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The Growth of Compressible Turbulent 
Boundary Layers on Isothermal and 

Adiabatic Walls 
By D .  A. SPENCE 
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June, z959 

S u m m a r y . - - A  recent study of velocity profiles in the turbulent boundary layer on a flat plate at high Mach 
numbers has suggested the formula 

T~ _ Tr - H= ~ n , + y - i  

for relating the form parameter H to its incompressible value H~ (T~, Te, Tr are the wall, free-stream and recovery 
temperatures). This formula is used in conjunction with a generalisation of the Stewartson-Illingworth trans- 
formation to reduce the left-hand side of the integral momentum equation (including pressure gradients) to 
incompressible form, for arbitrary values of the fiat-plate recovery factor (or of the turbulent Prandtl number), 
which is about 0-89 for air. The intermediate temperature formula of Eckert is used to relate the skin friction to 
its incompressible value, for which a 1/nth power law is used. The momentum equation is then integrable when 
H~ is given a constant value, which may be chosen to secure agreement in the incompressible case with Maskell's 
quadrature for the momentum thickness /9, or with the author's modification of the latter. The integration is 
carried out for the cases of zero heat transfer and of a constant-temperature wall, the details of the Stewartson- 
type transformation being slightly different in the two cases, but the final forms for 

® = P._L~ (P~u, OIJ"~ 0 
pm ', l, zm I 

the same : ® M  B F ( M )  = (const) f M 1~ F ( M )  dx. a r e  

The constant B depends in the second case on the ratio TwIT o of wall to total stream temperature, but F ( M )  does 
not. This is of the same form as the equation obtained by Reshotko and Tucker in the special case of unit  recovery 
factor. A numerical example shows results very close to those obtained by Young's method, which involves two 
quadratures, in a particular case at zero heat transfer. Some calculations have also been made to illustrate the 
effect of cooling the wall on the boundary-layer growth in a pressure gradient. 

1. I n t r o d u c t i o n . - - A  recent  s tudy  1 of the veloci ty profiles measu red  by  Lobb ,  W i n k l e r  a nd  Persh  ~ 

i n  t u r b u l e n t  b o u n d a r y  layers on  a flat plate at M a c h  n u m b e r s  up  to 8 has shown  that  it is very  

largely possible  to represen t  the effect of compress ib i l i ty  by  wr i t ing  

u, "~]' (1) 

* R.A.E. Report Aero. 2619, received 15th October, 1959. 



where 

~ Y P  f0 ' p  ' V = - - d y ,  A = jo p, ~ d y ,  (2) 

ue and pe being velocity and density at the outer edge of the boundary layer where y = 8. The  
distributions of shear stress and thence of temperature across the layer can then be inferred, and 
it is found that  provided the turbulent Prandtl number a = EC~/K (~ ---- eddy viscosity, ic = eddy 

conductivity) is between about 0-6 and 1, the temperature is very nearly a quadratic function of 

the velocity*. A value of about 0.85 for a would be consistent with the observed value of about 0.9 
for the recovery factor r, which is defined by 

r = ( r , . -  r~)/(r 0 -  r~) (3) 

(Here suffixes 0, e and r refer respectively to an isentropic stagnation point in the free stream, to 

the edge of the boundary layer, and to wall conditions at zero heat transfer: • will be used for wall 
conditions in general.) 

It is shown in Appendix I that equation (1), together with the quadratic temperature-velocity 
relationship, results in the following expression for the form parameter H = 8*/0: 

H = - ~ t & + ~ -  1. (4) 

This expression for H and a generalisation of the Stewartson-IUingworth transformation are used 
in Section 2 to reduce the left-hand side of the integral momentum equation to its incompressible 
form. The momentum thickness 0 and the velocity ue are replaced by 

°:(i;° ) 
' (5) 

lue __ 

where k and l depend on the flat-plate recovery factor r, and for r = 1 take the values used by 
Stewartson 3, namely, 

k = 1 +  1/( 7 -  1), l = 1. (6) 

The latter values reduce the integral momentum equation of the laminar boundary layer, at zero 

heat transfer and unit Prandtl number,  to its incompressible form, and, as has been pointed out 
by Culick and Hill ~, would do the same in the turbulent case if the temperature dependence of 
H were still given by 

T° (H~+ 1 ) -  1. H = ~ (7) 

Culick and Hill 4 have integrated the momentum equation with the aid of (5) and (6) on the assump- 

tion that equation (7) does in fact hold. But (7) is the equation to which (4) reduces for zero heat 
transfer (T w = T~) 0nly when the Prandtl number  or recovery factor is unity, i.e., when T~ = To, and 

this is not found to be the case in air. The  present paper contains the generalisation to Prandtl 

* In this respect the turbulent boundary layer is considerably different from the laminar layer, in which the 
shear-stress distribution is such that the temperature-velocity relation can be treated as quadratic only when the 
Prandtl number is close to 1. 



numbers different from unity of the integration by Culick and Hill and of a similar one by Reshotko 
and Tucker 5. 

The intermediate temperature formula of Eckert G is used in Section 3 to relate the skin-friction 
coefficient to its incompressible value for which a flat-plate expression of the form 2C(Ro) -1In is 
assumed. The momentum equation is then integrated in Section 4 with H i constant. The 
justification for this procedure is that, a s  pointed out in Section 5, it leads to precisely the 
same form of equation in the incompressible case as was found by MaskelP from a comprehensive 
examination of experimental results, and which is known to provide an accurate quadrature for 0 
when pressure gradients are present. The solution is given for the two cases in which it is particu- 
larly simple, those of zero heat transfer and of constant wall temperature. 

No attempt has been made to go further and calculate the way in which H rises near separation, 
and the consequential departures of skin friction and heat transfer from the assumed flat-plates 
values. To do this one would require an auxiliary equation for dH/dx, the derivation of which from 
incompressible theories would involve much more speculative assumptions than those required to 
deal with the momentum equation. Maskell's work has, however, shown that such departures are 
insufficient to affect at all seriously the values of 0 obtained by ignoring them. 

2. Transformation of the Integral Momentum Equation. The momentum equation is (Y0ung 8) 

dO ~ - ( H + 2 -  ~ 0 du e ~ (8) 
dx M ) ~  dx =peue ~ 

where M = ue/a e is the local Mach number at the edge of the boundary layer. By differentiating the 
relations in (5), and using the isentropic relations 

To =cons t= Te+uee/2C~= T~{l+7-~-M 2} 

which hold in the free stream, we obtain 

(9) 

se dO_ dO O d~ dO O du~ 
d x = d x  f d x - d x  t-(Y-1) h M ~ - - -  ue dx ' 

and 
l }1 du e 1 &/e_ I + ~ @ _ I ) M  ~ 

ue dx u e dx'  

on substitution of Which (8) becomes 

d O + [ H + 2 - M ~ + ( y - 1 ) k M  ~] O d~, 7 w 
dx L ] u, & -  peu, " 

(lo) 

The choice of k, l to simplify this equation is slightly different in the adiabatic and isothermal wall 
c a s e s  : 

2.1. Zero Heat Transfer (T w = T~).--In this case (4) becomes 

H +  ! = (Hi+ 1). (11) 

The recovery temperature T r is found from (3) and (9) as 

{' } T~ = T~+r(To-T~)= T~ l + ~ ( y - 1 ) M  ~ . 

/ ~- O,I ,~,FAI 7 
3 

(12) 



Substituting from (11), the numerator of the expression in square brackets in (10) is 

H + 2 - M 2 + ( Y - 1 ) k M ~ = ~ ( H ~ + I ) + I + ( 2 k - 7 - 2 1 )  ~ M ~  = ~ ( H i  + T ~  2) (13) 

2 
if 2k - r. (14) 

y - 1  

And if l = r the denominator of the same expression is ~ /T  e. Thus if 

equation (10) reduces to 

r 1 
k = ~ + g ~ f  , 
l = r  

(15) 

dO 0 d ~  % 
dx F ( H i + 2 ) ~  dx - ~-- (16) 

Pc Ue 2" 

If T w # ~, the term H e + 2 in this equation becomes (Tw/T~)H~ + 2. Integration is therefore possible 
by the method described in Section 4 whenever Tw/T ~ has a constant value, and is not limited to 
the zero heat-transfer ease. 

2.2. Wall at a Constant Temperature T~.--It is convenient to write (4) in this case as 

T~Zm+~-I= 1+ M~ M~. - Yooni + ~ ( r -  1) (17) 

Then H+2-M~+( r -1 )kM 2 [~ l -4+2k+r-  1)~M = ~ H i + 2 + [ T ~  2 \ 7 - 1  2 
7 -  

(18) 

2 
if 2k+r - 2. (19) 

7 - 1  

And if l = 1, the denominator of the expression in square brackets is 

Thus if 

equation (10) reduces to 

I + Z ~ M  ~. 

T~ = const ] 
k 1--r+ 1-L-L, 
/ = 1  2 7 - 1 J  

(20) 

dO /T  w \ 0 d~  %, 
-  pouo ' (21) 

which is of the same form as (16). 

4 



3. Expression for the Skin  Fr ic t ion . - -The  intermediate temperature method enables us to write 
the wall shearing stress at a distance x from the virtual origin of the turbulence on a flat plate as 

rw =Pm u~ 2, (22) 

where the suffix m indicates evaluation of physical quantities at an empirically defined reference 

temperature T,,,, and (u,/ue) z is the same function of u e x/v m as in incompressible flow. The  accepted 

definition of the reference temperature, due to Eckert 6, is 

T m = 0.5(Tw+ Te) +0-22(T~- Te). (23) 

With y = 1.4, r = 0.89, this becomes 

T~ = 1 +0.12.8M 2 (24) 

in the case of zero heat transfer (T~o = ~), and 

Tm= 0.5(1 + 0.078M z) + 0.5 ~ (1 + 0.2M 2) (25) 
Te 

when the wall temperature T~ is constant. 
I t  is shown in Appendix II  that the local momentum-thickness Reynolds number  which corre- 

sponds to u e x/v m is Pe Ue O/tzm" Referred to the density and viscosity at an isentropic stagnation point 

this is 

p~u~O_ (Te~*--i_~-~o[T,,,~-ou~O (26) 

in which the viscosity-temperature relation has been taken as /~oc T% The dependence of (G/ue) ~ 

on this will be taken as an inverse 1/nth power law, so that from (22) 

T,w __ tim C( f l eUe  O] -1In T m -1+~ r e -@~_li-oJ)/n "It e O. - lha  

With C = 0.0088, n = 5, this agrees within about 5 per cent with the KSrm~n-Schoenherr line 

in the range 500 < R  o < 105 in the incompressible case (for which T~ = T~ = To). 

4. Integration of the Momentum Equat ion. -7The right-hand sides of (16) and (21) are both equal 

to ~'rw/peUe z, which may be wri t ten in terms of the transformed variables as 

where 

- t W  ' 

y - 1  ~+co n 

p = l  ~° 
n 

k and l being defined by (15) and (20) in the two cases. Then,  introducing 

\ V o /  

(28) 

(29) 

(30) 



both (16) and (21) may be written 

dO~B O ~ 1 + ~) _tTo\~ ITmX-P 
, 

where for zero heat transfer, from (16), 

and for a constant temperature wall, from (21), 

1 
/ l  

(31) 

(32) 

- -  

I f  H i is constant, (31) may be integrated to 

1 
n" (33) 

JtTOI \~l ~2dx. 
In transforming back to the original variables, it is convenient to introduce also 

(34) 

In passing it may be noted from (27) that 

o 2c to ( '  °("2]'", - = ( 'l ( - -~ ?~i-  )i (36) 

where c s is the local skin-friction coefficient ?wiPe ue ~. 
Equation (34) then becomes 

B /Te~a-Bllg [Tm~-fl = { 1 ~  c[[Te~-BII2{Tm~@ 11+~) u~"dx. (37) 

Clearly T O could be replaced on both sides of (37) by a different reference temperature if 
desired. The equation can also be put in terms of the Mach number M at the edge of the boundary 
layer, in the form 

OMS F(M) = ( I +I)  c f MB F(M) dx, (38) 

where F ( M )  = t ~ ]  t Z ]  " (39) 

r~/TO is (1 + ~M~) -1, and r~lr~ is given in terms of Mach number by (24) or (25). 
The constants of integration on the right-hand sides of (37) and (38) are to be found from a laminar 

boundary-layer calculation, for which a number of methods are available including that recently 
published by Luxton and Young 9. This will give a value of Ore, say, for the initial momentum 
thickness, which may be assumed continuous at the transition pointxT. 

Non-dimensionally, (38) may be written in terms of a reference length c and the Reynolds number 
R = a o clv o based on the viscosity and speed of sound at an isentropic stagnation point in the free 
stream, as 

(~) '+" 'MB+' i 'G(M) = (1+ 1) OR -11" ~/71~ M B .~(M) d(~)--]- K, (40) 



where it is found with the aid of (36) that 

{T~] cl+lm) k+~B+lm~ a -~ /~  (41) 
a ( M )  = \T0l  

and K is the value of the left-hand side at transition. 
Although B depends on Tw/T o (by equation (33)) in the constant wall-temperature case, both 

F(M) and G(M) are independent  of this ratio, for since l -- 1 (equation (20)), the terms involving 
B disappear f rom the indices in equations (39) and (41). 

5. Numerical Values.--We shall take 7 = 1.4, r -- 0.89, ~o -- 8/9 for air, and give two alternative 
sets of values for the remaining constants, between which there is little to choose. 

5.1. 1/5th Power Law for Skin Friction (YoungS).--In order to be consistent with an earlier 

report 1° we may take 
C = 0.0088, n = 5, Hi  = 1.5. (42) 

(40) then becomes 

= 0.0106R-°'2 M B F(M)d(;)  +K, 

where-B, F(M) and G(M) in the two cases are: 

(43) 

B. 

F(M) 

GiM) 
Tm 

To 

Zero heat transfer Constant wall temperature 

4 

 2oo! 
T ~ )  3 " 7 6 5  

1 + 0 . 1 2 8 M  ~ 

1 .8To+2 .2  

! 

1 {1 + 0.078M2 + ~  (1 + 0.2M~)} 

(1 + 0.2M~) -1 in both cases 

(44) 

5.2.--Maskell's ConstantsL--To make (40) agree with Maskell 's formula in incompressible flow, 
the constants in which were chosen to secure the best-fitting linear relation between d@/dx and 

(@/ue) due/dx for a wide range of experimental data, we should require the values 

1 
- , =  0.2155, C = 0.00965, H ~ =  1.633. (45) 
n 

The  values of c I = 2CRo -x/~ corresponding to (42) and (45) are the same at R o = 1000, and differ 
by at most a few per cent over the whole range 500 < R o < 10,000; thus both sets of constants lead 

to very much the same value of 0. Using the values (45), (43) and (44) must  be replaced by 

(O)l"2155MB+O'215aG(M) = 0.01173R-O'2185f~[//[ M B F(M) d(;)+ K, (46) 



where . 

B 

F(M) 

G(M) 

Zero heat transfer Constant wall temperature 

4.2 

(T 
TOI 

1-985 To + 2"215 



x/c 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

TABLE 1 

% 

+ 0.050 
+ 0.000 
=0.031 
- 0-048 
--0.058 
- 0.062 
- 0.060 
- 0.057 
- 0.060 

Young 

01"~ × 1 0  4 

Present method Young 

0"116 
0"412 
0"703 
0"993 
1"287 
1"578 
1-874 
2"172 
2"466 

0"116 
0-420 
0"712 
1"010 
1"304 
1"605 
1"907 
2"219 
2"512 

3"54 
2"70 
2-33 
2"18 
2"06 
1"97 
1-92 
1-89 
1"84 

'7" w 

90o U¢o 2 

Present method 

3"70 
2"77 

2"43 
2"23 
2"10 
2-01 
1 " 9 7  

1 " 9 3  

1"87 

favourable (i.e., falling) pressure gradient, in which the Mach number rises linearly with distance 
from 2 to 6. Equation (43) was used, with a value of R and the Mach-number gradient such that 

dM 
0.0106/R °'~ = 0.001, 

<-;)  

and the starting value of O/c is 0.00177 (for which M4"~G(M)(O/c) 1~  = 0.001 when M = 2). The 
results are plotted in Fig. 3, and it is seen that the lower the wall to stagnation-temperature ratio, 

the more rapid is the boundary-layer growth. 
7. Concluding Remarks.--7.1. Accuracy of Results.--There is at present insufficient data to test 

the accuracy of the value of 0 found from the present calculation in a pressure gradient at high Mach 

number. However, the assumptions on which it rests are well accepted, and it is unlikely to be 

seriously wrong. The final form of equation (40) is similar to that found by Reshotko'and Tucker 5, 

but the present derivation is considerably more straightforward. The close agreemenic with Young's 

method shown in the example is reassuring, but does not necessarily mean the answers are correct. 
7.2. Axisymmetric Flow.--Professor Cooke has pointed out to the author that, with the same 

assumptions as used by Young in dealing with axisymmetric flow about a body of radius ro(X), 
namely, that the skin friction and form parameter are the same as in two dimensions, the equation 

(34) may be replaced by 

= c { I  - ( 5 1 )  ~3~ Brol+~/, ~ 1 T e ~ % - ~  
" n l J  ° ~To] \To] u°~ 

7.3. Steps in Calculation of 0 and c].--The procedure for carrying out the calculation may briefly 

be recapitulated: 
G i v e n  a distribution of Mach number, and the boundary-layer momentum thickness at the 

transition point, one finds F(M) and G(M) from (44), then 

by quadrature and hence (O/c) z'2 from (43); to find c I also, O/c is found from (38), and by (36) 

0 
c~ = 0.0176~. (52) 

9 



a 

B 
£ 

C 

c 1 

F ( M ) ,  G ( M )  

H 

h, l 

K 

M 

n 

R 

t 

T 

U 

U r 

X 

Y 

7 
3, 31, 0 

A,~ 
@ 

/~, v, p 

"/ 'w 

5o 

K 

Suffixes o 

i 

'w 

co 

T 

N O T A T I O N  

Velocity of sound 
Defined by (32) or (33) 
Reference length 
Constant in skin-friction law, equation (27) 
Local skin-friction coefficient %/½pjte 2 

Specific heat at constant pressure 
Defined by (39), (41) 
Form parameter 31/0 
Indices in generalised Stewartson transformation (see equation (5)) 
Constant of integration 
Local Mach number at the edge of the boundary layer 
Index in skin-friction law, equation (27) 
Recovery factor defined by (3) 
Reynolds number a o c/v o 

~/A used in Appendix I 
Temperature (for suffixes see below) 
Velocity 
Friction velocity defined by (22) 
Distance measured along the surface 
Distance measured normal to the surface 
Defined by (29). = is also used for the turbulent Prandtl number 
Ratio of specific heats 
Boundary-layer thickness, displacement thickness, momentum thickness (for 
definitions see Appendix I) 
Defined by (2) 
Defined by (35) 
Viscosity, kinematic viscosity, density 
(TdT0) k 

Wall shearing stress 
Defined by relation/~ocT ~ 
Eddy conductivity 
refers to a stagnation point in the free stream 
the outer edge of the boundary layer 
to the intermediate temperature, defined by (23) 
to the recovery (zero heat transfer) temperature 
to the value in incompressible flow 
to the wall 
to the undisturbed stream 
to the transition point 
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where 

APPENDIX I 

Variation of H with Stream Temperature 

Using equations (6) and (7) of Section 1, the displacement thickness is obtained as 

~ = 1 -  pu ,ty = ~ -  d .  = ~ - c ~ A ,  (53) 

C 1 = f2f(t)  dr. 

Similarly the momentum thickness is 

-) o =  jo [~ p~u~P'~ (1-g~ dy = (c~-c~)~,  (54) 

where Ce = f :  {f(t)} 2 dt. 

Thus H = ~ = (8/A - C~)/(C~- Cz). (55) 

Now ~ = dy = joC ~ p~p &7 = ~ d~. (56) 

If now we use the quadratic temperature-velocity relationship 

T = T ~ + ( T ~ - T ~ ) " - -  - ( T ~ . - T ~ )  - -  , (57) 
Ue U e 

which can be shown to hold very closely for turbulent boundary layers, with'out restriction to unit 
Prandtl number, we obtain from (56) 

~ = f j [ ~ + ( ~ - - T ~ ) f ( t ) - ( ~ - l ) { . f ( t ) } 2 ] d t  ~ + ~ C 1 -  ( ~ -  1) C 2 . (58) 

On substitution of S/A in (55,), there results 

(C1-C~)H = (1 -C1)~+(C1-C~ , ) (~ -  I). (59) 

But in incompressible flow S = A ; thus from (55) 

H i = (1 - C~)/(CI- C2) (60) 

Tw and (59) becomes H = ~-e H , + ~ -  1, (61) 

the value quoted in equation (8) of Section 1. 
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A P P E N D I X  II  

Intermediate Temperature Formula for  Sk in  Friction 

The intermediate temperature formula is usually expressed in terms of the Reynolds number  based 
on x; thus if in incompressible flow the skin friction is given by 

r w = pue2f~--~)  , (62) 

p and v = t~/p being constant everywhere, then in compressible flow r w is obtained from the above 

expression by evaluating density and viscosity at the reference temperature T m given by equation 

(19); thus 

. / u  e x \  
rw = pmue J ~ , ~ ) .  (63) 

The integral momentum equation in flat plate flow is then 

dO _ pm f ue x (64) 

i.e., - f (65) 

whence on integration, and putting 0 = 0 when x = 0 it is seen that p~u~ O/tzm is a function of 

u~x/vm, and thus by (63) that 

u 2 [peu~O~ 
% = P~ ~ g ~ - m - J '  (66) 

where g is the function which expresses the dependence of %/pue ~ on pu e 0/t~ in incompressible flow. 
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