R. \& M. No. 3196
(21,016)

A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Use of Camber and Twist to produce Low-Drag Delta or Swept-back Wings, without Leading-Edge Singularities, at Supersonic Speeds

By G. M. Roper, M.A.; Ph.D.

Use of Camber and 'Twist to produce Low-Drag Delta or Swept-back Wings, without Leading-Edge Singularities, at Supersonic Speeds

By G. M. Roper, M.A., Ph.D.
Communicated by Deputy Controller Air, (Research and Development) Ministry of Supply

$$
\begin{gathered}
\text { Reports and Memoranda No. } 3196^{*} \\
\text { December, } 1958
\end{gathered}
$$

Abstract

Summary. Camber and twist is applied to the problem of producing low-drag wings with no leading-edge pressure singularities, at design lift. The suction peaks near the leading edges of the wing are removed and the associated adverse pressure gradients reduced. This is equivalent to keeping the pressures finite along the leading edge, and thus making the leading edge an attachment line. Linearised wing theory is used.

The optimising process of Ref. 1 is used to obtain some wings with minimum drag due to lift. Suggestions are made for modifying the load distribution and shape of the wing if required.

An outline of the general method for designing cambered and twisted wings and, in particular, those with no leading-edge load is also given.

1. Introduction. In Ref. 1, camber and twist is applied to the problem of reducing drag, due to incidence, of thin triangular or swept-back wings at supersonic speeds, with subsonic leading edges and supersonic or sonic trailing edges.

It is know that, unless care is taken, an infinite suction (corresponding to a singularity) will occur (according to linear theory) on an infinitely thin leading edge, giving rise to a finite thrust locally. In practice, a wing is not infinitely thin, and an infinite suction does not occur. In incompressible flow, it is well known that an equivalent thrust at the leading edge does appear, at least when there is no leading-edge separation. It is not yet known how much suction will occur in supersonic flow.

In Ref. 1, two cases were considered:
(a) with leading edge suction forces included
(b) with leading edge suction forces omitted
in the process of finding 'optimum' drag for given lift. In each case, the (theoretical) leading-edge suction was modified, being different from that on the uncambered wing of the same plan-form, for the same lift. This suction vanished, as it should, when the leading edges were sonic, and also became small, and tended to vanish, for 'very slender' wings (that is, when $\left(M^{2}-1\right)^{1 / 2} \tan \gamma \rightarrow 0, M$ being the free-stream Mach number, and γ the semi-apex-angle of the wing).

[^0]In this report, wings are designed with no (theoretical) leading-edge load at design lift. By removing the suction peaks near the leading edges of the wing, the associated adverse pressure gradients are reduced, thereby (it is hoped) reducing the tendency for the boundary layer to separate. Two examples of wings of this type were given in Ref. 4, but no particular attention was then paid to obtaining a wing with low drag.

Three topics are dealt with in this report:
(i) The calculation of some further solutions of the linearised supersonic-flow equations:

In Ref. 1, the load distributions on the nine separate surfaces $z=-\delta x^{n-2_{s}}(k y)^{2_{5}}[n(>2 s)=1,2$, $3,4,5 ; s=0,1,2]$ are given, where δ is a small arbitrary constant, x is measured downstream from the apex, y is measured to starboard, and z is measured vertically upwards. In this report, solutions for $n=6, s=0,1,2$ are given; further solutions can be calculated, using the methods of Refs. 3 and 2. The load distribution on the surface $z=-\quad \delta x|k y|$ is also given.
(ii) The design of wings with no leading-edge load:

Suitable selections of the thirteen surfaces mentioned in (i) are linearly combined to form surfaces for which the leading-edge singularities vanish. Formulae for the total lift, drag due to incidence, and positions of the centres of pressure of the surfaces are deduced, and also the interference drag terms which appear when any two surfaces are combined.

An outline of the general method for designing cambered and twisted wings, with particular reference to those with zero leading-edge load (which might be used for more extensive calculations on an electronic computor) is given in Section 6.
(iii) Application of the methods of Ref. 1 to obtain some low-drag wings with zero load on the leading edges:
Simple ('basic') surfaces with no leading-edge load are combined, and the optimising process of Ref. 1 is used to obtain some minimum-drag wings with no leading-edge load. An alternative method would be to apply the optimising process to the 'basic' surfaces mentioned in (i), with the condition that the loadings on the leading edges of the final wing are zero. The two methods are essentially the same and give the same final results. The variation of drag with lift (or incidence) of the designed wing is also calculated.

Suggestions are made for modifying the load distribution or shape of a designed wing, if this should be required.
2. The Load Distributions on the Basic Cambered and Twisted Surfaces. In Ref. 3, the linearised supersonic-flow equation is solved, and the velocity potential is obtained in terms of two kinds of Lamé functions, which are such that solutions can be applied to a swept-back plan-form with supersonic or sonic trailing edges, and the boundary conditions on the Mach cone of the apex are satisfied. The shapes of the corresponding cambered and twisted surfaces are found, it being assumed that the surfaces all lie close to the plane $z=0$.

The load distributions corresponding to the nine basic surfaces given by equations of the form $z_{r}=-\delta x^{n-2_{s}}(k y)^{2_{s}}(n>2 s)$, for $n=1$ to 5 , $(r=1$ to 6 and 8 to 10$)$ are given in Ref. 1 , where $k=\cot \gamma$, and γ is the semi-apex-angle.

Using the methods of Ref. 3, it can be shown that the velocity potentials for the surfaces given by $n=6$ are as tollows:

TABLE 1
The velocity potentials for surfaces given by $n=6$
$\left[X \equiv\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}\right]$

Surface	Velocity potential, ϕ, on the surface
$z_{11}=-\frac{\delta}{c^{5}} x^{6}$	$\frac{V \delta F_{4}}{c^{5} k E(x)}\left[f_{23} x^{5}+f_{24} k^{2} y^{2} x^{3}+f_{25} k^{4} y^{4} x\right] X$
$z_{12}=-\frac{\delta}{c^{5}} k^{2} y^{2} x^{4}$	$\frac{V \delta F_{4}}{c^{5} k E(x)}\left[f_{26} x^{5}+f_{27} k^{2} y^{2} x^{3}+f_{28} k^{4} y^{4} x\right] X$.
$z_{13}=-\frac{\delta}{c^{5}} k^{4} y^{4} x^{2}$	$\frac{V \delta F_{4}}{c^{5} k E(x)}\left[f_{29} x^{5}+f_{30} k^{2} y^{2} x^{3}+f_{31} k^{4} y^{4} x\right] X$

where V is the free-stream velocity, $\chi^{2}=1-\beta^{2} \tan ^{2} \gamma, E(\varkappa)$ is the complete elliptic integral of the second kind of modulus x, and $f_{23}, f_{24}, \ldots f_{31}, F_{4}, F_{23}, F_{26}, F_{29}$ are functions of \varkappa which are calculated in Appendices I to III of this report.

Formulae for the local slope, α_{r}, and the load per unit area, p_{r}, on the basic surfaces, z_{r}, given in Table 1, are given in Table 2 below.

- Henceforth all forces are normalised by dividing by $\left(\pi \rho V^{2} c^{2}\right) /\left(k^{2} E(\varkappa)\right)$.

TABLE 2
The Local Slope and Loading on the Basic Surfaces \approx_{r}

r	z_{r}	$\alpha_{r}=-\frac{\partial z_{r}}{\partial x}$	$\left(\frac{\pi c^{2}}{2 k}\right) p_{r}$
11	$-\frac{\delta}{c^{5}} x^{6}$	$\frac{6 \delta}{c^{5}} x^{5}$	$\begin{aligned} & \frac{\delta}{c^{5}} F_{4}\left[F_{23} \frac{x^{6}}{X}+\left\{\left(5 f_{23}-f_{24}-f_{25}\right) x^{1}\right.\right. \\ & \left.\left.\quad+\left(3 f_{21}-f_{25}\right) k^{2} y^{2} x^{2}+f_{25} k^{4} y^{4}\right\} X\right] \end{aligned}$
12	$-\frac{\delta}{c^{5}} k^{2} y^{2} x^{4}$	$\frac{4 \delta}{c^{5}} k^{2} y^{2} x^{3}$	$\begin{aligned} & \frac{\delta}{c^{5}} F_{4}\left[F_{26} \frac{x^{6}}{X}+\left\{\left(5 f_{26}-f_{27}-f_{28}\right) x^{4}\right.\right. \\ & \left.\left.\quad+\left(3 f_{27}-f_{28}\right) k^{2} y^{2} x^{2}+f_{28} k^{4} y^{4}\right\} X\right] \end{aligned}$
13	$-\frac{\delta}{c^{5}} k^{4} y^{4} x^{2}$	$\frac{2 \delta}{c^{5}} k^{4} y^{4} x$	$\begin{aligned} & \frac{\delta}{c^{5}} F_{4}\left[F_{29} \frac{x^{6}}{X}+\left\{\left(5 f_{29}-f_{30}-f_{31}\right) x^{4}\right.\right. \\ & \left.\left.\quad+\left(3 f_{30}-f_{31}\right) k^{2} y^{2} x^{2}+f_{31} k^{4} y^{ \pm}\right\} X\right] \end{aligned}$

Formulae for calculating $f_{23}, f_{24}, \ldots f_{31}, F_{4}, F_{23}, F_{26}, F_{29}$ are given in Appendices I to III.

Surfaces of the form $z=-\delta x^{n-2_{s}-1}|k y|^{2 s+1}(n>2 s+1)$ could also be used. The surfaces $z_{2}=-\delta x^{2}$ and $z_{2 x}=-\delta x|k y|$ are combined to form the surface z_{g} (See Section 3, Table 3), this being the only 'no singularity' surface, of the type considered in this report, with a non-zero pressure gradient at the apex.

For the surface $z_{2 a}=-\delta x|k y|:$
the velocity potential on the surface is

$$
\phi_{2 a}=\frac{\delta V}{\pi k}\left[\left(\frac{1}{f_{1}}-1\right) x X+k^{2} y^{2} \cosh ^{-1}\left|\frac{x}{k y}\right|\right] \quad ;
$$

the local incidence is $\alpha_{2 a}=\delta|k y|$; the (normalised) load distribution is given by:

$$
\left(\frac{\pi c^{2}}{2 k}\right) p_{2 a}=\frac{\delta E(x)}{\pi}\left[\frac{1}{f_{1}}\left(\frac{x^{2}}{X}+X\right)-2 X\right] .
$$

The formulae for f_{1} is given in Appendix I; a table of values is given in Refs. 1, 2 and 3.
3. Load Distributions on Cambered and Twisted Surfaces with no Leading-Edge Load. By suitable combinations of the surfaces mentioned in Section 2, it is possible to determine the shape of a thin wing with swept-back leading edges and supersonic or sonic trailing edges, which, at design incidence, has finite pressure everywhere, the load becoming zero at the leading edges.

For all values of n, there are n surfaces of the form $z=-\delta x^{n-t}|k y|^{t}(n>t)$, where n, t, are positive integers, and ($n-1$) independent 'no singularity' surfaces of degree n can be formed for each value of n. If even powers only of y are used, there are $(n-1) / 2$ or $(n-2) / 2$ 'no singularity' surfaces of degree n, when n is odd or even respectively.

In this report, the thirteen surfaces for $n=1,2,3,4,5,6 ; t=0,2,4$, and $n=2, t=1$ are used to determine the seven 'basic' no-singularity surfaces whose equations and local slopes are given in Tables 3 and 4 below.

Formulae for the load per unit area on these surfaces are given in Table 5, and the positions of the centres of pressure are given in Table 4.
These surfaces can then be combined to form a minimum-drag wing with no leading-edge singularities, or to satisfy other given conditions.

The same wing can be obtained from the original surfaces (given in Table 9), with the additional conditions that the leading-edge singularities vanish.
4. Formulae for the Calculation of Minimim Drag for Given Wing Combinations. Formulae for the local surface slope, position of centre of pressure, load per unit area, lift and drag for a surface of the form $z=\sum\left(A_{r} z_{r}\right)$, where A_{r} are constants, are given in Ref. 1. The formulae are given, in a slightly different form below.
Writing $\left(A_{r} L_{r}\right) / L=a_{r}$, where L_{r} is the (normalised) lift of surface z_{r}, and L the total (normalised) lift, the equation of the final surface can be written in the form:

$$
\begin{equation*}
z=\frac{k E(x)}{2 \pi} C_{L 0} \sum\left(\frac{a_{r}}{L_{r}} z_{r}\right)+F(y) \text { for a triangular wing, } \tag{1}
\end{equation*}
$$

TABLE 3
Formulae for the Shape, z_{r}, and Local Surface Slopes, α_{r}, of the 'Basic' Cambered and Twisted Surfaces, with No Leading-Edge Loud
(Formulae tor $f_{4}, f_{5} \ldots F_{17}, \ldots$ are given in Appendix I)

r	z_{r}	α_{r}
a	$-\delta\left(f_{4} x^{3}-f_{5} k^{2} y^{2} x\right)$	$\delta\left(3 f_{4} x^{2}-f_{5} k^{2} y^{2}\right)$
b	$-\delta\left(f_{10} x^{4}-2 f_{11} k^{2} y^{2} x^{2}\right)$	$4 \delta\left(f_{10} x^{3}-f_{11} k^{2} y^{2} x\right)$
c	$+\delta\left(F_{17} x^{5}+F_{14} k^{2} y^{2} x^{3}\right)$	$-\delta\left(5 F_{17} x^{4}+3 F_{14} k^{2} y^{2} x^{2}\right)$
d	$-\delta\left(F_{20} k^{2} y^{2} x^{3}+F_{17} k^{4} y^{4} x\right)$	$\delta\left(3 F_{20} k^{2} y^{2} x^{2}+F_{17} k^{4} y^{4}\right)$
e	$-\delta\left(F_{26} x^{6}-F_{23} k^{2} y^{2} x^{4}\right)$	$\delta\left(6 F_{26} x^{5}-4 F_{23} k^{2} y^{2} x^{3}\right)$
f	$-\delta\left(F_{29} k^{2} y^{2} x^{4}-F_{26} k^{4} y^{4} x^{2}\right)$	$\delta\left(4 F_{29} k^{2} y^{2} x^{3}-2 F_{26} k^{4} y^{4} x\right)$
g	$-\delta\left(x^{2}-\frac{\pi}{E(\varkappa)} x\|k y\|\right)$	$\delta\left(2 x-\frac{\pi}{E(\varkappa)}\|k y\|\right)$

TABLE 4
Positions of the Centres of Pressure of Cambered and Twisted Triangular Surfaces
$v_{r}=$ distance downstream of the apex, in root-chord lengths
(The equations of the surfaces $r=1$ to 13 are given in Table 9, at the end of this report)

r	ν_{r}	r	ν_{r}
1,	$2 / 3$		
2 or 2 a	$3 / 4$	g	$3 / 4$
3 or 5	$4 / 5$	a	$4 / 5$
4 or 6	$5 / 6$	b	$5 / 6$
$8 ; 9$, or 10	$6 / 7$	c or d	$6 / 7$
11,12 , or 13	$7 / 8$	e or f	$7 / 8$

TABLE 5
Formulae for the (Normalised) Load per unit area, p_{r}, on the Basic
'No Singularity' Surfaces

r	$\left(\frac{\pi c^{2}}{2 k}\right) p_{r}$
a	$38 x X$
b	$4 \delta\left(4 x^{2}-k^{2} y^{2}\right) X$
c	$\begin{aligned} & \delta F_{3}\left[\left\{F_{14}\left(4 f_{17}-f_{18}-f_{19}\right)-F_{17}\left(4 f_{14}-f_{15}-f_{16}\right)\right\} x^{3}\right. \\ & \left.+\left\{F_{14}\left(2 f_{18}-f_{19}\right)-F_{17}\left(2 f_{15}-f_{16}\right)\right\} k^{2} y^{2} x\right] X \end{aligned}$
d	$\begin{aligned} & \delta F_{3}\left[\left\{F_{17}\left(4 f_{20}-f_{21}-f_{22}\right)-F_{20}\left(4 f_{17}-f_{18}-f_{19}\right)\right\} x^{3}\right. \\ & \left.+\left\{F_{17}\left(2 f_{21}-f_{22}\right)-F_{20}\left(2 f_{18}-f_{19}\right)\right\} k^{2} y^{2} x\right] X \end{aligned}$
e	$\begin{aligned} & \delta F_{4}\left[\left\{F_{26}\left(5 f_{23}-f_{24}-f_{25}\right)-F_{23}\left(5 f_{26}-f_{27}-f_{28}\right)\right\} x^{4}\right. \\ & +\left\{F_{26}\left(3 f_{24}-f_{25}\right)-F_{23}\left(3 f_{27}-f_{28}\right)\right\} k^{2} y^{2} x^{2} \\ & \left.+\left\{F_{26} f_{25}-F_{23} f_{28}\right\} k^{4} y^{4}\right] X \end{aligned}$
f	$\begin{aligned} & \delta F_{4}\left[\left\{F_{29}\left(5 f_{26}-f_{27}-f_{28}\right)-F_{26}\left(5 f_{29}-f_{30}-f_{31}\right)\right\} x^{4}\right. \\ & +\left\{F_{29}\left(3 f_{27}-f_{28}\right)-F_{26}\left(3 f_{30}-f_{31}\right)\right\} k^{2} y^{2} x^{2} \\ & \left.+\left\{F_{29} f_{28}-F_{26} f_{31}\right\} k^{4} y^{4}\right] X \end{aligned}$
g	$2 \delta X$

$$
\begin{equation*}
z=\frac{k E(x)}{2 \pi(1-a)} C_{z_{0}} \sum\left(\dot{a}_{r} z_{r}\right)+F(y) \text { for a swept-back wing } \tag{2}
\end{equation*}
$$

with supersonic or sonic trailing edges, where $C_{L 0}$ is the design lift coefficient, based on the area of the plan-form, $F(y)$ is a small arbitrary function of y, and a is the ratio $\tan \gamma / \tan \sigma, \gamma, \sigma$ being the leading-edge and trailing-edge semi-apex-angles respectively.
The corresponding loading coefficients are:

$$
\begin{align*}
& C_{P}=\frac{2}{\pi} C_{L 0} \sum\left(\frac{a_{r}}{L_{r}} \frac{\pi c_{r}^{2}}{2 k} p_{r}\right) \text { for a triangular wing, } \tag{3}\\
& C_{P}=\frac{2}{\pi(1-a)} C_{L 0} \sum\left(\frac{a_{r}}{L_{r}} \frac{\pi c^{2}}{2 k} p_{r}\right) \text { for a swept-back wing. } \tag{4}
\end{align*}
$$

For each wing, the (normalised) drag/(lift) ${ }^{2}$ is given by:

$$
\begin{equation*}
d=\sum\left(a_{r}^{2} d_{r}+a_{r} a_{s} d_{r} s\right) \quad(r<s) ; \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \frac{C_{D}}{C_{L}{ }^{2}}=\frac{k E(\varkappa)}{2 \pi} d \text { tor a triangular wing } \tag{6}\\
& \frac{C_{D}}{C_{L}{ }^{2}}=\frac{k E(\varkappa)}{2 \pi(1-a)} d \text { for a swept-back wing, } \tag{7}
\end{align*}
$$

where C_{L}, C_{D} are the lift and drag coefficients.
The distance of the centre of pressure downstream of the apex, in root chord lengths, is

$$
\begin{equation*}
v=\sum\left(a_{r} v_{r}\right) \tag{8}
\end{equation*}
$$

where ν_{r} is the value of v for surface z_{r}.
Formulae for z_{r}, p_{r} for the separate triangular or swept-back 'no singularity' surfaces are given in Tables 3 and 5 . Formulae for $v_{r}, d_{r}, d_{r, s}$ for triangular 'no singularity' surfaces are given in Tables 4, 12 and 14; the formulae for swept-back surfaces can be deduced from results given in Ref. 1. Some further results for swept-back wings and modified methods for some of the calculations will be published later.

The minimum values of $d\left(\equiv d_{\mathrm{opt}}\right.$) and the appropriate coefficients, a_{r}, are functions of the $d_{r}, d_{r, s}$ of the surfaces combined ${ }^{1}$. All forces were normalised by dividing by $\pi \rho V^{2} c^{2} /\left(k^{2} E(\kappa)\right)$, but the ratio d / d_{1}, where d_{1} is the value of d for the corresponding flat wing, is independent of the normalising factor.

For the combination of n surfaces, $r=a, b, \ldots n$,

$$
\begin{equation*}
\frac{a_{r}}{A_{r}}=\frac{2 d_{\mathrm{opt}}}{\Delta_{N}}=\frac{1}{\sum_{r=a}^{n} A_{r}} \tag{9}
\end{equation*}
$$

where

$$
\Lambda_{N} \equiv\left|\begin{array}{cccc}
2 d_{a} & d_{a, b} & d_{a, c} \ldots & \ldots d_{a, n} \tag{10}\\
d_{b, a} & 2 d_{b} & d_{b, c} \ldots & d_{b, n} \\
\cdot & \cdot & \dot{c} & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\dot{d_{n, c t}} & \dot{d_{n, b}} & \dot{d_{n, c}} & \dot{2} d_{n}
\end{array}\right|,
$$

and $\Delta_{r}(r=a, b, \ldots n)$ is equal to Δ_{N}, with each term in the r th column (or row) replaced by 1 .

Also

$$
\begin{equation*}
d_{\mathrm{opt}}=\sum_{\substack{r=a \\ s}}^{n}\left(a_{r}^{2} d_{r}+a_{r} a_{s} d_{r s s}\right), \quad r<s \tag{11}
\end{equation*}
$$

where a_{r}, a_{s} are given by (9).
Alternative formulae giving the values of a_{r} and d_{opt}, which are more suitable when an electronic computor is used, are:

$$
\begin{array}{r}
d_{\mathrm{opt}}=1 /\left[2 \sum_{r=a}^{n} X_{r}\right] \\
a_{r}=2 X_{r} d_{\mathrm{opt}} \tag{13}
\end{array}
$$

where X_{r} are the roots of the linear equations

$$
\begin{equation*}
\sum_{r=a}^{n}\left(d_{s, r} X_{r}\right)=1, \tag{14}
\end{equation*}
$$

$s=a, b, \ldots n$, and $d_{r, r} \equiv 2 d_{r}$.
Another formula giving d_{opt}, (useful for checking), is

$$
\begin{equation*}
d_{\mathrm{opt}}=1 /\left[4 \sum_{\substack{r=a \\ s}}^{n}\left(X_{r}^{2} d_{r}+X_{r} X_{s} d_{r, s}\right)\right] \ldots r<s \tag{15}
\end{equation*}
$$

Another check on calculations is:

$$
\begin{equation*}
\sum_{r=a}^{n} a_{r}=1 \tag{16}
\end{equation*}
$$

Formulae for the calculation of minimum drag for given wing combinations, when the centre of pressure is fixed at design C_{L}, are given in Ref. 1.

5. Modifications to Designed Wings.

(a) Position of Centre of Pressure.

If the position of the centre of pressure of a designed 'no singularity' (or any other) wing is unfavourable, the position can be altered by superimposing a suitable combination of other solutions, and the corresponding changes in drag/(lift) ${ }^{2}$ can be calculated (Positions of the centres of pressure of the separate surfaces are given in Table 4).
Formulae for the calculation of minimum drag, when the centre of pressure is fixed at design C_{I}, are given in Ref. 1.
(b) Non-zero Pressure Gradient at the Apex.

For the wings discussed in this report, the loading at the apex is zero. The chordwise pressure gradient at the apex for all the basic 'no singularity' surfaces, except surface z_{g}, is also zero. Therefore, if a pressure gradient at the apex is desired, surface z_{g} must be included in the combination taken. But it is found, in general, that the drag/(lift) ${ }^{2}$ increases fairly quickly with the increase of a favourable pressure gradient at the apex.
(c) Modification of Adverse Pressure Gradient.

When a 'no singularity' wing is designed for minimum drag/(lift)', it is, in some cases, found that there is a (theoretical) adverse pressure gradient along the root chord, towards the trailing edge. This can be partly remedied by superposing solutions with more favourable load distributions; in particular, the superposition of solutions having zero load at the trailing edge of the root chord has, in general, the effect of 'flattening' the root chord load 'pattern'. Or, it is possible first to form solutions which give zero load at the trailing edge of the root chord, and then to find a minimum-drag wing by combining these solutions. Using the seven basic surfaces given in Table 3, there are six independent
'no singularity' surfaces having zero load on the root chord at the trailing edge, viz,:

$$
\begin{array}{ll}
z_{A}=b z_{a}-a z_{b}, & z_{B}=c z_{a}-a z_{c}, \\
z_{C}=d z_{a}-a z_{d}, & z_{\mathcal{D}}=e z_{a}-a z_{e}, \\
z_{E}=f z_{a}-a z_{f}, & z_{N}=a z_{g}-g z_{a},
\end{array}
$$

where a, b, c, d, e, f, g are the coefficients of $x^{2}, x^{3}, x^{4}, x^{4}, x^{5}, x^{5}, x$ respectively in the formulae for $\left(\pi c^{2} / 2 k\right) p_{r}(r=a, \ldots g)$ when $y=0$ (See Table 5).
(d) Modification of Shape of Camber Surface.
(i) The equation of a camber surface has been found in the form $z=\sum\left(A_{r} z_{r}\right)+F(y)$, where $F(y)$ is an arbitrary function of y, which does not affect the load distribution, or the downwash. $F(y)$ can be chosen to satisfy any suitable condition: e.g., $z=0$ at the leading edge or trailing edge, or at any other chordwise position.
(ii) The chordwise local slope (and also the spanwise local slope if, for example, $F(y)$ satisfies one of the conditions suggested above) can be modified by taking $z=\sum\left(A_{r} z_{r}\right)+F_{1}(y)+\alpha x$ as the equation of the camber surface, and placing the wing at the original design incidence plus incidence α. With the linear-theory approximations, the theoretical load distribution, lift, drag, and position of the centre of pressure of the modified wing are the same as for the original wing.

The modifications suggested above are obviously only a few of those which could be made. Many more are possible, using the basic solutions given in this report, or higher-order solutions constructed from the general solutions given in Ref. 3 (See also Section 6 of this report).
6. General Formulae for the Design of Delta Wings, or Swept-back Wings. Using the general results given in Ref. 3, it can be shown that, for all positive integral values of n, there are solutions of the linearised supersonic flow equation for the velocity potential, ϕ, (on the wing), of the form:

$$
\begin{gather*}
\phi_{n}^{m}=\frac{\delta V}{c^{n-1} k E(x)} \prod_{r=1}^{(n-1) / 2}\left[x^{2} x^{2}-\frac{c_{r}}{1-c_{r}}\left(1-x^{2}\right) X^{2}\right]_{m} X, \\
\left(m=1,2, \ldots(n+1) / 2 ; c_{r} \geqslant 0\right), \quad \text { if } n \text { is odd; } \tag{17a}\\
\phi_{n}{ }^{m}=\frac{\delta V}{c^{n-1} k E(x)} x x \prod_{r=1}^{(n-2) / 2}\left[x^{2} x^{2}-\frac{d_{r}}{1-d_{r}}\left(1-x^{2}\right) X^{2}\right]_{m} X, \\
\left(m=1,2, \ldots n / 2 ; d_{r} \geqslant 0\right), \quad \text { if } n \text { is even, } \tag{17b}
\end{gather*}
$$

where (Ref. 3, Appendix III) $X=\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}$, the values of $c_{r}(r=1,2, \ldots(n-1) / 2$, for each value of m, are given by the $(n-1) / 2$ equations

$$
\begin{equation*}
\frac{1}{2 c_{r}}\left\{5+\frac{\varkappa^{2}}{c_{r}-\chi^{2}}+\frac{3}{c_{r}-1}\right\}+2 \sum_{s=1}^{(n-1) / 2}\left(\frac{1}{c_{r}-c_{s}}\right)=0, \quad s \neq r \tag{18a}
\end{equation*}
$$

and the values of $d_{r}(r=1,2, \ldots(n-2) / 2$, for each value of m, are given by the $(n-2) / 2$ equations

Alternative equations for calculating $a_{s}, b_{s}, c_{r}, c_{s}$ are given in Appendix 6.
The corresponding loading coefficients are given by

$$
\begin{equation*}
C_{P}=\frac{4}{V} \frac{\partial \phi_{n}^{m}}{\partial x} . \tag{24}
\end{equation*}
$$

Hence, on the wing:

$$
\begin{align*}
\left(C_{P^{\prime}}\right)_{m} & =\frac{4 \delta}{c^{n-1} k E(\varkappa)} \stackrel{(n-1) / 2}{\prod_{r=a}^{2}}\left[\{ \varkappa ^ { 2 } x ^ { 2 } - \frac { c _ { r } } { 1 - c _ { r } } (1 - \varkappa ^ { 2 }) X ^ { 2 } \} \left\{\frac{x}{X}+\right.\right. \\
& \left.\left.+2 x X \sum_{r=1}^{(n-1) / 2}\left(\frac{x^{2}-c_{r}}{\left(\varkappa^{2}-c_{r}\right) x^{2}+c_{r}\left(1-x^{2}\right) k^{2} y^{2}}\right)\right\}\right], \text { if } n \text { is odd } \tag{25a}
\end{align*}
$$

and

$$
\begin{align*}
\left(C_{P}\right)_{m} & =\frac{4 \delta \chi}{c^{n-1} k E(\varkappa)} \prod_{r=1}^{(n-2) / 2}\left[\{ \varkappa ^ { 2 } x ^ { 2 } - \frac { d _ { r } } { 1 - d _ { r } } (1 - \varkappa ^ { 2 }) X ^ { 2 } \} \left\{\frac{x^{2}}{\bar{X}}+X+\right.\right. \\
& \left.\left.+2 x^{2} X \sum_{r=1}^{(n-2) / 2}\left(\frac{\varkappa^{2}-d_{r}}{\left(x^{2}-d_{r}\right) x^{2}+d_{r}\left(1-\varkappa^{2}\right) k^{2} y^{2}}\right)\right\}\right], \text { if } n \text { is even. } \tag{25b}
\end{align*}
$$

The surfaces given by equations (22a) and (22b) can now be combined to form wings with no leading-edge singularities.

For each value of $n,(n-1) / 2$ (if n is odd), or ($n-2$)/2 (if n is even), independent cambered surfaces with zero leading-edge load can be found by combining surfaces of the form given above. These surfaces could be taken as:

$$
\begin{align*}
z_{r, s} \equiv\left(z_{r}-z_{s}\right)_{n}, \quad r, s & =1,2, \ldots(n+1) / 2 \text { if } n \text { is odd }, \\
& =1,2, \ldots n / 2 \text { if } n \text { is even, } \quad r<s . \tag{26}
\end{align*}
$$

A general equation of 'no singularity' surfaces (containing even powers of y only) is

$$
\begin{equation*}
z=\sum_{n=0}^{\infty} \sum_{r, s=1}^{(n-1) / 2 \text { or }(n-2): 2}\left(A_{r, s} z_{r, s}\right), \quad(r<s) \tag{27}
\end{equation*}
$$

where $A_{r, s}$ are arbitrary constants, which can be chosen to satisfy given conditions.
The corresponding loading coefficient is

$$
\begin{equation*}
C_{\rho}=\sum_{n} \sum_{r, s}\left[A_{r, s}\left(C_{P}\right)_{r, s}\right]=\sum_{n} \sum_{r, s}\left[A_{r, s}\left\{\left(C_{P}\right)_{r}-\left(C_{P}\right)_{s}\right\}_{n}\right] . \tag{28}
\end{equation*}
$$

There are also $(n-1) / 2$ (if n odd), or $n / 2$ (if n even), surfaces of the form $z_{r}=-\delta x^{n-r}|k y|^{r}$, and their corresponding loading coefficients (Surface $z=-\delta x|k y|$ has been used in one of the examples given in this report).

If these surfaces are combined with each other, and with those given above, to form surfaces $z_{r, s}$, so that leading-edge singularities are eliminated, it can be shown that the general equation (in the form
of a polynomial) of 'no singularity' surfaces can be written

$$
\begin{equation*}
z=\sum_{n=0}^{\infty} \sum_{r, s=1}^{n-1}\left(B_{r, s} z_{r, s}\right), \quad(r<s) . \tag{29}
\end{equation*}
$$

The lift and drag coefficients are given by

$$
\begin{align*}
C_{L} & =\left(\int C_{P} d S\right) / S \tag{30}\\
C_{D} & =\left(\int-C_{P} \frac{\partial z}{\partial x} d S\right) / S \tag{31}
\end{align*}
$$

the pitching moment coefficient about the leading edge apex is

$$
\begin{equation*}
C_{M}=\left(\int x C_{P} d S\right) /(c S) \tag{32}
\end{equation*}
$$

and the distance, in root chord lengths, of the centre of pressure from the leading edge apex is

$$
\begin{equation*}
\nu=C_{M} / C_{L} \tag{33}
\end{equation*}
$$

The integration is over the wing plan-form, of which the area is \dot{S}, and the root chord c.
Formulae for evaluating certain double integrals, which are required for the calculation of the lift and drag of triangular and swept-back wings, are given in Appendices V and VI of Ref. 1. Some further formulae are given in Appendix IV of this report.
7. Variation of Drag with Lift. If a designed 'no singularity' wing is placed in the free stream at other than design incidence, there is a (theoretical) leading-edge suction force. If C_{L} is the lift coefficient in the new position, the variation of the drag coefficient, C_{D}, with C_{L} is given by: (for a triangular wing)

$$
\begin{equation*}
C_{D}=\frac{k E(\varkappa)}{2 \pi}\left[t_{1} C_{L}^{2}+\left(d_{1,0}-2 t_{1}\right) C_{L} C_{L}+\left(t_{1}+d_{0}-d_{1,0}\right) C_{L 0}{ }^{2}\right], \tag{34}
\end{equation*}
$$

where $C_{L 0}$ is the design lift coefficient, d_{0} is the design value of d, t_{1} is the (normalised) drag/(lift) ${ }^{2}$ of the flat wing, with suction included, and

$$
\begin{equation*}
d_{1,0}=\sum\left(a_{r} d_{1, r}\right) \tag{35}
\end{equation*}
$$

The variation of the pressure drag coefficient, $C_{D P}$, (suction ignored) is given by

$$
\begin{equation*}
C_{D P}=\frac{k E(\varkappa)}{2 \pi}\left[d_{1} C_{L}^{2}+\left(d_{1,0}-2 d_{1}\right) C_{L} C_{L 0}+\left(d_{1}+d_{0}-d_{1,0}\right) C_{L 0}{ }^{2}\right] \tag{36}
\end{equation*}
$$

d_{1} being the value of (normalised) $\mathrm{drag} /(\mathrm{lift})^{2}$ for the flat wing, with suction ignored.

The formulae for the flat triangular wing are:

$$
\begin{gather*}
C_{D}=\frac{k E(\varkappa)}{2 \pi} t_{1} \dot{C}_{L}^{2} \tag{37}\\
C_{D P}=\frac{k E(\varkappa)}{2 \pi} d_{1} C_{L}^{2} \tag{38}
\end{gather*}
$$

$d_{1,0}$ is the 'interference' term for the flat wing and the designed 'no singularity' wing.
The separate 'interference' terms, $d_{1, r}$, for the triangular surfaces used in this report are:

$$
\begin{align*}
& d_{1, a}=\frac{1}{L_{a}}\left(f_{4} L_{3} d_{1,3}-f_{5} L_{5} d_{1,5}\right) ; \\
& d_{1, b}=\frac{1}{L_{b}}\left(f_{10} L_{4} d_{1,4}-2 f_{11} L_{6} d_{1,6}\right) ; \\
& d_{1, c}=-\frac{1}{L_{c}}\left(F_{17} L_{8} d_{1,8}+F_{14} L_{9} d_{1,9}\right) ; \\
& d_{1, d}=\frac{1}{L_{d}}\left(F_{20} L_{9} d_{1,9}+F_{18} L_{10} d_{1,10}\right) ; \\
& d_{1, e}=\frac{1}{L_{e}}\left(F_{26} L_{11} d_{1,11}-F_{23} L_{12} d_{1,12}\right) ; \\
& d_{1, f}=\frac{1}{L_{f}}\left(F_{29} L_{12} d_{1,12}-F_{26} L_{13} d_{1,13}\right) ; \\
& d_{1, g}=\frac{1}{4}-\frac{1}{E(\varkappa)} . \tag{39}
\end{align*}
$$

Some graphs showing the variation of C_{D} and $C_{D P}$ with C_{L} are shown in Figs. 8 and 13.
The formulae giving the variation of $C_{D}, C_{D P}$ with C_{L}, for a swept-back wing, are of the same form as (32) to (36), with denominator $2 \pi(1-a)$ instead of 2π, and the appropriate values of $d_{0}, d_{1}, r, d_{1}, t_{1}$.
8. Numerical Examples. A number of examples of delta wings, cambered and twisted so that there are no leading-edge loads, have been investigated. The theoretical shape of camber surface, and load distribution of three delta wings with finite leading edge pressures, and also the variation of drag with lift, are shown in Figs. 1 to 13. Some details concerning these wings are given below: $(x, y, z$ are measured in root chord lengths; $z=0$ at the trailing edge.)

Wing 1

Wing 1 was designed for minimum drag for given lift.

$$
\begin{gathered}
\beta \tan \gamma \bumpeq 0.614, \quad x^{2}=0.6231, \quad M=2.5 \\
\gamma=15 \mathrm{deg}, \quad k=2+\sqrt{ } 3, \quad \text { aspect ratio }=1.0718
\end{gathered}
$$

The shape of the camber surface is given by:
where

$$
\begin{aligned}
z / C_{L 0} & =G\left(A_{a} z_{a}+A_{b} z_{b}+A_{c} z_{c}+A_{a} z_{d}\right), \quad \text { (Fig. 1) } \\
G & =k E(\varkappa) /(2 \pi)=0.763720,
\end{aligned}
$$

$$
\begin{aligned}
G & =k E(x) /(2 \pi)=0.763720, \\
A_{a} & =23.197489, \quad A_{b}=-10.785131, \\
A_{c} & =5.406638, \quad A_{d}=1.211762 \\
z_{a} & =0.6622\left(1-x^{3}\right)-2.5134 k^{2} y^{2}(1-x), \\
z_{b} & =2 \cdot 3670\left(1-x^{4}\right)-5.6642 k^{2} y^{2}\left(1-x^{2}\right), \\
z_{c} & =2 \cdot 1590\left(1-x^{5}\right)-4.1494 k^{2} y^{2}\left(1-x^{3}\right), \\
z_{d i} & =0 \cdot 6533 k^{2} y^{2}\left(1-x^{3}\right)-2.1590 k^{4} y^{4}(1-x) .
\end{aligned}
$$

The loading coefficient at design incidence is given by:

$$
C_{P} / C_{L 0}=(2 / \pi)\left(A_{a} P_{a}+A_{b} P_{b}+A_{c} P_{c}+A_{d} P_{d}\right), \quad(\text { Figs. } 2 \text { and } 3)
$$

where

$$
\begin{aligned}
P_{a} & =3 x\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \\
P_{b} & =4\left(4 x^{2}-k^{2} y^{2}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \\
P_{c} & =\left(19.489989 x^{3}-7 \cdot 609962 x k^{2} y^{2}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \\
P_{d} & =\left(0.172987 x^{3}+1.593199 x k^{2} y^{2}\right)\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}, \\
d / d_{1} & =0.8966 \quad\left(\Lambda d / d_{1}\right) \text { per cent }=10 \cdot 34 \text { per cent }, \\
t_{1} / d_{1} & =0 \cdot 6930, \\
\left(t_{1}\right)_{s / 2} / d_{1} & =0 \cdot 8465, \quad \quad\left((\Lambda d)_{s / 2} / d_{1}\right) \text { per cent }=-5 \cdot 01 \text { per cent. }
\end{aligned}
$$

where $d=\mathrm{drag} /(\mathrm{lift})^{2}$,
$d_{1}=\mathrm{drag} /(\mathrm{lift})^{2}$ for flat wing, suction omitted,
$t_{1}=\mathrm{drag} /(\mathrm{lift})^{2}$ for flat wing, full suction included,
$\left(t_{1}\right)_{s / 2}=\mathrm{drag} /(\text { lift })^{2}$ for flat wing, half-suction included,

$$
\Delta d=d_{1}-d, \quad(\Delta d)_{s / 2}=\left(t_{1}\right)_{s / 2}-d
$$

Wing 2

Wing 1 was modified so that $C_{P}=0$ at the trailing edge of the root chord, and the chordwise adverse pressure gradient along the root chord reduced.

$$
\begin{gathered}
\beta \tan \gamma \bumpeq 0.614, \quad \varkappa^{2}=0.6231, \quad M=2.5 \\
\gamma=15 \mathrm{deg}, \quad k=2+\sqrt{ } 3, \quad \text { aspect ratio }=1.0718
\end{gathered}
$$

Design lift coefficient $=0.1$:
The equation of the camber surface is:

$$
\begin{aligned}
z=0.556(1-x) & {\left[0.1759\left(1+x+x^{2}\right)-1.0584 x^{3}+0.6770 x^{4}-0.0033 x^{5}-\right.} \\
& -k^{2} y^{2}\left(1.6947-2.9901 x+1 \cdot 1627 x^{2}-0.0055 x^{3}\right)- \\
& \left.\left.-0.4603 k^{4} y^{4}\right] \quad \text { (Figs. } 4 \text { and } 5\right) .
\end{aligned}
$$

The loading coefficient at design incidence is:

$$
\begin{aligned}
C_{P}= & {\left[x\left(2.5919-5.4372 x+2.8626 x^{2}-0.0173 x^{3}\right)+\right.} \\
& +k^{2} y^{2}\left(1.3593-0.9540 x+0.0082 x^{2}\right)+ \\
& \left.\left.+0.0001 k^{4} y^{4}\right]\left(x^{2}-k^{2} y^{2}\right)^{1 / 2} . \quad \text { (Figs. } 6 \text { and } 7\right)
\end{aligned}
$$

Distance of the centre of pressure from the apex $=0.6562$ root chord lengths.

$$
\begin{aligned}
d^{\prime} d_{1} & =0.8409, & \left(\Delta d / d_{1}\right) \text { per cent }=15.91 \text { per cent }, \\
t_{1} / d_{1} & =0.6930, & \\
\left(t_{1}\right)_{s / 2} / d_{1} & =0.8465, & \left(\left(\Delta d_{s i 2} / d_{1}\right) \text { per cent }=0.56\right. \text { per cent. }
\end{aligned}
$$

Wing 3

Wing 3 was designed for minimum drag for given lift.

$$
\begin{aligned}
\beta \tan \gamma=0 \cdot 3, & x^{2}=0 \cdot 91, \quad M \bumpeq 1 \cdot 56205 \\
\gamma \bumpeq 14^{\circ} 2^{\prime}, & k=4 \quad \text { aspect ratio }=1 .
\end{aligned}
$$

The shape of the camber surface is given by:

$$
\begin{aligned}
z / C_{L}= & (1-x)\left[0.925579\left(1+x+x^{2}\right)-5.540635 x^{3}+\right. \\
& +3.423581 x^{4}-k^{2} y^{2}\left(10.911018-20.823776 x+6.854739 x^{2}\right)- \\
& \left.\left.-5.539211 k^{4} y^{4}\right] . \quad \text { (Figs. } 9 \text { and } 10\right) .
\end{aligned}
$$

The loading coefficient at design incidence is given by:

$$
\begin{aligned}
C_{P} / C_{L 0}= & {\left[x\left(31 \cdot 088880-69 \cdot 630130 x+32 \cdot 513480 x^{2}\right)\right.} \\
& \left.+k^{2} y^{2}(17 \cdot 407533-12 \cdot 009394 x)\right]\left(x^{2}-k^{2} y^{2}\right)^{1 / 2} .
\end{aligned}
$$

Distance of the centre of pressure from the apex $=0.6478$ root chord lengths.

$$
\begin{aligned}
d / d_{1} & =0.6339, & & \left(\Delta d / d_{1}\right) \text { per cent }=36.6 \text { per cent }, \\
t_{1} / d_{1} & =0.5650, & & \\
\left(t_{1}\right)_{s / 2} / d_{1} & =0.7825, & & \left.(\Delta d)_{s / 2}\left(t_{1}\right)_{s / 2}\right) \text { per cent }=19.0 \text { per cent. }
\end{aligned}
$$

Models of these three wings are being made, and will be tested in the 8 -ft Tunnel at the Royal Aircraft Establishment, Bedford.

From a considerable number of examples investigated, it seems that the minimum drag for given lift of a delta wing, cambered and twisted so that the leading-edge loading is zero, is slightly greater than the drag of the uncambered wing (with full suction) for the lower values of $\beta \tan \gamma$, but less than the drag of the uncambered wing for larger values of $\beta \tan \gamma$. For $\beta \tan \gamma=1$ (that is, sonic leading edges), a percentage drag reduction of about 10 per cent is predicted. If only half-suction forces are included for the uncambered wing, there is a possible (theoretical) percentage drag reduction (with infinite pressures on leading edges eliminated), increasing from about 10 per cent (for $\beta \tan \gamma=1$) to $33 \frac{1}{s}$ per cent (for $\beta \tan \gamma \rightarrow 0$, that is, for very slender wings). It is assumed here that separation reduces the suction on the flat wing by one half, whereas no separation takes place on the cambered wing, which, perhaps, makes the comparison not quite fair.
9. Conclusion. Camber and twist has been applied to the problem of producing low-drag delta or swept-back wings, with subsonic leading edges, but with the (theoretical) infinite leading-edge pressures eliminated. Some delta wings have been designed and suggestions made for modifying the load distribution and shape of the wings if required.

For the lower values of $\beta \tan \gamma$, most of the predicted drag reduction on the uncambered wing due to leading-edge suction can (theoretically) also be obtained by camber and twist. For values of $\beta \tan \gamma$ near to one, a drag reduction higher than that due to suction is predicted.

An outline of the general method for designing cambered and twisted wings, with special reference to wings with infinite leading-edge pressures eliminated, is given in Section 6.

It is hoped that some results for cropped delta wings and fully tapered and cropped swept-back wings will be published in a further report.

Acknowledgements. Acknowledgements are due to Miss J. Parker and Miss R. Hensby for their help with the computations, to Miss R. Hensby for the careful preparation of the drawings, and to Miss A. Paton for calculating the results of Appendix II on DEUCE.

LIST OF SYMBOLS

$$
\begin{aligned}
A_{1}, A_{2}, A_{3} & \text { Coefficient depending on } \varkappa \text { (See Appendix II) } \\
A_{r} & \text { Coefficients depending on } x \text { (See Appendix III) } \\
a_{m} & \text { A Lanstant coefficients (See Section IV) } \\
a_{r}= & A_{r} L_{r} / L \\
a= & h / k \\
B & \text { Coefficient (See Appendix II) } \\
B_{1}, B_{2}, B_{3} & \text { Coefficients depending on } \varkappa \text { (See Appendix III) } \\
b_{m} & \text { A Lamé coefficient (See Appendix III) } \\
C_{1}, C_{2}, C_{3} & \text { Coefficients depending on } x \text { (See Appendix III) } \\
C_{D} & \text { Drag coefficient } \\
C_{D P} & \text { Pressure drag coefficient } \\
C_{L} & \text { Lift coefficient } \\
C_{L 0} & \text { Design lift coefficient } \\
C_{M} & \text { Pitching-moment coefficient } \\
C_{P} & \text { Loading coefficient (}=-2 \times \text { pressure coefficient) } \\
c & \text { Length of root chord } \\
c_{r} & \text { Zeros of Lamé functions (Appendix III and Section 6) } \\
D & \text { (Normalised) drag } \\
D_{r} & \text { (Normalised) drag of surface, } z_{r} \\
D_{r, s}=D_{s, r} & \text { (Normalised) 'interference drag' of surfaces } z_{r}, z_{s} \\
d= & D / L^{2} \\
d_{r} & \text { Zeros of Lamé functions (in Appendix III and Section } 6 \text { only) } \\
d_{r}= & D_{r} / L_{r}^{2} \\
d_{1} & \text { (Normalised) drag/(lift) }{ }^{2} \text { for flat wing (suction ignored) }
\end{aligned}
$$

$$
\begin{aligned}
& d_{r, s}=D_{r, s}\left(L_{r} L_{s}\right) \\
& E(\varkappa) \quad \text { Complete elliptic integral of the second kind of modulus } \varkappa \\
& K(\varkappa) \quad \text { Complete elliptic integral of the first kind of modulus } x \\
& k=\cot \gamma \\
& L \quad \text { (Normalised) lift } \\
& L_{r} \quad \text { (Normalised) lift of surface } z_{r} \\
& \left.\begin{array}{r}
L_{2 m, n} \\
L_{2 m+1, n}
\end{array}\right\} \text { See Appendix IV } \\
& M=\text { Mach number } \\
& P_{n}^{m}(t)=\prod_{n=1}^{(n-1) / 2}\left(t^{2}-c_{r}\right) \text { if } n \text { is odd } \\
& t \prod_{n=1}^{(n-2) / 2}\left(t^{2}-d_{r}\right) \text { if } n \text { is even } \\
& p_{r} \quad \text { (Normalised) load per unit area of surface } z_{r} \\
& S \quad \text { Area of wing plan-form } \\
& t_{1} \text {. (Normalised) drag/(lift) }{ }^{2} \text { for flat wing, suction included } \\
& V \quad \text { Free-stream velocity } \\
& X=\left(x^{2}-k^{2} y^{2}\right)^{1 / 2} \\
& X_{r}=a_{r} /\left(2 d_{\text {opt }}\right)(c f . \text { equations (13) and (14)) }
\end{aligned}
$$

LIST OF SYMBOLS-continued

x. Chordwise co-ordinate (measured downstream from the apex)
$y \quad$ Spanwise co-ordinate (positive to starboard)
z Normal co-ordinate (positive upwards)
$\alpha \quad$ Local slope $(=-\partial z / \partial x)$
$\alpha_{r} \quad$ Local slope of surface z_{r}
$\beta=\left(M^{2}-1\right)^{1 / 2}$
$\gamma \quad$ Apex semi-angle
$4 \quad$ See Appendix III
$A_{r} \quad c f$. equation (9)
$\Delta_{N} \quad c f$. equations (9) and (10)
$\Delta d^{-}=d_{1}-d$
б Small dimensionless constant
$\chi=\left(1-\beta^{2} \tan ^{2} \gamma\right)^{1 / 2}$
$\lambda_{m} \quad$ Coefficients depending on \varkappa (See Appendix III)
$\mu \quad$ Argument of Lamé function (See Tables 7 and 8)
v Distance of centre of pressure, in root chord lengths, from the apex
$\nu_{r} \quad$ Value of v for surface z_{r}
$\rho \quad$ Free-stream density
$\sigma \quad$ Apex semi-angle of trailing edge (of a swept-back wing)
$\phi \quad$ Velocity potential

REFERENCES

No.		Auth				Title, etc.
I	G. M. Roper	...	\cdots	\ldots	\ldots	Drag reduction of thin wings at supersonic speeds by the use of camber and twist. R. \& M. 3132. July, 1957.
2	G. M. Roper	\ldots	\ldots	\ldots	\ldots	Some applications of the Lame function solutions of the linearised supersonic flow equations. R. \& M. 2865. August, 1951.
3	G. M. Roper	\ldots	\ldots	\ldots	\ldots	Calculation of the effect of camber and twist on the pressure distribution and drag on some curved plates at supersonic speeds. R. \& M. 2794. September, 1950.
4	A. Robinson	\ldots	\ldots	\ldots	\cdots	Aerofoil theory of a flat delta wing at supersonic speeds. R. \& M. 2548. September, 1946.
5	A. Robinson	\ldots	\ldots	...	\ldots	Rotary derivatives of a delta wing at supersonic speeds. 7. R. Ae. Soc. November, 1948.
6	E. W. Hobson	\ldots	...	\ldots	\ldots	Spherical and Ellipsoidal Harmomics. Cambridge University Press.

APPENDIX I

The Functions $f_{1}, f_{4}, \ldots f_{31} ; F_{1}, F_{2}, F_{3}, F_{4} ; F_{s}$

$$
\begin{aligned}
& f_{1}=f_{4}=\left\{\left(2 \varkappa^{2}-1\right) E(x)+\left(1-\varkappa^{2}\right) K(\varkappa)\right\} /\left(2 \varkappa^{2} E(\varkappa)\right) \\
& f_{\overline{5}}=3\left\{\left(1+\varkappa^{2}\right) E(\varkappa)-\left(1-x^{2}\right) K(\varkappa)\right\} /\left(2 x^{2} E(x)\right) \\
& f_{6}=\left\{\left(2+x^{2}-3 \varkappa^{4}\right) K(x)-\left(2+2 x^{2}-6 x^{4}\right) E(x)\right\} /\left(2 \varkappa^{4} E(\varkappa)\right) \\
& f_{7}=\left\{\left(2-3 \varkappa^{2}+\varkappa^{4}\right) E(\varkappa)-\left(2-4 \varkappa^{2}+2 \varkappa^{1}\right) K(\varkappa)\right\} /\left(2 \varkappa^{4} E(\varkappa)\right) \\
& f_{10}=\left\{\left(2+2 \varkappa^{2}-4 \varkappa^{4}\right) K(\varkappa)-\left(2+3 \varkappa^{2}-8 \varkappa^{4}\right) E(\varkappa)\right\} /\left(2 \varkappa^{4} E(\varkappa)\right) \\
& f_{11}=3\left\{\left(2-2 x^{2}+2 x^{4}\right) E(x)-\left(2-3 x^{2}+x^{4}\right) K(x)\right\} /\left(2 x^{4} E(x)\right) \\
& f_{12}=\frac{\left\{\left(8-x^{2}+5 x^{4}-12 x^{6}\right) K(x)-\left(8+3 x^{2}+7 x^{4}-24 x^{6}\right) E(x)\right\}}{\left(6 x^{6} E(x)\right)} \\
& f_{13}=\frac{\left\{\left(8-11 \varkappa^{2}+\varkappa^{4}+2 \varkappa^{6}\right) E(\varkappa)-\left(8-15 x^{2}+6 \varkappa^{4}+\varkappa^{6}\right) K(x)\right\}}{\left(2 \varkappa^{6} E(\varkappa)\right)} \\
& F_{1}=1 /\left(f_{5} f_{6}-3 f_{4} f_{7}\right) \\
& F_{2}=1 /\left(f_{11} f_{12}-f_{10} f_{13}\right) \\
& f_{14}=B_{2} C_{3}-B_{3} C_{2}, \quad f_{15}=B_{1} C_{3}-B_{3} C_{1}, \quad f_{16}=B_{1} C_{2}-B_{2} C_{1} ; \\
& f_{17}=C_{2} A_{3}-C_{3} A_{2}, \quad f_{18}=C_{1} A_{3}-C_{3} A_{1}, \quad f_{19}=C_{1} A_{2}-C_{2} A_{1} ; \\
& f_{20}=A_{2} B_{3}-A_{3} B_{2}, \quad f_{21}=A_{1} B_{3}-A_{3} B_{1}, \quad f_{22}=A_{1} B_{2}-A_{2} B_{1} \\
& F_{3}=1 /\left(A_{1} f_{14}-A_{2} f_{15}+A_{3} f_{16}\right) \\
& =1 /\left(B_{1} f_{17}-B_{2} f_{18}+B_{3} f_{19}\right) \\
& =1 /\left(C_{1} f_{20}-C_{2} f_{21}+C_{3} f_{22}\right),
\end{aligned}
$$

where $A_{s}, B_{s}, C_{s}(s=1,2,3),(n=5)$ are given in Appendix III,

$$
\begin{array}{rlrl}
f_{23} & =B_{2} C_{3}-B_{3} C_{2}, & f_{24}=B_{1} C_{3}-B_{3} C_{1}, & f_{2 \overline{5}}=B_{1} C_{2}-B_{2} C_{1} ; \\
f_{26} & =C_{3} A_{2}-C_{2} A_{3}, & f_{27}=C_{3} A_{1}-C_{1} A_{3}, & f_{28}=C_{2} A_{1}-C_{1} A_{2} ; \\
f_{29} & =A_{2} B_{3}-A_{3} B_{2}, & f_{30}=A_{1} B_{3}-A_{3} B_{1}, & f_{31}=A_{1} B_{2}-A_{2} B_{1} \\
F_{4} & =1 /\left(A_{1} f_{23}-A_{2} f_{24}+A_{3} f_{25}\right) & \\
& =-1 /\left(B_{1} f_{26}-B_{2} f_{27}+B_{3} f_{26}\right) & \\
& =1 /\left(C_{1} f_{29}-C_{2} f_{30}+C_{3} f_{31}\right), &
\end{array}
$$

where $A_{s}, B_{s}, C_{s},(n=6)$, are given in Appendix III,

$$
F_{s}=f_{s}+f_{s+1}+f_{s+2} \quad(s=14,17,20,23,26,29)
$$

APPENDIX II

Equations for a_{n}, b_{m} for $n=5$ and $n=6$
$n=5$
$a_{m}(m=1,2,3)$ are the roots of the cubic equation

$$
27 a_{m}^{3}-A a_{m}^{2}+B a_{m}-C=0,
$$

where

$$
\begin{aligned}
& A=60 x^{2}+42, \\
& B=32 x^{4}+68 x^{2}+16, \\
& C=2 x^{2}\left(12 x^{2}+8\right) .
\end{aligned}
$$

b_{m} is given by:
or

$$
\begin{aligned}
b_{m t} & =x^{2} a_{m} /\left(12 x^{2}+8-9 a_{m}\right) \\
14 b_{m} & =9 a_{m}{ }^{2}-\left(8 x^{2}+6\right) a_{m}+6 \varkappa^{2}
\end{aligned}
$$

$n=6$
$a_{m}(m=1,2,3)$ are the roots of the cubic equation

$$
\begin{gathered}
121 a_{m}^{3}-A a_{m}^{2}+B a_{m}-C=0, \\
A=286 \varkappa^{2}+220, \\
B=160 \varkappa^{4}+412 \varkappa^{2}+96, \\
C=40 \varkappa^{2}\left(4 \varkappa^{2}+3\right) .
\end{gathered}
$$

where
b_{m} is given by:

$$
18 b_{m}=11 a_{m}{ }^{2}-\left(10 \varkappa^{2}+8\right) a_{m}+10 \varkappa^{2} .
$$

Numerical values of A, B, C for $n=5$ and $n=6$ are given in Table 6 .
Numerical values of a_{m}, b_{m} for $n=5$ and $n=6$ are given in Tables 7 and 8.

TABLE 6
Numerical Values of A, B, C for $n=5$ and $n=6$

n	χ^{2}	A	B	C	$\beta \tan \gamma$
5	0	42	16	0	1
	0.0975	47.85	22.9342	$1 \cdot 78815$	0.95
	$0 \cdot 19$	$53 \cdot 4$	$30 \cdot 0752$	$3 \cdot 9064$	0.9
	0.2775	58.65	$37 \cdot 3342$	6.28815	0.85
	0.36	$63 \cdot 6$	44.6272	$8 \cdot 8704$	$0 \cdot 8$
	$0 \cdot 4375$	68.25	51.875	11.59375	0.75
	$0 \cdot 48$	70.8	56.0128	13.2096	0.7211
	0.51	$72 \cdot 6$	59.0032	$14 \cdot 4024$	0.7
	0.5211	73.266	60.12424672	$14 \cdot 85468504$	$0 \cdot 692$
	0.5775	76.65	$65 \cdot 9422$	17.24415	$0 \cdot 65$
	$0 \cdot 64$	$80 \cdot 4$	$72 \cdot 6272$	20.0704	0.6
	0.6975	83.85	78.9982	$22 \cdot 83615$	$0 \cdot 55$
	$0 \cdot 75$	87.0	$85 \cdot 0$	$25 \cdot 5$	$0 \cdot 5$
	0.7975	89.85	90.5822	28.02415	$0 \cdot 45$
	0.84 0.8775	$92 \cdot 4$ 94.65	$95 \cdot 6992$ 100.3102	30.3744 32.52015	0.4 0.35
	0.8775 0.91	94.65 96.6	$100 \cdot 3102$ 104.3792	$32 \cdot 52015$ 34.4344	0.35 0.3
	0.91 0.9375	96.6 98.25	$104 \cdot 3792$ 107.875	$34 \cdot 4344$ 36.09375	$0 \cdot 3$ 0.25
	0.96	99.6	110.7712	37-4784	$0 \cdot 2$
	0.99	$101 \cdot 4$	114.6832	39-3624	$0 \cdot 1$
	1	102	116	40	0
6	0	220	96	0	1
	0.0975	247.885	137.691	13.221	0.95
	$0 \cdot 19$			28.576	$0 \cdot 9$
	0.2775	$299 \cdot 365$	222.651	$45 \cdot 621$	0.85
	$0 \cdot 36$	$322 \cdot 96$	265.056	${ }^{63} \cdot 9336$	0.8
	0.4375 0.48	$345 \cdot 125$ 357.28	$306 \cdot 875$ $330 \cdot 624$	$83 \cdot 125$ 94.464	0.75 0.7211
	0.48 0.51	357.28 365.86	330.624 347	$94 \cdot 464$ $102 \cdot 816$	${ }_{0}^{0.7211}$
	0.5211	$369 \cdot 0346$	354-1404336	105.9792336	0.692
	0.5775	$385 \cdot 165$	$387 \cdot 291$	122.661	$0 \cdot 65$
	0.64	403.04	425.216	$142 \cdot 336$	0.6
	0.6975	$419 \cdot 485$	$461 \cdot 211$	161.541	0.55
	0.75	434.50	495	180	0.5
	0.7975 0.84	448.085 $460 \cdot 24$	526.331 554.976	197.461 213.696	0.45
	0.84 0.8775	$460 \cdot 24$ $470 \cdot 965$	554.976 580.731	213.696 228.501	0.4 0.35
	$0 \cdot 91$	$480 \cdot 26$	$603 \cdot 416$	241.696	$0 \cdot 3$
	0.9375	488.125	622.875	253.125	0.25
	0.96	494.56	$638 \cdot 976$	262.656	0.2
	0.99	$503 \cdot 14$	${ }_{660} 696$	$275 \cdot 616$	$0 \cdot 1$
	1	506	668	280	0

TABLE 7
Numerical values of $a_{m,}, b_{m}$ for the Lamé function

$E_{5}^{m}(\mu)=\left(\mu^{4}-a_{m} k^{2} \mu^{2}+b_{m} k^{4}\right)\left(\left\|\mu^{2}-k^{2}\right\|\right)^{1 / 2} \dot{a}_{1}>a_{2}>a_{3}$						
$\beta \tan \gamma$	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}
1	8/9	8/63	2/3	0	0	0
0.95	0.956796079	$0 \cdot 16593222$	0.719180036	0.02599562	$0 \cdot 0962461071$	0.00113009
$0 \cdot 9$	$1 \cdot 04214165$	$0 \cdot 219830559$	0.750701123	0.040478366	$0 \cdot 184935007$	$0 \cdot 00{ }_{4} 078382$
$0 \cdot 85$	1-13389213	$0 \cdot 27970064$	0.772420884	$0 \cdot 04895761$	0-265909211	$0 \cdot 00825683$
0.8	$1 \cdot 22583351$	$0 \cdot 342757754$	$0 \cdot 790825303$	0.054722374	$0 \cdot 338896743$	0.013161138
0.75	$1 \cdot 31512832$	$0 \cdot 40695309$	$0 \cdot 809112846$	$0 \cdot 05931431$	$0 \cdot 403536607$	$0 \cdot 01835560$
$0 \cdot 7211$	$1 \cdot 36494874$	-0.444047822	$0 \cdot 820339242$	0.061747862	$0 \cdot 436934233$	0.021340775
0.7	$1 \cdot 40040828$	0.471012478	0.829012542	0.063493551	$0 \cdot 459468070$	0.023468573
0.692	$1 \cdot 41358329$	0.481150961	0.832406215	0.06415205	$0 \cdot 467566044$	0.02425546
0.65	$1 \cdot 48093637$	0.53400059	0.851447494	$0 \cdot 06766379$	$0 \cdot 506505024$	$0 \cdot 02820305$
$0 \cdot 6$	1.55627204	0.595149908	0.876653373	0.072021763	$0 \cdot 544852372$	0.032358470
0.55	$1 \cdot 62612869$	0.653791468	0.904198007	0.076610959	0.575228861	$0 \cdot 03584600$
$0 \cdot 5$	$1 \cdot 69030748$	0.709326001	0.933138349	$0 \cdot 081361742$	0.598776383	0.038677271
$0 \cdot 45$	1.74866391	0.761212108	$0 \cdot 962308994$	$0 \cdot 08614014$	0.616804867	$0 \cdot 04092785$
$0 \cdot 4$	$1 \cdot 80108932$	0.808960628	0.990589561	$0 \cdot 090793564$	0.630543347	$0 \cdot 042696632$
$0 \cdot 35$	$1 \cdot 84750020$	0.85213296	$1 \cdot 01704871$	0.09517990	$0 \cdot 641006638$	$0 \cdot 04407852$
$0 \cdot 3$	$1 \cdot 88783150$	0.890340489	1.04097597	0.099179843	$0 \cdot 648970305$	$0 \cdot 045152604$
$0 \cdot 25$	1.92203256	$0 \cdot 92324594$	1.06185459	$0 \cdot 10269854$	$0 \cdot 655001740$	$0 \cdot 045980015$
$0 \cdot 2$	$1 \cdot 95006379$	$0 \cdot 950561911$	$1 \cdot 07931970$	$0 \cdot 105663261$	$0 \cdot 659505402$	$0 \cdot 046606606$
$0 \cdot 1$	1.98750392	$0 \cdot 987535117$	$1 \cdot 10308120$	$0 \cdot 109728783$	$0 \cdot 664970421$	$0 \cdot 047377337$
0	2	1	10/9	1/9	2/3	1/21

TABLE 8
Numerical values of $a_{m,}, b_{m}$ for the Lamè function

$E_{6}{ }^{m}(\mu)=\left(\mu^{5}-a_{m} k^{2} \mu^{3}+b_{m} k^{4} \mu\right)\left(\left\|\mu^{2}-k^{2}\right\|\right)^{1 / 2} a_{1}>a_{2}>a_{3}$						
$\beta \tan \gamma$	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}
1	12/11	8/33	8/11	0	${ }^{0}$	${ }^{0}$
$0 \cdot 95$	1-11887587	0.26132247	$0 \cdot 809057627$	$0 \cdot 05077914$	$0 \cdot 120702862$	$0 \cdot 002886267$
$0 \cdot 9$	1-15982909	0.289718372	$0 \cdot 874637826$	0.091999450	$0 \cdot 232805809$	$0 \cdot 010633693$
$0 \cdot 85$	1-21509373	$0 \cdot 32907475$	0.922717171	$0 \cdot 12212218$	0.336280009	0.02197275
0.8	1-28140265	0.377647195	0:956539902	$0 \cdot 142763114$	$0 \cdot 431048341$	$0 \cdot 035759368$
$0 \cdot 75$	1.35346781	$0 \cdot 43202567$	0.981848623	$0 \cdot 15716207$	$0 \cdot 516956285$	0.05096377
0.7211	1.39599192	0.464890625	0.994276109	$0 \cdot 163761143$	$0 \cdot 562459232$	0.060027005
0.7	$1 \cdot 42702890$	0.489247094	$1 \cdot 00285836$	$0 \cdot 168084959$	0.593749101	$0 \cdot 066655817$
$0 \cdot 692$	$1 \cdot 43870185$	$0 \cdot 49848906$	1.00603985	$0 \cdot 16963808$	$0 \cdot 605131022$	0.06914629
$0 \cdot 65$	1-49939626	0.54727206	1.02270524	$0 \cdot 17735674$	$0 \cdot 661080324$	0.08199543
0.6	1-56895165	0.604711017	1.04336009	0.186123208	0.718597325	0.096244544
0.55	1.63468796	$0 \cdot 66054440$	1.05598281	0.19507890	0:766147383	0-10581905
0.5	$1 \cdot 69594127$	0.713960834	$1 \cdot 09090912$	0.204545469	$0 \cdot 804058681$	0.119372468
$0 \cdot 45$	1.75224811	0.76427468	1-11763757	0.21449950	0.833296141	0.12785007
0.4	1.80326987	0.810887699	$1 \cdot 14505777$	$0 \cdot 224654601$	0.855308710	$0 \cdot 134445557$
$0 \cdot 35$	$1 \cdot 84875105$	0.85216033	1-17185516	0.23460108	0.871666535	$0 \cdot 13947899$
$0 \cdot 3$	1.88849468	0.890959705	1-19684203	0.243930032	0.883754224	$0 \cdot 143279976$
0.25	$1 \cdot 92234768$	$0 \cdot 92354643$	$1 \cdot 21909627$	$0 \cdot 25229751$	0.892646959	$0 \cdot 14612576$
$0 \cdot 2$	$1 \cdot 95019137$	$0 \cdot 95068567$	1-23796155	0.259439639	0.899119837	0.148226231
$0 \cdot 1$	1.98751176	$0 \cdot 987542914$	1.26390395	0.269339135	0.906766096	0.150742175
0	2	1	14/11	3/11	10/11	5/33

APPENDIX III

Formulae for Calculating A_{s}, B_{s}, C_{s} for $n=5, n=6$
The constants A_{s}, B_{s}, C_{s} required for the calculation of $f_{14}, f_{15}, \ldots f_{22}$ are given by the formulae : ($s=1,2,3$)

$$
\begin{align*}
& A_{s}=\frac{(-1)^{s}}{5} \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{m}+b_{m}\right)\left(\varkappa^{4}-a_{m n} \varkappa^{2}-b_{n n}\right) \mathfrak{F}_{m}\right] \\
& B_{s}=\frac{(-1)^{s-1}}{3}\left(1-\varkappa^{2}\right) \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{n i}+b_{m}\right)\left(a_{m n} \varkappa^{2}-2 b_{m}\right) \mathfrak{f}_{m}\right] \tag{40}\\
& C_{s}=(-1)^{s}\left(1-\varkappa^{2}\right)^{2} \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{m}+b_{m}\right) b_{m} \mathfrak{F}_{m}\right]
\end{align*}
$$

where (See Appendix II, Ref. 1)*

$$
\begin{align*}
\left(\lambda_{1}\right)_{1} & =\frac{1}{x^{4} \Delta}\left(a_{2} b_{3}-a_{3} b_{2}\right) \\
\left(\lambda_{2}\right)_{1} & =\frac{1}{x^{4} \Delta}\left(a_{3} b_{1}-a_{1} b_{3}\right) \\
\left(\lambda_{3}\right)_{1} & =\frac{1}{x^{4} \Delta}\left(a_{1} b_{2}-a_{2} b_{1}\right), \tag{41}\\
\left(\lambda_{1}\right)_{2} & =\frac{1}{x^{2}\left(1-x^{2}\right) \Delta}\left[b_{2}-b_{3}+\frac{1}{\varkappa^{2}}\left(a_{2} b_{3}-a_{3} b_{2}\right)\right], \text { etc. } \\
\left(\dot{\lambda}_{1}\right)_{3} & =\frac{1}{\left(1-x^{2}\right)^{2}} \Delta\left[\frac{1}{\varkappa^{4}}\left(a_{2} b_{3}-a_{3} b_{2}\right)+\frac{2}{\chi^{2}}\left(b_{2}-b_{3}\right)-\left(a_{2}-a_{3}\right)\right], \text { etc. } \\
\Delta & =a_{2} b_{3}-a_{3} b_{2}+a_{3} b_{1}-a_{1} b_{3}+a_{1} b_{2}-a_{2} b_{1}
\end{align*}
$$

a_{m}, b_{m} are given in Appendix II, and

$$
\begin{align*}
f_{m}= & \frac{\left(1-\varkappa^{2}\right)\left(1-a_{m}+b_{m t}\right)}{a_{m}{ }^{2}-4 b_{m p}}\left[\frac { 1 } { 2 } \left\{\frac{a_{m}}{\varkappa^{2} b_{m}}+\frac{2 \varkappa^{2}-a_{m}}{\left(1-\varkappa^{2}\right)^{2} \varkappa^{2}\left(\varkappa^{4}-a_{m} \varkappa^{2}+b_{m}\right)}-\right.\right. \\
& -3\left(\frac{2-2 a_{m}+a_{m}{ }^{2}-2 b_{m}}{\left(1-\varkappa^{2}\right)\left(1-a_{m}+b_{m}\right)^{2}}\right)+\frac{\varkappa^{2}-2}{\left(1-\varkappa^{2}\right)^{2}}\left(\frac{2-a_{m}}{1-a_{m}+b_{m}}\right)+ \\
& \left.+\frac{4}{\left(1-\varkappa^{2}\right)\left(1-a_{m}+b_{n n}\right.}\right\}-\frac{K(\varkappa)}{E(\varkappa)}\left\{2\left(\frac{a_{m}-1}{b_{m}\left(1-a_{m}+b_{m}\right)}\right)+\right. \\
& \left.\left.+\frac{\frac{1}{2}\left[a_{m}{ }^{2}-2 b_{m}-2 a_{m n}\left(a_{m}{ }^{2}-b_{m n}\right)+a_{m}{ }^{4}+4 a_{m}{ }^{2} b_{m}-14 b_{m}{ }^{2}-4 a_{m} b_{m}\left(a_{m}{ }^{2}-3 b_{m}\right)\right]}{b_{m}{ }^{2}\left(1-a_{m}+b_{m}\right)^{2}}\right\}\right] \tag{42}
\end{align*}
$$

[^1]$\varkappa^{2}=1-\beta^{2} \tan ^{2} \gamma$, and $K(\varkappa), E(\varkappa)$ are complete elliptic integrals of the first and second kind respectively, of modulus x.

The constants A_{s}, B_{s}, C_{s} required for the calculation of $f_{23}, f_{24}, \ldots f_{31}$ are given by the formulae: ($s=1,2,3$)

$$
\begin{align*}
& A_{s}=\frac{(-1)^{s}}{6} \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{m}+b_{n t}\right)\left(\varkappa^{4}-a_{m} \varkappa^{2}+b_{m}\right) \mathscr{F}_{m}\right], \\
& \mathrm{B}_{s}=\frac{(-1)^{s-1}}{4}-\left(1-\varkappa^{2}\right) \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{m}+b_{m}\right)\left(a_{m} \varkappa^{2}-2 b_{m}\right) \mathfrak{f}_{m}\right], \tag{43}\\
& C_{s}=\frac{(-1)^{s}}{2}\left(1-\varkappa^{2}\right)^{2} \sum_{m=1}^{3}\left[\left(\lambda_{m}\right)_{s}\left(1-a_{m}+b_{m}\right) b_{m} \mathscr{F}_{m}\right],
\end{align*}
$$

where $\left(\lambda_{m}\right)_{s}$ is given by formulae (41), a_{m}, b_{m} are given in Appendix II, and

$$
\begin{align*}
\mathcal{f}_{m}= & \frac{\left(1-\varkappa^{2}\right)\left(1-a_{m}+b_{m}\right)}{\left(d_{1}-\bar{d}_{2}\right)_{m}^{2}} \sum_{r=1}^{2}\left[\left\{\frac{1}{\varkappa^{2} d_{r}^{2}}+\frac{1}{2 d_{r}^{2}\left(\varkappa^{2}-d_{r}\right)\left(1-d_{r}\right)^{2}}\right.\right. \\
& \left.-\frac{1}{\left(1-\varkappa^{2}\right)\left(1-\bar{d}_{r}\right)^{2}}\right\}_{m}+\left\{\frac{3 \varkappa^{2}\left(2 d_{r}-1\right)-2 d_{r}\left(1-d_{r}\right)^{2}}{2 \varkappa^{2} d_{r}^{3}\left(1-d_{r}\right)^{2}}\right\}_{m} \frac{K(\varkappa)}{E(\varkappa)}+ \\
& +\frac{1}{2 d_{r}}\left(7-\frac{3}{1-d_{r}}-\frac{\varkappa^{2}}{\varkappa^{2}-d_{r}}\right)_{m}\left\{\frac{\varkappa^{2}\left(1-2 d_{r}\right)-\left(1-d_{r}\right)}{\varkappa^{2} d_{r}\left(1-d_{r}\right)\left(1-\varkappa^{2}\right)}\right\}_{m}+ \\
& \left.+\left\{\frac{\varkappa^{2}+d_{r}\left(1-d_{r}\right)}{\varkappa^{2} d_{r}^{2}\left(1-d_{r}\right)}\right\}_{m} \frac{K(\varkappa)}{E(\varkappa)}\right] ; \tag{44}
\end{align*}
$$

and, for each value of m, d_{1}, d_{2} are the roots of the equation

$$
D^{2}-a_{m} D+b_{m}=0
$$

APPENDIX IV

Formulae for the Evaluation of Certain Integrals

The following integrals occur in calculations for the triangular wing:

$$
\begin{aligned}
I_{2 m, n} & \equiv k \int_{0}^{1 / k} \int_{k y}^{1} \frac{k^{2 m} y^{2 m} x^{n}}{\left(x^{2}-k^{2} y^{2}\right)^{1 / 2}} d x d y=\frac{\pi(2 m)!}{2^{2 m+1}(2 m+n+1)(m!)^{2}} \\
I_{2 m+1, n} & \equiv k \int_{0}^{1 / k} \int_{k y}^{1} k^{2 m+1} \frac{y^{2 m+1} x^{n}}{\left.k^{2} y^{2}\right)^{1 / 2}} d x d y=\frac{2^{2 m(m!)^{2}}}{(2 m+n+2)(2 m+1)!} \\
L_{2 m, n} & \equiv k \int_{0}^{1 / k} \int_{k y}^{1}(k y)^{2 m} x^{n}\left(x^{2}-k^{2} y^{2}\right)^{1 / 2} d x d y=\frac{\pi(2 m)!(2 m+2)}{2^{2 m+3}(2 m+n+3)[(m+1)!]^{2}} \\
L_{2 m+1, n} & \equiv k \int_{0}^{1 / k} \int_{k y}^{1}(k y)^{2 m+1} x^{n}\left(x^{2}-k^{2} y^{2}\right)^{1 / 2} d x d y=\frac{2^{2 m}(m!)^{2}(2 m+2)}{(2 m+n+4)(2 m+3)!}
\end{aligned}
$$

Reduction formulae

$$
\begin{aligned}
& (2 m+n+1) I_{2 m, n}-(2 m+n) I_{2 m, n-1}=0 \\
& 2 m(2 m+n+1) I_{2 m, n}-(2 m-1)(2 m+n-1) I_{2 m-2, n}=0 \\
& (2 m+n+2) I_{2 m+1, n}-(2 m+n+1) I_{2 m+1, n-1}=0 \\
& (2 m+1)(2 m+n+2) I_{2 m+1, n}-2 m(2 m+n) I_{2 m-1, n}=0 \\
& (2 m+n+3) L_{2 m, n}-(2 m+n+2) L_{2 m, n-1}=0 \\
& 2(m+1)(2 m+n+3) L_{2 m, n}-(2 m-1)(2 m+n+1) L_{2 n-2, n}=0 \\
& (2 m+n+4) L_{2 m+1, n}-(2 m+n+3) L_{2 m+1, n-1}=0 \\
& (2 m+3)(2 m+n+4) L_{2 m+1, n}-2 m(2 m+n+2) L_{2 m-1, n}=0 .
\end{aligned}
$$

Also:

$$
\begin{aligned}
L_{2 m, n} & =I_{2 m, n+2}-I_{2 m+2, n} \\
L_{2 m+1, n} & =I_{2 m+1, n+2}-I_{2 m+3, n}
\end{aligned}
$$

APPENDIX V

Triangular Wing with No Leading-Edge Load
Numerical Values for $d_{r}, d_{r, s} \quad\left(d_{r, r} \equiv 2 d_{r}\right)$

$$
\beta \tan \gamma=0.614, \quad x^{2}=0.6231
$$

r	d_{r}	$d_{a, r}$	$d_{b, r}$	$d_{c, r}$. $d_{d, r}$	$d_{e, r}$	$d_{f, r}$
a	$1 \cdot 207333$	$2 \cdot 414667$	$2 \cdot 597448$	2.737294	$2 \cdot 075978$	$2 \cdot 845257$	$2 \cdot 144872$
b	$1 \cdot 421814$	2.597448	2.843628	3.038806	2-286968	3-194448	2-390097
c	1.642218	2.737294	$3 \cdot 038806$	$3 \cdot 284435$	2-457858	3.485107	$2 \cdot 595555$
d	1.761130	2.075978	2.286968	$2 \cdot 457858$	$3 \cdot 522260$	$2 \cdot 733143$	$3 \cdot 740358$
e	1.863598	$2 \cdot 845250$	$3 \cdot 194439$	$3 \cdot 485107$	$2 \cdot 597721$	$3 \cdot 727195$	$2 \cdot 901664$
f	$2 \cdot 000332$	2.144872	$2 \cdot 390097$	$2 \cdot 595555$	$3 \cdot 740358$	2.901664	$4 \cdot 000664$
$\beta \tan \gamma=0.3, \quad x^{2}=0.91$							
r	d_{r}	$d_{a, r}$	$d_{b, r}$	$d_{c, r}$	$d_{d, r}$	$d_{e, r}$	$d_{f, r}$
a	0.896865	1.793729	$1 \cdot 884127$	1.957296	1-480487	2.017396	1.507162
b	1.001545	1.884127	$2 \cdot 003090$	$2 \cdot 101986$	1.601042	$2 \cdot 185025$	1.646064
c	$1 \cdot 112449$	1.957296	$2 \cdot 101986$	$2 \cdot 224899$	1.702337	$2 \cdot 339978$	1.765171
d	1.099744	1.480487	1.601042	1.702337	$2 \cdot 199488$	1.788382	$2 \cdot 318303$
e	1.227887	2.017396	$2 \cdot 185025$	$2 \cdot 329978$	1.788382	$2 \cdot 455773$	1.867502
f	1.228749	1.507162	1.646064	1.765171	$2 \cdot 318303$	$1 \cdot 867502$	$2 \cdot 457497$
g	0.882011	1.747990	$1 \cdot 809823$	1.858327	1.241938	1.949171	

APPENDIX VI

Formulae for Calculating the Coefficients a_{s} or b_{s}, and the Zeros c_{r} or d_{r} of Standard Lamé Functions of the M Class for any Value of n

The standard Lamé functions of the M class can be written in the forms:

$$
\begin{aligned}
E_{,(}(\mu) & =\left(\left|\mu^{2}-k^{2}\right|\right)^{1 / 2} \sum_{s=0}^{(n-1) / 2}\left[(-1)^{s} a_{s} k^{2 s} \mu^{n-2 s-1}\right] \\
& \equiv\left(\left|\mu^{2}-k^{2}\right|\right)^{1 / 2} \prod_{r=1}^{(n-1) / 2}\left(\mu^{2}-c_{r} k^{2}\right) \text { if } n \text { is odd }
\end{aligned}
$$

and

$$
\begin{aligned}
E_{,(\mu)} & =\left(\left|\mu^{2}-k^{2}\right|\right)^{1 / 2} \sum_{s=0}^{(n-2) / 2}\left[(-1)^{s} b_{s} k^{2 s_{s}} \mu^{n-2 s-1}\right] \\
& \equiv\left(\left|\mu^{2}-k^{2}\right|\right)^{1 / 2} \mu \prod_{r=1}^{(n-2) / 2}\left(\mu^{2}-d_{r} k^{2}\right) \text { if } n \text { is even, }
\end{aligned}
$$

where $a_{0}=b_{0}=1$, and $a_{s}, b_{s}, c_{r}, d_{r}$ are all real and positive.
It can be shown that the Lamé coefficients a_{s}, b_{s} and the zeros c_{r}, d_{r} are given by the following relations:

$$
\begin{gathered}
a_{0}=1 \\
2(2 n-1) a_{1}=n^{2} \varkappa^{2}+(n-1)^{2} \cdots \lambda, \\
2 s(2 n-2 s+1) a_{s}=\left[(n-2 s+2)^{2} x^{2}+(n-2 s+1)^{2}-\lambda\right] a_{s-1}+ \\
+(n-2 s+3)(n-2 s+2) \varkappa^{2} a_{s-2}, \quad s=2,3, \ldots(n-1) / 2, \\
0=\left(\varkappa^{2}-\lambda\right) a_{(n-1) / 2}+2 \varkappa^{2} a_{(n-3) / 2},
\end{gathered}
$$

where λ is an unknown quantity proportional to $1+x^{2}$. These $(n+1) / 2$ equations give the $(n+1) / 2$ values of λ and of each of the $(n-1) / 2$ quantities a_{s} for any value of \varkappa^{2}.
c_{r} are the roots of the equation

$$
\begin{gathered}
\sum_{s=0}^{(n-1) / 2}\left[(-1)^{s} a_{s} C^{n-2 s-1}\right]=0 . \\
b_{0}=1 \\
2(2 n-1) b_{1}=n^{2} x^{2}+(n-1)^{2}-\lambda, \\
2 s(2 n-2 s+1) b_{s}=\left[(n-2 s+2)^{2} \varkappa^{2}+(n-2 s+1)^{2}-\lambda\right] b_{s-1}+ \\
+(n-2 s+3)(n-2 s+2) \varkappa^{2} b_{s-2}, \quad s=2,3, \ldots(n-2) / 2, \\
0=\left(4 \varkappa^{2}+1-\lambda\right) b_{(n-2) / 2}+6 \varkappa^{2} b_{(n-4) / 2} .
\end{gathered}
$$

.These $n / 2$ equations give the $n / 2$ values of λ and of each of the $(n-2) / 2$ quantities b_{s} for the value of \varkappa^{2}.
d_{f} are the roots of the equation

$$
\sum_{s=0}^{(n-2) / 2}\left[(-1)^{s} b_{s} D^{n-2 s-1}\right]=0
$$

c_{r}, d_{r} can also be calculated from equations (18a) and (18b), and a_{s}, b_{s} from equations (23) given in Section 6.

TABLES 9 to 14
All Forces are Normalised by Dividing by $\left(\pi_{\rho} V^{2} c^{2}\right) /\left(k^{2} E(\varkappa)\right)$

TABLE 9
Formulae for the Total Lift on 'Basic' Triangular Surfaces

r	z_{r}	L_{r}	Type of surface
1	$-\delta \dot{x}$	δ	
2	$-\frac{\delta}{c} x^{2}$	$\frac{\delta}{f_{1}}$	
3	$-\frac{\delta}{c^{2}} x^{3}$	$\frac{3}{4} \delta F_{1}\left(4 f_{5}-3 f_{7}\right)$	
4	$-\frac{\delta}{c^{3}} x^{4}$	$\delta F_{2}\left(4 f_{11}-3 f_{13}\right)$	
8	$-\frac{\delta}{c^{4}} x^{5}$	$\frac{1}{8} \delta F_{3}\left(8 f_{14}+2 f_{15}+f_{16}\right)$	
11	$-\frac{\delta}{c^{5}} x^{6}$	$\frac{1}{8} \delta F_{4}\left(8 f_{23}+2 f_{24}+f_{25}\right)$	
2 a	$-\frac{\delta}{c} x\|k y\|$	$\frac{\delta E(x)}{\pi}\left(\frac{2}{3}-\frac{1}{f_{1}}\right)$	Twist
5	$-\frac{\delta}{c^{2}} k^{2} y^{2} x$	$\frac{3}{4} \delta F_{1}\left(4 f_{4}-f_{6}\right)$	
6	$-\frac{\delta}{c^{3}} k^{2} y^{2} x^{2}$	$\frac{1}{2} \delta F_{2}\left(4 f_{10}-3 f_{12}\right)$	
9	$-\frac{\delta}{c^{4}} k^{2} y^{2} x^{3}$	$-\frac{1}{8} \delta F_{3}\left(8 f_{17}+2 f_{18}+f_{19}\right)$	\} Camber and twist
12	$-\frac{\delta}{c^{5}} k^{2} y^{2} x^{4}$	$\frac{1}{8} \delta F_{4}\left(8 f_{26}+2 f_{27}+f_{28}\right)$	
10	$-\frac{\delta}{c^{4}} k^{4} y^{4} x$	$\frac{1}{8} \delta F_{3}\left(8 f_{20}+2 f_{21}+f_{22}\right)$	Twist
13	$-\frac{\delta}{c^{5}} k^{4} y^{4} x^{2}$	$\frac{1}{8} \delta F_{4}\left(8 f_{29}+2 f_{30}+f_{31}\right)$	Camber and twist

TABLE 10
Formulae for the Total Lift on Basic 'No singularity' Triangular Surfaces (x, y, z are Measured in Chord Lengths)

r	z_{r}	L_{r}
a	$-\delta\left(f_{4} x^{3}-f_{5} k^{2} y^{2} x\right)$	$\frac{3}{4} \delta$
b	$-\delta\left(f_{10} x^{4}-2 f_{11} k^{2} y^{2} x^{2}\right)$	38
c	$+\delta\left(F_{17} x^{5}+F_{14} k^{2} y^{2} x^{3}\right)$	$-\left(F_{17} L_{8}+F_{14} L_{0}\right)$
d	$-\delta\left(F_{20} k^{2} y^{2} x^{3}+F_{17} k^{4} y^{4} x\right)$	$F_{20} L_{9}+F_{17} L_{10}$
e	$-\delta\left(F_{26} x^{6}-F_{23} k^{2} y^{2} x^{4}\right)$	$F_{26} L_{11}-F_{23} L_{12}$
f	$-\delta\left(F_{29}^{\prime} k^{2} y^{2} x^{4}-F_{26} k^{4} y^{4} x^{2}\right)$	$F_{20} L_{12}-F_{26} L_{13}$
g	$-\delta\left(x^{2}-\frac{\pi}{E(x)} x\|k y\|\right)$	$\frac{2}{3} \delta$

TABLE 11
Formulae for the Drag Component, $D_{\text {,, }}$ of the Pressure Integral for Triangular Surfaces (Formulae for $r=1$ to 10 are Given in Table 4, Ref. 1)

r	D_{r}
8	$38 L_{8}$
9	$-\frac{3}{80} \delta^{2} F_{3}\left(16 f_{17}+8 f_{18}+5 f_{18}\right)$
10	$\frac{1}{128} \delta^{2} F_{3}\left(16 f_{20}+10 f_{21}+7 f_{22}\right)$
11	$\frac{7}{2} \delta L_{11}$
12	$\frac{3}{64} \delta^{2} F_{4}\left(16 f_{26}+8 f_{27}+5 f_{28}\right)$
13	$\frac{11}{768} \delta^{2} F_{4}\left(16 f_{29}+10 f_{30}+7 f_{31}\right)$

TABLE 12.
Formulae for $d_{r}=D_{r} / L_{r}{ }^{2}$ for Basic 'No singularity' Triangular Surfaces

r	d_{r}
a	$\frac{2}{9}\left(12 f_{4}-f_{5}\right)$
b	$\frac{1}{36}\left(30 f_{10}-7 f_{11}\right)$
c	$L_{c}{ }^{2}{ }^{2}\left[F_{17}{ }^{2} D_{8}+F_{14}{ }^{2} D_{9}+F_{17} F_{14} D_{8,9}\right]$
d	$\frac{1}{L_{d}{ }^{2}}\left[F_{20}{ }^{2} D_{9}+F_{17}{ }^{2} D_{10}+F_{20} F_{17} D_{9,10}\right]$
e	$\frac{1}{\bar{L}_{e}{ }^{2}}\left[F_{26}{ }^{2} D_{11}+F_{23}{ }^{2} D_{12}-F_{26} F_{23} D_{11,12}\right]$
f	$\frac{1}{L_{f}{ }^{2}}\left[F_{29}{ }^{2} D_{12}+F_{26}{ }^{2} D_{13}-F_{29} F_{26} D_{12,13}\right]$
g	$\frac{3}{4}\left[3-\frac{2}{E(\varkappa)}\right]$

TABLE 13
Formulae for the 'Interference' Pressure Integral for Triangular Surfaces
($D_{r, s}=D_{s, r}$ is the 'interference' pressure integral for the two surfaces give by z_{r}, z_{s}) Formulae for $r=1$ to $10, s=1$ to 10 are given in Table 6, Ref. 1

r, s	
1,11	$\delta\left(\frac{12}{7} \delta+L_{11}\right)$
1,12	$\delta\left(\frac{4}{7} \delta+L_{12}\right)$
1,13	$\delta\left(\frac{3}{14} \delta+L_{13}\right)$
2,11	$\delta\left(\frac{9}{4 f_{1}} \delta+\frac{7}{4} L_{11}\right)$
2,12	$\delta\left(\frac{5}{8 f_{1}} \delta+\frac{7}{4} L_{12}\right)$
2,13	$\delta\left(\frac{7}{32 f_{1}} \delta+\frac{7}{4} L_{13}\right)$
3,11	$\delta\left(\frac{8}{3} L_{3}+\frac{7}{3} L_{11}\right)$
3,12	$\delta\left[\delta F_{1}\left(2 f_{5}-f_{7}\right)+\frac{7}{3} L_{12}\right]$
3,13	$\delta\left[\frac{\delta}{12} F_{1}\left(8 f_{5}-3 f_{7}\right)+\frac{7}{3} L_{13}\right]$
4,11	$\delta\left(3 L_{4}+\frac{14}{5} L_{11}\right)$
4,12	$\delta\left[\frac{7}{5} \delta F_{2}\left(2 f_{11}-f_{13}\right)+\frac{14}{5} L_{12}\right]$
4,13	$\delta\left[\frac{9}{80} \delta F_{2}\left(8 f_{11}-3 f_{13}\right)+\frac{14}{5} L_{13}\right]$
5,11	$\delta\left[\frac{8}{3} L_{5}+\frac{\delta}{64} F_{4}^{\prime}\left(16 f_{23}+8 f_{24}+5 f_{25}\right)\right]$
$\left.\frac{1}{3} F_{1}\left(6 f_{4}-f_{6}\right)+\frac{1}{64} F_{4}\left(16 f_{26}+8 f_{27}+5 f_{28}\right)\right]$	

TABLE 13-continued

r, s	$D_{r, s}$
5, 13	$\delta^{2}\left[\frac{1}{12} F_{1}\left(8 f_{4}-f_{6}\right)+\frac{1}{64} F_{4}\left(16 f_{29}+8 f_{30}+5 f_{31}\right)\right]$
6,11	$\delta\left[3 L_{6}+\frac{9}{320} \delta F_{4}\left(16 f_{23}+8 f_{24}+5 f_{25}\right)\right]$
6, 12	$\delta^{2}\left[\frac{7}{10} F_{2}\left(2 f_{10}-f_{12}\right)+\frac{9}{320} F_{4}\left(16 f_{26}+8 f_{27}+5 f_{28}\right)\right]$
6,13	$\frac{9}{320} \delta^{2}\left[2 F_{2}\left(8 f_{10}-3 f_{12}\right)+F_{4}\left(16 f_{29}+8 f_{30}+5 f_{31}\right)\right]$
8,11	$\frac{\delta}{11}\left(36 L_{8}+35 L_{11}\right)$
8,12	$\frac{\delta}{11}\left[\frac{\delta}{2} F_{3}\left(16 f_{14}+8 f_{15}+5 f_{16}\right)+35 L_{12}\right]$
8, 13	$\frac{5}{11} \delta\left[\frac{\delta}{32} F_{3}\left(16 f_{14}+10 f_{15}+7 f_{16}\right)+7 L_{13}\right]$
9, 11	$\frac{9}{11} \delta\left[4 L_{9}+\frac{3}{34} \delta F_{4}\left(16 f_{23}+8 f_{24}+5 f_{25}\right)\right]$
9, 12	$\frac{\delta^{2}}{22}\left[\frac{27}{32} F_{4}\left(16 f_{26}+8 f_{27}+5 f_{28}\right)-F_{3}\left(16 f_{17}+8 f_{18}+5 f_{19}\right)\right]$
9, 13	$\frac{\delta^{2}}{704}\left[27 F_{4}\left(16 f_{29}+8 f_{30}+5 f_{31}\right)-10 F_{3}\left(16 f_{17}+10 f_{18}+7 f_{19}\right)\right]$
10, 11	$\delta\left[\frac{36}{11} L_{10}+\frac{\delta}{128} F_{4}\left(16 f_{23}+10 f_{24}+7 f_{25}\right)\right]$
10, 12	$\delta^{2}\left[\frac{1}{22} F_{3}\left(16 f_{20}+8 f_{21}+5 f_{22}\right)+\frac{1}{128} \bar{F}_{4}\left(16 f_{26}+10 f_{27}+7 f_{28}\right)\right]$
10, 13	$\frac{\delta^{2}}{32}\left[\frac{5}{11} F_{3}\left(16 f_{20}+10 f_{21}+7 f_{22}\right)+\frac{1}{4} F_{4}\left(16 f_{29}+10 f_{30}+7 f_{31}\right)\right]$
11, 12	$\delta\left[\frac{3}{64} \delta F_{4}\left(16 f_{23}+8 f_{24}+5 f_{25}\right)+\frac{7}{2} L_{12}\right]$
11, 13	$\delta\left[\frac{11}{768} \delta F_{4}\left(16 f_{23}+10 f_{24}+7 f_{25}\right)+\frac{7}{2} L_{13}\right]$
12, 13	$\frac{\delta^{2}}{64}\left[\frac{11}{12} F_{4}\left(16 f_{26}+10 f_{27}+7 f_{28}\right)+3 F_{1}\left(16 f_{29}+8 f_{30}+5 f_{31}\right)\right]$

TABLE 14
Formulae for $d_{r, s}=D_{r ; s} /\left(L_{r} L_{s}\right)$ for Basic 'No singularity' Triangular Surfaces

r, s	$d_{r, s}$
a, b	$\frac{1}{L_{a} L_{b}}\left(f_{4} \cdot f_{10} D_{3,4}+f_{5} \cdot 2 f_{11} D_{5,6}-f_{4} \cdot 2 f_{11} D_{3,6}-f_{5} \cdot f_{10} D_{4,5}\right)$
a, c	$\frac{1}{L_{a} L_{c}}\left(-f_{4} \cdot F_{17} D_{3,8}+f_{5} \cdot F_{14} D_{5,9}-f_{4} \cdot F_{14} D_{3,9}+f_{5} \cdot F_{17} D_{5,8}\right)$
a,d	$\frac{1}{L_{a} L_{d}}\left(f_{4} \cdot F_{20} D_{3,9}-f_{5} \cdot F_{17} D_{5,10}+f_{4} \cdot F_{17} D_{3,10}-f_{5} \cdot F_{20} D_{5,9}\right)$
a, e	$\frac{1}{L_{a} L_{e}}\left(f_{4} \cdot F_{26} D_{3,11}+f_{5} \cdot F_{23} D_{5,12}-f_{4} \cdot F_{23} D_{3,12}-f_{5} \cdot F_{26} D_{5,11}\right)$
a, f	$\frac{1}{L_{a} L_{f}}\left(f_{4} \cdot F_{29} D_{3,12}+f_{5} \cdot F_{26} D_{5,13}-f_{4} \cdot F_{26} D_{3,13}-f_{5} \cdot F_{29} D_{5,12}\right)$
b, c	$\frac{1}{\bar{L}_{b} L_{c}}\left(-f_{10} \cdot F_{17} D_{4,8}+2 f_{11} \cdot F_{14} D_{6,9}-f_{10} \cdot F_{14} D_{4,9}+2 f_{11} \cdot F_{17} D_{6,8}\right)$
b, d	$\frac{1}{L_{b} L_{d}}\left(f_{10} \cdot F_{20} D_{4,9}-2 f_{11} \cdot F_{17} D_{6,10}+f_{10} \cdot F_{17} D_{4,10}-2 f_{11} . F_{20} D_{6,9}\right)$
b, e	$\frac{1}{L_{b} L_{e}}\left(f_{10} \cdot F_{26} D_{4,11}+2 f_{11} \cdot F_{23} D_{6,12}-f_{10} \cdot F_{23} D_{4,12}-2 f_{11} \cdot F_{26} D_{6,11}\right)$
b, f	$\frac{1}{L_{b} L_{f}}\left(f_{10} \cdot F_{29} D_{4,12}+2 f_{11} \cdot F_{26} D_{6,13}-f_{10} \cdot F_{26} D_{4,13}-2 f_{11} \cdot F_{29} D_{6,12}\right)$
c, d	$\frac{-1}{L_{c} L_{d}}\left(F_{17} \cdot F_{20} D_{8,9}+F_{14} \cdot F_{17} D_{9,10}+F_{17}{ }^{2} D_{8,10}+2 F_{14} \cdot F_{20} D_{9}\right)$
c, e	$\frac{1}{L_{c} L_{e}}\left(-\cdot F_{17} \cdot F_{26} D_{8,11}+F_{14} \cdot F_{23} D_{9,12}+F_{17} \cdot F_{23} D_{8,12}-F_{14} \cdot F_{26} D_{9,11}\right)$
c, f	$\frac{1}{L_{c} L_{f}}\left(-F_{17} \cdot F_{29} D_{\mathrm{B}_{3} 12}+F_{14} \cdot F_{26} D_{\mathrm{g}, 13}+F_{17} \cdot F_{26} D_{8,13}-F_{14} \cdot F_{29} D_{9,12}\right)$
d, e	$\frac{1}{L_{d} L_{e}}\left(F_{20} \cdot F_{26} \dot{D}_{9,11}-F_{17} \cdot F_{23} D_{10,12}-F_{20} \cdot F_{23} D_{9,12}+F_{17} \cdot F_{26} D_{10,11}\right)$
d, f	$\frac{1}{L_{d} L_{f}}\left(F_{20} \cdot F_{29} D_{9,12}-F_{17} \cdot F_{26} D_{10,13}-F_{20} \cdot F_{26} D_{9,13}+F_{17} \cdot F_{29} D_{10,12}\right)$
e, f	$\frac{1}{L_{e} L_{f}}\left(F_{26} \cdot F_{29} D_{11,12}+F_{23} . F_{26} D_{12,13}-F_{26}{ }^{2} D_{11,13}-2 F_{23} . F_{29} D_{12}\right)$

TABLE 14-continued

r, s	$d_{r, s}$
a, g	$\frac{1}{5}\left[12 f_{4}-f_{5}+12-\frac{8}{E(\varkappa)}\right]$
b, g	$\frac{1}{30}\left[20 f_{10}-5 f_{11}+75-\frac{48}{E(\chi)}\right]$
c, g	$\frac{3}{2 L_{c}}\left[-\frac{1}{14}\left(20 F_{17}+3 F_{14}\right)+\frac{F_{3}}{14}\left\{F_{14}\left(16 f_{17}-2 f_{18}-5 f_{19}\right)-\right.\right.$
	$\begin{aligned} & \left.-F_{17}\left(16 f_{14}-2 f_{15}-5 f_{16}\right)\right\}-\frac{4}{105} \frac{F_{3}}{\bar{E}(\varkappa)}\left\{F_{14}\left(20 f_{17}-f_{18}-7 f_{19}\right)-\right. \\ & \left.\left.-F_{17}\left(20 f_{14}-f_{15}-7 f_{16}\right)\right\}\right] \end{aligned}$
d, g	$\frac{3}{2 L_{d}}\left[\frac{1}{28}\left(6 F_{20}+F_{17}\right)+\frac{F_{3}}{14}\left\{F_{17}\left(16 f_{20}-2 f_{21}-5 f_{22}\right)-F_{20}\left(16 f_{17}-\right.\right.\right.$
	$\begin{aligned} & \left.\left.-2 f_{18}-5 f_{19}\right)\right\}-\frac{4}{105} \frac{F_{3}}{E(\varkappa)}\left\{F_{17}\left(20 f_{20}-f_{21}-7 f_{22}\right)-\right. \\ & \left.\left.-F_{20}\left(20 f_{17}-f_{18}-7 f_{19}\right)\right\}\right] \end{aligned}$
e, g.	$\frac{3}{2 L_{e}}\left[\frac{1}{4}\left(6 F_{26}-F_{23}\right)+\frac{F_{4}}{32}\left\{F_{26}\left(40 f_{23}-2 f_{24}-9 f_{25}\right)-F_{23}\left(40 f_{26}-\right.\right.\right.$
	$\begin{aligned} & \left.\left.-2 f_{27}-9 f_{28}\right)\right\}-\frac{F_{4}}{210 E(\varkappa)}\left\{F_{26}\left(175 f_{23}+7 f_{24}-41 f_{25}\right)-\right. \\ & \left.\left.-F_{23}\left(175 f_{26}+7 f_{27}-41 f_{28}\right)\right\}\right] \end{aligned}$
f, g	$\frac{3}{2 L_{f}}\left[\frac{1}{32}\left(8 F_{29}-F_{26}\right)+\frac{F_{4}}{32}\left\{F_{29}\left(40 f_{26}-2 f_{27}-9 f_{28}\right)-\right.\right.$
	$\begin{aligned} & \left.-F_{26}\left(40 f_{29}-2 f_{30}-9 f_{31}\right)\right\}-\frac{F_{4}}{210 E(\varkappa)}\left\{F_{29}\left(175 f_{26}+7 f_{27}-41 f_{28}\right)-\right. \\ & \left.\left.-F_{23}\left(175 f_{29}+7 f_{30}-41 f_{31}\right)\right\}\right] \end{aligned}$

Fig. 1. Shape of camber suiface of Wing 1.
(Spanwise sections), $\gamma=15$ deg., designed for minimum $C_{D} / C_{L}{ }^{2}$, with no leading-edge pressure singularities, at $M=2 \cdot 5, C_{L_{0}}=0.1$ (x, y, z are measured in root chord lengths, $z=0$ at the trailing edge).

Fig. 2. Spanwise variation of loading coefficient, C_{P}, of Wing 1 at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 2-continued. Spanwise variation of loading coefficient of Wing 1 at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 3. Variation of loading coefficient along the root chord
of Wing 1 , at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 4. Shape of camber surface of Wing 2.
(Chordwise sections), $\gamma=15$ deg., with no leading-edge pressure singularities at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 5. Shape of camber surface of Wing 2.
(Spanwise sections), $\gamma=15 \mathrm{deg}$., with no leading-edge pressure singularities at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 6. Chordwise variation of loading coefficient of Wing 2, at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 7. Spanwise variation of loading coefficient, C_{P}, of
Wing 2, at $M=2 \cdot 5, C_{L_{0}}=0 \cdot 1$.

Fig. 8. Variation of drag with lift for Wing 2
($\gamma=15$ deg.); design $C_{L}=0 \cdot 1, M=2 \cdot 5$.

Fig. 9. Shape of camber surface of Wing 3.
(Chordwise sections), $\gamma=14^{\circ} 2^{\prime}$ designed for minimum $C_{D} / C_{L}{ }^{2}$ with no leading-edge pressure singularities at $M=1 \cdot 562$.

Fig. 10. Shape of camber surface of Wing 3.
(Spanwise sections), $\gamma^{\prime}=14^{\circ} 2^{\prime}$, with no leading-edge pressure singularities, at $M=1 \cdot 562$.

Fig. 11. Chordwise variation of loading coefficient of Wing 3, at $M=1.562$.

Fig. 12. Spanwise variation of loading coefficient of Wing 3 , at $M=1.562$.

\%

Fig. 12-continued. Spanwise variation of loading coefficient of Wing 3, at $M=1 \cdot 562$.

Fig. 13. Variation of drag with lift for Wing 3
$\left(\gamma=14^{\circ} 2^{\prime}\right)$; design $C_{L}=0 \cdot 1, M=1 \cdot 562$.

(C) Crown copyright 1961

Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

[^0]: * R.A.E. Report Aero. 2614, received 12th May, 1959.

[^1]: *($\left.\lambda_{m}\right)_{s}$ here replaces the $\left(k^{2 s+2} \lambda_{m} s\right)$ used in Ref. 1.

