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Summary.--This report describes an application of a digital computer to the aerodynamic design and automatic 
control of a large wind tunnel with flexible walls. The computational problem was threefold : first, calculation of 
the wall shapes for a set of 'pivotal' operating speeds between M = 1 and 2"8; second, computation of the necessary 
movements of the set of screw jacks which flex the walls ; and finally, preparation of the set of digitally punched 
control tapes. A new mathematical approach was used for the first part in order to avoid singularities in the partial 
differential equations governing the flow in the convergent-divergent nozzle of the tunnel. The work was started 
in 1953 on the ACE Pilot Model at the National Physical Laboratory and completed on one of the Royal Aircraft 
Establishment DEUCE computers. 

1. Introduction.--The air-speed in the working-section of a supersonic  wind tunnel depends on 

the shape of the walls upstream of this section; in fact, the operating speed is determined solely by 

the ratio of the area of the working-section to that of the throat  (Fig. 3). Th e  usual practice in the 

past has been to fit a new wall section, or to insert linear blocks of appropriate shape, every t ime a 

change of tunnel  speed was required. T o  avoid this cumbersome procedure a new method has been 

adopted for the 80,000 h.p. 8 ft x 8 ft  Wind  Tunne l  at R.A.E., Bedford (Fig. 1) which is designed to 

operate at both  subsonic and supersonic speeds (from M = 0 to M = 2-8). T h e  upper  and lower 

walls of the adjustable part of this tunnel consist of flexible steel plates, each plate being 62 ft long, 

8 ft  wide and 1 in: thick (the two side walls are fixed at 8 ft apart). Each plate is suppor ted  and 

flexed by 30 pairs of screw jacks (shown diagrammatically in Fig. 2) driven by hydraulic motors and 

controlled by valves. T h e  valves, in turn,  are controlled electrically by means of punched  paper tapes 

of standard teleprinter type, one tape for each jack. All the tapes move in unison under  the control 

o f  electrical 'clock pulses' which occur at a rate of 390 pulses per minute,  but  the movement  of any 

particular jack depends on the pat tern of holes punched  on the corresponding control tape 1°. 

This  report  discusses the computational problems arising in the automatic control of the flexible 

walls, first, calculation of the required wall shapes for a set of operating speeds between M = 1 and 

M = 2.8 (these will be referred to as the 'pivotal design speeds');  then, computation of the necessary 

jack movements ;  and finally, preparation of the actual control tapes 12. 

* R.A.E. Report M.S. 54, received 18th August, 1959. 



The first stage entails the solution of the equations of flow in the convergent-divergent nozzle. 
The partial differential equations of flow are of the elliptic type where the flow is subsonic, that is, 
in the converging part of the nozzle upstream of the throat (Fig. 2), and hyperbolic in the diverging 
supersonic region. The usual tunnel design procedure is to use different mathematical techniques 
for dealing with the different flow regions. A linearised theory is used to relate the  wall shape to 
the velocity distribution in the high subsonic and low supersonic region near the throat and the 

me thod  of characteristics 1 is used to compute the shape of the supersonic part of the nozzle. The 

low-speed end of the subsonic part is very carefully designed to avoid unfavourable pressure gradients 
in the boundary layer and is then 'faired in' to the high subsonic region. 

This method produces a very satisfactory single wall shape, but is not conducive to the production 

of a consistent family of wall shapes, particularly in the near-sonic part of the speed range. Some 

calculations on these lines were made in 1951, but failed to yield a sufficiently smooth and internally 
consistent set of 'pivotal' wall shapes. It was, however, shown by Diprose (Appendix I) that the 

differential equations of flow could be re-cast so that they had finite coefficients at all Mach numbers, 
with the boundary conditions specified in the same manner for all regions of the nozzle. 

In this way the problem can be reduced to one of an 'initial value type', enabling a single numerical 
method, namely a step-by-step forward solution of the partial differential equations, to be used 
throughout. Furthermore, the co-ordinates of the wall shape (given by the wall streamline) can be 
produced in the course of the solution in a form suited to the final task, namely, the punching of 
the jack control tapes. 

In the standard method for computing wall shapes the boundary conditions are usually given in 
terms of the velocity at exit (i.e., uniform flow at the required Mach number) and the desired 
radius of curvature of the wall at the throat. In the approach adopted by Diprose it is assumed that 
the wall shape is unknown, but that the flow is known in both direction and magnitude on one 
boundary, chosen in this case as the centre-line of the tunnel (the flow in the central vertical plane 
may be taken as two-dimensional and as symmetrical about the centre-line). 

Starting on this basis the problem naturally breaks down into the following stages: 

(1) Establishment of an arbitrary velocity distribution along the centre-line 

(2) Calculation of the flow field for a set of operating speeds (the pivotal design speeds) 

(3) Calculation of the corresponding wall shapes; that is, the evaluation of the cartesian co- 
ordinates of a set of points along the wall for each of the pivotal design speeds 

(4) Calculation of the corresponding jack extensions and their sub-tabulation at small intervals 
of operating speed 

(5) Preparation of the actual control tapes. 

The work described in this report was spread over several years. Some stage (1) calculations, 
largely of an exploratory nature, were first done by hand, using desk calculating machines and 
graphical methods, but ft soon became apparent that the aid of an automatic computer was desirable. 
At that time, about 1953, there was no such equipment at the R.A.E. and so the work was started 
on the ACE Pilot Model Computer at the National Physical Laboratory. The first set of control 
tapes was produced in this way in 1955. However, when the tunnel was set up, it was found necessary 
to make certain aerodynamic and engineering design alterations and most of the calculations were 
repeated. This part of the job was carried out between 1955 and 1957 on one of the R.A.E. DEUCE 
computers. 



As both the ACE and DEUCE then used Hollerith cards for input and output, the final results 
had to be transcribed from cards to paper tape. In 1955 this was carried out at the R.A.E. on a 
'mock-up' equipment and in 1957 at the University Mathematical Laboratory, Cambridge. One 
of the R.A.E. DEUCE computers is now equipped with tape output, thereby eliminating the need 

for this extra operation should any further work of this kind be undertaken. 
2. The Velocity Distribution along the Centre-line.--It is necessary to represent the distribution 

of velocity along the centre-line by means of a mathematical formula, so chosen as to satisfy the 
physical and engineering conditions peculiar to this tunnel. In particular the height of the wall at 

entry (YE in Fig. 3), the slope of the wall at entry, and the maximum allowable wall curvature at 
entry, are all prescribed by the general tunnel design. Three further considerations are: (i) the wall 

curvature at the throat must not exceed a specified maximum value, (ii) the exit velocity must be 

constant for a certain minimum distance ahead of the working Section, and (iii) the wall shape must 

everywhere be a smooth curve. 
If q is the magnitude of the flow velocity at any point and a is the velocity of sound at that point, 

then the Mach number M at that point is given by M = q/a. It is convenient to work in non- 

dimensional units, and so to define a specific speed (S) given by 

S = --q, (1) 
as 

where a s is the velocity of sound at the throat where the local Mach number is unity. The formula 

eventually chosen to represent the centre-line velocity distribution was 

where P = 1 + A x  + Bx  2 + Cx 4 + Dx s + E f  (x), (3) 

f ( x )  = {exp (~x) - exp ( - {x)} 4. (4) 

The coefficients A, B, C, D and E are functions of the Mach number in the working-section, x 
denotes the length along the tunnel, and the suffixes E, ~,, and F refer to the conditions at entry, 
at the throat and at the working-section respectively (Fig. 3). The derivation of the coefficients in 
formula (3) is given in Appendix II;  the basic assumptions on which these calculations were made 

are described here. 
The approximate wall shape may be related to the centre-line velocity by assuming 'o.ne- 

dimensional flow theory '1. It follows from the constancy of mass flow that the tunnel height is every- 
where inversely proportional to the product of speed (S) and density (p). It is shown in Appendix I 

that / 
_ __  ( o 1 (5) 
P0 . 6 ]  ' 

where P0 is the density at the stagnation point, i.e., where S = 0. The values of S f  and S E in (2) can 

then be expressed in terms of YT, the half throat height, by the relationships 

SE(1 - S~J) a/2 S~v(1- ~) 5/e = S p ( 1 - ~ )  s/2 yE = YT yF, (6) 

where S r  = 1 and the values of YE and Yi~ are known. 
T h e  coefficient A is determined by the slope of the wall at entry, and B by the curvature of the 

wall at entry which was taken to be the maximum allowable. The curvature at entry is a maximum 



at the lowest speed, i.e., M = 1. The curvature at the throat, on the other hand, is a maximum at 
the highest Mach number M - -  2.8. Fixing this value also by the curvature limits on the plates, 
together with assuming a position for the throat (estimated graphically), sufficed to determine the 
coefficients C and D. 

The last two requirements mentioned in the first paragraph of this Section, namely, that 'the 
exit velocity must be constant for a minimum distance ahead of the working-section' and that 'the wall 
shape must be everywhere a smooth curve' are strictly speaking mutually inconsistent. An acceptable 
compromise was reached, however, by adding an exponential term Ef(x) in equation (3) which allows 
an asymptotic approach to the final constant velocity in the working-section. The function f (x )  
and coefficient E were chosen so that the effect of this additional term was negligible at entry but 
ensured that S converged to within 0.2 per cent of S F at the point for which x = 50 ft (Fig. 3). 

3. Choice of 'Pivotal' Design Mach Numbers.--To achieve the most economical use of the tape and 
to permit uniformity of sub-tabulation, it is desirable that the design speeds should be more or 
less equally spaced at equal steps of the fastest jack. I t  is reasonable to assume that this jack is near 
the throat and thus that this condition can be met by working initially in uniform steps of throat size, 
instead of equal intervals of Mach number. It will then be possible to revert to the latter for the 
master control tape by appropriate sub-tabulation of the original results. 

Equations (6) express S F and SE ' in terms o fy  T ; the coefficients A, B, C, D, E can also be obtained 
in terms of this quantity. The approximate relationship between Mach number in the working- 
section, M~, and YT (Ref. 1, Vol. II, page 456) is 

Yz MF - -  • (7) 

The total speed range (M = 1 to 2.8) was covered in two stages; in 4-in. steps of YT from 13 in. 
to 45 in., and in 0.054-in. steps from 45 in. to 45.216 in. The very fine spacing near the speed of 
sound was chosen to enable accurate sub-tabulation to be carried out in this difficult region. 

Table 1 shows the specific speeds and Mach numbers in the working-section corresponding to 
the final choice of 'pivotal' values of throat size. 

TABLE 1 

Half throat 
size (YT) 

(in.) 

13 
17 
21 
25 
29 
33 
37 
41 
45 
45.054 
45.108 
45.162 
45-216 

Specific speed in 
working-section (SF) 

(Equation (2)) 

Mach number in 
working-section (M~) 

(Equation (7)) 

1.91227 
1.82875 
1-74869 
1.66916 
1.58759 
1-50088 
1.40391 
1-28467 
1.06315 
1.05476 
1.04469 
1.03158 
1.00000 

2.793 
2.509 
2-280 
2.082 
1.903 
1.734 
1.564 
1.377 
1.077 
1.067 
1.054 
1-038 
1.000 
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4. Evaluation of Velocity Flow Field.--All the original calculations were made on the assumption 
of a constant rate Of growth, independent of Mach number, of the displacement thickness of the 
boundary layer, of an amount 0.002 inch per inch, this being considered a sufficient estimate in the 
very early design stage. Later in the light of further experience a revised estimate was made by the 
method of Tucker11; this gave an average rate of growth which varied between 0-0015 and 0-0034 
at different Mach numbers. The calculated ordinates of the pivotal wall shapes were then scaled 

to suit these corrections. 
Once the centre-line velocity formula has been established the whole velocity field from the 

centre-line to the wall can be defined at some suitable mesh points for each of the design Mach 

numbers, i.e., the 'pivotal throat sizes'. 
It is shown in Appendix I that the basic aerodynamic equations governing the flow can be expressed 

in the following form, where the notation is shown in Figs. 6 and 7: 

~S S ~0 

a0 - l ( - S  2) as  - ( (9) 
a¢ S l -  

From a computing point of view the stream function, ¢, is a satisfactory independent variable 

but the potential function, ¢, is not, as its rate of change is so much greater in the supersonic than 

in the subsonic region. A change of variable was, theref'ore, desirable and the equations were 

rewritten as 
~S S 1 O0 
0~h - ( 1 _  ~_~2)5/2 S~ 0 ~ , (10) 

a 0 _  - ( 1 - S  ~) 1 aS (11) 

a~b S 1 -  

where ~ is defined by the relationship 

de  = SA, (12) 

the specific speed on the axis. 
The calculations were then made on a ~b, ~ mesh, the velocity at the mesh points being expressed 

in terms of the specific speed S and the inclination 0 of the velocity vector to the x axis (Fig. 6). 
Also on the centre-line of the tunnel ~: = x. The mesh intervals (8¢ and 8~) were so chosen that 
the wall streamline (less the boundary-layer correction) coincided with the ninth mesh streamline, 
counting out from the x axis. For computational purposes the mesh was extended to two streamlines 
beyond the wall, and to two equipotentials ~ beyond the point where the velocity became constant 
upstream of the working-section; this latter position, of course, varied for each Niach number. 

Starting with the" assumption that S and 0 are known on one streamline (initially the centre-line), 
the derivatives normal to this streamline are computed from equations (10) and (11). By numerical 
integration S and 0 are then found on the next streamline, and numerical differentiation along the 
streamline gives as/a  and a0/a¢. Substitution of these new values in equations (10) and (11) enables 
the process to be repeated with a more accurate integration formula to give better values of S and 0 



on this new streamline. In this manner, with the introduction of a special iteration cycle to improve 
estimated starting conditions, the whole velocity field is covered. Details of the formulae used are 
given in Appendix II. Selection of these formulae and choice of mesh size were only made after 
extensive preliminary investigations, carried out mainly on desk calculators. When a satisfactory 

plan had been evolved the calculations were programmed for the N.P.L. ACE Pilot Model and then 

subsequently re-programmed for the first R.A.E. DEUCE. 

5. Calculation of Wall Co-ordinates.--An engineering limitation was that the stress in the flexible 

wall plates should not exceed 16 tons per square inch, with a further restriction on the bending 
moment of the sliding joint at the subsonic end of the plate (Fig. 3). If the curvature in the supersonic 
section is found to be unacceptably large, the only remedy lies in adjusting the centre-line formula. 

In the case of the subsonic region it is possible to carry out restricted smoothing mathematically so 
long as the process is applied identically to all pivotal values. This was, in fact, done as far as the 
first four jacks, to accommodate the requirements of the sliding joint and engineering alterations 
made after the computation of the wall ordinates. The rest of the nozzle proved satisfactory. 

Knowing the values of S and 0 at the ~, ~ mesh points on the wall streamline, the cartesian 
co-ordinates x,y at these same points can be found by integration along the equipotentials from 
centre-line (¢0) to wall (¢~). The relationships (Appendix I) are 

r% sinO 

epo \ 6 / 

r P~, cos 0 

Since it is now possible to check that the allowable wall curvature has not been exceeded, it is 
convenient in the same programme to compute dl/d~ and dO/dl, where I is defined as the distance 
from the fixed end of the plates in the working-section to some point on the wall (Fig. 8). The ratio 
dO/dl gives the wall curvature, and integration of the quantity dl/d~ gives the distance /.~ for each 
wall mesh point (xi, yi). We now have sufficient information to find the co-ordinates of the jack 
attachment points xj,  yz, also shown in Fig. 8. 

6. Calculations of the Jack Extensions.--Thirty pairs of screw jacks are attached to each wall of 
the tunnel, as shown in Fig. 2. The 'fixed' end of each jack is hinged about a fixed point whose 
co-ordinates (xH, y~± ) are specified on the contractor's drawings; the movable end is attached to a 
point on the wall by a pin joint whose co-ordinates (xz,yj)  can now be determined (see Figs. 5 and 8). 
The extension of any jack (e) is given by the distance between these two points, which will be 
referred to as the hinge point and attachment point respectively. The method of computing the 
attachment point co-ordinates (x j ,y j )  and hence the extensions, is described in Appendix II. 

At this stage the set of extensions (e) for each jack must be studied to establish whether the 
required relative movements of the various jacks will give optimum running conditions and further 
whether a sufficient number of pivotal wall shapes have been computed to permit a valid sub- 
tabulation scheme to be applied. In the case of the Bedford 8 ft Tunnel the first survey indicated 
that in fact these conditions were not likely to be fulfilled. Accordingly two lead screws were changed, 
namely, for jacks 19 and 20, and four additional wall shapes at intervals of 0.054 in. were computed 
in the Mach 1 region. 



The tunnel system is designed so that each jack moves in steps of 0.0025 in. or 0.00125 in. as 

indicated in Fig. 4 and described in Ref. 10. As it had been decided that each possible jack move- 

ment was to be represented on the corresponding control tape, it was necessary to choose the sub- 

tabular intervals of throat size so that the distance between one value and the next did not result in 

any jack moving more than one step ; in fact, this involved 17,408 steps of throat size for each of 

the 30 jacks. This extremely fine spacing means that, for practical purposes, the Mach number can 

be varied continuously over the speed range. For convenience in tunnel operation an additional 

critical table of Mach number against throat size was prepared. A master tape was then punched 

so that by a single switch the wails could be controlled and set in steps of 0-01 for Mach number. 

Full details of the sub-tabulation scheme are given in Appendix II. 
7. Conclusion.--The tunnel calibrations so far carried out confirm that this new method of design 

has attained its objective of producing wall shapes that are both smooth in themselves and capable 

of smooth transition across the complete Mach-number range. Bearing in mind that the calculation 
was in every sense a pilot run (this was the first set of partial differential equations to be solved on 

ACE Pilot Model), the numerical work was accomplished without any major setbacks. This was 
undoubtedly due to the original decision to break down the problem into stages and to punch out 

or record results at each stage. The computed results of each stage were scrutinised by the aero- 
dynamicist in  charge of the tunnel design, and any obvious modifications incorporated immediately. 

This co-operation was invaluable; indeed, it can be said that the closest liaison between the aero- 
dynamicists and the numerical analysts is an essential requisite of success in a project' of this 

magnitude. 
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APPENDIX I 

Development of the Aerodynamic Equations of Flow 

By K. V. Diprose, B.A. 

1. Notation (see also Figs. 6 and 7). 
l Distance along a streamline 

n Distance along an equipotential 
q Magnitude of local velocity 
0 Direction of local velocity 
p Density 

Po Stagnation value of p 
p Pressure 
a Speed of sound 

a o Stagnation value of a 
a 8 Value of a where the local Mach number is unity 

7 Ratio of specific heats (taken as 1.4) 
S Specific speed - q/a, 
¢ Velocity potential =- fS  dl 
¢ Stream function - fO/Oo S dn 

M Mach number = q/a 
x,y Rectangular axes shown in diagram II; x is the axis of symmetry 

A function of ¢ such that d¢/d~ = specific speed (Sx) on the axis, ~ = 0. Then also 

= x on the axis 

2. The Equations of Fluid Flow.--It is assumed that the flow is steady, irrotational, inviscid and 

adiabatic. Hence, in terms of distance along, and normal to, the streamlines, we have the following 

four equations: 

Continuity: ~(Pq) ÷ Pq~n = 0. (15) 

0 q  80 
Zero vorticity: On q-~ = 0. (16) 

Conservation of momentum along the streamlines: 

1 @ ~  0q 
p 01 q~l = 0. 

Conservation of momentum across the streamlines: 

(17) 

1 0p 230 
o On ~ q N = 0. (18) 

Integrating equation (17) gives f(dplp + q~/2) = a constant, say, K, independent of l, while integrat- 
ing equation (18), after substituting for O0/OI from equation (16) gives the similar result that K is 

independent of n. Hence K is constant everywhere. 
We can establish these results in terms of the speed of sound, by considering equation (15) in 

one-dimensional flow, i.e., 0 = 0 everywhere. 



Then 
Oq ap 

p ~ + q - ~  = O. 

Substituting for dq/dl from equation (17) gives 

dp ~ dp 

dl q77 = °  

Hence q= = d p/dp unless p and p are constant everywhere. 

So q = ~[(dp/dp) is the only speed at which a small jump in p and p can be maintained in steady 
flow. 

This, then, must  be the speed a of a plane wave. 

The assumption of adiabatic flow implies that p = p7 C in a perfect gas, where C is a constant 
independent of the co-ordinates. 

Hence 

aS __ d~ 
do - yp;,-1 C 

and 
f ~  - Y a = 

y -  1 pr-i  C = - -  
y - l '  

so that 
a ~ q2 

y _ l + ~  - = K .  

We are now in a position to express q and p in terms of a non-dimensional 'specific speed', S. 
Let  a 0 be the value of a when q = 0, i.e., stagnation conditions, and a s the value when q = a, 

i.e., on the sonic line. 
Then 

a ~ q~ 1 y + 1 y -  l q-2 = K -  %2 as2 -+as 2 
y - 1  7 - 1  2 2 y - 1  a~' 

/ a \  ~ / y -  1\ 
whence t ; )  + [ ~ - 1 ) t ~ J  2=  1. 

/ a \  

I f  we define q/a s as the 'specific speed', S, we get 

I f  P0 is the stagnation value of p then 

( a )  ~ 7 - 1  S 2. 
= 1 - 7 - T ~  . 

ao a = ypo v-1 C, 

SO a)  : ( P t  V-1 
aoo \Po/ 

% 

and 
~' -- 1 "] 1/y--1 

P =p0  1 - - ~ +  ~$2] " 

Using the recommended value of 7/5 for y, this reduces to 

(Equation (5)). 

10 



We can now go back and substitute in equations (15) and (16), in terms of S. It is convenient also 
at this point to introduce a potential function, 4, defined by 

and a stream-function ~b defined by 

Equation (15) then becomes 

while equation (16) becomes 

dA 
~" = S, (19) 
dl 

~2) 5/2 
d _Ps=sl__ . (20) 
dn Po 

t'-Y) 

/ $2\ ~/~oS ~ 8 0  
s ( 1 - 6 )  = o 

These on reduction yield equations (8) and (9), namely, 

~ S  S 80 

a0 ( 1 - s  as 
and O~b- S(1 _ ~)7/2 ~ "  

Given S and 0 along one streamline, say, at ~b = 0, equations (8) and (9) allow the derivatives 
normal to this streamline to be calculated, and hence the value of S and 0 tO be found on another 
streamline by numerical integration. Differentiating these new values with respect to 4 then allows 
the process to be repeated indefinitely. 

For the purposes of numerical integration and differentiation, it is convenient to use equal 
increments of the independent variables. There is no difficulty with ~b, but the gradient d4/dl is so 
much steeper in the supersonic region than in the subsonic, that it is very uneconomical in computing 
effort to take equal steps of 4. It is accordingly convenient to introduce a new variable ~ defined by 
equation (12), d4/d~ = SA, where S~t is the value of S at the point of intersection of the equipotential 
and the centre-line. Thus ~ is identical to l along this streamline, and equal increments of ~ are 
roughly equal increments of length along all streamlines. 

In terms of ~ and ~b the equations of flow are given by equations (10) and (11), namely, 

OS S 1 80 

80 (1 - S 2) 1 0S 
and 0-~ = / $2\ 7/2 - - "  

3. Derivation of Wall Co-ordinates.--From equation (20) we have 

d n  Po (21) 
p s  
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The inclination of the equipotential at any point to the y axis is equal to the inclination of the 
streamline to the x axis at that point. This is defined as O, where positive 0 corresponds to x de- 
creasing with increasing n. Hence 

dY-= cos 0 
dn 

and dx 
dn - sin 0, 

yielding d y _  Po d6 pS cos 0 

and dx _ P0 sin 0. 
d~ pS 

Substituting for po/pS in terms of S from equation (5) and integrating gives equations (13) and 
(14) of paragraph 5. 
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APPENDIX II 

Numerical Methods 

The contract specification stated that the required accuracy for the setting of the flexible walls 
was of the order of 0.005 in., so the numerical procedure was chosen with a view to attaining an 
accuracy of 0.001 in. in the wall shapes, i.e., within the discrete jack steps of 0.0025 in. and 0.00125 in. 

Wherever possible automatic computing equipment was used to minimise errors and reduce the 
time taken for the project. The type of calculation involved was well suited to a high-speed computer. 

1. Centre-line Velocity Formula: Calculation of the Coefficients.--The general principles on which 
the analytical formula for the centre-line was chosen are described in Section 2, but details of 
precise formulae used to determine the coefficients in equation (3) are given here. By substituting 
the actual tunnel dimensions into equations (6) we can solve for SF and SE for tl~'e design Mach 
numbers. It will be noted that although the nominal half-height of the working-section is 48 in., 
y~. is taken as 45.216 in. Th is  is to allow for the initial boundary-layer assumptions mentioned in 
Section 4. Values of S E and Sp given in Table 3 were thus computed from the equations 

( _~)5/2 / 1,5/~ 
SE I- × S 6 " 4 0 = S I . [ 1 - 6 )  Yi., (SE<I) ,  

- - -  45.216 = Yz, (SF> 1), S ~ ( 1  S~!)5/~ x ST(1 -- ~) 5/2 

where y z  = 13 (4) 45 in. and 45 (0.054) 45.216 in., and S T = 1. 
We can now determine the coefficients A, B, C, D, E. 
The coefficient A depends on the shape of the wall at entry. Equation (2) is differentiated to give 

dS ( S p -  S~) P'  
dx P~ 

From equation (6) we have, at entry, throat and exit 

dy y(1 - S ~) 

Combining with (22) we then have 

E 

y ( 1 - S  2) ( S F - S E ) P '  

s @ - ~ )  P~ 

(22) 

(23) 

(24) 

[~£] = _ 6 y ~ ( 1  - s ~ 2 )  ( s ~ -  s ~ )  A (25) 
x=o SE( 6 -- SE 2) ' 

since at entry x = 0, so that P = 1 and dP/dx = P'  = A. 
The left-hand side of (25) is specified at x = 0 by the construction of the tunnel and A is found as 

A = 6yE(1 - SE 2) (S~- S~) ~=o" 
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The coefficient B depends on the curvature (~-) of the wall at entry. From (24), we have 

ts 

At entry this can be written as 

o r  

(ry'p' yp" 

(. ( 1 - - S E  ~) [ 6 ( S F - S E ) ( 1 - S ~ ) A ~  + 
{d2Y~ = - ( S  F " [ SE(6 -  

6 + 3 S E + S E  4 t e  e ~ a~]] 
+ 2 B - 2 A ~ -  - - " - - " 7 - - - - ~ t ° ~ - ~ ' E / - ~ / t  

6 S E ~ t l - ~ -  ) , ]J, 

+ \ d x J ]  = ( S F - S J Y z e  As 6---SE~ ( 1~-- -  -S~---~ ~ SE 1 - - - ~ j  - 2 B "  

(27) 

(28) 

The values A, SE, S~, YE have already been obtained and ,~  and (dyldx)~= o are specified by the 
tunnel design; B can thus be determined from (28). 

The coefficients C and D are to be defined by the position of and curvature at the throat. Since 
the coefficient E is chosen so that the exponential term is negligible at the throat, where S = 1, 

equations (2), (3) give 

S~. - SE 
S~  - 1 = PT = 1 + AXT + BxT ~ + CxT 4 + DxT s, (29) 

where x T denotes the position of the throat. 
Now (dy/dx)x=xT = 0. Thus from (22) and (29) equation (27) can be written 

10yT p' ( s ~ - 1 ) ,  - , ,  3, 

If the position x T and curvature 7 T of the wall at the throat are specified, then (29) and (30) provide 
a pair of simultaneous equations from which C and D may be deduced. 

The coefficient E is chosen to have negligible effect up to the throat but to ensure that S con- 
verges to within ~ of 1 per cent of S F upstream of the working-section, at the point x = 50 ft. 
Application of this criteria to the lowest and highest Mach-number cases, with substitution of x = 2 
in equation (3) will give two limiting values of E. Interpolation between these will give the remaining 
values. Numerical values of the coefficients are given in Table 4. 

2. Estimation of Suitable Intervals for Equipotential and Streamline Mesh . - -From Appendix I and 
Section 4, we have S and 0 defined at all points between the centre-line and wall streamline by 
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equations (10) and (11), namely, 

OS S 1 30 

30 1 -  S 2 1 3S 

( 34 S 1 -  

The main numerical problem lies in the solution of these equations (the choice of method is 

discussed in the next paragraph), which are to be solved numerically on a bivariate mesh of stream- 

lines and equipotentials. The  first task is to choose suitable intervals 8~h and 8~ (having in mind the 

method to be used for solution of the equations). The choice of intervals is critical; a poor choice 

may result in the bui ld-up of round-off error swamping the true solution. In this problem, for the 

supersonic region, Diprose was able to establish a criterion for the ratio 8~h to 8~, by investigating the 

physical problem of the propagation of small disturbances in supersonic flow, using the method of 

characteristics. This yielded the same result as a numerical consideration of the propagation of 

errors in proceeding from row r to row (r + 1) of the mesh. The argument runs as follows: 

S 1 3S S 30 
L e t f l ( S  ) denote / $2\5/2 , so that = f l (  ) ~ ,  

S t 1 _ 6 )  S~ 

1 - S 2 1 30  
andf~(S)  denote S~ 1 - 6 ) /  $2\ 7/2 S~ so that ~ = f 2 ( S )  , 

and let ~i be any equipotential on row r (streamline ~r), 
~i be the same equipotential on row r + 1 (streamline ~r+l), 
E be a small error in S on row r. 

On row (r) the maximum error in 00/3~b is 

3 S  3 

The second term is negligible compared with the first so that the error in 

Therefore the error in 

and the error in 

30 e 
N~-~f~(S). 

(0~+~- 0~) = 80~_~ ef2(S ) 

The maximum increase in error is S, in going from row (r) to row ( r+  1), is thus approximately 
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If  we specify that  this must  not exceed the original error • in S, we have 

i.e., ~ <  ($2_1)1/~ . (31) 

The  crucial quantity is 3f which affects the accuracy of the numerical differentiation used to obtain 
derivatives with respect to ~ in formulae (10) and (11). All numerical differentiation formulae start 

effectively with the first difference of the function, so that too small an interval means a noticeable 
loss of figures in the derivative. The  use of a larger interval and higher-order formula is therefore 
recommended (the differences must, of course, converge). The  precise number  of figures required 

in the derivative, and hence the decision on the value of 3~, depends on the number of figures 
(i.e., the precision) in the function S, which is governed by the contract specification of accuracy for 

the walls. In  this case an accuracy of 0.005 in. was required, and so 0.0001 (in 300 inch units) was 
taken as the objective of the numerical work. 

The precision required in S can be roughly estimated from the known dependence of y on S 

in one-dimensional flow (see equation (6)). This estimate had then to be generously increased to allow 

for build-up of round off errors in the subsequent computing and ultimately S and 0 were taken to 

seven decimal places. 
On the centre-line the analytic derivatives were obtained and used as a guide to determine 3~. 

It was soon found that at a spacing of more than 25 in. no polynomial formula of any degree would 

give the derivatives to the required accuracy. After much experimental work on a desk machine 3~ 

was fixed at 15 in. and the numerical differentiation formula truncated at the fourth difference. 

With ~ fixed at 15 in., we can now consider 3~b. The right-hand side of (31) decreases steadily as 

S increases (if S > 1), and so an upper bound to 3~b can be set by consideration of conditions at the 

highest Mach number  (M = 2.8), where S _  1.9 (Table 1). This gives, using (31), 

- - <  0.075, 

so with 3~ = 15 in., 3~h< 1-125 in. 
The value of the wall streamline ~w can be derived from equation (20), which, for parallel flow, 

gives 

Application of this formula at the throat gives a relationship between ~b w and YT, where YT is known 
and S = 1, i.e., 

~bw = YT 1 - -  . (33) 

To avoid interpolation for the wall streamline, 3~b was varied for each pivotal value of YT, and, 
in each case, made equal to ~bw, i.e., the ninth streamline of the mesh was identical with the wall 
streamline. Substitution in (33) for the highest Mach number gives 

which being less than 1.125 in. satisfies condition (31). 
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Similar checks were made for the other design Mach numbers with satisfactory results. The 

vNues of 3¢ are given in Table 5. 
3. Solution of the Partial Differential Equations of Flow.--Appendix I shows how the equations 

of flow can be transformed into a pair of simultaneous first-order partial differential equations with 
'initial value' conditions given. There was thus some choice in the method of solution, though little 
experience at that time (1953) of handling such processes on a high-speed computer. Some well- 
known methods, for example that of Runge-Kutta 6 which is much used on high-speed computers 

for solving ordinary differential equations, seemed to be unsuitable in this case. In fact, the most 
practicable class of methods appeared to be that of the 'predictor and corrector' iterative type (Ref. 4, 
page 72); backward difference, central difference or Lagrange type (ordinate) integration formulae 

may be used. For a desk machine the central difference form is preferable, but for a high-speed 

computer the process of estimation and correction of missing differences would lead to an unduly 

complicated programme without any great reward. In any case, for a high-speed computer the order 
of approximation must be specified in advance, and then checked by differencing the results; there 

is thus no immediate gain in using finite difference formulae, as the differences would only be 

formed inside the computer. 
The actual formulae used Were the same for both the ACE and DEUCE programmes; for the 

former they were evaluated in their finite difference form, and for the latter as Lagrange type. The 
change introduced considerable simplification into the DEUCE programme, as the application of 
each formula each time could be treated as a multiplication of vectors to give a scalar product. 
For this particular problem all formulae, including the differentiation formulae to obtain derivatives 
with respect to ~ at each mesh point, were truncated at the fourth difference term, i.e., were 'five- 
point' formulae, and thus the same sub-routine could be used to form all the scalar products. The 
truncation point was only selected as the result of considerable exploratory work on desk machines 
after the intervals S~ and 8¢ had been fixed in the manner described in Section 2. A separate DEUCE 
programme was prepared to evaluate differences up to the fourth so that the results could be checked 
in both the ~ and ¢ directions at suitable check points in the range. Further, for each streamline, i.e., 
each row of the mesh, a 'compare card' was punched out giving the maximum difference between the 
predicted and corrected values of S or 0. The application of this will be described in Section 3.3. 

In the ACE and early DEUCE programmes an attempt was made to impose boundary conditions 
in the ~ direction of the mesh, in addition to the initial conditions on the centre-line, in effect, to 
substitute cards with these boundary conditions in place of the end points of each row of the mesh 
produced by the iterative solution of the equations of flow. These boundary values were intended 
to produce solutions which would satisfy the entry and exit conditions of the tunnel. This attempt 
proved unsuccessful partly due to the fact that too drastic an approximation was used to compute 

the entry conditions and thus the boundary values did not represent the flow at entry, and partly 
due to the inherent difficulty of trying to satisfy an excessive number of boundary conditions. 
Undoubtedly the wall streamline of the mesh must satisfy the geometrical conditions of the tunnel, 
and if the step-by-step solution which depends directly on the original choice of centre-line distribu- 
tion does not do this, then some final arbitrary smoothing may be necessary. This must obviously 
have negligible effect on the subsonic flow, and so the amount that can be tolerated will depend on 

the structure of the tunnel. 
The later DEUCE programme catered solely for an initial-value problem, and the results were 

much more satisfactory. Some smoothing was still necessary to keep the curvature of the plates 
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below the entry conditions limits, which are more severe there than elsewhere due to the 'stepped' 
construction of the flexible plates. This smoothing was carried out by Aero Department, Bedford, 
and included the refined boundary-layer corrections which were applied to the computed jack 
extensions prior to sub-tabulation (of jack movements). The formulae used by this programme 
which are given below were applied in an iteration cycle to proceed from row to row of the mesh thus : 

Oi1 any row r, S and 0 are differentiated with respect to ~ by formula (34) ((35) and (36) for end 
points). These derivatives are then substituted in equations (10) and (11) to give 00/3~b and c9S/c~¢ 
on row r; these values together with the value of S and 0 on row r and the derivatives on the three 
previous rows ( r - 1 ) ,  ( r -2 ) ,  ( r - 3 )  are used in an extrapolation integration formula (37) to obtain 
predicted (approximate) values of S and 0 on row ( r+  1). Differentiation by formulae (34), (35), 
(36) provides 0S/c94 and O0/8~b on row (r + 1), which in addition to the derivatives on rows r, (r-  1), 
(r - 2), (r - 3) and the function values S and 0 on row r, are used in the 'corrector' integration formula 
(38) to give 'corrected' (more accurate) values of S and 0 on row (r + 1). 

There is no provision in the programme to repeat the iteration cycle. The reason for this is 
discussed in Section 3.3. 

3.1. Formulae Used in These Programmes (Notation as in Ref. 4). 

Differentiation with respect to ~ ( f  denotes S or 0; n is the number of points on the centre-line). 

(a) Interior points (G, ..., ~, ..., ~-2) 

ACE 

DE UCE 

fo' = ~fo - ~/zSafo 

1 
fo' - 12a  sf_l  + 8 A - f d  

(34) 

(b) End points (~o, ~ and ~_~, ~ )  

ACE 

DEUCE 

I 2 I a fo'=~-~[Afo--~A fo+~A fo-4A4fo] 

fo' ~--~IAf-l+2A2f-l--lAaf-l+lA~f_l] 

1 1 ~  1 3 1 4 
fo' ~-~ [Vfo+~ V f o + ~ V  f o + ~ V  fo] 

1 F v 1 V2 1 Va 1 V4 1 

fo' l~[-3f4+16fa-36f~+48f~]-25fo 

fo' l~[f3-6f2+18f,- lOfo-3f_l]  

1 6 fo' ,f_ -18f_ +10fo+3fd 

- 121a  [3j_ -16f_3 + 36f_.-  4sf_  + 25f0] 

(35) 
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Integration with respect to $ ( f  denotes either 00/~$ or OS/O$; 4o and 41 refer to rows r 1 and 
( r + l ) ) .  

(a) The predictor formula (Adams-Bashforth4). 

1 5 3 3 251 4 

DEUCE f~ If d4 7-~ [1901f°-2774f-l + 2616f-~-1274f-3 + 251f4] (36) 
J 

(b) The corrector formula (Bickley5). 

ACE fflfd4=73--~201251fl+469fo+ lO9Vfo+49V~fo+19V3fo] t" (37) 

DEUCE ffifd4 7~[251fi+646fo-264f_l+lO6f_2-19f_3] 

The results of these programmes were punched out a row at a time and the calculation was 
extended to two streamlines beyond the wall to permit integration along the equipotentials (see 
Section 4). The output consisted of two binary cards for each point and an optional decimal card 
with the configurations shown below• 

Binary cards (in standard floating binary) 
First card: 

S r on X and Y rows of the card 

0,. 0 and 1 

S 2 and 3 

~Sr-1 4 and 5 

~Sr_2 6 and 7 

0S,_a 8 and 9. 

Second card: 
~0,._l 

on X and Y rows of the card 04 

00~_~ 0 and 1 

~0~-3 2 and 3 

Ply 4. 
Decimal cards 
One card fS_ as a signed ten digit number, nine decimal places. 

[o  as a signed ten digit number, nine decimal places. 

The existing programme reads back these binary cards tO start the next iteration, but from a 
computer storage point of view this is unnecessary, so that as the attempt to introduce boundary- 
value conditions would not be repeated in any future application the programme would be modified 
to avoid this. 
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In order to start this process on the first row of the mesh, some assumptions regarding the 

derivatives OS/O$ and 00/~$ on the previous three rows must be made and then corrected by another 

iterative procedure carried out by a programme called 'pull-back'. 
3.2. Starting Procedure.--The first row of the mesh is the centre-line, ~ = 0; to start the predictor- 

corrector process we assume that 3S/3$ and ~0/35 are equal to the value on ~ = 0 for the preceding 

three rows ( r -  1), ( r - 2 ) ,  ( r -  3). Since 0 = 0 o n ~  = 0 and we have computed S on ~b = 0 from the 
centre-line distribution formula, we have all the information necessary to use the main programme 

168 to proceed to the second row of the mesh. Programme 172 converts a decimal centre-line and 

produces two binary cards making the necessary assumptions. In fact, we compute out to the 

fourth row and then, using the symmetry of the tunnel, reflect back these values by programme 

190 (pull-back) to form revised rows ( r - 1 ) ,  ( r - 2 ) ,  ( r - 3 ) .  Hence we establish an iterative cycle, 

using these revised rows'we obtain more accurate results for rows (r + 1), (v + 2), and (r + 3). These 

are compared by programme 329, and the iterations repeated until agreement in S and 0 is reached 

to the required accuracy. 
3.3. Accuracy of the Results.--As mentioned in Section 3.1 the main programme 168 punches out 

a 'compare card' which can be used as an estimate of the maximum error in S or O, on that row 

of the mesh. The  error terms in the predictor and corrector formulae are respectively 

and 

where (Z) is some point in the range of integration. The  error of the 'predictor' is thus about 17' 
times as large as that of the 'corrector'. If, therefore, e is the maximum acceptable error in the final 
values of S or 0 (e.g., five units in the seventh decimal place) then the value of the compare card 
must not exceed 16e. For this reasoning to be valid the functions must be 'well behaved' mathe- 
matically. I t  is essential that differencing checks should be carried ou t  on the final results. In fact, 
on the compare card the values were always well below the prescribed maximum, and the corrector 

formula proved stable in application to these equations. 
I f  the value on the compare card had been too high, then the intervals 8~ and 8~ would have had 

to be reduced. If  the differences are too large then either higher-order formulae could be used, or 
again the intervals reduced. A change in the iteration cycle could be tried and a second application 

of the corrector formula made to see if the value on the compare card would be reduced. Wall 7 has 

shown that this is not always effective. 
The  predictor formula only provides the first approximation ; the accuracy of the answer is entirely 

dependent on the 'corrector' formula. In these programmes the formulae (36) were actually trun- 

cated at the second difference term. This did not, in fact, save any appreciable computation time 
and it would have been simpler in the D E U C E  programme to have used a five-point formula and 

thus avoided an additional sub-routine. There is no reason to suppose that this would not have been 

satisfactory, although there are occasions when inclusion of higher-order difference worsens the 
situation 7. I t  should be recognised that, in the early days, time for experiment on ACE Was severely 
limited (and so was the department 's  desk computing capacity). Moreover, the unexpected re- 
programming for D E U C E  was carried out under  extreme pressure to finish the calculations in 
advance of the completion of the structure so that delay in arrival of the new control tapes would 
not hold up calibration and use of the tunnel. Looking back on the job, it is now possible to suggest 
several other simple modifications to these programmes which would yield additional saving of 

computation time. 
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4. Calculation of Wall Co-ordinates in X, Y Plane. We now have the values of S and 0 at all points 
on the (~, ¢) mesh (and by symmetry in the corresponding region ¢ < 0) which will enable any mesh 

point to be expressed in cartesian co-ordinates and, in particular to achieve the first objective, the 

calculation of the co-ordinates of the thirteen pivotal wall shapes. 
Integration along the equipotential lines from the centre-line to the wall gives the r e q u i r e d  

co-ordinates (x~, y~), of the point of intersection of each equipotential (~), with the wall streamline 

Cw, using equations (13) and (14). 
Programme 377 carries out this integration numerically using formula (38), the truncation point 

again being decided after trial calculations on a desk machine (for Notation, see Ref. 4). 

If we denote 
ax  

or 

 fd¢= Yo+A+£...+f,-l+gf,,+ ( Sfo- af,)-yff6(#SVo+ SV ) (38) then 

This programme also computes dl/d~ and dO/dl for each point xiy ~ for use in the next stage of 
the calculations, where l is now the distance along the wall measured from the fixed downstream 
end of the plates, x = 62 ft, as shown in Fig. 9. The input for programme 377 consists of a set of 
the first card of the pair of binary cards from 168, re-ordered by columns instead of by rows (on 
a Hollerith sorting machine). The output is three cards for each point on the wail; the first has 
x, y, dl/d~ and dO/dl in binary, and the other two have the same quantities in decimal. 

4.1. Curvature Check.--The wall curvature was then "computed as the ratio of dO/d~ to dl/d~ 
from the output of 377 and checked against the prescribed limits. 

5. Calculation of Jack Extensions.--We are now in a position to determine the co-ordinates 
(xj, yj), Table 7, of the moving end of the jacks for each wall shape. As mentioned in Section 6, 

the contractor's drawings give (xH, yH), the co-ordinates of the fixed hinge points. The distance 

between these two points is the required jack extension (e). 
The distance 1j along the wall streamline from the fixed downstream end of the plates to each 

attachment point (xj ,yj)  is specified on the contractor's drawings (Table 6). The distance l~ to each 
point (xi,yi) in the wall streamline can be computed by integration of dl/d~ punched out by the 
last programme (see Fig. 8). Thus for each design Mach number we now have a table of (x~,y~) 
against an argument l i. Suitable interpo!ation into {his table for each l j  will, therefore, give (x j,  y j )  
for each of the thirteen pivotal wall.shapes. As the argument l¢ is at unequal !ntervals, an iterative 
interpolation method due to Aitken 4 suited both the problem and the computer, programme 409. 

From the thirteen sets of thirty values of (xj, yj)  and the known (xr~,yH) (Table 6) we can 
compute the extensions, e. The actual values of (xj, y:) were scaled to accommodate various tunnel 

design modifications before the extensions (e) were computed on desk machines. The values of e 
for each jack were differenced to check that the relative rates of movement would be economical 
and that a reasonable sub-tabulation scheme for these values' could be evolved. Originally oflly 
nine pivotal wall shapes were prepared, but a study of the first set of data soon revealed that this 
was inadequate, and further that the existing choice of lead screws would make the tunnel operation 
very slow. Accordingly, additional wall shapes were computed near the speed of sound, and two 
lead screws were changed. In fact, the general sub-tabulation scheme would have been simpler, 
and more firmly based, if the interval of YT had been reduced throughout the range and extended 
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beyond the required maximum Mach number.  I t  is probable that the total time taken would not 
have been longer once the D E U C E  programmes had been linked together and unnecessary reading 
in of cards eliminated. 

6. Calculation of Jack Movements.--The jacking system 10 is designed so that each jack moves in 
discrete steps of either 0.0025 in. or 0.00125. in. dependent on its position (see Fig. 4). The jack 

extensions required to set the tunnel to the pivotal wall shapes are, as we have seen, tabulated against 

an argument YT. I f  these extensions are now expressed in units of jack movement and sub-tabulated 

to a very fine interval OfyT, it will be possible to ensure that no jack is required to move more than 

one step for any one change of wall setting, and for practical purposes the Mach number  change 

will be continuous from 1 to 2.8. Jack movements were in fact computed for 17,408 steps of throat 
size YT for each jack. 

T A B L E  2 

Half  throat 
size 

13 
17 
21 
25 
29 
33 
37 
41 
45 
45-054 
45.108 
45.162 
45.216 

Sub-tabular interval ratio 

Stage I 

_!_ 
l o  

9 
1 

1_5 

15  
1- 
8 
1 

1 
8 
! 
8 
_1_ 
8 

Stage II  

2--8 

2-s 
2-7 
2-7 
2-s 
2-s 
2-s 
2-8 
2-s 
2-6 
2-6 
2-6 
2-6 

The sub-tabulation scheme was kept as flexible as possible to enable changes in requirements to 
be incorporated in the light of experience without requiring a new D E U C E  programme to be  

prepared. For this reason the work was carried out in two stages. For the second a special programme 

based on Comrie's method of 'bridging differences 's which uses Everett 's interpolation formula ~, was 

prepared in advance, and for the first the Lagrangian interpolation formulae using standard matrix 

manipulation programmes with the ACE and D E U C E  general interpretive scheme 1~ were used. 
In the bridging difference programme Everett 's !nterpolation formula was truncated at the fourth 

difference, which was ' thrown back' on to the second. The  main advantages of this method are that 

there is no loss of accuracy due to build-up of round-off error, and most of the multiplications 
normally associated with interpolation are replaced by additions, a considerable time-saving factor. 
Essential to Comrie's interpretation of the method is that for binary arithmetic (ACE and D E U C E  
are binary machines) ~ must be of the form 2 -a (where a is any integer, h is the original interval of 
tabulation, ~h is the sub-tabular interval). For decimal arithmetic a is of the form 2 -a 5 -~ (b is also 
an integer). Based on considerations of the possible movement of the throat from one pivotal shape 
to the next, c~ was chosen initially as 2 -s, and the programme was arranged so that a simple alteration 
would cover a change to 2 -5, 2 .6 or 2-L Programmes were prepared for both ACE and DEUCE.  
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The time taken to change Mach-number settings in the tunnel is solely dependent on the time 
taken by the reading equipment to read the corresponding length of tape. Operating times should 

obviously be kept down (to about  45 minutes for changing from Mach 1 to 2.8), and so the 
stationary portions on the tapes should be kept to a minimum. The pattern of holes on the tape will 
be governed by the choice of sub-tabular ratios. On the other hand, it is no use producing tapes 
without any blank spaces, as obviously sundry small adjustments will be required in the course of 
time and it is desirable that these can be made on the spot without retabulating and repunching 

the whole installation of-tapes. 
An effort was made to meet these conflicting requirements by a varied choice of sub-tabular 

intervals in Stage I, based on trial-and-error tactics, in conference with the tunnel aerodynamicists. 

The outcome is shown in Table 2. 
Six-point Lagrangian interpolation formulae were used for Stage I (coefficients to nine decimal 

places, or exact wherever possible). The Lagrangian coefficients were treated as a matrix, and each 
of the thirty sets of nine pivotal values as a vector. The problem was then formulated for use of 

standard matrix multiplication 'bricks' of ACE and DEUCE Scheme A 13. 
7. Preparation of the Control Tapes.--The programme for Stage II was constructed, so that the 

output was in a suitable form for direct transcription on to five-channel punched paper tapes. 
Separate sections of the programme checked this output before the transcription, and further 

checking programmes were prepared to check the tapes on either the Cambridge University EDSAC, 

or R.A.E. Pegasus, machines which have tape input and output (whereas DEUCE normally has card 
input and output). One of the R.A.E. DEUCE's  has now been modified so that tape output can 

be fitted, thus in any future work of this kind the transcription stage would be avoided (there are 

occasions when card output is pre-eminently suitable, others when tape is preferable and many 

applications where the choice is immaterial). 
The first set of tapes was transcribed in the R.A.E. The second set, which embodied the improved 

boundary-layer corrections, was prepared at the University Mathematical Laboratory, Cambridge 
as the R.A.E. equipment had been dismantled for another project. In each case the transcription 
was carried out at least twice to locate random errors; the second set was also checked on the 
EDSAC or Pegasus to detect systematic errors in view of the experience gained in production of 
the original tapes. The demand of the tunnel designers for a continuous length of 'error free' tape 
of over 17,000 characters was very hard to meet with the standard tape punching equipment then 

available. 
The code setected to represent jack movements on the tapes was simple, but involved long stretches 

of blank tape for the more slowly moving jacks. This, too, is apparently not conducive to reliability 

of the tape reading equipment. The code used was: 
Channel l - - lower  wall--moving out (away from the centre-line of the tunnel) 

Channel 2--lower wall--in 
Channel 3--used for supersonic diffuser stations (on the first eight jacks only) 

Channel 4. upper wall--in 
Channel 5--upper  wall--out. 
The system is described in Ref. 10 and Fig. 9 shows a Hollerith card and the corresponding 

section of tape. 
The jack movements were punched on the Hollerith cards in the form of thirty-two first differences 

of jack extensions (in units of jack movement). The Y row represented movements of the wall in 
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i.e., channels 2 and 4; the X row movements out, channels 1 and 5. The latter were almost non- 

existent, only on a very rare occasion was it necessary to retract any jacks whilst others were extend- 

ing. The datum was the Mach 1 position of the plates. To lower the Mach number the tapes pass 
through the readers in the reverse direction and the functions of channels 1 and 2, and 4 and 5, 
are interchanged by reversing a relay 1°. 

Thus, with the exception of pivotal values required for checking purposes, the DEUCE output 

was restricted to first differences of jack extensions expressed in discrete steps of jack movement. 

The sub-tabular intervals of Stages I and II were chosen so that these.first differences would be 

+ 1, 0 or - 1, and tables were prepared against an argument of throat size, YT. The final set of thirty 
tapes would suffice to operate the tunnel smoothly over the complete speed range in regular intervals 

ofyT, whereas it is more convenient to have an operational scale in equal intervals of Mach number. 

Therefore, a critical table of Mach number against YT at intervals of 0.01 in Mach number was 

prepared; from this a master tape was punched and linked with the jack tapes so that all jacks can 
be set simultaneously to a specified Mach number. 

8. Conclusion: Computer Time Required.--To compute one pivotal wall shape, using the pro- 

grammes as they now exist, requires about 2½ hours on DEUCE. If, however, the modifications 
recommended in the report sections were made, and the individual programmes linked together 
then with a mesh of 50 x 12 points, thet ime would be reduced to two hours. The sub-tabulation for 

one jack, including the punching out of every thirty-second function value for checking and informa- 
tion purposes, occupies about 30 minutes; this would go down to about 15 minutes if the intervals of 
YT were reduced in accordance with suggestions in Section 6. The information for one jack occupies 
544 Hollerith cards (32 values on one card) which can be transferred as 17,408 characters onto creed 

punched paper tape in one hour. This transcription time would in future be eliminated by the use of 

tape output on DEUCE. To read and check such a tape by EDSAC or Pegasus occupied 20 minutes. 
To sum up, the programmes prepared for this job will accept data to nine decimal digits. All 

finite difference formulae are truncated at the fourth difference, thus the intervals of S~b and 3~ must 

be such that fifth differences are neglfgible and at the same time satisfy the inequality (31). In the 

case of sub-tabulation by the method of bridging differences the fifth differences are also neglected, 
so that either sufficient pivotal wall shapes must be computed so that 3y~ is small enough for this 
condition to be satisfied, or a preliminary sub-tabulation using a higher-order formula must be 
carried out. 
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T A B L E  3 

Specific Speed at Entry and Exit of the 8-ft x 8@ Wind Tunnel 

Half throat 
height (YT) 

(in.) 
13 17 21 25 29 33 37 41 45 45.054 45.108 45.162 

At entry(S~) 0-10252 0"13448 0'16680 0-19958 0.23292 0"26694 0.30183 0"33773 0'37487 0'37538' 0"375899 0"376410 
At exit (Sp) 1"91227 1"82875 1-74869 1"66916 1'58759 1"50089 1-40391 1-28467 1.06315 1'05476. 1'044693 1"031585 

45-216 

0.37619 
1'00000 

These values were based on the following dimensions taken from the contractor's drawings: 
(a) The  effective half height of the working-section after subtraction of the displacement thickness of the boundary layer is taken to be 45-216 in. 
(b) The  half height of the tunnel  at the origin, Fig. 2, is taken as 86'400 in. ; converging at an angle of tan -10'47118. 

T A B L E  4 

Coefficients for Centre-line Formula (For use with x Measured in Units of 300 in.) 

bO 
Grl 

Half throat 
height (YT) 

(in.) 

A 
B 
C 
D 

13 

0-092664 
0-159930 
0.497385 
0-390426 

10GE 0"81 

17 

0.129852 
0"217738 
0"546674 
0-489006 

1.11020 

21 

0.172506 
~0.279677 
0.597135 
0.589927 

1,53310 

25 

0.222192 
0.346621 
0-650962 
0.697580 

2.16316 

29 33 

0"281304 0'353928 
0.419900 0.502546 
0-710805 0'780835 
0'817266 0-957327 

3"17189 4'96418 

37 

0.448068 
0"602851 
0'869527 
•'134711 

8'75416 

41 

0.583494 
0'747993 
1-000806 
1-397268 

20-2712 

45 

0.891078 
1'205134 
1'419655 
2.234966 

295.358 

45.054 

0-903993 
1.231102 
1.422232 
2-240289 

300.4279 

45.108 

0.919549 
1.263351 
1.424965 
2.245586 

305'5609 

45-162 

0-939942 
1.307218 
•-428446 
2.252549 

312.4407 

45"2•6 

0'989692 
1"422410 
2.660917 
4"717491 

330"0000 

T A B L E  5 

Values of Wall Streamline ~w 

Half throat 
height (YT) 13 17 21 25 29 33 37 41 45 45"054 45'108 45'162 45"216 

(in.) 

~b w 0-0274707 0-0359232 0"0443751 0'0528282 0'0612808 0.0697332 0"0781857 0-0866383 0-0950908 0'0952048 0'0953189 0'0954330 0'0955472 
~ b =~ q ~  w 0'00305230 0'00399147 0"00493057 0.00586980 0-00680898 0-00774813 0'00868730 0'00962648 0'01056564 0'01057831 0'01059099 0-01060367 0-01061636 



TABLE 6 

Contractor's Specification for Jack Attachment 
and Hinge Points (See Fig. 8) 

Jack lj Jack x~ y~  
number (in.) number (in.) (in.) 

2 744 2 52 127 
3 714 3 79 127 
4 684 4 110 127 
5 654 5 135 127 
6 624 6 161 120½ 

7 594 7 186 102~ 
8 564 8 212 100 
9 540 9 234 100 

10 516 10 256 100 
11 492 11 278 100 

12 468 12 300 100 
13 444 13 323 100 
14 423 14 3432 100 
15 402 15 363½ 100 
16 381 16 383~ 100 

17 360 17 404 100 
18 339 18 425 100 
19 318 19 446 100 
20 297 20 467 100 
21 276 21 488 100 

22 255 22 509 100 
23 234 23 530 100 
24 213 24 553 i00 
25 192 25 576 100 
26 168 26 600 100 

27 144 27 624 100 
28 120 28 648 100 
29 96 29 672 100 
30 72 30 696 100 
31 48 31 720 100 
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TABLE 7 

Co-ordinates ~ c k  AttachmentPomts'Rev~edBounda~-L~erCorrections ~clu~d) 

y T  # 
# #  

x j  y j  

Jack number  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

13" 
x y 

13"476 80'439 
40"282 66'970 
67"371 54'079 
95-246 42'989 

123"845 33.929 
152-986 26"798 
182-526 21"567 
206"329 18'498 
230"202 16'036 
254"130 14'177 
278-112 13"251 
302"112 13"307 
323'092 14-211 
344'018 15-971 
364"856 18-575 
385'600 21-838 
406"290 25"433 
426"982 29"017 
447"713 32"367 
468"497 35"370 
489'334 37-983 
510'216 40"205 
531.135 42-048 
552.081 43"544 
576.044 44.885 
600.023 45.898 
624.011 46-646 
648.005 47-192 
672.002 47.588 
696.000 47.883 

17" 
x y 

12.047 81.147 
39-079 , 68.137 
66.418 55.784 
94-509 45.255 

123-249 36.653 
152-472 29.866 
182-052 24.865 
205.871 21.924 
229.759 19.610 
253.701 17.944 
277-692 17.287 
301.688 17.741 
322.644 19-098 
343"526 21-322 
364"324 24"228 
385.071 27"476 
405-815 30"743 
426-589 33"814 
447"407 36"576 
468"270 38'967 
489"173 40"987 
510"107 42"650 
531-064 43"991 
552.037 45"052 
576.019 45"974 
600'010 46-649 
624'005 47-137 
648'002 47"488 
672.001 47"745 
696"000 47-942 

21" 
x y 

10-728 81.812 
37-918 69.133 
65.514 57.367 
93-797 47-362 

122.665 39.202 
151-972 32.789 
181"596 28.052 
205-437 25.294 
229-345 23'199 
153-304 21.798 
277.301 21.449 
301-287 22.260 
322.221 23-923 
343.084 26.321 
363.893 29.149 
384-686 32.087 
405-497 34.899 
426-343 37.437 
447-225 39.657 
468-142 41.527 
489.086 43.057 
510-050 44.291 
531-028 45.256 
552.015 45'996 
576.007 46.625 
600.003 47.073 
624.001 47.399 
648.000 47.637 
672.000 47.819 
696"000 47-967 

25" 
x y 

9.550 82.412 
36-825 70.028 
64.651 58.818 
93-110 49.326 

122.109 41.641 
151-508 35.666 
181"183 31.259 
105.049 28.727 
228.978 26.879 
252.952 25:764 
276.952 25.698 
300-928 26.763 
321-853 28.536 
342.725 30.850 
363-571 33.392 
384-420 35.905 
405-292 38.218 
426-193 40.257 
447-122 41.984 
468-074 43.403 
489-044 44.533 
510-025 45.418 
531-014 46.094 
552-008 46.601 
576.004 47.024 
600.002 47.327 
624-001 47.549 
648-000 47.718 
672-000 47.858 
696.000 47-981 

29" 
x y 

8'343 82.975 
35.806 70-900 
63'846 60.236 
92.474 51-266 

121.603 44-091 
151.096 38-596 
180.823 34.559 
204.714 32.279 
228.661 30-679 
252.646 29.833 
276.645 29.981 
300.616 31-148 
321.548 32-841 
342.448 34-892 
363.338 37.035 
384.238 39.079 
405.158 40-907 
426.099 42-474 
447.060 43-760 
468.035 44.792 
489.020 45.593 
510.011 46.203 
531.006 46.659 
552.003 46-998 
576.001 47-278 
600.000 47.484 
624.000 47.645 
648'000 47.775 
672.000 47.890 
696.000 47.995 

y T  ~ t,. ¢¢ 
x j  y j  

Jack number  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

33" 
x y 

7"259 83"519 
34"875 71"799 
63"108 61"657 
91"903 53"237 

121"162 46"611 
150"744 41-620 
180"524 37"999 
204"438 35"964 
228"399 34"606 
252.391 33"972 
276-389 34"230 
300'364 35-3f '  

37" 
x y 

6-247 84.042 
34"027 72'718 
62"447 63'109 
91"418 55'320 

120"798 49"251 
150"462 44"775 
180-293 41"593 
204"227 39"811 
228'199 38'663 
252'194 38-166 
276.192 38-399 
300'176 39"281 

321'313 3 6 - 7 9 \  321'147 40"391 
342'246 38"465" 342.111 41-620 

41" 
x y 

5-308 84"550 
33'528 73"650 
61-873 64'640 
91-014 47'515 

120"522 52'104 
150-262 48"162 
180-134 45'398 
204"086 43'878 
228-066 42'880 
252'061 42"404 
276'061 42"477 
300.055 42"999 
321.044 43"669 
342"031 44"400 

45" 
x y 

4"431 85'063 
32"543 74'588 
61-369 66'276 
90-702 59'985 

120"343 55'361 
150-155 52'002 
180-060 49"619 
204"024 48'299 
228"007 47"413 
252"001 46'871 
276"000 46"663 
300"000 46"678 
321"000 46"774 
342.000 46"882 

363'178 40"152 
384'120 41-713 
405'076 43-071 
426'046 44-201 
447.008 46-119 
468'014 45"808 
489-007 46-340 
510-003 46-736 
531"001 47.031 
552"000 47-250 
576-000 47'438 
600-000 47.583 
624-000 47'705 
648-000 47'813 
672"000 47'913 
696-000 48'009 

\ ~ ~3'077 42-820 
%o'4'049 43-900 

405'029 44-812 
426"016 45-548 
447.000 46-846 
468.003 46"549 
489'001 46"869 
510'000 47"106 
531'000 47"285 
552'000 47"425 
576'000 47-552 
600-000 47'661 
624.000 47.758 
648"000 47"850 
672-000 47.939 
696"000 48'025 

363'020 45.090 
383'011 45"688 
405'005 46"178 
426'002 46"556 
447.000 47-846 
468.000 47-058 
489.000 47"220 
510'000 47-347 
531'000 47-452 
552.000 47"540 
576'000 47"639 
600'000 47-722 
624"000 47.805 
648-000 47'886 
672"000 47.964 
696-000 48'041 

363.000 46"987 
384"000 47'079 
405"000 47"165 
426"000 47"241 
447-000 47"313 
468-000 47"384 
489'000 47"452 
510'000 47-521 
531.000 47"587 
552'000 47-652 
576'000 47-725 
600.000 47-797 
624'000 47-867 
648'000 47"936 
672'000 48-003 
696.000 48"068 

45.216" 
x y 

4-374 85.095 
32"483 74'614 
61-322 66'349 
90"864 60'195 

120-338 55'654 
150"152 52"320 
180"058 49'938 
204"022 48"629 
228"006 47'748 
252-001 47.266 
276-000 47'029 
300"000 46'956 
321"000 46'961 
342-000 46'998 
363-000 47.054 
384-000 47'117 
405"00; 47"184 
426"000 47'251 
447"000 47'319 
468"000 47'387 
489"000 47.454 
510"000 47.521 
531-000 47"587 
552"000 47.652 
576'000 47.725 
600.000 47"797 
624'000 47-867 
648'000 47"936 
672"000 48-003 
696'000 48"068 
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300" uni ts  

0-00 
0'05 
0 '10 
0-15 

' 0 '20 

TABLE 8 

Centre-line Velocity Distributions ( S ~) 

13" 17" 21" 25 ~ 29 ~ 33 ~ 37 ~ 41 ~ 45 ~ 

0"10252 0"13448 0.16680 0"19958 0'23292 0'26694 0-30183 0-33773 0.3748756 
0-11159 0-14633 0-18142 0-21698 0.25310 0-28991 0-32759 0-36628 0"4061395 
0'12206 0"15988 0"19799 0"23648 0'27545 0"31498 0"35526 0"39635 0 '4382062 
0.13409 0"17525 0"21656 0'25809 0-29991 0-34205 0-38450 0-42767 0-4706423 

0 -14792  0-19267 0.23732 0.28193 0-32652 0'37108 0'41566 0 '46008 0"5031643 

45-054" 

0-3753868 
0"4066808 
0"4387567 
0.4711687 
0"5036247 

45.108" 

0-3758986 
0.4072275 
0'4393128 
0-4716958 
0"5040740 

45.162" 

0.3764102 
0"4077724 
0'4398608 
0.4721974 
0'5044667 

0"75 
0"80 
0-85 
0'90 
0'95 
1 "00 
1 '05 
1-10 
1-15 
1 "20 
1-25 
1"30 
1"35 

0.25 0 . 1 6 3 9 2  0.21243 0.26051 0'30818 0'35540 0.40211 0.44825 0.49344 0.5356024 
0-30 0-18254 0.23494 0.28645 0.33707 0.38671 0-43521 0-48242 0-52771 0-5678746 
0.35 0~0432  0-26067 0-31554 0-36891 0.42063 0.47048 0.51818 0.56284 0 .5999739 
0-40 0.22986 0.29012 0.34818 0.40400 0.45739 0.50806 0.55561 0.59884 0.6319625 
0.45 0-25985 0-32389 0-38485 0-44271 0.49725 0-54811 0-59478 0-63575 0.6639723 
0.50 0.29504 0.36262 0.42607 0-48543 0.54048 0.59082 0.63581 0.67365 0.6962012 
0.55 0.33628 0.40699 0.47239 0.53259 0.58739 0.63639 0-67886 0-71265 0.7288920 
0.60 0"38443 0-45777 0-52441 0-58464 0.63833 0.68508 0.72409 0-75290 0-7622837 
0.65 0.44041 0.51567 0-58271 0.64201 0.69359 0.73710 0.77167 0.79452 0.7965196 
0.70 0.50505 0.58136 0.64775 0.70503 0.75339 0-79258 0.82167 0-83759 0-8315199 

0.57901 0-65527 0-71980 0.77380 0-81773 0.85144 0.87398. 0-88199 0-8668419 
0.66256 0.73743 0.79868 0.84803 0.88623 0.91330 0.92824 0.92737 0.9016046 
0.75538 0-82727 0.88365 0.92688 0-95804 0.97732 0.98367 0-97309 0-9345618 
0.85635 0-92340 0-97323 1-00887 1.03175 1.04221 1.03916 1.01818 0.9643613 
0.96343 1.02364 1.06522 1.09191 1 . 1 0 5 4 5  ~.10630 1.09326 1.06146 0.9899072 
1-07374 1-12507 1.15689 '1-17352 1.17698 1.16775 1-14447 1-10172 1-0106452 
1.18384 1-22445 1-2453] 1-25118 1-24420 1.22481 1.19142 1.13796 1.026.6356 
1.29016 1.31864 1.32784 1.32270 1.30537 1.27613 1.23310 1.16949 1.0384150 
1.38957 1-40506 1.40244 1-38654 1.35935 1.32091 1.26899 1.19606 1-0467644 
1.47967 1.48201 1.46792 1-44192 1.40567 1.35892 1.29907 1.21780 1.0524986 
1.55911 1.54870 1.52393 1.48878 1.44448 1.39044 1.32368 1.23512 1.0563389 
•-62747 1.60518 1-57081 1-52760 1.47633 1.41605 1.34340 1-24859 1-0588599 
1.68511 1.65213 1.60935 1.55922 1.50205 1.43652 1.35892 1.25885 1.0604888 

0"5359494 
0"5680559 
0"5999324 
0-6316391 
0-6633057 
0"6951273 
0-7273447 
0-7601955 
0 '7938250 
0.8281605 
0-8627753 
0 '8968144 
0.9290650 
0-9582103 
0 '9831829 
1-0034451 
1"0190598 
1'0305556 
1:0386988 
1'0442879 
1'0480287 
1-0504829 
1'0520678 

0"5362634 
0-5681710 
0"5997814 
0 '6311504 
0-6624049 
0'6937376 
0.7253859 
0.7575859 
0 '7904854- 
0"8240216 
0-8577891 
0 '8909664 
0.9223830 
0"9507648 
0'9750773 
0.99~7992 
1-0099933 
1"0211756 
1-0290933 
1"0345250 
1"0381588 
1-0405416 
1"0420796 

0"5364733 
0-5681171 
0"5993768 
0'6303046 
0.6610239 
0"6917237 
0.7226382 
0-7540017 
0'7859652 
0-81,84785 
0-8511632 

0"8832400 
0-9135923 

0"9410001 
0"9644707 
0-9835038 
0"9981619 
1"0089447 
1-0165753 
1'0218070 
1'0253046 
1"0275966 
1"0290752 

45-216" 

0-3769191 
0"4083128 
0"4404192 
0-4728209 
0"5052883 
0"5377104 
0.5700453 ' 
0.6022947 
0-6344928 
0-6666979 
0.6989781 
0-7313747 
0-7638423 
0.7961688 
0.8279062 
0.8583556 
0.8866487 
0.9119260 
0.9335477 
0.9512411 
0.9651229 
0.9756093 
0.9832753 
0-9887261 
0-9925125 
0.9950917 
0.9968193 
0.9979597 
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FIo. 1. R.A.E. Bedford 8-ft x 8-ft Supersonic Wind Tunnel flexible plate nozzle, model support section and 
supersonic diffuser. 
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FTc.. 2. The 8-ft × 8-ft Wind Tunnel at R.A.E., Bedford. Jack positions and adjustable walls (shapes for Math 
1'0 and!2'8 shown). 
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Fro. 3. "rhe adjustable wall system: C;e~metry and n{)l:ation. 
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FIo. 4. The computational mesh of equipotentials and streamlines. 
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FIG. 5. Jacking system to adjust wall shape. 
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l~Io. 6. The flow velocity: notation. 
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FIo. 7. Streamlines and equipotentials: notation. 
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Fro. 8. Wall co-ordinates and jack extensions. 
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FIG. 9. Section of control tape and corresponding Hollerith Card for jack number 11. 
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