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ROYAL AIRCRAFT ESTABLISHMENT - 

A note on some integrals in aerodynamics 

by 

D.E. Nilliams, B.A. 

Some double integrals in aerodynamics are difficult to evaluate 
because of the singularities in the range of integration. The Dirac delta 
function has been found useful in evaluating such integrals. Some examples 
of its use are given. 
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1 Introduction 

In aerodynsmics some double integrals occur, where, it has been 
thought, the order of mtegration cannot be inverted. The reason usually 
given for Chis 1s tk presence of singularities of' the integrand in the 
range of integration. It is shown here that mmy of the single integrals 
which occur in the evaluation of these double integrsls are usually evslu- 
ated incorrectly end a term involving the Dirac delta function has been 
omitted. When this additional term is included. the order of integration 
can be inverted. Sam examples are given. 

2 Freliminery Results 

2.1 The Dirac delta function 6(x) is the 'derivative' uf the Heaviside 
step function 

H(x) = 
XBO 

XiO. 

It is zero for x * 0 and at x = 0 it is infinite in such a way that 

b 

i 
f(x) 6(x) ax P f(0) 

a 

whenever the origin is an internal point of (a,b). We shall need to use a 
delta funotion with the property 

co 

i 
f(x) 6(x) dx = f(0) , 5 

0 

We may consider this to be the limiting csse of the equation 

m 

i 
f(x) 6(x-s) d% = f(E) 

0 

as E-)0. 

Since some writers use a delta function with the property 

0) 

i 
f(x) S(x) ax E 4 f(0) 

0 

we shall give the delta function used in this paper the suffix R to show 
that it has the property 

m 

J 

f(x) 6Jx) ax e f(0) . 

0 
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A rigorous definition of a delta function is given by Temple'. 
depends on the theory of weak convergence. A sequence of functions 
is said to be weekLy convergent if the sequence of functions 

$4 
b 

converges for each function $(x) which is continuous and has contimous 
derivatives of all orders in the intervd. (a,b). The sequence F,(g) msy 

tend to a limit F(6) for all suoh $(x) when no limit funotion f(x) 
exists or when even though f(x) exists the integral 

does not. The class of sequences [m(x)] which give the same limit F(#) 

are then said to define a weak function f(x). The Dirac delta function is 
a week function. 

The theory is similar to Cantor's definition of a reel number. A red 
number is defined to be the class of sequences of rational numbers with a 
given property. For example the real number -/2 is defined to be the class 
of sequences [x,] of rational numbers x 
n -3 0). 

n with the property xz+ 2 as 

2.2 The tri onometric functions ~s3.n ne] form a complete orthogonal set 
in the range 0,x). It is easily seen that the Fourier sine series of 
6(0-$) where both 0 and # are in the range (0,x) is given by the 
equation 

2 S(&#) = 
c 

sin n6 sin n# . 

I 

Similarly the Fourier cosine series crf S(8-$) is given by 

As $-‘O, when 8 is in the range (0,x), this beoomes 

m 
; 6&3) = 3 + c 00s ne 

I 

where 

(1) 

(2) 

(3) 

n 

i 
f(e) s,(e) de = f(0) . 

0 
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In equations (I), (2), (3) the left hand side is the weak limit of the 
sums fonred from the first n terms of the series on the rqht. 

2.3 The integral 

x 

1 

cos n0 
co9 e _ cos # de = x g+ 

0 

is assumed to be lamm. 

We see by using this result, that the Fourier cosine series of the 
function 

1 
00s e - a09 $5 

in the range (0,x) is 

I 
00s 8 - 00s $3 = 2 

>; 

m * 00s 2-B . 

The series is divergent, but its first Cesaro sum, its (C,l) sum is 
I 

cos e 
(0,x) ,-iZs' 

. We shall also need the Fourier sine series of oat 46 in 

41; 
clot&e = 2 

L 
sin nB . (5) 

Here again the series is &&gent but its first Cesaro sum is cot $0. 
Both results are true in the sense of weak convergence. 

2.lc If 

00 

P(p) = 
i 

eMpz f(z) dz 
0 

is the Laplace transform of f(z) snd if'. G(p) is the Laplaae trsnsfom of 
g(z) then the Laplaoe transform of the convolution integral 

is P(P) G(P). 

-I- 



3 Examples 

3.1 The integral eqaticm 

4364 = & i +‘$$dE. 
“I 

occurs in two dimensmrd subsonic aerofoil theory and in slender body 
theory. The solution needed in slender body theory is 

Beoause of ths singularit$es in the integrals it is not easy to show 
that this is in fact a solution of the integral equation. Lomax, Heaslett 
and Rille$ verify this result by using their theory of residuals. (A 
residual is defined to be the change in the value of a double integral when 
the oder of integration is reversed.) We shell show that the result can be 
verified more simply by introducing the delta functmn. The two methods are 
basioelly the ssme. 

We have 

+I 

. (6) 

If we evaluate the inner integral by the usual methods we get 

e 0 x*-a. 

When x P 1 the two first order Gngularities at c P x and & zz Q 
coalesce to form one second order singularity. If the right hand side of 
eqation (6) is to reduce to g(x) then this inner integral must behave 
like a delta function at x P 11. 
series (4) and (I). 

We shsll show that this is so by using the 

Ifweput F,=-aos6, XC- cos $, q = - cos $ the inner integral 
becomes 

x 

“I( , 

ae 
00s e- 00s $)(cos e- co9 $7 l 

0 
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Using the series (I) this becomes 

Therefore 

3.2 There would at first sight seem to be no difficulty in evaluating 
integrals of the form 

but itwill be shown that unless the inner integral is evaluated correctly 
by using the delta function a wrong result will be obtained. This is 
because cot &e has a singularity at G E 0 which combines with the singu- 
1arityin 

I 
co9 8 - 008 $ 

when # DC 0 to form a singularity of higher order. 

The inner integral is 
7( 

I(%+) = I cot $3 sin e 
00s 8 - 00s 4 ae 

-f;- 



The value of this integral is usually given as -x. The correct value of 
the double integral is then 

and not 

3.3 The Abel i.ntegr;ral equation 

(7) 

occurs frequently in supersonic aerodynamics. Its solution is 

g(x) = $& (8) 

Lomx et al.2 verFfy this result by using the theory of residuals. 
here verit'y the result by using the delta function. 

We shall 

We have 

r -a, c -& o (Y-dZ ]Gd 
y =podt 
-X 0 (x-t)3'2 

Y 
1 P ..- 

2x 
i 

w(t) at 

0 
r 

dx 

t (Y-x)&.t)3’2 

. 

The principal value of the inner integral 

r 

dx 

t (y-x)+x-t)3’2 

(9) 

is zero when y * t. It can be seen that when y = t the integral must 
behave like a delta function. 
integral is - 2% SJy4-t). 

We shall show below that the value of the 

-7- 



WYch this result-we have 

i 
EM-., = -& y 

oily- i w(t) I- 2T. &JY--t)l at 
0 

3.31 The integral (8) is equal to 

z 

.1(z) E 
o (z-u;: I?'2 i 

where z =y-t. To evaluate this integral we consider the integral 

Z 

I(z,d = 
i 

au 

o (z-u)+ u3/2-a 

where a is a complex pammeter. The integral exists for R(a) > & 

We shall show by snalytio ooknuation that the value of the fmotion, 
defined for R(a) > 4, by the integral 

is - 2% f(0) at a = 0, and so 

I(z) z - 2x S(z) * 

The integral I(z,a) is equal to 

1 
zU-l 

i 
(1-t) 

& 
= t 

a-V2 dt 1 za-l Pt+(ra,(u-&). . 

0 

Therefore 

' 5 ?* p f(a) - / za f'(z) dz] . 

0 
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For a = 0 we get, by analytic continuation, 

a 

i 
I(z,o) f(z) as 

0 

= r(&)r(-$) (fCa) - /B f%) &) 

0 

= - 2% f(0) 

and so I(z) = - 2x s(z), i.e. 

Y 

i 

ax 
t (y-x)+(x-t)3/2 = - 2n scyMt) ’ 

3.32 '17e shall now obtain the result of 3.3 by a slightly different 
method. 

Since I(z,a) is a convolution integral its Laplace transfom is 

OD 

i 

eupz I(z,a) ds = 'wrQ+- 

0 
p2 p*-z 

= r (4) r (aA&, 

Pa 
. 

Although the integral does not exist in the ususl sense for a = 0 it cm 
by analytic contjnuation be given the value 

r(&)r(-$) = -2%. 

We can now show that 

i 
I(y-t) w(t) at = - 2x W(X) . 

0 

The Laplace transform of the left hand side of this equation is 

(D m m 

i 
e -p I(u) bu 

0 
i 

emPY W(Y) dv ;i - 27. 
i 

e -FJ w(v) dv 

0 0 

and so the vslue of the original integral is - 2% w(x). 

3.4 Lamax et al. discuss the change of order of integration of the double 
integral 



The value of the inner integral is 

It can be evaluated either by the method of finite parts or by the Laplace 
transform method given in paragraph 3.32. The value of the double integral 
is then 

-2ox* = -29c* i 
If we invert the order of integration we get 

i7e have shown in 3.3 that the value of the inner integral is * 2~ 6R(E) 

and so the value of the double integral is again -2% 

The order of integration of the double integral csn be inverted if the 
'integral 

is given its true value - *7c 6R(&) and not zero its finite part value. 

4 Conclusions 

It is shown in this paper that there is no need to construct special 
methods to deal dth the inversion of improper integrals in aerOaynsmics 
but that if the Dirao delta function is used the problems can be dealt tith 
by the on3inary methods of analysis. 
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