5 \cdot 19 \text{ deg}$

ş,

FIG. 6. Wing A. Oil-flow patterns at low incidences.

ŧ

Fig. 11. Effect of thickness on position of secondary separation (a) and attachment line (b) on gothic wing of aspect ratio 1.

20° 🗙 30°

40°

1.0

FIG. 13. Effect of thickness on position of secondary separation (a)and attachment line (b) on delta wings of aspect ratio 1.

1.1

95

Ξ

00

100

(80625)

FIG. 16. Spanwise position of points of inflexion on flat-plate delta wings.

FIG. 17. Spanwise position of secondary separation (a) and attachment line (b) on flat-plate delta wings.

à

FIG. 19. Side elevation of vortex-core path on flat-plate gothic wings of various aspect ratios. $\alpha \simeq 15$ deg.

0.8

0.7

0.6

ø

0.6 <u>x</u> 0.8

1.0

0.4

98

0.6 L

0.2

 $\alpha = 20.48 \text{ deg}, \quad \psi = 5 \text{ deg}$

 $\alpha = 20.48 \text{ deg}, \quad \psi = 10 \text{ deg}$

 $\alpha = 20.48 \text{ deg}, \quad \psi = 5 \text{ deg}$

FIG. 23. Wing C. Flow patterns on yawed model.

FIG. 24. Wing C. Flow patterns on yawed model.

FIG. 25. Typical upper-surface pressure distribution on yawed wing (Wing C). $\alpha = 20.48 \text{ deg}; \psi = 5 \text{ deg}.$

FIG. 26. Wing A. $\alpha = 23$ deg. Position of breakdown of vortex core.

J.

FIG. 27. Lift and pitching-moment characteristics of thick wings of aspect ratio 1. Wings A, B and C. $t_0/c_0 = 0.12$.

FIG. 28. Effect of wing thickness on lift characteristics of gothic and delta wings. Aspect ratio = 1.

FIG. 29. Effect of wing thickness on pitchingmoment characteristics of gothic and delta wings. Aspect ratio = 1.

FIG. 30. Lift curves for flat-plate gothic and delta wings of the same slenderness ratio s/c_0 .

FIG. 31. Lift curves for flat-plate wings of different leading-edge plan-form shape but same slenderness ratio s/c_0 .

FIG. 32. Lift curves for flat-plate wings with zero-lift angle correction.

FIG. 33. Collapse of lift curves for flat gothic and delta wings.

(80625)

FIG. 36. Drag characteristics of wings A, B and C. A = 1; $t_0/c_0 = 0.12$.

FIGS. 38a and 38b. Overall normal force and axial force on wings A, B and C. A = 1; $t_0/c_0 = 0.12$.

FIGS. 39a and 39b. Typical variation of cross-wind force (a), and side force (b), with sideslip. Wing C. A = 1; $t_0/c_0 = 0.12$.

FIGS. 40a and 40b. Typical variation of rolling moment (a) and yawing moment (b) with sideslip. Wing C. A = 1; $t_0/c_0 = 0.12$.

(80625)

107

I 2

FIGS. 42a and 42b. Effect of thickness on static sideslip derivatives of gothic and delta wings. Aspect ratio = 1.

FIG. 44. Effect of aspect ratio on lift and pitching-moment characteristics of flat-plate delta wings.

FIG. 45. Effect of extending leading edges on lift of flat-plate gothic wing of aspect ratio 0.75 (C_L based on basic wing area).

FIG. 48. Effect of trailing-edge sweep on pitching moment of wing with $A = 1 \cdot 0$ gothic' leading-edge shape (Flat-plate models).

FIG. 49. Wings A, B and C, centre-line supervelocity distributions at zero incidence. A = 1.

FIG. 50. Wing A. Isobar pattern at zero incidence. Values plotted: $\{\pi v_x(x)\}/\{4V(t_0/c_0)\}$.

£

Ŧ

FIG. 51. Wing B. Isobar pattern at zero incidence. Values plotted: $\{\pi v_x(x)\}/\{4V(t_0/c_0)\}$.

ŧ

FIG. 52. Wing C. Isobar pattern at zero incidence. Values plotted: $\{\pi v_x(x)\}/\{4V(t_0/c_0)\}$.

(80625)

113

]*

^;

FIG. 56. Wing B. Upper and lower surface pressure coefficients on rays from apex. $\alpha = 15 \cdot 29 \text{ deg.}$

FIG. 57. Wing B. Upper and lower surface pressure coefficients along lines of constant x/c_0 . $\alpha = 15 \cdot 29 \text{ deg.}$

FIG. 58. Wing C. Upper and lower surface pressure coefficients on rays from apex. $\alpha = 15.33$ deg.

FIG. 59. Wing C. Upper and lower surface pressure coefficients along lines of constant x/c_0 . $\alpha = 15 \cdot 33$ deg.

FIG. 61. Wing B. Upper-surface isobar pattern at $\alpha = 15 \cdot 29$ deg. Values plotted: C_p . FIG. 62. Wing C. Upper-surface isobar pattern at $\alpha = 15 \cdot 33$ deg. Values plotted: C_p .

FIG. 64. Wing B. Typical spanwise variation of upper-surface pressure distribution with incidence. $x/c_0 = 0.5$.

Ş.,

. .

۰.,

FIG. 65. Wing C. Typical spanwise variation of upper-surface pressure distribution with incidence. $x/c_0 = 0.5$.

$$C_N(x) = \int_0^1 \Delta C_p \ d \left\lfloor \frac{y}{s(x)} \right\rfloor.$$

$$C_N(x) = \int_0^1 \Delta C_p \ d \left\lfloor \frac{y}{s(x)} \right\rfloor.$$

<u>,</u>,

FIG. 70. Wing A. Longitudinal distribution of cross-load. Overall normal-force coefficient: $\overline{C}_N = \frac{3}{2} \int_0^1 C_N(x) \frac{s(x)}{b/2} d\left(\frac{x}{c_0}\right).$

FIG. 71. Wing B. Longitudinal distribution of cross-load. Overall normal-force coefficient: C1 s(x) (x)

$$\overline{C}_N = 2 \int_0^{\infty} C_N(x) \frac{s(x)}{b/2} d\left(\frac{x}{c_0}\right).$$

FIG. 72. Wing C. Longitudinal distribution of cross-load. Overall normal-force coefficient: $\overline{C}_N = 2 \int_0^1 C_N(x) \frac{s(x)}{b/2} d\left(\frac{x}{c_0}\right).$

ũ.

,⊷,

€

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL **RESEARCH COUNCIL (BOUND VOLUMES)**

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures,

- 63s. (post 2s. 3d.) 1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 3d.) Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 1s. 9d.)
- 1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 80s. (post 2s.)
 - Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
- 90s. (post 2s. 3d.) 1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 2s. 6d.)
 - Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 2s. 6d.)
- 1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (post 3s.)
 - Vol. II. Aircraft, Airscrews, Controls. 130s. (post 3s.)
 - Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.

130s. (post 2s. 9d.) Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s. (post 2s. 9d.)

1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. 3d.)

Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 2s. 9d.)

Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s.)

1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 3d.)

Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. 168s. (post 3s. 3d.)

Special Volumes

Between No

- Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion. Stability. 126s. (post 2s. 6d.)
- Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 147s. (post 2s. 6d.)
- Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 3d.)

Reviews of the Aeronautical Research Council

1939-48 3s. (post 5d.)

1949-54 5s. (post 5d.)

Index to all Reports and Memoranda published in the Annual Technical Reports R. & M. 2600 6s. (post 2d.) 1909-1947

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 2351–2449		R. & M. No. 2450	2s. (post 2d.)
Between Nos. 2451–2549	: •	R. & M. No. 2550	2s. 6d. (post 2d.)
Between Nos. 2551-2649		R. & M. No. 2650	2s. 6d. (post 2d.)
Between Nos. 2651-2749		R. & M. No. 2750	2s. 6d. (post 2d.)
Between Nos. 2751-2849		R. & M. No. 2850	2s. 6d. (post 2d.)
Between Nos. 2851-2949		R. & M. No. 2950	3s. (post 2d.)
Between Nos. 2951-3049		R. & M. No. 3050	3s. 6d. (post 2d.)

HER MAJESTY'S STATIONERY OFFICE

from the addresses overleaf

Crown copyright 1961

Printed and published by HER MAJESTY'S STATIONERY OFFICE

To be purchased from York House, Kingsway, London w.c.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

S.O. Code No. 23-3186