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"The Growth of Compressible Turbulenf
- Boundary Layers on Isothermal and

| Adiabatic Walls

By D. A. SPENCE

CoMMUNICATED BY THE DEPUTY CONTROLLER AIRCRAFT (RESEARCH AND DEVELOPMENT)
MINISTRY OF SUPPLY

- Reports and Memoranda No. 3191*
June, 1959

Summary.—A recent study of velocity profiles in the turbulent boundary layer on a flat plate at high Mach
numbers has suggested the formula r -

w 7
Tz H; +T; -1
for relating the form parameter H to its incompressible value H; (T, T,, T, are the wall, free-stream and recovery
temperatures). This formula is used in conjunction with a generalisation of the Stewartson—Illingworth trans-
formation to reduce the left-hand side of the integral momentum equation (including pressure gradients) to
incompressible form, for arbitrary values of the flat-plate recovery factor (or of the turbulent Prandtl number),
which is about 0-89 for air. The intermediate temperature formula of Eckert is used to relate the skin friction to
its incompressible value, for which a 1/nth power law is used. The momentum equation is then integrable when
H, is given a constant value, which may be chosen to secure agreement in the incompressible case with Maskell’s
quadrature for the momentum thickness 8, or with the author’s modification of the latter. The integration is
carried out for the cases of zero heat transfer and of a constant-temperature wall, the details of the Stewartson-
type transformation being slightly different in the two cases, but the final forms for

@__P_e(Peue@)”“B
Pm \ Hm

H=

are the same: ®M3B F(M) = (const) fMB F(M) dx.

The constant B depends in the second case on. the ratio T,/ T, of wall to total stream temperature, but F' (M) does
not. This is of the same form as the equation obtained by Reshotko and T'ucker in the special case of unit recovery
factor. A numerical example shows results very close to those obtained by Young’s method, which involves two
quadratures, in a particular case at zero heat transfer. Some calculations have also been made to illustrate the
effect of cooling the wall on the boundary-layer growth in a pressure gradient.

1. Introduction.—A recent study! of the velocity profiles measured by Lobb, Winkler and Persh?
in turbulent boundary layers on a flat plate at Mach numbers up to 8 has shown that it is very
largely possible to represent the effect of compressibility by writing '

) o

u

* R.A.E. Report Aero. 2619, received 15th October, 1959.



where

¥ 5 ‘ a
n=f0 pﬁdy: A=f ﬁdy’ (2)

€

u, and p, being velocity and density at the outer edge of the boundary layer where y = 8. The
distributions of shear stress and thence of temperature across the layer can then be inferred, and
it is found that provided the turbulent Prandtl number « = ¢C,/x (e = eddy viscosity, « = eddy
conductivity) is between about 0-6 and 1, the temperature is very nearly a quadratic function of
the velocity*. A value of about 0-85 for « would be consistent with the observed value of about 0-9
for the recovery factor #, which is defined by

r=(G-TG-T) ©)

(Here suffixes ¢, , and , refer respectively to an isentropic stagnation point in the free stream, to
the edge of the boundary layer, and to wall conditions at zero heat transfer. ,, will be used for wall
conditions in general.)

It is shown in Appendix I that equation (1), together with the quadratic temperature-velocity
relationship, results in the following expression for the form parameter H = §*/6:

Ty T

This expression for H and a generalisation of the Stewartson-Illingworth transformation are used
in Section 2 to reduce the left-hand side of the integral momentum equation to its incompressible
form. The momentum thickness & and the velocity u, are replaced by

~ (TNe
I~ -

. @l _ 2—1/2
e = (a) o = <T) o

where & and ! depend on the flat-plate recovery factor 7, and for = 1 take the values used by
Stewartson?, namely,

(5)

k=3+1py-1), =1 (6

The latter values reduce the integral momentum equation of the laminar boundary layer, at zero
heat transfer and unit Prandtl number, to its incompressible form, and, as has been pointed out
by Culick and Hill%, would do the same in the turbulent case if the temperature dependence of
H were still given by -

Hz—g—?(Hi-l-l)—-l. (7)

€

Culick and Hill* have integrated the momentum equation with the aid of (5) and (6) on the assump-
tion that equation (7) does in fact hold. But (7) is the equation to which (4) reduces for zero heat
transfer (7,, = 7,) only when the Prandtl number or recovery factor is unity, i.e., when 7, = 7, and
this is not found to be the case in air. The present paper contains the generalisation to Prandt!

* In this respect the turbulent boundary layer is considerably different from the laminar layer, in which the
shear-stress distribution is such that the temperature-velocity relation can be treated as quadratic only when the
Prandtl number is close to 1.
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numbers different from unity of the integration by Culick and H111 and of a similar one by Reshotko
and Tucker®. .

The intermediate temperature formula of Eckert® is used in Section 3 to relate the skin-friction
coefficient to its incompressible value for which a flat-plate expression of the form 2C(R,)~V/" is
assumed. The momentum equation is then integrated in Section 4 with H, constant. The
justification for this procedure is that, as pointed out in Section 5, it leads to precisely the
same form of equation in the incompressible case as was found by Maskell” from a comprehensive
examination of experimental results, and which is known to provide an accurate quadrature for 8
when pressure gradients are present. The solution is given for the two cases in which it is particu-
larly simple, those of zero heat transfer and of constant wall temperature.

No attempt has been made to go further and calculate the way in which H rises near separation,
and the consequential departures of skin friction and heat transfer from the assumed flat-plates
values. To do this one would require an auxiliary equation for dH/dx, the derivation of which from
incompressible theories would involve much more speculative assumptions than those required to
deal with the momentum equation. Maskell’s work has, however, shown that such departures are
insufficient to affect at all seriously the values of 8 obtained by ignoring them.

2. Transformation of the Integral Momentum Equation.—The momentum equation is (Young?)

5‘59+(H+2 MZ)“” T

" (8)

dx  pu;

where M = u,/a, is the local Mach number at the edge of the boundary layer. By differentiating the
relations in (5), and using the isentropic relations

which hold in the free stream, we obtain
dé df 8d¢ af , 0 du,
S~ @ Eaw T DEME
1 dﬂe 2 ]. du
e o S L P 2

on substitution of which (8) becomes

4 [H+2—M*+(y—1)EM?| 8 di, _, =,
dx+[ 1130y —1) M? ] ey 2 (10)

u, dx Po U

The choice of %, / to simplify this equation is slightly different in the adiabatic and isothermal wall
cases:
2.1. Zero Heat Transfer (T,, = T,).—In this case (4) becomes

T,

e

H,+1). (11)
The recovery temperature 7, is found from (3) and (9) as

T, = T r(T=T) = {1+ 5 (= 1) M7, (12)

oy e



Substituting from (11), the numerator of the expression in square brackets in (10) is

T, 2 \y=-1 T,
— M2 (y— e Zr (. L Ay /£ N FY -
HA+2-M>+(y—1)kM ];(H1+1)+1+(2k 7/__1) 5 M ];(H1+2) (13)
. 2
if o Zk_;/—:——l =7. (14‘)
And if I = r the denominator of the same expression is 7,/7,. Thus if
T,=1,
ro1
k= §+-}/T1— , (15)
I=v7
equation (10) reduces to
af 6 du Tw :
et He ) g = e T (16)

If 7,,#T,, the term H;+2 in this equation becomes (7, /T;) H;+ 2. Integration is therefore possible
by the method described in Section 4 whenever 7,,/7, has a constant value, and is not limited to
the zero heat-transfer case.

2.2. Wall at a Constant Temperature T,,.—It is convenient to write (4) in this case as

T, 1 ,w
H= ;TH+7; 1_(1+” Mz) Hi+~ ('y 1) M>. (17
Then H+2-M?2+( —l)kMz—&H +2+ Z"H +2k+r 2y —_——IZW2
14 T (T y=1) 2
_ (L =140
_ (TOHﬁ—Z) (1+ M ) (18)
. 2
if 2k+r————1 =2 (19)
And if I = 1, the denominator of the expression in square brackets is
7/_1 2
1—|——2 M2,
Thus if
T,, = const
o1
I=1
equation (10) reduces to ‘
dé (T, g da, Tos :
o () g g = hes .

which is of the same form as (16).
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3. Expression for the Skin Friction.—The intermediate temperature method enables us to write
the wall shearing stress at a distance x from the virtual origin of the turbulence on a flat plate as

Tw = an uTz’ (22)

where the suffix ,, indicates evaluation of physical quantities at an empirically defined reference
temperature 7,,, and (,/u,)? is the same function of #,x/v,, as in incompressible flow. The accepted
definition of the reference temperature, due to EckertS, is

T, = 0-5(T,+T) +0-22(T,~ T)). (23)

With y = 1-4, r = 0-89, this becomes
: T

T’:‘ =1+0-128M12 (24)

in the case of zero heat transfer (7,, = T;), and

% — 05(1 +o-o78M2)+0-5%(1 +0-2M42) (25)
0

e

when the wall temperature 7, is constant.
It is shown in Appendix II that the local momentum-thickness Reynolds number which corre-
sponds to ,x/v,, is p,u, 0]u,,- Referred to the density and viscosity at an isentropic stagnation point

this is
1, —
Pe:e 0 - (g:oe)y_l (]Z-iﬂ) ue 9, (26)

e Vo

in which the viscosity-temperature relation has been taken as poc 7% The dependence of (u,/u,)?
on this will be taken as an inverse 1/nth power law, so that from (22)

Tw _ Pm C(M)—lm _ C(@)—H% (2)—(;51 —w)/"(ﬂ)‘””’_ 27)

Peuez B Pe Hon 1; 7:] <)}

e

With C = 0-0088, # = 5, this agrees within about 5 per cent with the Karman-Schoenherr line
in the range 500 < R, < 10° in the incompressible case (for which T, = T, = Tj).

4. Integration of the Momentum Equation.—The right-hand sides of (16) and (21) are both equal
to &7,/p, 12, which may be written in terms of the transformed variables as

S'Tw _ E k Tw Te * Tm - aeé —/n
= () =) () () &%)
where
o= k—i—(k—L—z—i—w)/n
y—1 2
R _ (29)
w
p=1-—

k and / being defined by (15) and (20) in the two cases. Then, introducing

sl &



both (16) and (21) may be written
d® ., 8Oda, W (TN (T N\ . ‘
TP = () elz) (2) G
where for zero heat transfer, from (16),
: 1 1
B= (1+Z)(Hi+2)—; (32)
and for a constant temperature wall, from (21),
-\ (T, 1
_ (117) (ﬁH¢+Z)—;. (33)

If H, is constant, (31) may be integrated to

o e o

In transforming back to the original variables, it is convenient to introduce also

_ Pe Peueg m _ :Z;a -—-a(—]:m\/f_
0= 2 (20 ()" (7 B | (35)
In passing it may be noted from (27) that
& 2C o 5 -w)/n (uf\ 1
o= () @ C 0

where ¢; is the local skin-friction coefficient 7,,/p, 1,
Equation (34) then becomes

e R

Clearly 7; could be replaced on both sides of (37) by a different reference temperature if

desired. The equation can also be put in terms of the Mach number M at the edge of the boundary
layer, in the form

@MBF(M)=(1+;>CJMBF(M)dx, | (38)
where F(M) = (1;)“+(1"”B/2(%)_ﬁ; | (39)

T.JTy is (1+3M3)7, and T, /T, is given in terms of Mach number by (24) or (25).-

"The constants of integration on the right-hand sides of (37) and (38) are to be found from a laminar
boundary-layer calculation, for which a number of methods are available including that recently
published by Luxton and Young?®. This will give a value of 8, say, for the initial momentum
thickness, which may be assumed continuous at the transition point x.

Non-dimensionally, (38) may be written in terms of a reference length ¢ and the Reynolds number
R = ayc[vy based on the viscosity and speed of sound at an isentropic stagnation point in the free

stream, as
g\ 1-+1/n 1
(E) MBHRG(M) = (1 +ﬁ) CR-1/n

* v Py ( )+K, ©(40)

xp/e
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where it is found with the aid of (36) that

(41)

T> (1+1/n) b+(B+1/n) (1-1}/2
|

and K is the value of the left-hand side at transition. .

Although B depends on T,,/7; (by equation (33)) in the constant wall-temperature case, both
F(M) and G(M) are independent of this ratio, for since / = 1 (equation (20)), the terms involving
B disappear from the indices in equations (39) and (41).

5. Numerical Values—We shall take y = 1-4, » = 0-89, w = 8/9 for air; and give two alternative
sets of values for the remaining constants, between which there is little to choose.

5.1. 1/5th Power Law for Skin Friction (Young®).—In order to be consistent with an earlier

report!® we may take

C = 0-0088, n=5,  H;=15. (42)
(40) then becomes
0 12 x/e % .
(—c—) MB+02 G(M) = 0-0106R-02 M3 F(M) d(;) +K, (43)
zp/c -
where B, F(M) and G(M) in the two cases are:
Zero heat transfer |- Constant wall temperature
. ’ . Tw .
B 4 1-8 T +2-2
T\ 3348 (T \ 0822 T,\3244 (T" \ ~0:822
ron | () (7) @)
4 3765 3666 (44)
con| (g o
G T
T, 1 T, '
In 140128347 —{1 +0-078M% 4+ 22 (1 +0-2M2)}
T, 12 T,
T, L
T (14+0-2M?%)~ in both cases
0

5.2.—Maskell’s Constants".—To make (40) agree with Maskell’s formula in incompressible flow,
the constants in which were chosen to secure the best-fitting linear relation between d@/dx and
(®/u,) du,/dx for a wide range of experimental data, we should require the values

%: 02155, € =0-00965, H,=1633. (45)

The values of ¢; = 2CR,~V/" corresponding to (42) and (45) are the same at R, = 1000, and differ
by at most a few per cent over the whole range 500 < R, < 10,000; thus both sets of constants lead
to very much the same value of 6. Using the values (45), (43) and (44) must be replaced by

g\ 1-2155 x/c %
(—) MB+02155 G(M ) = 0-01173 R—0-2155 MEF(M)d (E) +K, (46)

c xplc






TABLE 1

T

612 x 104 L=
x[c Cp Poo thoo®
Young | Present method | Young | Present method

0-2 +0-050 0-116 0-116 354 3-70
0-3 +0-000 0-412 0-420 2:70 2:77
0-4 —0-031 0-703 0-712 2-33 243
0-5 —0-048 0-993 1-010 2-18 2:23
0-6 —0-058 1-287 1-304 2-06 2-10
0-7 —0-062 1-578 1-605 1.97 2-01
0-8 —0-060 1-874 1-907 1-92 1.97
0-9 —0-057 2-172 2-219 1-89 1-93
1-0 —0-060 2-466 2-512 1-84 1-87

favourable (i.e., falling) pressure gradient, in which the Mach number rises linearly with distance
from 2 to 6. Equation (43) was used, with a value of R and the Mach-number gradient such that

0-0106/R°'2ﬂ = 0-001,

d(f
¢
and the starting value of 8/c is 0-00177 (for which M**G(M)(8/c)*% = 0-001 when M = 2). The
results are plotted in Fig. 3, and it is seen that the lower the wall to stagnation-temperature ratio,
the more rapid is the boundary-layer growth.

7. Concluding Remarks.—7.1. Accuracy of Resulis.—There is at present insufficient data to test
the accuracy of the value of 6 found from the present calculation in a pressure gradient at high Mach
number. However, the assumptions on which it rests are well accepted, and it is unlikely to be
seriously wrong. The final form of equation (40) is similar to that found by Reshotko'and Tucker?,
but the present derivation is considerably more straightforward. The close agreement with Young’s
method shown in the example is reassuring, but does not necessarily mean the answers are correct.

7.2. Axisymmeiric Flow.—Professor Cooke has pointed out to the author that, with the same
assumptions as used by Young in dealing with axisymmetric flow about a body of radius ry(x),
namely, that the skin friction and form parameter are the same as in two dimensions, the equation
(34) may be replaced by

BByt = C(l +%) f r01+1/n(%>“ (TTO) * a5 ds. (51)

7.3. Steps in Calculation of  and ¢;—The procedure for carrying out the calculation may briefly
be recapitulated:

"Given a distribution of Mach number, and the boundary-layer momentum thickness at the
transition point, one finds F(M) and G(M) from (44), then

wle %
F(M) d(—)
zp/e 4

by quadrature and hence (6/c)? from (43); to find ¢, also, ®/c is found from (38), and by (36)

¢, = 0-0176 (52)

6
5
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Suffixes 0

NOTATION

Velocity of sound

Defined by (32) or (33)

Reference length

Constant in skin-friction law, equation (27) -

Local skin-friction coeflicient =,,/%p, 1,2

Specific heat at constant pressure

Defined by (39), (41)

Form parameter /6

Indices in generalised Stewartson transformation (see equation (5))
Constant of integration ‘

- Local Mach number at the edge of the boundary layer

Index in skin-friction law, equation (27)

Recovery factor defined by (3)

Reynolds number a,c¢/v,

n/4 used in Appendix I

Temperature (for suffixes see below)

Velocity

Friction velocity defined by (22)

Distance measured along the surface

Distance measured normal to the surface

Defined by (29). « is also used for the turbulent Prandtl number

; Ratio of specific heats
Boundary-layer thickness, displacement thickness, momentum thickness (for

definitions see Appendix I)

Defined by (2)

Defined by (35)

Viscosity, kinematic viscosity, density

(LT

Wall shearing stress

Defined by relation pocT®

Eddy conductivity

refers to a stagnation point in the free stream
the outer edge of the boundary layer

to the intermediate temperature, defined by (23)
to the recovery (zero heat transfer) temperature
to the value in incompressible flow

to the wall

to the undisturbed stream

to the transition point

10

ey 4



—

10

LIST OF REFERENCES

Author
D. A. Spence

R. K. Lobb, E. M. Winkler and J. Persh

K. Stewartson

F. E. C. Culick and J. A. F. Hill

E. Reshotko and M. Tucker

E. R. G. Eckert ..

E. C. Maskell

A.D. Y?ung .. .. R
R. AE. I;uxton and A D. Young

D. A. Spence

Title, etc.

A note on mean flow in the compressible turbulent boundary
layer.
(To be published in ¥. Fluid Mech. (1960).)

Experimental investigation of turbulent boundary layers in
hypersonic flow.
¥ Ae. Sei. 22 (1). pp. 1 to 9. January, 1955.

Correlated incompressible and compressible boundary layers.
Proc. Roy. Soc. A. 200. p. 84. 1949,

A turbulent analogue of the Stewartson—Illingworth trans-
formation.

J Ae. Sci. 25. pp. 259 to 262. April, 1958.

Approximate calculation of the compressible turbulent
boundary layer with heat transfer and arbitrary pressure

" gradient.

N.A.C.A. Tech. Note 4154. December, 1957.

Engineering relations for friction and heat transfer to surfaces
in high velocity flow. .
F Ae. Sci. 22 (8). pp- 585 to 586. August, 1955.

Approximate‘ calculation of the turbulent boundary layer in
two-dimensional incompressible flow.
A.R.C. 14,654. November, 1951.

The calculation of the profile drag of aerofoils and bodies of
revolution at supersonic speeds.
A.R.C. 15,970. April, 1953.

Skin friction in the compressible laminar-boundary layer with
heat transfer and pressure gradient.
A.R.C. 20,336. July, 1958.

Aerofoil theory. II—The flow in turbulent boundary layers.
A.R.C. 18,261. March, 1956.

7

11



APPENDIX 1

Variation of H with Stream Temperature

Using equations (6) and (7) of Section 1, the displacement thickness is obtained as

8 a
5, 1—””)d=a—fﬁd=a—ca, . 53
! J;)( Pele Y 0 U, K ! ( )
1
where C, = f f()dt.
0
Similarly the momentum thickness is
. ‘
g=| ¥ (1—3)01 = (C,—Cy) 4, 54
J-()Peu,; " y ( 1—Cy) (54)
1
where C, = f {f(®)}dr.
0
Thus H= % = (8/4d = C))(Cy—Cy). (55)
8 4 4
Now 3:] dyzf &dn=f L. (56)
0 0P o 1, .

If now we use the quadratic temperature-velocity relationship

T =T+ (BT 5 ~(h-T)(2), (57)

which can be shown to hold very closely for turbulent boundary layers, without restriction to unit
Prandtl number, we obtain from (56)

] e e

On substitution of §/4 in (553 there results

T, T,
(€= CHH = (1=C) F+(Ci=C) 1), (59)
e ¢
But in incompressible flow 8 = 4; thus from (55)
H;=(1-C)IC1—Cy) (60)
and (59) becomes H= &Hﬂ—ﬁ— 1, (61)
L' 1,

the value quoted in equation (8) of Section 1.

12
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APPENDIX II

Intermediate Temperature Formula for Skin Friction

The intermediate temperature formula is usually expressed in terms of the Reynolds number based
on x; thus if in incompressible flow the skin friction is given by

. 7 = pUf (M) (62)

p and v = u/p being constant everywhere, then in compressible flow 7, is obtained from the above
expression by evaluating density and viscosity at the reference temperature 7, given by equation

(19); thus

U, X
T = P tlf (f—) . (63)
The integral momentum equation in flat plate flow is then
db _ P gHe¥
; . d(pette 0] tm) _ (uex '
ity =) (©)

whence on integration, and putting 6 = 0 when x = 0 it is seen that p,u,0/u,, is a function of
#,%/v,,, and thus by (63) that

Tw —Pmu g(p(;zl 0): ) (66)

m -

where g is the function which expresses the dependence of 7,,/pu,% on pu, 8/p in incompressible flow.

13
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