MINISTRY OF SUPPLY

AERONAUTICAL RESEARCR COUNCIL REPORTS AND MEMORANDA

The Theoretical Effect of Flight Path Angle on the Lateral Stability and Response of an Aircrafit By
E. M. Frayn, B.Sc., and M. Vo Parneld

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1954
price $7 s$ 6d net

The Theoretical Effect of Flight Path Angle on the Lateral Stability and Response of an Aircraft

By
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2529*
November, 1945

Summary.-The response of a typical aircraft of the dive-bomber class to various disturbances has been calculated at four angles of dive covering the range 0 to 90 deg and for four pairs of values of l_{v}, n_{v}. The most notable effect on stability is the marked increase in spiral damping with increasing dive angle at the same T.A.S. This has little effect on the response, since in most components, this mode is scarcely excited.

For dive angles up to 30 deg the variations in response are so slight as to be negligible, while for larger angles of dive the variation is small for the first 2 airsecs. Calculations of response in level flight, which slightly underestimate the response in a dive, can thus be assumed to give a sufficiently accurate picture of the behaviour at small flight path angles for most requirements.

1. Introduction.-Many surveys of the stability and response of aircraft in level flight have been made but little work has been done at other flight-path angles. Information was required regarding the behaviour of an aircraft in a dive at high speed and the importance of dive angle as a variable. In this report the stability and response at various angles of dive at the same T.A.S. have been examined with the object of solving these problems.
It is assumed that the small variations of elevator and thrust necessary to maintain the initial attitude and T.A.S. are made. Density changes are ignored since they will have no effect at this low Mach number ($M=0.41$) ; in adding dimensional units it is further assumed that the dive is done at ground level as a near approach to a dive-bombing attack. It was considered that little accuracy was lost by these assumptions, which greatly ease computation.

The equations of motion are used in the linear form, which is valid for small displacements. They are solved by operational methods using the Laplace transformation ${ }^{1}$ and modal response coefficients ${ }^{2}$, and from them response curves are calculated. The problem has been studied mainly by the use of response coefficients, since they show more clearly than do the response curves the changes produced by varying any one parameter. Some response curves are given to illustrate the argument.

It should be noticed that in the equations of motion the angles of bank and yaw, ϕ and ψ, are not used with the standard definitions of R. \& M. 18013. A full discussion of both the old and new definitions is given in section 2 and is illustrated by Fig. 1.
2. Equations of Motion and their Solution.-2.1. Definition of the Angles ψ, θ, ϕ.-The equations of R. \& M. 1801^{3} are unsuitable for use in work in which a steep angle of dive is considered chiefly because they fail where $\gamma_{e}=-90 \mathrm{deg}$ and further because they refer the angles ϕ and ψ to a

[^0]hypothetical position of the aircraft in a horizontal plane. To avoid these difficulties the angles ϕ and ψ are now measured from the plane defined by the wings and the direction of motion; ϕ is then a rotation about the direction of motion and ψ a rotation in this plane about the line through the centre of gravity perpendicular to the plane. An initial displacement ϕ_{c} is considered for the sake of completeness, although this involves the consideration of unsymmetrical flight.

The new definitions are illustrated by Fig. 1a. The configuration in steady motion is reached by two rotations; first the axis $G \bar{x}$ is inclined upwards at an angle γ_{e} to the horizontal and then $G \bar{y}$ and $G \bar{z}$ are rotated about $G \bar{x}$ from $G \bar{y}$ towards $G \bar{z}$ through an angle ϕ_{e} from the position in which $G \bar{y}$ is horizontal. This brings the aircraft to the position $G \bar{x} \bar{z} \bar{z}$. The configuration in disturbed motion, $G x y z$, is reached by three consecutive rotations. The first is about $G \bar{z}$, from $G \bar{x}$ towards $G \bar{y}$, through an angle ψ bringing these axes to the intermediate positions $G x_{1}, G y_{1}$; next comes a rotation about $G y_{1}$, from $G \bar{z}$ towards $G x_{1}$ through an angle θ bringing $G \bar{z}$ to the intermediate position $G z_{1}$ and $G x_{1}$ to its final position $G x$; lastly there is a rotation about $G x$ from $G y_{1}$ towards $G z_{1}$ through an angle ϕ bringing these axes to their final positions $G y$ and $G z$.
The way in which the definitions of R. \& M. 1801 differ from these can be seen in Fig. 1b. Here initial ϕ_{c} is not considered, since this is equivalent to a change in the origin of ϕ. The first rotation in this system is about $G \bar{z}$ from $G \bar{x}$ towards $G \bar{y}$ through an angle ψ, bringing these axes to the intermediate positions $G x_{1}, G y_{1}$. Next we consider a rotation about $G y_{1}$, from $G \bar{z}$ towards $G x_{1}$ through an angle γ_{c}, which brings these axes to the positions $G z_{1}$ and $G x_{2}$; the next rotation is about the same axis and in the same direction and brings $G z_{1}$ to the further intermediate position $G z_{2}$ and $G x_{2}$ to its final position $G x$. The final rotation about the axis $G x$ from $G y_{1}$ towards $G z_{2}$ brings $G y_{1}$ and $G z_{2}$ to their final positions $G y$ and $G z$.
If, the ϕ and ψ of R. \& M. 1801 are termed ϕ^{\prime} and ψ^{\prime} they are expressed in terms of the newly defined ϕ and ψ by the relations

$$
\left.\begin{array}{l}
\psi^{\prime}=\psi \sec \gamma_{e} \tag{2.1.1}\\
\phi^{\prime}=\phi+\psi \tan \gamma_{e}
\end{array}\right\} . \quad . \quad . \quad . \quad . \quad .
$$

The failure of the R. \& M. 1801 definitions when $\gamma_{e}=90$ deg is obvious from the formulae (2.1.1). When $\gamma_{e}=90$ deg both $\sec \gamma_{e}$ and $\tan \gamma_{e}$ are infinite so that the old definitions of ϕ and ψ become meaningless.

Also when dive bombing at a fairly steep angle the pilot will wish to correct his line error in the plane in which he is diving. For this the error in yaw, ψ, in the plane in which the aircraft is flying is required, not the angle ψ^{\prime} which is sec γ_{e} times as large. This latter angle would give a quite erroneous idea of the manoeuvrability of the aircraft.

In mathematical work on response we generally consider the effect of control application or of a side gust. If, however, a complete manoeuvre is being considered a necessary final condition, if there is to be no sideslip, is that the angle of the wings to the horizontal should be zero. The main disadvantage of this new system of angles is that ϕ is not the angle of the wings to the horizontal; the angle ϕ^{\prime} can, however easily be calculated from the formulae (2.1.1). Provided the aircraft has only a small angle of yaw and is not diving steeply the correction term will be small.

The new definitions have the further merit of simplifying two of the equations of motion* which become

$$
\left.\begin{array}{l}
\hat{p}=\frac{d \phi}{d \tau} \tag{2.1.2}\\
\hat{r}=\frac{d \psi}{d \tau}
\end{array}\right\} \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots
$$

[^1]2.2. Equations of Motion.-The equations of motion were considered in the form valid for small disturbances, which with the new definitions of ϕ and ψ become:
where τ is the time in airsecs. The unit of aerodynamic time \hat{z} is given by the equation
\[

$$
\begin{equation*}
\hat{t}=W / g \rho S U_{e}^{\prime} \quad \text { true secs, } \tag{2.2.2}
\end{equation*}
$$

\]

where W is the weight of the aircraft (1 b), ρ the air density (slugs $/ \mathrm{ft}^{3}$), g the acceleration due to gravity ($\mathrm{ft} / \mathrm{sec}^{2}$), U_{e} the forward velocity of the aircraft ($\mathrm{ft} / \mathrm{sec}$), S is the wing area (ft^{2}), and γ_{c} is the angle of climb, and the modified derivatives are

$$
\left.\begin{array}{lll}
l_{1}=-\frac{l_{p}}{i_{A^{\prime}}} & , & n_{1}=-\frac{n_{p}}{i_{C^{\prime}}} \tag{2.2.3}\\
l_{2}=\frac{l_{r}}{i_{A^{\prime}}} & , & n_{2}=-\frac{n_{r}}{i_{C^{\prime}}}, \\
\mathscr{Z}=-\frac{\mu_{2} l_{v}}{i_{A^{\prime}}} & , & \mathscr{N}=\frac{\mu_{2} n_{v}}{i_{C^{\prime}}}, \\
\mathscr{C}_{l}=\frac{\mu_{2} C_{l}}{i_{A^{\prime}}} & , & \mathscr{C}_{n}=\frac{\mu_{2} C_{n}}{i_{C^{\prime}}}, \\
\bar{y}_{v}=-y_{v} & , & k^{\prime}=-k \tan \gamma_{e},
\end{array}\right\}
$$

the quantities $l_{p}, l_{r}, n_{p}, n_{r}, l_{v}, n_{v}, y_{v}, k_{,}, \mu_{2}, C_{l}, C_{n}, i_{A^{\prime}}, i_{C^{\prime}}$, having the definitions of Ref. 3. Further, \hat{p} and \hat{r} are the angular velocities of bank and yaw in radn/airsec, and \hat{v}, ϕ, ψ are the angles of sideslip, bank and yaw in radians.
2.3. Solution of the Equations and the Cases Considered.-The equations were solved by the methods of the Laplace transformation ${ }^{1}$ for various applied forces and moments. The conditions considered were a constant applied rolling moment, a constant applied yawing moment, and initial angles of sideslip, bank and yaw. Modal response coefficients ${ }^{2}$ were evaluated for all these applied forces and from these response curves were calculated.

The stability parameters were chosen to be typical of a medium-size dive bomber of span $b=60 \mathrm{ft}$, wing loading $46 \mathrm{lb} / \mathrm{ft}^{2}$ moving with velocity $U_{e}=454 \mathrm{ft} / \mathrm{sec}$ or 270 knots T.A.S. at sea level. The velocity was assumed to be independent of dive angle ; l_{r} and n_{p} were varied with C_{L} each being proportional to $\cos \gamma_{e}$. The values taken are given by the following table:

$\overline{\mathcal{d e g}_{e}}$	C_{L}	l	n_{p}	k
0	$0 \cdot 1875$	$0 \cdot 06$	-0.03	0.09375
30	$0 \cdot 1624$	$0 \cdot 052$	-0.026	$0 \cdot 0812$
60	$0 \cdot 094$	$0 \cdot 03$	-0.015	0.047
90	0	0	0	0

Further

$$
\left.\begin{array}{rl}
l_{p} & =-0 \cdot 42 \tag{2.3.2}\\
\bar{y}_{v} & =0.2 \\
i_{A^{\prime}} & =0 \cdot 12 \\
i_{C^{\prime}} & =0 \cdot 18 \\
\varepsilon_{A}=\varepsilon_{C} & =0 \\
\mu_{2} & =20 .
\end{array}\right\}, \quad \cdots \quad . . \quad . \quad . \quad . \quad .
$$

and
where

$$
\left.\begin{array}{l}
n_{r}=n_{r 0}-n_{v} \\
n_{r 0}=-0.024
\end{array}\right\} . \quad . \quad . \quad . \quad . .
$$

Calculations were made for four pairs of values of l_{v}, n_{v} formed by taking all possible combinations of the values

$$
\left.\begin{array}{lrr}
l_{v}=0 \tag{2.3.4}\\
n_{v}=0.024
\end{array} \quad, \quad \begin{array}{r}
-0.12 \\
0.096
\end{array}\right\}, \quad \therefore \quad . . \quad \ldots \quad .
$$

Thus the l_{v}, n_{v} combinations considered are sufficiently wide to indicate the effect of dive angle for any values of these parameters.

For the typical aircraft of span 60 ft , wing loading $46 \mathrm{lb} / \mathrm{ft}^{2}$, the unit of aerodynamic time is $1 \cdot 32$ seconds at sea level for all conditions considered. The lateral relative density μ_{2} is

$$
\begin{equation*}
\mu_{2}=\frac{2 W}{g \rho S b}, \quad \text {.. } \tag{2.3.5}
\end{equation*}
$$

where b is the span (ft), so it is possible to regard these results as applying for example to an aircraft of span 70 ft , with a wing loading of $53.6 \mathrm{lb} / \mathrm{ft}^{2}$ diving at the same speed but with $\hat{t}=1 \cdot 54$ sec.

The values of $-\gamma_{e}$ used in the calculations,

$$
\begin{equation*}
-\gamma_{e}=0,30,60,90 \mathrm{deg} \quad . \quad . . \quad . \quad . \quad . \tag{2.3.6}
\end{equation*}
$$

were considered to cover the range $-\gamma_{c}=0$ to 90 deg adequately.
3. Effect of Angle of Dive on Stability.-The roots of a stability biquadratic

$$
\begin{equation*}
\lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0 \tag{3.1}
\end{equation*}
$$

were evaluated for each pair of values of l_{v}, n_{v} at the four flight path angles and are given in Table 1.

When $-\gamma_{e}=90$ deg the biquadratic (3.1) becomes

$$
\begin{equation*}
\left(\lambda+l_{1}\right)\left\{\lambda^{3}+\left(n_{2}+\bar{y}_{v}\right) p^{2}+\left(n_{2} \bar{y}_{v}+\mathcal{N}\right) p+\mathscr{N} k^{\prime}\right\}=0 . \tag{3.2}
\end{equation*}
$$

The derivatives l_{r} and n_{p} are zero in vertical flight, hence there is no term in \hat{p} except in the rolling equation. Thus the rolling motion separates out, the roots are independent of \bar{l}_{v} and the rolling root is exactly equal to $-l_{1}$. Approximate values of the other roots are given by the formulae

$$
\left.\begin{array}{rlrl}
\lambda_{1} & =-k^{\prime} & & \text { (spiral mode) } \\
r & =\frac{1}{2}\left(n_{2}+\bar{y}_{v}-k^{\prime}\right) & & \text { (oscillation damping) } \tag{3.3}\\
s^{2} & =\mathscr{N}+n_{2}\left(\bar{y}_{v}-k^{\prime}\right) & & \left(\text { (frequency }{ }^{2}\right)
\end{array}\right\}
$$

Thus variations in n_{2} and \bar{y}_{v} will have a fairly large effect only on the oscillation damping, and these changes wili not be serious unless the change in n_{2} or \bar{y}_{v} is large. Since it has also been shown ${ }^{4,5}$ that variations in the rotary derivatives have little effect on the early stages of response in level flight it is permissible to regard these results as applying to different aircraft with approximately the same coefficients of inertia, and not only to the typical one whose derivatives have been used in the calculations.

The effect of angle of dive on the damping of the oscillation is best studied by considering the number of swings to halve amplitude, which are listed in Table 2. Here there is an improvement with increase of $-\gamma_{e}$ when $l_{v}=-0 \cdot 12$, particularly when n_{v} is small, but with zero l_{v} there is a slight increase in the number of swings to halve amplitude as - γ_{e} increases. This is due to the damping r which increases or decreases with - γ_{e} according as l_{v} is large or small. An examination of the approximate formulae for level and vertical flight shows that this will occur in general. It may be noted that the period of the oscillation is almost independent of the angle of dive and l_{v}, but varies considerably with n_{v}, being greatly lengthened when n_{v} is small.

Table 1 shows that the absolute damping of the oscillation is never large ; its greatest value of 0.443 when $l_{v}=0, n_{v}=0.096, \gamma_{e}=0$, gives a time to half-amplitude of 2.07 sec . This might be thought tolerably good until it is compared with the period of 2.54 sec , when it is seen that several complete swings are necessary to damp the oscillation down to a negligible magnitude. Since the oscillation even in this case is likely to be troublesome it is to be hoped that it is not greatly excited in the motion.

The spiral damping increases with an increasing angle of dive and is practically insensitive to changes in l_{v}, n_{v} at large values of $-\gamma_{v}$. Spiral instability is encountered only in level flight with zero l_{i}, but as the time to double amplitude is about 70 true seconds the instability is not serious.

In general the stability of an aircraft in a dive is better than its stability in level flight, the slight shortening of the period of the oscillation being compensated for by the increase of damping except when both l_{v} and n_{v} are small. In all cases there is a definite increase in spiral stability with increase of $-\gamma_{c}$ and progressive changes in the roots occur as $-\gamma_{e}$ increases from 0 to 90 deg.

Most of the change in the roots between $\gamma_{e}=0$ and -90 deg occurs between $\gamma_{e}=0$ and -60 deg. This differs greatly from the manner of change of the response in which it will be shown that the greatest variation is between $-\gamma_{e}=60$ and 90 deg.
4. Response.-4.1. Interpretation of Modal Response Coefficients.-The variations with dive angle of the response to various disturbances can most easily be studied by a consideration of the modal response coefficients and the corresponding roots of the stability equations, which are listed in Tables 3 to 7. The response to an initial displacement or impulsive force is given by an expression of the form

$$
\begin{equation*}
\frac{\hat{v}}{\phi_{0}}=v_{1} \alpha_{1 \phi} \mathrm{e}^{\lambda_{1} \tau}+v_{2} \alpha_{2 \phi} \mathrm{e}^{\lambda_{2} \tau}+2\left|v_{3} \alpha_{3 \phi}\right| \mathrm{e}^{-r \tau} \sin \left(s \tau+\beta_{\phi}+\gamma_{0}\right)+Q_{i \phi}, \tag{4.1}
\end{equation*}
$$

where \hat{v} / ϕ_{0} is the value of \hat{v} due to an initial angle of bank $\phi_{0}=1, Q_{v_{\phi}}$ is a constant determined by the initial conditions (in this case $\hat{v}=0$ when $\tau=0$), β_{ϕ} is the part of the phase angle dependent on the disturbance and γ_{e} the part dependent on the component. Similarly response to a finite applied moment is given by an expression of the form
where $\hat{v} / \mathscr{C}_{l}$ is the value of \hat{v} due to an applied rolling moment $\mathscr{C}_{l}=1$, and $R_{u l}$ and $K_{v l}$ are determined from the initial conditions (in this case $\hat{v}=0$ when $\tau=0$), $R_{v i}$ having non-zero values only in ϕ and ψ, and β_{l} and γ_{v} being the components of the phase angle as defined above.

The relative amplitudes associated with the components \hat{v}, \hat{p}, etc., in the spiral mode are denoted by v_{1}, p_{1}, etc., while $\alpha_{1 v}, \alpha_{1 \phi}$, etc., define the magnitudes of excitation of the mode by initial displacements $\hat{v}_{0}=1, \phi_{0}=1$, etc. Thus the product $v_{1} \alpha_{1 \phi}$ is the amplitude of \hat{v} due to the excitation of the spiral mode by an initial rate of roll $\phi_{0}=1$. The same quantities with suffix 2 refer to the rolling subsidence. The amplitude in \hat{v} due to the excitation of the oscillation by an initial angle of bank is $2\left|v_{3} \alpha_{3 \phi}\right|,\left(\beta_{l}+\gamma_{v}\right)$, etc., being the phase angle as defined above.

In Tables 3, 6, and 7 (response to a side gust and to initial angles of bank and yaw) are listed $v_{1} \alpha_{1 v}, v_{2} \alpha_{2 v}, 2\left|v_{3} \alpha_{3 v}\right|, Q_{v v}$ and the corresponding quantities for other components, together with the roots of the stability biquadratic. In Tables 4 and 5 are listed $v_{1} \alpha_{11} / \lambda_{1}, v_{2} \alpha_{2 /} / \lambda_{2}$, $2\left|v_{3} \alpha_{3 l}\right| /\left(r^{2}+s^{2}\right)^{1 / 2}$, etc., and in Table 8 are the phase angles for all disturbances.

The rolling subsidence $\left(\lambda_{2}\right)$ is heavily damped and has an appreciable effect on the motion only in its early stages. Its importance decreases with increasing angle of dive and is greatest in \hat{p} and ϕ.

The spiral mode $\left(\lambda_{1}\right)$ is a divergence with small $-l_{v}$ in level flight and acquires increasing stability with increase in - l_{v} and angle of dive. It is a combined rolling and yawing motion in which the rolling component disappears in the vertical dive when $l_{v}=0$.

The lateral oscillation is excited to anamplitude $2\left|v_{3} \alpha_{3 v}\right|$, etc., by an initial displacement or impulsive force and $2\left|v_{3} \alpha_{3 i}\right| /\left(r^{2}+s^{2}\right)^{1 / 2}$, etc., by a finite applied moment. It affects the angle of sideslip at all l_{v}, n_{v} having the greatest influence on the yawing motion at large n_{v} and on the rolling motion at large $-l_{v}$. In the vertical dive at $l_{v}=0$ its contribution to the rolling motion is zero. The difference between the phase angles (γ_{v}, etc.) for different components is the same for all disturbances. The angle of dive has very little effect on phase angle.

Fig. 2 shows the contributions of the three modes to the response in rate of roll to applied rolling moment. The contribution due to the spiral root is $p_{1} \alpha_{1 l} \frac{1-\mathrm{e}^{\lambda_{1} \tau}}{-\lambda_{1}}$, that due to the rolling root is $p_{2} \alpha_{2 l} \frac{1-\mathrm{e}^{\lambda_{2} \tau}}{-\lambda_{2}}$ and the oscillatory term combined with the phase angle is

$$
\frac{2\left|p_{3} \alpha_{3 l}\right|}{r^{2}+s^{2}} \mathrm{e}^{-\tau \tau} \cos \left(s \tau+\beta_{l}+\gamma_{p}\right) .
$$

The coefficient of the linear term is zero. The total response curve obtained by adding these three terms is shown by the dotted line. The response to an initial angle of bank can be split up into its three components in the same way but in this case the response coefficients $p_{1} \alpha_{1 \phi}, p_{2} \alpha_{\phi 2}$ would multiply $\mathrm{e}^{\lambda_{1} \tau}$, $\mathrm{e}^{\lambda_{2} \tau}$ while the coefficient of $\mathrm{e}^{-\tau \tau} \cos \left(s \tau+\beta_{\phi}+\lambda_{\phi}\right)$ would be $2\left|p_{3} \alpha_{3 \phi}\right|$. When this interpretation of the modal response coefficients is understood changes in response due to variations of flight path angle can be easily seen from these tables.
4.2. Response to a Side Gust.--Table 3 shows that in response to a side gust the excitation of the spiral mode is small and is appreciable only in ϕ and ψ, the magnitude of excitation being insensitive to changes in l_{v}, n_{v}. Fig. 3 showing ϕ / \hat{v}_{0} for $n_{v}=0 \cdot 024, l_{v}=-0 \cdot 12$, illustrates the small effect of changes in this root, which varies from -0.0256 at $\gamma_{e}=0$ deg to -0.0931 at $-\gamma_{e}=90 \mathrm{deg}$, for the values of the parameters taken: variations in the spiral root are made
apparent by changes in the centre of oscillation which becomes more negative as $-\gamma_{e}$ increases. The variations in the period, damping, and excitation of the oscillation are more noticeable: as $-\gamma_{e}$ increases the period and damping are increased. The increased effect of the rolling root can be seen from the increase in the initial peak as $-\gamma_{c}$ increases: variations associated with this root are, however, small.

The increased period and damping of the oscillation are again shown by the rate of yaw for $\iota_{0}=-0 \cdot 12, n_{v}=0.024$ (Fig. 4) when the initial amplitude $2\left|v_{3} \alpha_{3 v}\right|$ does not vary appreciably with γ_{c}. The spiral mode has little effect on the motion while the decrease in the first peak with increasing angle of dive is due to the decrease of the yawing component of the rolling subsidence.

When $l_{v}=0$ the excitation of the rolling subsidence decreases with increasing angle of dive as do those of the spiral and oscillatory modes in $\hat{\phi}$ and ϕ. Fig. 5, showing angles of bank for $l_{v}=0, n_{v}=0 \cdot 024$, shows the relatively large changes caused by these variations.

In general, although the change in response from $\gamma_{e}=0$ to -90 deg is considerable, the curves for $-\gamma_{e}=0$ and 30 deg never differ by more than 30 per cent in the first 3 airsec (4 true sec). Thus, as was indicated by the response coefficients, the variations of the spiral root have little effect on the motion.
4.3. Response to Applied Rolling Moment.-When $-\gamma_{e}=90 \mathrm{deg}$ the response to applied rolling moment is, as was to be expected from the equations of section 3 , that of simple rolling theory. Thus \hat{p} is the exponential $\left(1-\mathrm{e}^{-I_{1} \tau}\right)$ and $\hat{v}, \hat{\gamma}$ and ψ are all zero. The vertical dive is the limiting case towards which the response will tend with increasing $-\gamma_{0}$, hence it is natural that aileron response should improve as the steepness of the dive increases, but it is notable that there is a great difference between the response at 60 deg and 90 deg.

The coefficients of response to an applied rolling moment are given in Table 4. The excitation of the spiral mode decreases with increasing angle of dive while that of the rolling subsidence remains approximately constant; the excitation of the oscillation is greatest for large l_{v} and small n_{v} but it decreases with increasing dive angle to become zero at $\gamma_{c}=-90$ deg. Figs. 6 and 7 show that the total effect of variations in γ_{0} on response is small when $l_{v}=0$.

Figs. 8 to 12 show response in $\hat{p}, \hat{v}, \hat{r}, \phi$ and ψ to applied rolling moment for two pairs of values of l_{v}, n_{v} and illustrate these points. It is interesting to note that although the magnitude of the adverse yawing motion decreases as $-\gamma_{c}$ increases its duration remains constant.
4.4. Response to Applied Yawing Moment.-The coefficients for response to applied yawing moment which are given in Table 5 show similar variations in the coefficients associated with the spiral root; the contribution of the rolling root is approximately independent of γ_{e}. The initial amplitude of the oscillation does not vary much from $-\gamma_{0}=0$ to 30 deg , but there is a fairly large change as $-\gamma_{c}$ increases beyond that value notably in \hat{p} and ϕ when $l_{v}=-0 \cdot 12$. This is illustrated in Fig. 13, which shows response in rate of roll to an applied yawing moment. The greatest change in response is again between $\gamma_{c}=-60$ and -90 deg .
4.5. Response to Initial Angles of Bank and Yaw.-Tables 6 and 7 contain the response coefficients for initial angles of bank and yaw. Here again the large variations in the excitation of the spiral mode are not reflected in the curves owing to accompanying variations of the constant term. The comparatively small changes of angle of yaw with γ_{e} for $n_{v}=0 \cdot 024, l_{v}=-0 \cdot 12$ are illustrated by Fig. 14, which shows the response in ψ to initial angle of bank. Here, too, it is clear that variations in the spiral root do not greatly affect the motion.
5. Discussion and Conclusions.-The table of response coefficients shows that, in general, change of flight path angle does not seriously affect response. The full set of curves show that variations are least when both l_{v} and n_{v} are large and are such that the response is improved as the angle of dive increases. It is clear from both the coefficients and the curves that the change in response when $-\gamma_{e}$ varies from 0 to 30 deg is so small that it can reasonably be disregarded in calculations.

The variation in response is less than was suggested by an examination of the stability roots; this is due to the fact that at this low value of the lift coefficient the spiral mode, which is the mode most affected by variation of γ_{c}, is not greatly excited. It is interesting to see this lack of correlation between stability and response, which was also noted in R. \& M. 2294,5. It is probable that at higher values of C_{Σ}, i.e., at lower speed, the variation of response with γ_{c} will be greater though still small in the range $-\gamma_{e}=0$ to 30 deg.
It can thus be concluded that if the stability and response of an aircraft are satisfactory in level flight they will be slightly better in a dive. Further if a shallow dive ($-\gamma_{c}<30 \mathrm{deg}$) is being considered it is possible to predict the behaviour of the aircraft with reasonable accuracy from knowledge of its response when $\gamma_{e}=0$ deg. This eliminates the need for special calculations when qualitative estimates of the response in a dive of a dive bomber are required, provided that its behaviour in level flight is known. It has further been shown that the response changes progressively with increasing dive angle from that of level flight to that of the simple limiting case of vertical flight; this change is most rapid at the $60-90$ deg end of the range.

LIST OF SYMBOLS

A^{\prime}	Rolling moment of inertia
b	Span, section 2.1
B	Coefficient of cubic term in stability equation, section 3
C	Coefficient of square term in stability equation, section 3
C^{\prime}	Yawing moment of inertia
C_{L}	Lift coefficient, section 2.3
C_{l}, C_{n}	Coefficients of rolling moment and yawing moment, section 2.2
$\mathscr{C}_{1}, \mathscr{C}_{n}$	Modified coefficients of rolling moment and yawing moment, section 2.2
D	Coefficient of linear term in stability equation, section 3
E	Constant term in stability equation, section 3. Product of inertia with respect to $x z$-axes
g	Acceleration due to gravity, section 2.2
$i_{A}{ }^{\prime}$	Rolling inertia coefficient, section 2.2
$i_{c}{ }^{\prime}$	Yawing inertia coefficient, section 2.2
k	$\frac{1}{2} C_{L}$, section 2.2
k^{\prime}	$-k \tan \gamma_{e}$, section 2.2
$K_{v l}$, etc.	A constant, section 4
\mathscr{Z}	- $\mu_{2} l_{v} / i_{A^{\prime}}$, section 2.2
l_{1}	- $l_{p} / i_{A_{A^{\prime}}}$, section 2.2
l_{2}	$l_{r} / i_{A^{\prime}}$, section 2.2
l_{p}, l_{r}, l_{v}	Rolling moments due to roll, yaw and sideslip, section 2.2
\mathscr{N}	$\mu_{2} n_{v} / i_{C}$, section 2.2
n_{1}	- $n_{p} / i_{C_{C}}$, section 2.2 .
n_{2}	- $n_{r} / i_{C^{\prime}}$, section 2.2

n_{p}, n_{r}, n_{v}	Yawing moments due to roll, yaw and sideslip, section 2.2
$n_{r 0}$	Body contribution to n_{r}, section 2.3
\hat{p}	Rolling angular velocity in radn/airsec, section 2.2
$Q_{\chi \phi}$, etc.	Constant term, section 4
r	Damping of complex roots; section 4
\hat{r}	Rate of yaw in radn/airsec, section 2.2
$R_{u l}$, etc.	Coefficient of linear term, section 4.
s	Coefficient of imaginary part of complex roots, section 4.
S	Wing area, section 2.2
t	Unit of aerodynamic time (airsec), section 2.2
$U_{\text {e }}$	Forward velocity of aircraft, section 2.2
\hat{v}	Angle of sideslip in radians, section 2.2
v_{i}	Modal amplitude in sideslip, section 4
W	Weight in lb, section 2.2
y_{0}	Sideforce due to sideslip, section 2.2
\bar{y}_{v}	- y_{v}, section 2.2
α_{10}	Modal response coefficient to initial sideslip; section 4.
β_{l}, etc.	Part of phase angle associated with disturbance, section 4
	Angle of climb in steady motion, section 2.2
γ_{v}, etc.	Part of phase angle associated with component, section 4 - E/A' section 23
ε_{A}	- E/A, section 2.3
ε_{c}	- E/C', section 2.3
θ	Angle of pitch, section 2.2
λ_{i}	Roots of stability equation, section 4
μ_{2}	Lateral relative density, section 2.2
ρ	Air density, section 2.3
τ	Time in airsec, section 2.2
ϕ	Angle of bank, section 2.2
ϕ^{\prime}	Conventional ϕ, section 2.1
ψ	Angle of yaw or azimuth, section 2.2
ψ^{\prime}	Conventional ψ, section 2.1

REFERENCES

No. Author
1 H. S. Carslaw and J. C. Jaegar Operational Methods in Applied Mathematics. Clarendon Press, Oxford. 1941.
2 K. Mitchell. Lateral Response Theory. R. \& M. 2297. March, 1944.
3 L. W. Bryant and S. B. Gates Nomenclature for Stability Coefficients. R. \& M. 1801. October, 1937.

4 K. Mitchell, A. W. Thorpe and E. M. Frayn.
5 K. Mitchell, A. W. Thorpe and E. M. Frayn.

The Theoretical Response of a High Speed Aeroplane to a Sidegust. R. \& M. 2294. May, 1945.

The Theoretical Response of a High Speed Aeroplane to Applied Rolling and Yawing Moments. R. \& M. 2294. May, 1945.

TABLE 1
Stability Roots

$$
\lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0 \text { has roots } \lambda_{1}, \lambda_{2},-r \pm i s
$$

n_{v}	l_{v}	$\overline{-\gamma_{e}}$	λ_{1}	λ_{2}	γ	s
0.024	0	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{array}{r} 0.0130 \\ -0.0361 \\ -0.0773 \\ -0.0931 \end{array}$	$\begin{aligned} & -3 \cdot 4820 \\ & -3 \cdot 4865 \\ & -3 \cdot 4955 \\ & -3 \cdot 5 \end{aligned}$	$\begin{aligned} & 0 \cdot 2488 \\ & 0 \cdot 2220 \\ & 0 \cdot 1969 \\ & 0 \cdot 1868 \end{aligned}$	$\begin{aligned} & 1 \cdot 6413 \\ & 1 \cdot 6360 \\ & 1 \cdot 6303 \\ & 1 \cdot 6280 \end{aligned}$
0.024	$-0 \cdot 12$	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{aligned} & -0.0256 \\ & -0.0656 \\ & -0.0931 \\ & -0.0931 \end{aligned}$	$\begin{aligned} & -3 \cdot 8110 \\ & -3 \cdot 7744 \\ & -3 \cdot 6691 \\ & -3 \cdot 5 \end{aligned}$	$\begin{aligned} & 0.0650 \\ & 0.0633 \\ & 0.1022 \\ & 0.1868 \end{aligned}$	$\begin{aligned} & 1 \cdot 9585 \\ & 1 \cdot 9178 \\ & 1 \cdot 8036 \\ & 1 \cdot 6280 \end{aligned}$
0.096	0	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{array}{r} 0.0132 \\ -0.0363 \\ -0.0774 \\ -0.0932 \end{array}$	$\begin{aligned} & -3 \cdot 4934 \\ & -3 \cdot 4950 \\ & -3 \cdot 4983 \\ & -3 \cdot 5 \end{aligned}$	$\begin{aligned} & 0 \cdot 4432 \\ & 0 \cdot 4177 \\ & 0.3954 \\ & 0.3867 \end{aligned}$	$\begin{aligned} & 3 \cdot 2682 \\ & 3 \cdot 2626 \\ & 3 \cdot 2556 \\ & 3 \cdot 2524 \end{aligned}$
0.096	$-0 \cdot 12$	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{aligned} & -0.0175 \\ & -0.0617 \\ & -0.0918 \\ & -0.0932 \end{aligned}$	$\begin{aligned} & -3 \cdot 7201 \\ & -3 \cdot 6927 \\ & -3 \cdot 6151 \\ & -3 \cdot 5 \end{aligned}$	$\begin{aligned} & 0 \cdot 3145 \\ & 0 \cdot 3061 \\ & 0 \cdot 3299 \\ & 0 \cdot 3867 \end{aligned}$	$\begin{aligned} & 3 \cdot 3766 \\ & 3 \cdot 3579 \\ & 3 \cdot 3118 \\ & 3 \cdot 2524 \end{aligned}$

TABLE 2
Periods, Times to Halve Amplitude and Number of Oscillations to Halve Amplitude

n	$l v$	$\begin{aligned} & -\gamma_{e} \\ & \mathrm{deg} \end{aligned}$	Time to $\frac{1}{2} \mathrm{ampl}$. spiral (true sec)	Time to $\frac{1}{2}$ ampl. oscillation (true sec)	Period of oscillation (true sec)	Number of oscillations to $\frac{1}{2} \mathrm{ampl}$.
$0 \cdot 024$	0	0 30 60 90	$\begin{array}{r} -70 \cdot 4050 \\ 25 \cdot 3775 \\ 11 \cdot 8691 \\ 9 \cdot 8515 \end{array}$	$\begin{aligned} & 3 \cdot 6860 \\ & 4 \cdot 1310 \\ & 4 \cdot 6570 \\ & 4 \cdot 9105 \end{aligned}$	$\begin{aligned} & 5 \cdot 0657 \\ & 5 \cdot 0821 \\ & 5 \cdot 0997 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 0.7276 \\ & 0.8129 \\ & 0.9132 \\ & 0.9615 \end{aligned}$
$0 \cdot 024$	$-0 \cdot 12$	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{array}{r} 35 \cdot 7924 \\ 14 \cdot 0089 \\ 9 \cdot 8519 \\ 9 \cdot 9515 \end{array}$	$\begin{gathered} 14 \cdot 1021 \\ 14 \cdot 4859 \\ 8 \cdot 9763 \\ 4 \cdot 9105 \end{gathered}$	$\begin{aligned} & 4 \cdot 2451 \\ & 4 \cdot 3352 \\ & 4 \cdot 6097 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 3 \cdot 3220 \\ & 3 \cdot 3415 \\ & 1 \cdot 9467 \\ & 0 \cdot 0615 \end{aligned}$
$0 \cdot 096$	0	0 30 60 90	$\begin{array}{r} -69 \cdot 7078 \\ 25 \cdot 2447 \\ 11 \cdot 8438 \\ 9 \cdot 8396 \end{array}$	$\begin{aligned} & 2 \cdot 0695 \\ & 2 \cdot 1960 \\ & 2 \cdot 3194 \\ & 2 \cdot 3717 \end{aligned}$	$\begin{aligned} & 2 \cdot 5439 \\ & 2 \cdot 5483 \\ & 2 \cdot 5538 \\ & 2 \cdot 5563 \end{aligned}$	$\begin{aligned} & 0.8135 \\ & 0.8618 \\ & 0.9082 \\ & 0.9278 \end{aligned}$
$0 \cdot 096$	-0.12	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$\begin{array}{r} 52 \cdot 3196 \\ 14 \cdot 8571 \\ 9 \cdot 9909 \\ 9 \cdot 8396 \end{array}$	$\begin{aligned} & 2 \cdot 9162 \\ & 2 \cdot 9962 \\ & 2 \cdot 7804 \\ & 2 \cdot 3717 \end{aligned}$	$\begin{aligned} & 2 \cdot 4622 \\ & 2 \cdot 4760 \\ & 2 \cdot 5105 \\ & 2 \cdot 5563 \end{aligned}$	$\begin{aligned} & 1 \cdot 1844 \\ & 1 \cdot 2102 \\ & 1 \cdot 1076 \\ & 0 \cdot 9278 \end{aligned}$

TABLE 3
Modal Response Coefficients for Response to a Side-gust
(i) Real Roots

$\begin{aligned} & \overline{\gamma_{e}} \\ & \operatorname{deg} \end{aligned}$	l_{v}	n_{v}	λ_{1}	$v_{1} \alpha^{\prime}{ }^{\prime}$	$p_{1} \alpha_{1 v}$	$\gamma_{1} \alpha_{1 v}$	$\varphi_{1} \alpha_{1 v}$	$\psi_{1} \alpha_{1 v}$	λ_{2}	$v_{\Sigma} \alpha_{\Sigma v}$	$p_{s} \alpha_{s v}$	$\gamma_{\Sigma} \alpha_{\Sigma v}$	$\varphi_{2} \alpha_{2 v}$	$\psi_{2} \alpha_{2 v}$
0	0	$0 \cdot 024$	0.0130	$0 \cdot 0014$	$0 \cdot 0018$	0.0126	$0 \cdot 1381$	$0 \cdot 9704$	$-3 \cdot 4820$	$0 \cdot 0019$	$0 \cdot 1010$	$0 \cdot 0036$	-0.0290	-0.0010
30			-0.0361	-0.0033	-0.0045	-0.0357	$0 \cdot 1235$	0.9875	$-3 \cdot 4865$	$0 \cdot 0014$	$0 \cdot 0876$. $0 \cdot 0027$	-0.0251	-0.0008
60			-0.0773	-0.0057	-0.0056	-0.0772	0.0730	0.9992	$-3 \cdot 4955$	$0 \cdot 0005$	0.0504	$0 \cdot 0009$	-0.0144	-0.0003
90			-0.0931	-0.0061	0 .	-0.0934	0	1.0028	$3 \cdot 5$	0	0	0	0	0
0	0	$0 \cdot 096$	0.0132	$0 \cdot 0009$	$0 \cdot 0018$	0.0129	$0 \cdot 1397$	0.9814	$-3 \cdot 4934$	$0 \cdot 0032$	$0 \cdot 2659$	$0 \cdot 0035$	-0.0761	-0.0010
30			-0.0363	-0.0022	-0.0045	-0.0360	$0 \cdot 1239$	0.9900	$-3 \cdot 4950$	$0 \cdot 0024$	$0 \cdot 2322$	$0 \cdot 0027$	-0.0664	-0.0008
60			-0.0774	-0.0043	-0.0056	-0.0772	$0 \cdot 0729$	0.9974	$-3 \cdot 4983$	$0 \cdot 0008$	$0 \cdot 1348$	$0 \cdot 0009$	-0.0385	-0.0003
90			-0.0932	-0.0050	0	-0.0932	0	1.0062	$-3 \cdot 5$	0	0	0	0	0
	$-0 \cdot 12$	$0 \cdot 024$			$0 \cdot 0062$	-0.0222	-0.2401	$0 \cdot 8673$	-3.8110	0.0668	$4 \cdot 0693$	$0 \cdot 1411$	-1.0678	-0.0370
30			-0.0656	-0.0036	0.0138	-0.0579	-0.2101	$0 \cdot 8832$	$-3 \cdot 7744$	0.0598	$4 \cdot 1588$	$0 \cdot 1258$	$-1 \cdot 1018$	-0.0333
60			-0.0931	-0.0049	$0 \cdot 0224$	-0.0860	-0.2411	0.9242	-3.6691	$0 \cdot 0383$	$4 \cdot 4132$	0.0781	-1. 2028	-0.0213
90			-0.0931	-0.0061	$0 \cdot 0357$	-0.0934	-0.3832	$1 \cdot 0028$	$-3 \cdot 5$	0	$4 \cdot 8749$	0	-1.3928	0
0	$-0 \cdot 12$	$0 \cdot 096$	-0.0175	-0.0010	$0 \cdot 0032$	-0.0167	-0.1798	$0 \cdot 9515$	$-3 \cdot 7201$	0.0330	$2 \cdot 9008$	$0 \cdot 0431$	-0.7798	-0.0115
30			-0.0617	-0.0032	$0 \cdot 0112$	-0.0593	-0.1816	0.9613	$-3 \cdot 6927$	0.0209	$2 \cdot 9128$	$0 \cdot 0373$	-0.7888	-0.0101
60			-0.0918	-0.0047	$0 \cdot 0209$	-0.0899	-0.2273	0.9788	$-3 \cdot 6151$	$0 \cdot 0170$	$2 \cdot 9062$	$0 \cdot 0207$	-0.8039	-0.0057
90			-0.0932	-0.0050	$0 \cdot 0294$	-0.0932	-0.3157	$1 \cdot 0002$	$-3 \cdot 5$	0	$2 \cdot 8720$	0	-0.8206	0

TABLE 3-continued
(ii) Complex Roots.-Period

$\overline{-\gamma_{0}} \underset{\operatorname{deg}}{ }$	l_{v}	$n v$	$\frac{6 \cdot 28}{s} \hat{t}$	$\frac{0 \cdot 110 s}{r}$	$2\left\|v_{3} \alpha_{3 v}\right\|$	$2\left\|p_{3} \alpha_{3 v}\right\|$	$2\left\|\gamma_{3} \alpha_{3 v}\right\|$	$2\left\|\varphi_{3} \alpha_{3 v}\right\|$	$2\left\|\psi_{3} \alpha_{3 v}\right\|$
0	0	0.024	$5 \cdot 0657$	0.073	$0 \cdot 9972$	$0 \cdot 2238$	1.6310	$0 \cdot 1349$	0.9719
30			$5 \cdot 0831$	0.813	$1 \cdot 0020$	$0 \cdot 1940$	1.6399	$0 \cdot 1175$	0.9933
60			$5 \cdot 0997$	0.913	$1 \cdot 0052$	$0 \cdot 1164$	$1 \cdot 6453$	$0 \cdot 0680$	1.0017
90			5•1070	0.962	$1 \cdot 0065$	0	$1 \cdot 6461$	0	$1 \cdot 0045$
0	0	0.096	$2 \cdot 5439$	0.814	0.9989	$0 \cdot 3648$	$3 \cdot 2652$	$0 \cdot 1106$	0.9900
30			$2 \cdot 5483$	$0 \cdot 862$	$1 \cdot 0021$	$0 \cdot 3163$	$3 \cdot 2762$	$0 \cdot 0962$	0.9960
60			$2 \cdot 5538$	0.908	$1 \cdot 0054$	$0 \cdot 1826$	$3 \cdot 2857$	$0 \cdot 0557$	1.0019
90			$2 \cdot 5563$	0.928	$1 \cdot 0067$	0	$3 \cdot 2893$	0	$1 \cdot 0043$
0	$-0 \cdot 12$	$0 \cdot 024$	$4 \cdot 2451$	$3 \cdot 322$	0.9367	$4 \cdot 7444$	1-6362	$1 \cdot 4211$	$0 \cdot 8350$
30			$4 \cdot 3352$	$3 \cdot 342$	0.9449	$4 \cdot 8041$	1.6352	$1 \cdot 5036$	$0 \cdot 8522$
60			4-6097	1.947	0.9668	$5 \cdot 0249$	$1 \cdot 6334$	$2 \cdot 7815$	0.9041
90			5-1070	0.962	$1 \cdot 0065$	$5 \cdot 4509$	$1 \cdot 6461$	$1 \cdot 7769$	$1 \cdot 0045$
0	-0.12	$0 \cdot 096$	$2 \cdot 4622$	1-184	0.9703	$4 \cdot 1736$	$3 \cdot 2040$	$1 \cdot 2307$	0.9448
30			$2 \cdot 4760$	$1 \cdot 210$	$0 \cdot 9762$	$4 \cdot 2030$	$3 \cdot 2185$	$1 \cdot 2465$	0.9545
60			$2 \cdot 5105$	1-108	0.9893	$4 \cdot 3056$	$3 \cdot 2485$	$1 \cdot 2937$	0.9701
90			$2 \cdot 5563$	0.928	$1 \cdot 0067$	$4 \cdot 4718$	3-2893	$1 \cdot 3649$	$1 \cdot 0043$

All constant terms zero.

TABLE 4
Response to Constant Applied Rolling Moment

(i) Real Roots

$\stackrel{\omega}{\omega}$

$\overline{\gamma_{0}}$	l_{v}	$n v$	λ_{1}	$\frac{v_{1} \alpha_{11}}{\lambda_{1}}$	$\frac{p_{1} a_{12}}{\lambda_{1}}$	$\frac{\gamma_{1} a_{12}}{\lambda_{1}}$	$\frac{\phi_{1} a_{1 t}}{\lambda_{1}}$	$\frac{\psi_{1} \alpha_{12}}{\lambda_{1}}$	λ_{2}	$\frac{v_{2} \alpha_{2 l}}{\lambda_{2}}$	$\frac{p_{2} \alpha_{2 l}}{\lambda_{2}}$	$\frac{\gamma_{2} a_{2 l}}{\lambda_{2}}$	$\frac{\phi_{z} a_{2}}{\lambda_{2}}$	$\frac{\psi_{2} \alpha_{22}}{\lambda_{2}}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	$0 \cdot 024$	$\begin{array}{r} 0.0130 \\ -0.0361 \\ -0.0773 \\ -0.0931 \end{array}$	$\begin{gathered} 0.2257 \\ -0.0600 \\ -0.0131 \\ 0 \end{gathered}$	$\begin{gathered} 0.2824 \\ -0.0806 \\ -0.0122 \\ 0 \end{gathered}$	$\begin{gathered} 1.9841 \\ -0.6431 \\ -0 \cdot 1909 \\ 0 \end{gathered}$	$\begin{gathered} 21 \cdot 6764 \\ 2 \cdot 2308 \\ \mathbf{0} \cdot 1583 \\ 0 \end{gathered}$	$\begin{gathered} 152 \cdot 3000 \\ 17 \cdot 7923 \\ 2 \cdot 3122 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 4820 \\ & -3 \cdot 4865 \\ & -3 \cdot 4935 \\ & -3 \cdot 5 \end{aligned}$	$\begin{gathered} -0.0055 \\ -0 \cdot 0047 \\ -0.0027 \\ 0 \end{gathered}$	$\begin{aligned} & -0.2877 \\ & -0.2872 \\ & -0.2862 \\ & -0.2857 \end{aligned}$	$\begin{gathered} -0.0103 \\ -0.0090 \\ -0.0052 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0826 \\ & 0.0824 \\ & 0 \cdot 0819 \\ & 0.0816 \end{aligned}$	$\begin{gathered} 0.003 \\ 0 \cdot 0026 \\ 0.0015 \\ 0 \end{gathered}$
$\begin{gathered} 0 \\ 30 \\ 60 \\ 90 \end{gathered}$	0	$0 \cdot 096$	$\begin{array}{r} 0.0132 \\ -0.0363 \\ -0.0774 \\ -0.0932 \end{array}$	$\begin{gathered} 0.0379 \\ -0.0389 \\ -0.0099 \\ 0 \end{gathered}$	$\begin{gathered} 0.2831 \\ -0.0802 \\ -0.0121 \\ 0 \end{gathered}$	$\begin{gathered} 1.9894 \\ -0.6394 \\ -0.1771 \\ 0 \end{gathered}$	$\begin{gathered} 21 \cdot 5186 \\ 2 \cdot 2067 \\ 0 \cdot 1566 \\ 0 \end{gathered}$	$\begin{gathered} 151 \cdot 1966 \\ 17 \cdot 5993 \\ 2 \cdot 2874 \\ 0 \end{gathered}$	$\begin{aligned} & -3.4934 \\ & -3.4950 \\ & -3.4983 \\ & -3.5 \end{aligned}$	$\begin{gathered} -0.0037 \\ -0.0030 \\ -0.0017 \\ 0 \end{gathered}$	$\begin{aligned} & -0.2851 \\ & -0.2852 \\ & -0.2856 \\ & -0.2857 \end{aligned}$	$\begin{gathered} -0.0037 \\ -0.0033 \\ -0.0019 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0816 \\ & 0.0816 \\ & 0.0035 \\ & 0.0816 \end{aligned}$	$\begin{gathered} 0 \cdot 0011 \\ 0 \cdot 0009 \\ 0 \cdot 0006 \\ 0 \end{gathered}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	-0.12	$0 \cdot 024$	$\begin{aligned} & -0.0256 \\ & -0.0656 \\ & -0.0931 \\ & -0.0931 \end{aligned}$	$\begin{gathered} -0.0492 \\ -0.0152 \\ -0.0066 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 1865 \\ 0 \cdot 0578 \\ 0 \cdot 0309 \\ 0 \end{gathered}$	$\begin{gathered} -0.6736 \\ -0.2433 \\ -0.1165 \\ 0 \end{gathered}$	$\begin{gathered} -7.2771 \\ -0.8811 \\ -0.3321 \\ 0 \end{gathered}$	$\begin{gathered} 26 \cdot 2881 \\ 3 \cdot 7087 \\ 1 \cdot 2512 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 8110 \\ & -3 \cdot 7744 \\ & -3 \cdot 6691 \\ & -3 \cdot 5 \end{aligned}$	$\begin{gathered} -0.0038 \\ -0 \cdot 0034 \\ -0.0022 \\ 0 \end{gathered}$	$\begin{aligned} & -0.2287 \\ & -0.2344 \\ & -0.2522 \\ & -0.2857 \end{aligned}$	$\begin{gathered} -0.0079 \\ -0.0071 \\ -0.0045 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \cdot 0600 \\ & 0 \cdot 0621 \\ & 0.0687 \\ & 0.0816 \end{aligned}$	$\begin{gathered} 0 \cdot 0021 \\ 0 \cdot 0019 \\ 0 \cdot 0012 \\ 0 \end{gathered}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$-0 \cdot 12$	$0 \cdot 096$	$\begin{aligned} & -0.0175 \\ & -0.0617 \\ & -0.0918 \\ & -0.0932 \end{aligned}$	$\begin{gathered} -0.0777 \\ -0.0193 \\ -0.0073 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 2535 \\ 0.0644 \\ 0.0334 \\ 0 \end{gathered}$	$\begin{gathered} -1 \cdot 3416 \\ -0 \cdot 3414 \\ -0 \cdot 1408 \\ 0 \end{gathered}$	$\begin{gathered} -14.4615 \\ -1.0434 \\ -0.3633 \\ 0 \end{gathered}$	$\begin{array}{r} 76 \cdot 5296 \\ 5 \cdot 5295 \\ 1 \cdot 5340 \\ 0 \end{array}$	$\begin{aligned} & -3 \cdot 7201 \\ & -3 \cdot 6927 \\ & -3 \cdot 6151 \\ & -3 \cdot 5 \end{aligned}$	$\begin{gathered} -0.0029 \\ -0.0021 \\ -0.0016 \\ 0 \end{gathered}$	$\begin{aligned} & -0.2515 \\ & -0.2555 \\ & -0.2439 \\ & -0.2857 \end{aligned}$	$\begin{gathered} -0.0037 \\ -0.0033 \\ -0.0017 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \cdot 0676 \\ & 0 \cdot 0692 \\ & 0 \cdot 0675 \\ & 0 \cdot 0816 \end{aligned}$	$\begin{gathered} 0.0010 \\ 0.0009 \\ 0.0005 \\ 0 \end{gathered}$

TABLE 4-continued
(ii) Complex Roots

$\frac{-\gamma_{a}}{\operatorname{deg}}$	$l v$	$n{ }^{0}$	Period (true sec)	$\frac{0 \cdot 110 s}{r}$	$\frac{2\left\|v_{3} a_{32}\right\|}{\sqrt{\left(r^{2}+s^{2}\right)}}$	$\frac{2\left\|p_{3} a_{32}\right\|}{\sqrt{ }\left(\gamma^{2}+s^{2}\right)}$	$\frac{2\left\|r_{3} \alpha_{3 l}\right\|}{\sqrt{ }\left(\gamma^{2}+s^{2}\right)}$	$\frac{2\left\|\phi_{3} \alpha_{3 l}\right\|}{\sqrt{ }\left(r^{2}+s^{2}\right)}$	$\frac{2\left\|\psi_{3} \alpha_{33}\right\|}{\sqrt{ }\left(r^{2}+s^{2}\right)}$	Q_{ϕ}	Q_{ψ}
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	0.024	$\begin{aligned} & 5 \cdot 0657 \\ & 5 \cdot 0821 \\ & 5 \cdot 0997 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 0.728 \\ & 0.813 \\ & 0.913 \\ & 0.962 \end{aligned}$	$\begin{gathered} 0 \cdot 0261 \\ 0 \cdot 0228 \\ 0 \cdot 0132 \\ \quad 0 \end{gathered}$	$\begin{gathered} 0.0059 \\ 0 \cdot 0058 \\ 0 \cdot 0014 \\ 0 \end{gathered}$	$\begin{gathered} 0.0555 \\ 0.0488 \\ 0.0216 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0035 \\ 0 \cdot 0027 \\ 0 \cdot 0009 \\ 0 \end{gathered}$	$\begin{gathered} 0.0555 \\ 0.0373 \\ 0.0132 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0.3639 \\ 0.2972 \\ 0.2857 \end{gathered}$	$\left\lvert\, \begin{gathered} -2 \cdot 0 \\ 0 \cdot 6305 \\ 0 \cdot 1721 \\ 0 \end{gathered}\right.$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	0.096	$\begin{aligned} & 2 \cdot 5439 \\ & 2 \cdot 5483 \\ & 2 \cdot 5538 \\ & 2 \cdot 5563 \end{aligned}$	$\begin{aligned} & 0.814 \\ & 0.862 \\ & 0.908 \\ & 0.928 \end{aligned}$	$\begin{gathered} 0.0054 \\ 0.0047 \\ 0.0027 \\ 0 \end{gathered}$	$\begin{gathered} 0.0019 \\ 0 \cdot 0015 \\ 0.0004 \\ 0 \end{gathered}$	$\begin{gathered} 0.0175 \\ 0.0152 \\ 0.0088 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0006 \\ 0 \cdot 0004 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0053 \\ 0 \cdot 0046 \\ 0 \cdot 0026 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \cdot 3639 \\ 0 \cdot 2972 \\ 0 \end{gathered}$	$\begin{gathered} -2 \cdot 0 \\ 0 \cdot 6305 \\ 0.1721 \\ 0 \end{gathered}$
-0 30 60 	$-0 \cdot 12$	$0 \cdot 024$	$\begin{aligned} & 4 \cdot 2451 \\ & 4 \cdot 3352 \\ & 4 \cdot 6097 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 3 \cdot 322 \\ & 3 \cdot 312 \\ & 1.947 \\ & 0.962 \end{aligned}$	$\begin{gathered} 0.0161 \\ 0.0147 \\ 0.0100 \\ 0 \end{gathered}$	$\begin{gathered} 0.0813 \\ 0.0747 \\ 0.0520 \\ 0 \end{gathered}$	$\begin{gathered} 0.0280 \\ 0.0254 \\ 0.0169 \\ 0 \end{gathered}$	$\begin{gathered} 0.0415 \\ 0.0389 \\ 0.0288 \\ 0 \end{gathered}$	$\begin{gathered} 0.0143 \\ 0.0133 \\ 0.0094 \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \cdot 1371 \\ 0 \cdot 1942 \\ 0.2857 \end{gathered}$	$\begin{gathered} 0 \cdot 6667 \\ 0 \cdot 2375 \\ 0 \cdot 1124 \\ 0 \end{gathered}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$-0 \cdot 12$	0.096	$\begin{aligned} & 2 \cdot 4622 \\ & 2 \cdot 4760 \\ & 2 \cdot 5105 \\ & 2 \cdot 5563 \end{aligned}$	$\begin{aligned} & 1 \cdot 184 \\ & 1 \cdot 210 \\ & 1 \cdot 108 \\ & 0 \cdot 928 \end{aligned}$	$\begin{gathered} 0.0047 \\ 0.0035 \\ 0.0025 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0203 \\ 0 \cdot 0179 \\ 0 \cdot 0110 \\ 0 \end{gathered}$	$\begin{gathered} 0.0156 \\ 0.0137 \\ 0.0083 \\ 0 \end{gathered}$	$\begin{gathered} 0.0060 \\ 0.0053 \\ 0.0033 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0046 \\ 0 \cdot 0041 \\ 0 \cdot 0025 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \cdot 1929 \\ 0 \cdot 2356 \\ 0 \end{gathered}$	$\begin{gathered} 1 \cdot 3333 \\ 0 \cdot 3342 \\ 0 \cdot 1364 \\ 0 \end{gathered}$

Linear terms in $\hat{p}, \hat{v}, \hat{r}$ zero.

TABLE 5-continued
(ii) Complex Roots

$\overline{\operatorname{leg}}$	$l v$	n_{v}	$\begin{gathered} \text { Period } \\ \text { (true sec) } \end{gathered}$	$\frac{0 \cdot 110 s}{r}$	$\frac{2\left\|v_{3} \alpha_{3 n}\right\|}{\sqrt{ }\left(\gamma^{2}+s^{2}\right)}$	$\frac{2\left\|p_{3} \alpha_{3 n}\right\|}{\sqrt{ }\left(r^{2}+s^{2}\right)}$	$\frac{2\left\|\gamma_{3} \alpha_{3 n}\right\|}{\sqrt{\left(r^{2}+s^{2}\right)}}$	$\frac{2\left\|\phi_{3} \alpha_{3 n}\right\|}{\sqrt{ }\left(r^{2}+s^{2}\right)}$	$\frac{2\left\|\psi_{3} a_{2 n}\right\|}{\sqrt{\left(r^{2}+s^{2}\right)}}$	$Q \phi$	$Q \psi$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	$0 \cdot 024$	$\begin{aligned} & 5 \cdot 0657 \\ & 5 \cdot 0821 \\ & 5 \cdot 0997 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 0.728 \\ & 0.813 \\ & 0.913 \\ & 0.962 \end{aligned}$	$\begin{aligned} & 0 \cdot 3699 \\ & 0 \cdot 3724 \\ & 0 \cdot 3742 \\ & 0 \cdot 3748 \end{aligned}$	$\begin{gathered} 0.0830 \\ 0.0721 \\ 0.0416 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \cdot 6046 \\ & 0 \cdot 6094 \\ & 0 \cdot 6124 \\ & 0 \cdot 6133 \end{aligned}$	$\begin{gathered} 0.0500 \\ 0.0437 \\ 0.0253 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \cdot 3642 \\ & 0 \cdot 3691 \\ & 0 \cdot 3729 \\ & 0 \cdot 3742 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	0.096	$2 \cdot 5439$ $2 \cdot 5488$ $2 \cdot 5538$ $2 \cdot 5543$	$\begin{aligned} & 0.814 \\ & 0.862 \\ & 0.908 \\ & 0.928 \end{aligned}$	$\begin{aligned} & 0.0931 \\ & 0.0939 \\ & 0.0937 \\ & 0.0939 \end{aligned}$	$\begin{aligned} & 0.0340 \\ & 0.0295 \\ & 0.0170 \end{aligned}$	$\begin{aligned} & 0 \cdot 3042 \\ & 0 \cdot 3053 \\ & 0 \cdot 3063 \\ & 0 \cdot 3067 \end{aligned}$	$\begin{aligned} & 0 \cdot 3103 \\ & 0 \cdot 0090 \\ & 0 \cdot 0052 \end{aligned}$	$\begin{aligned} & 0 \cdot 0922 \\ & 0 \cdot 0928 \\ & 0 \cdot 0934 \\ & 0 \cdot 0936 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{gathered} 0 \\ 30 \\ 60 \\ 90 \end{gathered}$	$-0 \cdot 12$	$0 \cdot 024$	$\begin{aligned} & 4 \cdot 2451 \\ & 4 \cdot 3852 \\ & 4 \cdot 6097 \\ & 5 \cdot 1070 \end{aligned}$	$\begin{aligned} & 3 \cdot 322 \\ & 3 \cdot 342 \\ & 1 \cdot 947 \\ & 0.962 \end{aligned}$	$\begin{aligned} & 0 \cdot 2446 \\ & 0 \cdot 2566 \\ & 0 \cdot 2956 \\ & 0 \cdot 3748 \end{aligned}$	$\begin{aligned} & 1 \cdot 2389 \\ & 1 \cdot 3047 \\ & 1 \cdot 5305 \\ & 2 \cdot 0308 \end{aligned}$	$\begin{aligned} & 0 \cdot 4273 \\ & 0.4441 \\ & 0 \cdot 4994 \\ & 0.6133 \end{aligned}$	$\begin{aligned} & 0 \cdot 6322 \\ & 0 \cdot 6800 \\ & 0.8505 \\ & 1 \cdot 2393 \end{aligned}$	$\begin{aligned} & 0.2180 \\ & 0 \cdot 2314 \\ & 0.2765 \\ & 0.3742 \end{aligned}$	$\begin{gathered} 0 \\ 1 \cdot 0201 \\ 1 \cdot 4566 \\ 2 \cdot 1029 \end{gathered}$	$\begin{aligned} & 5 \cdot 0 \\ & 1 \cdot 7809 \\ & 0 \cdot 8432 \\ & \quad 0 \end{aligned}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$-0 \cdot 12$	$0 \cdot 096$	$\begin{aligned} & 2 \cdot 4622 \\ & 2 \cdot 4760 \\ & 2 \cdot 5105 \\ & 2 \cdot 5563 \end{aligned}$	$\begin{aligned} & 1 \cdot 184 \\ & 1 \cdot 210 \\ & 1 \cdot 108 \\ & 0 \cdot 928 \end{aligned}$	$\begin{aligned} & 0.0848 \\ & 0.0860 \\ & 0.0892 \\ & 0.0939 \end{aligned}$	$\begin{aligned} & 0.3646 \\ & 0.3703 \\ & 0 \cdot 3884 \\ & 0 \cdot 4170 \end{aligned}$	$\begin{aligned} & 0 \cdot 2799 \\ & 0 \cdot 2835 \\ & 0 \cdot 2930 \\ & 0 \cdot 3067 \end{aligned}$	$\begin{aligned} & 0 \cdot 1075 \\ & 0 \cdot 1098 \\ & 0 \cdot 1167 \\ & 0 \cdot 1273 \end{aligned}$	$\begin{aligned} & 0.0825 \\ & 0.0841 \\ & 0.0880 \\ & 0.0936 \end{aligned}$	$\begin{gathered} 0 \\ 0 \cdot 3617 \\ 0 \cdot 4417 \\ 0.5357 \end{gathered}$	$\begin{aligned} & 2 \cdot 5 \\ & 0 \cdot 6266 \\ & 0 \cdot 2557 \\ & \quad 0 \end{aligned}$

Linear terms in $\hat{p}, \hat{v}, \hat{r}$ all zero.

TABLE 6
Response to Initial Angle of Yaw
(i) Real Roots

$\overline{\gamma_{e}}$	l_{v}	$n v$	λ_{1}	$v_{1} \alpha_{1 \psi}$	$p_{1} \alpha_{17}$	$\gamma_{1} \alpha_{1 \psi}$	$\phi_{1} \alpha_{1 p}$	$\psi_{1} \alpha_{1 \psi}$	λ_{2}	$v_{2} \alpha_{2 y}$	$p_{2} \alpha_{2 \psi}$	$\gamma_{2} \alpha_{2 y}$	$\phi_{2} \alpha_{2 \varphi}$	$\psi_{2} \alpha_{2 \psi}$
0	0	$0 \cdot 024$	$0 \cdot 0130$	0	0	0	0	0	$-3 \cdot 4820$	0	0	0	0	0
30			-0.0361	-0.0043	-0.0058	-0.0463	$0 \cdot 1602$	1-2808	$-3 \cdot 4865$	0	0.0012	0	$-0 \cdot 0003$	0
60			-0.0773	-0.0059	-0.0059	-0.0817	0.0767	1-0498	$-3 \cdot 4955$	0	$0 \cdot 0012$	0	$-0 \cdot 0003$	0
90			-0.0931	-0.0061	0	-0.0940	0	1-0098	$-3 \cdot 5$	0	0	0	0	0
0	0	$0 \cdot 096$. 0.0132	0	0	0	0	0	-3.4934	0	0	0	0	0
30			-0.0363	-0.0028	-0.0058	-0.0464	$0 \cdot 1598$	$1 \cdot 2773$	$-3 \cdot 4950$	0	$0 \cdot 0031$	0	-0.0009	0
60			-0.0774	-0.0045	-0.0059	-0.0810	0.0764	1.0456	$-3 \cdot 4983$	0	$0 \cdot 0031$	0	-0.0009	0
90			-0.0932	-0.0061	0	-0.0940	0	1-0098	$-3 \cdot 5$	0	0	0	0	0
0	-0.12	$0 \cdot 024$	-0.0256	0	0	0	0	0	$-3 \cdot 8110$	0	0	0	0	0
30			-0.0656	-0.0026	$0 \cdot 0098$	-0.0414	-0.1501	$0 \cdot 6309$	$-3 \cdot 7744$	$0 \cdot 0007$	$0 \cdot 0516$	$0 \cdot 0016$	-0.0137	-0.0004
60			-0.0931	-0.0043	$0 \cdot 0196$	-0.0750	-0.2102	$0 \cdot 8060$	$-3 \cdot 6691$	$0 \cdot 0008$	$0 \cdot 0977$	$0 \cdot 0017$	-0.0266	$-0 \cdot 0005$
90			-0.0931	-0.0061	$0 \cdot 0359$	-0.0940	-0.3858	$1 \cdot 0098$	$-3 \cdot 5$	0	$0 \cdot 1306$	0	-0.0373	0
0	$-0 \cdot 12$	$0 \cdot 096$	-0.0175	0	0				$-3 \cdot 7201$			0	0	0
30			-0.0617	-0.0024	$0 \cdot 0085$	-0.0451	-0.1379	$0 \cdot 7299$	-3.6927	$0 \cdot 0004$	$0 \cdot 0370$	$0 \cdot 0005$	-0.0100	-0.0001
60			-0.0918	-0.0041	0.0185	-0.0795	-0.2011	$0 \cdot 8657$	$-3 \cdot 6151$	$0 \cdot 0004$	$0 \cdot 0653$	$0 \cdot 0005$	-0.0181	$-0 \cdot 0001$
90			-0.0932	$-0 \cdot 0050$	0.0296	-0.0938	-0.3175	$1 \cdot 0059$	$-3 \cdot 5$	0	$0 \cdot 0769$	0	-0.0220	- 0

TABLE 6-continued
(ii) Complex Roots

$-\gamma_{0}$	$l v$	n_{v}	Period (true sec)	$\frac{0 \cdot 110 s}{\gamma}$	$2\left\|v_{3} \alpha_{3 \psi}\right\|$	$2\left\|p_{3} \alpha_{3 \varphi}\right\|$	$2\left\|\gamma_{3} \alpha_{3 y}\right\|$	$2\left\|\phi_{3} \alpha_{3 \psi}\right\|$	$2\left\|\psi_{3} \alpha_{3 \psi}\right\|$	Q_{ϕ}	Q_{ψ}
0	0	$0 \cdot 024$	5.0657	0.728	0	0	0	0	0	0	0
30			$5 \cdot 0821$	0.813	$0 \cdot 0284$	$0 \cdot 0055$	$0 \cdot 0466$	$0 \cdot 0033$	$0 \cdot 0284$	$-0 \cdot 1577$	-1.2738
60			5•0997	0.913	$0 \cdot 0497$	$0 \cdot 0056$	$0 \cdot 0813$	$0 \cdot 0011$	$0 \cdot 0495$	-0.0743	-1.0402
90			5•1070	$0 \cdot 962$	$0 \cdot 0576$	0	0.0942	0	$0 \cdot 0204$	0	-1.0
0	0	$\cdot 0 \cdot 096$	$2 \cdot 5499$	0.813	0	0	0	0	0	0	0
30			$2 \cdot 5483$	$0 \cdot 862$	0.0143	$0 \cdot 0045$	$0 \cdot 0467$	$0 \cdot 0014$	$0 \cdot 0142$	$-0 \cdot 1577$	-1.2738
60			$2 \cdot 5538$	0.908	$0 \cdot 0249$	$0 \cdot 0045$	0.0813	$0 \cdot 0014$	0.0248	-0.0743	-1.0402
90			$2 \cdot 5563$	$0 \cdot 928$	$0 \cdot 0288$	0	$0 \cdot 0941$	0	$0 \cdot 0287$	0	$-1 \cdot 0$
0	-0.12	$0 \cdot 024$	$4 \cdot 2451$	3.322	0	0	0				
30			$4 \cdot 3352$	$3 \cdot 342$	$0 \cdot 0231$	$0 \cdot 1173$	$0 \cdot 0399$	$0 \cdot 0617$	$0 \cdot 0208$	$0 \cdot 2148$	-0.6283
60			$4 \cdot 6097$	1.947	0.0435	$0 \cdot 2258$	$0 \cdot 0734$	$0 \cdot 1250$	$0 \cdot 0406$	$0 \cdot 3399$	-0.8011
90			$5 \cdot 1070$	0.962	$0 \cdot 0576$	$0 \cdot 3118$	$0 \cdot 0942$	$0 \cdot 1903$	0.0675	$0 \cdot 5714$	-1.0
0	-0.12	$0 \cdot 096$	$2 \cdot 4622$	1.184	0	0	0	0	0	0	0
30			$2 \cdot 4760$	$1 \cdot 210$	$0 \cdot 0136$	$0 \cdot 0584$	$0 \cdot 0447$	$0 \cdot 0173$	$0 \cdot 0133$	$0 \cdot 1515$	-0.7274
60			$2 \cdot 5105$	1-108	$0 \cdot 0241$	0. 1050	$0 \cdot 0792$	0.0316	. 0.0238	$0 \cdot 2356$	-0.8613
90	.		$2 \cdot 5563$	0.928	$0 \cdot 0288$	0-1280	0.0941	0.0396	$0 \cdot 0287$	$0 \cdot 3511$	-1.0

Constant terms in $\hat{p}, \hat{v}, \hat{\gamma}$ all zero.

TABLE 7
Response to Initial Angle of Bank
(i) Real Roots

$\frac{\gamma_{e}}{\operatorname{deg}}$	$l v$	n	λ_{1}	$v_{1} \alpha_{1}{ }^{\prime}$	$p_{1} \alpha_{1}{ }^{\text {d }}$	$\gamma_{1} \alpha_{1 \phi}$	$\phi_{1} \alpha_{1}{ }^{\prime}$	$\psi_{1} \alpha_{1}{ }_{1}$	λ_{2}	$v_{2} \alpha_{2 \phi}$	$p_{2} \alpha_{2 \phi}$	$\gamma_{2} \alpha_{2 \phi}$	${ }_{2}{ }_{2} \alpha_{2 \phi}$	$\psi_{2} \alpha_{2 \phi}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	0.024	$\begin{array}{r} 0.0130 \\ -0.0361 \\ -0.0773 \\ -0.0931 \end{array}$	$\begin{gathered} 0 \cdot 0104 \\ 0 \cdot 0075 \\ 0 \cdot 0034 \\ 0 \end{gathered}$	$\begin{gathered} 0.0129 \\ 0.0100 \\ 0.0034 \\ 0 \end{gathered}$	$\begin{gathered} 0.0910 \\ 0.0802 \\ 0.0470 \\ 0 \end{gathered}$	$\begin{gathered} 0.9939 \\ -0.2776 \\ -0.0444 \\ 0 \end{gathered}$	$\begin{gathered} 6 \cdot 9830 \\ -2 \cdot 2187 \\ -0 \cdot 6077 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 4820 \\ & -3.4865 \\ & -3 \cdot 4955 \\ & -3.5 \end{aligned}$	$\begin{gathered} -0 \cdot 0001 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} -0.0027 \\ -0.0020 \\ -0.0007 \\ 0 \end{gathered}$	$\begin{gathered} -0 \cdot 0001 \\ -0.0001 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0008 \\ 0 \cdot 0006 \\ 0 \cdot 0002 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	0	$0 \cdot 096$	$\begin{array}{r} 0.0132 \\ -0.0363 \\ -0.0074 \\ 0.0932 \end{array}$	$\begin{aligned} & 0.0061 \\ & 0.0049 \\ & 0.0026 \end{aligned}$	$\begin{aligned} & 0.0131 \\ & 0.0101 \\ & 0.0034 \end{aligned}$	$\begin{aligned} & 0.0920 \\ & 0.0804 \\ & 0.0469 \end{aligned}$	$\begin{gathered} 0.9952 \\ -0.2768 \\ -0.0442 \\ 0 \end{gathered}$	$\begin{gathered} 6 \cdot 9923 \\ -2 \cdot 2125 \\ -0.6053 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 4934 \\ & -3 \cdot 4950 \\ & -3 \cdot 4983 \\ & -3 \cdot 5 \end{aligned}$	$\begin{gathered} -0.0001 \\ -0.0001 \\ 0 \\ 0 \end{gathered}$	-0.0071 -0.0054 -0.0018	$\begin{gathered} -0 \cdot 0001 \\ -0.0001 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0020 \\ & 0.0015 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$-0 \cdot 12$	$0 \cdot 024$	$\begin{aligned} & -0.0256 \\ & -0.0656 \\ & -0.0931 \\ & -0.0931 \end{aligned}$	$\begin{gathered} 0.0059 \\ 0 \cdot 0045 \\ 0.0025 \\ 0 \end{gathered}$	$\begin{gathered} -0.0225 \\ -0.0171 \\ -0.0113 \\ 0 \end{gathered}$	$\begin{gathered} 0.0813 \\ 0.0717 \\ 0.0434 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 8784 \\ 0 \cdot 2600 \\ 0 \cdot 1217 \\ 0 \end{gathered}$	$\begin{gathered} -3 \cdot 1731 \\ -1.0929 \\ -0.4666 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 8110 \\ & -3.7744 \\ & -3 \cdot 6691 \\ & -3.5 \end{aligned}$	$\begin{gathered} -0 \cdot 0016 \\ -0.0013 \\ -0.0005 \\ 0 \end{gathered}$	$\begin{gathered} -0.1001 \\ -0.0895 \\ -0.0565 \\ 0 \end{gathered}$	$\begin{gathered} -0.0035 \\ -0.0027 \\ -0.0010 \\ 0 \end{gathered}$	$\begin{gathered} 0.0263 \\ 0.0237 \\ 0.0154 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0009 \\ 0 \cdot 0007 \\ 0 \cdot 0003 \\ 0 \end{gathered}$
$\begin{array}{r} 0 \\ 30 \\ 60 \\ 90 \end{array}$	$-0 \cdot 12$	$0 \cdot 096$	$\begin{aligned} & -0.0175 \\ & -0.0617 \\ & -0.0918 \\ & -0.0932 \end{aligned}$	$\begin{gathered} 0.0052 \\ 0.0042 \\ 0.0024 \\ 0 \end{gathered}$	$\begin{gathered} -0.0169 \\ -0.0148 \\ -0.0107 \\ 0 \end{gathered}$	$\begin{gathered} 0.0892 \\ 0.0781 \\ 0.0460 \\ 0 \end{gathered}$	$\begin{gathered} 0.9616 \\ 0 \cdot 2389 \\ 0 \cdot 1164 \\ 0 \end{gathered}$	$\begin{gathered} -5 \cdot 0887 \\ -1 \cdot 2643 \\ -0.5011 \\ 0 \end{gathered}$	$\begin{aligned} & -3 \cdot 7201 \\ & -3 \cdot 6927 \\ & -3 \cdot 6151 \\ & -3 \cdot 5 \end{aligned}$	$\begin{gathered} -0 \cdot 0008 \\ -0 \cdot 0006 \\ -0 \cdot 0002 \\ 0 \end{gathered}$	$\begin{gathered} -0.0731 \\ -0.0641 \\ -0.0378 \\ 0 \end{gathered}$	$\begin{gathered} -0.0011 \\ -0.0008 \\ -0.0003 \\ 0 \end{gathered}$	$\begin{gathered} 0.0197 \\ 0.0173 \\ 0.0105 \\ 0 \end{gathered}$	$\begin{gathered} 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \\ 0 \end{gathered}$

TABLE 7-continued
(ii) Complex Roots

$-\gamma_{0}$ deg	$l v$	$n n_{v}$	Period (true sec)	$\frac{0 \cdot 110 s}{r}$	$2\left\|v_{3} \alpha_{3 \phi}\right\|$	$2\left\|p_{3} a_{3 \phi}\right\|$	$2\left\|\gamma_{3} \alpha_{3 \phi}\right\|$	$2\left\|\phi_{3} \alpha_{3 \phi}\right\|$	$2\left\|\psi_{3} \alpha_{3 \phi}\right\|$	Q_{ϕ}	Q_{ψ}
0	0	$0 \cdot 024$	5.0657	$0 \cdot 728$	0.0563	$0 \cdot 0126$	$0 \cdot 0921$	$0 \cdot 0076$	$0 \cdot 0555$	$-1 \cdot 0$	$-7 \cdot 0$
30			5.0821	0.813	$0 \cdot 0493$	$0 \cdot 0095$	$0 \cdot 0807$	$0 \cdot 0058$	$0 \cdot 0489$	$0 \cdot 2732$	$2 \cdot 2066$
60			5.0997	0.913	$0 \cdot 0289$	$0 \cdot 0032$	$0 \cdot 0471$	$0 \cdot 0019$	0.0287	$0 \cdot 0430$	0.6022
90			5•1070	0.962	0	0	0	0	0	0	0
0	0	$0 \cdot 096$	$2 \cdot 5439$	0.814	$0 \cdot 0284$	$0 \cdot 0104$	$0 \cdot 0928$	0.0031	0.0281	$-1 \cdot 0$	$-7 \cdot 0$
30			$2 \cdot 5483$	$0 \cdot 862$	$0 \cdot 0247$	$0 \cdot 0078$	$0 \cdot 0809$	$0 \cdot 0024$	$0 \cdot 0246$	$0 \cdot 2732$	$2 \cdot 2066$
60			$2 \cdot 5538$	0.908	$0 \cdot 0144$	$0 \cdot 0026$	$0 \cdot 0471$	$0 \cdot 0008$	0.0081	$0 \cdot 0430$	$0 \cdot 6022$
90			$2 \cdot 5563$	0.928	0	0	0	0	0	0	0
0	$-0 \cdot 12$	$0 \cdot 024$	$4 \cdot 2451$	$3 \cdot 322$	$0 \cdot 0448$	$0 \cdot 2270$	$0 \cdot 0783$	$0 \cdot 1154$	0.0399	-1.0	$3 \cdot 1667$
30			$4 \cdot 3352$	$3 \cdot 342$	$0 \cdot 0400$	0.2033	$0 \cdot 0692$	$0 \cdot 1059$	0.0361	$0 \cdot 3720$	$1 \cdot 0884$
60			4-6097	1.947	$0 \cdot 0252$	0.1307	0.0425	0.0724	$0 \cdot 0235$	$-0 \cdot 1968$	0.4638
90			5-1070	0.962	0	0	0	0	0	0	0
0	-0.12	$0 \cdot 096$	$2 \cdot 4622$	1-184	0.0268	$0 \cdot 1154$	$0 \cdot 0886$	0.0240	0.0261	-1.0	5•0833
30			$2 \cdot 4760$	$1 \cdot 210$	$0 \cdot 0235$	0-1012	$0 \cdot 0775$	0.0300	$0 \cdot 0230$	-0.2729	$1 \cdot 2601$
60			$2 \cdot 5105$	1-108	$0 \cdot 0140$	0:0608	0.0459	0.0183	$0 \cdot 0138$	-0.1364	$0 \cdot 4986$
90			$2 \cdot 5563$	0.928	0	0	0	,	0	0	0

Constant terms in $\hat{p}, \hat{v}, \hat{r}$ all zero.

TABLE 8
Phase Angles for All Disturbances

$\begin{aligned} & -\gamma_{e} \\ & \operatorname{deg} \end{aligned}$	l_{v}	$n v$	β_{v}	β_{ϕ}	β_{ψ}	β_{l}	β_{n}	γ_{v}	γ_{p}	γ_{r}	γ_{ϕ}	γ_{ψ}
0	0	$0 \cdot 024$	1.92°	$100 \cdot 47^{\circ}$	*	$39 \cdot 28^{\circ}$	188.83°	0	115.38°	88.65°	214.06°	$187 \cdot 27^{\circ}$
30			$0 \cdot 96^{\circ}$	98.67°	278.67°	$37 \cdot 47^{\circ}$	187.91°	0	114.41°	$87.89{ }^{\circ}$	$212 \cdot 14^{\circ}$	185.62°
60			359.63°	$96.86{ }^{\circ}$	276.86 ${ }^{\circ}$	$35 \cdot 67^{\circ}$	186.96°	0	$113.98{ }^{\circ}$	87.71°	$210 \cdot 87^{\circ}$	184.60°
90			$359.5{ }^{\circ}$	*	$276 \cdot 10^{\circ}$		186.57°	0	*	$87 \cdot 18^{\circ}$	210.87	183.73°
0	0	$0 \cdot 096$	$4 \cdot 44^{\circ}$	$102 \cdot 16^{\circ}$	*	$58 \cdot 50^{\circ}$	187.91°	0	$132 \cdot 76^{\circ}$	$85.83{ }^{\circ}$	$230 \cdot 49^{\circ}$	183.57°
30			$3.96{ }^{\circ}$	$101 \cdot 26^{\circ}$	281.26°	$58 \cdot 05^{\circ}$	$187.7{ }^{\circ}$	0	$132 \cdot 00^{\circ}$	$85 \cdot 46^{\circ}$	229.38°	182.72°
60			$3 \cdot 49^{\circ}$	$100 \cdot 42^{\circ}$	$280 \cdot 42^{\circ}$	$57 \cdot 06^{\circ}$	$186.98{ }^{\circ}$	0	131.54°	$85 \cdot 18^{\circ}$	228.46°	$182 \cdot 10^{\circ}$
90			$3 \cdot 29^{\circ}$. *	$280 \cdot 0{ }^{\circ}$	*	186.57°	0	*	$85 \cdot 08^{\circ}$	*	181.86°
0	$-0 \cdot 12$	$0 \cdot 024$	$3 \cdot 60^{\circ}$	95.51°	*	$31.56{ }^{\circ}$	$178 \cdot 77^{\circ}$	0	$207 \cdot 19^{\circ}$	90.57°	$299 \cdot 10^{\circ}$	182.47°
30			$2.69{ }^{\circ}$	94.59°	274.59°	31.02°	$179 \cdot 26^{\circ}$	0	207.02°	89.69°	298.91°	181.58°
60			$1.31{ }^{\circ}$	94.52°	274.52°	$32 \cdot 24^{\circ}$	$182 \cdot 21^{\circ}$	0	206.72°	88.97°	299.99°	181.65°
90			$359.5{ }^{\circ}$	*	$276 \cdot 10^{\circ}$	*	186.57°	0	$206 \cdot 17^{\circ}$	$87 \cdot 18^{\circ}$	$302 \cdot 7{ }^{\circ}$	183.73°
0	$-0 \cdot 12$	$0 \cdot 096$	$3 \cdot 98{ }^{\circ}$	$99 \cdot 30^{\circ}$								
30			$3 \cdot 58^{\circ}$	98.79°	$278 \cdot 79^{\circ}$	$54 \cdot 34^{\circ}$	183.20°	0	$222 \cdot 34^{\circ}$	86.03°	317.55°	181.24°
60			$3 \cdot 27^{\circ}$	$98 \cdot 96{ }^{\circ}$	278.96°	$54 \cdot 38^{\circ}$	184.46°	0	223.89°	85.51°	319.59°	181.20°
90			$3 \cdot 30^{\circ}$	*	$280 \cdot 01^{\circ}$	*	$187 \cdot 3{ }^{\circ}$	0	226.25°	85.07°	$323 \cdot 03^{\circ}$	$181.85{ }^{\circ}$

* indicates that if either β_{v} or γ_{v}, etc., is * the $\operatorname{sum}\left(\beta_{v}+\gamma_{v}\right)$, etc., is meaningless since the excitation of the oscillatory mode is zero.

A. AXES OF NEW SYSTEM. CONFIGURATION IN STEADY MOTION: Gシ्x y z̀. CONFIGURATION IN DISTURBED MOTION:G. © (9)Z

N

B. AXES OF OLD SYSTEM.

CONFIGURATION IN STEADY HORIZONTAL MOTIONG. $\bar{x} \bar{Y} \bar{z}$ CONFIGURATION IN DISTUREED MOTION: G.(2)(8)(2)

Fig. 1

Fig. 2. Response in Rate of Roll to an Applied Rolling Moment Showing the Contributions of the Three Modes of Motion when $l=-0.12, \eta_{v}=0.024$.

Fig. 3. Variations with α_{e} of the Response in Angle of Bank to a Side-gust for $n_{v}=0.024, l_{v}=-0.12$.

Fig. 4. Variations with α_{e} of the Response in Rate of Yaw to a Side-gust when $n_{v}=0.024, l_{v}=-0.12$.

Fig. 5. Response in Angle of Bank to a Side-gust with Varying Flightpath Angle when $l_{v}=0, n_{v}=0.024$.

Fig. 6. Response in Angle of Bank to Applied Rolling Moment with Varying Flight-path Angle for $l_{v}=0, n_{v}=0 \cdot 024$.

Fig. 8. Response in Rate of Roll to Applied Rolling Moment with Varying Angle of Dive.

Fig. 9. Response in Angle of Sideslip to Applied Rolling Moment with Varying Angle of Dive.

Fig. 10. Response in Rate of Yaw to Applied Rolling Moment with Varying Angle of Dive.

Fig. 11. Response in Angle of Bank to Applied Rolling Moment for Varying Angle of Dive.

Fig. 12. Response in Angle of Yaw to Applied Rolling Moment with Varying Angle of Dive.

Fig. 13. Response in Rate of Roll to Applied Yawing Moment with Varying Flight-path Angle for $l_{v}=-0 \cdot 12, n_{v}=0 \cdot 024$.

Fig. 14. Response in Angle of Yaw to Initial Angle of Bank with Varying Flight-path Angle for $l_{v}=-0 \cdot 12, n_{v}=0 \cdot 024$.

Publications of the Aeromautical \mathbb{R} esearch Councill

ANNUAL TEGHNICAL REPORTS OF THE AERONAUTICAL IRESEARCHI COUNGIL (BOUND VOLUNIES)
I936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. gd.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. Iod.)
r937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (40s. rod.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (6rs.)
8938. Vol. I. Aerodynamics General, Performance, Airscrews. 5os. (5is.)

Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)
1939. Vol. I. Aêrodynamics General, Performance, Airscrews, Engines. 5or. (50s. Ifd.)

Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64s. 2d.)
$r 940$ Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscelianeous section. 50s. (5 Is .)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. ($64 \mathrm{~s}, 2 \mathrm{~d}$.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels 47s. 6d. (48s. 5d.)
1943 Vol. 1. (In the press.)
Vol. II. (In the press.)
ANNUAK IRTPORTS OT TTHE AERONAUTICAI RESEARCH COUNCIR-

INDEX TO ALI REPORTS AND MENORANDA PUBEISHETD IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELYApril, 1950 - - - \quad R. \& M. No. 2600. $25.6 d$. (2s. $7 \frac{1}{2} d$.)

AUTHOR $I N D E X T O$ ALL $\mathbb{R E P O R T S}$ AND $M E M O R A N D A ~ O F ~ T H E ~$ AERONAUTICALL RESEARCH COUNGIL-1909-1949. R. \& M. No. 2570. 1 5s. (5 5s. 3 d.)

INDEEXES TO THE TECHNICAL REPORTS OF THE ATRONAUTICAL RIESEARCHI COUNCIL-

	R. \& M. No. 1850.	$\text { Is. } 3 d .\left(1 s \cdot 4 \frac{1}{2} d\right. \text {) }$
July I , 1939 -June 30, 194	R. \& M. No. 1950.	
July I , 1945 - June 30, 1946.	R. \& M. No. 2050.	1s. (1s. $1 \frac{1}{2}$ d. $)$
July I , 1946- December 31, 1946.	R. \& M. No. 2150.	[s. 3 d. (Is. $4 \frac{1}{2} d$)
January x , 1947- June 30, 1947.	R. \& M. No. 2250.	\#s. 3 d. (rs. $4 \frac{1}{2} d$)
July, 195].	R. \& M. No. 2350.	rs. 9 d. (rs. $10 \frac{1}{2}$ d

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London, W.C. 2 ; 423 Oxford Street, London, W. 1 (Post Orders :
P.O. Box 569, London, S.E.1); 13a Castle Street, Edinburgh 2; 39, King Street, Manchester, 2

2 Edmund Street, Birmingham 3; 1 St. Andrew's Crescent, Cardiff; Towe

[^0]: * R.A.E. Report Aero. 2097, received 4th February, 1946.

[^1]: * The equations in this form have been used by the Instrument Department in work on Automatic Controls.

