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Summary.--A method for the calculation of three-dimensional turbulent boundary layers is given. It depends 
on the assumptions that the component of the velocity in the boundary layer parallel to the external streamlines 
follows a power law, and that the angle the direction of flow in the boundary layer makes with the external 
streamlines is small. 

The external flow is expressed in streamline co-ordinates and the calculations follow a streamline in the 
external flow. The momentum thickness is determined by a quadrature and the angle the limiting streamlines 
make ~ith the external streamlines is determined from a linear differential equation. 

Only slight experimental checks are available; they suggest that the method is adequate, but more experi- 
mental results are needed in order to refine the method. 

1. Introduction.--The calculation of two-dimensional turbulent boundary layers, whilst based on 

theoretical considerations, requires some appeal to experiment in order to flU in the details and to 

supply numerical constants. When we come to three-dimensional turbulent boundary layers, for which 

experimental evidence is scanty, it is necessary to rely to a certain extent on the two-dimensional 

methods, together with additional assumptions owing to the three-dimensional nature of the flow. 
Even then the analysis is complicated and so we make an additional simplifying assumption. This 

states that velocities normal to the external streamlines of the flow are everywhere small, together with 
their derivatives. This has been called the semi-independence principle by Eichelbrenner and Oudart 3, 

but it may be unwise to use such a name, since it may be confused with the 'independence principle' 
for yawed infinite wings, which is quite different, and which does not apply for turbulent flow in 

a n y  case. 

We assume, on the basis of some experiments by Wallace ~. that the component of the velocity in 
the boundary layer parallel to the external streamlines follows a power law, and that the angle which 
the direction of flow makes with the external streamlines, which is to be small, is a quadratic function 
of distance from the surface. 

The solution follows a straightforward procedure. Firstly, the momentum thickness in the direction 

of the external streamlines is determined by a quadrature very similar to that used in two dimensions, 
except that a quantity fi, determined by the three-dimensional character of the flow, is introduced. 

The direction of flow in the boundary layer (fi) is then found by the solution of a linear differential 

equation. As regards the form parameter H, it is possible to go some way in the analysis for its deter- 
mination, but more experiments are needed before this analysis can be completed. 

*R.A.E. Tech. Note Aero. 2576, received 9th June, 1959. 



The twozdimensional criterion for separation may not be used, and must be replaced by  making 
use of the fact that the separation line is the envelope of the limiting streamlines, which can be drawn 

when fl is known everywhere. 
It is difficult to give a physical picture of the quantity t5 mentioned above. It depends only on the 

external flow and on the shape of the body which are supposed known. Finding t5 and the streamline 

co-ordinates, though theoretically straightforward, will involve a large amount of computation. Once  
this is done the labour of the boundary-layer calculations themselves is not excessive. 

It is difficult to verify this work by experiment. Attempts have been made here, which suggest 
that the method is reasonable for the determination of the momentum thickness and the direction of 
flow. More refined experiments are needed to verify the method. 

• 2. Momentum Equations.--We take these from the work of Timman 1 and Zaat 2. Referring to the 
external flow a streamline co-ordinate system is used, in which the line element ds is given by 

t 

1 1 2 ,is ~ = ~ d ¢ 2 +  ~-~ dr, + d~ ~, (1) 

where T is the square of the external velocity, ¢ is the velocity potential and ~p is a stream function. 
represents distance measured normal to the surface of the body. /5 is not completely determinate 

and in fact may be multiplied by any function of W. It satisfies the equation 

o r  

where 

1 ~(/sg) 2 / S U  8I?'~ 

6 x - - O x + Z ~ N  , ~ y = ~ y + Z y  N ,  g = l q - z ~ + z ,  ~, 

suffixes denoting partial differentiation; x, y, z are Cartesian co-ordinates, and z = z(x,y)  is the 
equation of the body, with L~, 1~, l~ component velocities along the axes, W the component of velocity 
normal to the surface. All velocities are taken to be just outside the boundary layer, that is,, in the 
external flow. W is of course zero but not 8W/O¢. These velocity components are shown in Fig. la. 

In this co-ordinate system the momentum equations as shown in Appendix A of Ref. 2 are 

f~{ ua(u - . ) u  - . ) ~  au  au  
a¢ + V ~ u ~ ( U  v + u ( u  - u) ~ - v ~ u  ~ - 

_ ( ~  a/5 l ~ u  au -uv]}d¢ 
+ U ~ )  u[(u - u)u + v~] - v ~  ~ [(u - u)~ . 

0u) ~_~o~, (2) 



8U 8U 2 U 2 _  8~ 1 . - ] ) d ~  8V2 - u ~-~) + C~ ~-~ (v + u2) + 2 u v U ~  ~ + - U , 

/Svk *02 = = - .  ( s )  

In these equations u and v are velocities inside the boundary layer in the streamwise and normal 

directions, U is the external velocity in the streamwise direction, ~ is the density, ~ the kinematic 

viscosity, and To1 and z02 the surface shear-stress components in the streamwise and normal directions. 

Velocity components are shown in Fig. lb. 
Equations (9.) and (3) apply for a laminar boundary layer. Just as in two dimensions, we may use 

them for turbulent flow provided that u and v are now to be taken as mean velocities and certain other 

terms involving the perturbations of the velocities from their mean values are ignored. 
If u', v' and w' are the perturbations of u, v and w from their mean values, then the mean values 

of pu '2, pv '~ and pw '2 come into the equations of motion as 'Reynolds stresses' which behave like 
pressure. See, for instance, Schlichting 9. These are small compared with the local pressures. They 
occur in the momentum equations integrated across the boundary layer, and we have ignored them. 

The mean values of pu'w' and pv'w' behave like shear-stress components, and their integrated 
values can be incorporated in T01 and ~02 respectively. The  mean value of pu'v' is also a shear-stress 
component and we ignore it because its integrated value is small compared with z01 and To~. In fact, 
there seems to be no reason why u' and v' should be correlated as there is for instance in the case of 

u' and w' {See Ref. 9). 
Hence the effect of the fluctuating components of velocity is to bring in additional components of 

shear stress but otherwise it leaves equations (2) and (3) unchanged, except that empirical values for 

~01 and T02 must be given. 
Equations (2) and (3) still require further simplification before they can be used, and we make the 

additional assumption of 'semi-independence' made by Eichelbrenner and Oudart 8 and by Zaat 2. 

The assumption is that the velocity v is small compared to u. We again point out that this has nothing 

to do with the 'independence principle' for infinite swept wings. 
In many problems this assumption is a reasonable one to make. If it is true then equation (3) shows 

that the term 

8U 
v '  ( r:2 - u 2) 

must also be small. Now if dn denotes the element of length normal to the streamlines equation (1) 

shows that 

8U 8U 
v'~U 8~ --  8n ' 

and hence our assumption implies that 8 U/Sn is small. 
Making allowance for the fact that the operator V'/3 (8/a~0) operating on any velocity is in general 

of the same order of smallness as v, we see that ignoring terms in v in equation (2) means in general 
ignoring terms of order v 2. Again, keeping in equation (3) only terms in v, together with the term 
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8 U  
( _ 

means in fact that we are ignoring terms in v 3 in that equation. 

The  assumption implies that the direction of flow inside the boundary layer does not differ much 

from that outside. I f  the angle between the two directions is e (See Fig. lb), then we may suppose 

that e is small. 

This  may not be true near the surface, where u is small. If/3 is the value of e at the surface, we have 

tan fl = ¢= o 

and this may be supposed to be small i n  general, except where (8u/8~)~= o is small. We may not 

therefore push the solution too far towards the point where the skin friction in the direction of the 

external flow would vanish. Separation seems normally to take place before this stage is reached. One 

may say that our assumption implies that e is small provided that the solution is not pushed to a 

region too near to separation. 

I f  the resultant velocity in the boundary layer is u,, we shall have approximately 

u ---- u m cos e -'- u .... v = u,~ sin e ----- eu,~, (4) 

since e is small, e will vary as we pass through the boundary layer normal to the surface. Thus  it will 

be zero at the edge of the layer and will take a limiting value/3 at the surface of the body./3 is in fact 

the angle between the limiting streamline and the external streamline. 

I f  the resultant shear stress at the surface is 30, which is in the same direction as the limiting stream- 
line, we shall have 

Zol = vo cos fi ----- To, zo~ = vo sin/3 ~ flzo. (5) 

3. Assumed Velocity Pro f i l e s . - -We  shall suppose that u,, follows a power law as is done in two 

dimensions. I f  um/U is plotted against 8/~ where ~ is the boundary-layer thickness, as is done by 

Wallace 4, we obtain curves very much like those known in two-dimensional flow. I f  H is defined by 

we find that the power law 

H---- f :  (1 -- --~) d~ 8~ 
= - 6 '  (6) 

v - (7 )  

fits the profiles of Ref. 4 quite well. In  order to avoid doubts as to the definition of 8 we write equation 
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(7) in the form 

where , 
(H -- 1) 

Y - -  H ( H  - / 1 ) "  

Fig. 2 shows that the agreement is very good in the outer part of the boundary layer. The inner 
part of the boundary layer woul d be better fitted by a logarithmic law, and of course nearer still to the 

surface there is the laminar sub-layer. The discrepancies in the inner regions have little effect on 
~*, 0 and H. 

So far all is much the same as in two dimensions, provided that the u of the two-dimensional 
profiles is replaced by Urn, the resultant velocity in the boundary layer. This leads us to believe that 
we may make the Same assumptions as in two dimensions for the skin friction ~0~. A full account of 
the two-dimensional problem is given in Chapter II of Ref. 5. 

The most often quoted value for v01 is the Ludwieg and Tillman formula 

where 

~(H) = 0"123 × 10 -°'67sH, 

However, we shall here suppose that in equation (2) we may write 

n = 0.268. 

(8) 

"~ol. _ 0-00885 (9) p U  2 - -  

which is appropriate for a flat plate. This form is due to Young ~°. 
Finally we must assume a form for the distribution of e. It must be such that 8 = / 3  when ~ 0 

and e, = 0 when ¢ = & A simple relation which fits the measurements of Wallace 4 fairly well is 

8 ~  - -  . 1 

We show in Fig. 3 a comparison between Wallace's experimental values of e/fl and the curve 
(1 -- ~/~)~. The spread is almost within the error merely of reading off values from Wallace's curves. 
The relation (10) was also given by Mager 6, from experiments on flow in ducts. 

, 

the form 

a ( ) aU . ( + a f t  1 aa~ ) vol 

The Streamline E q u a t i o n . - - M a k i n g  the assumption of small v, we may write equation (2) in 

(11) 

(12) 



Since u -~ u,,, we have 

~11 -~ O, ~1 ~ ~*- (13) 

and so equation (11) may be written 

0 O U 1 Or5 ~o~ 
U ~¢ + (H -[- 1)0 0¢ 2fi 0¢ UO - -  . (14) pU 2 

'Excellent results 5 can be obtained by giving %1 the value in equation (9) and assuming that H 

is constant and equal to 1-5, in the two-dimensional equation corresponding to (14). We shall do 

this here. 
I f  we write 

o =  

we may verify that equation (14) may be written 

±lou~151 vo~5 
0¢[ ~,~ j =0.010~ ¢~,5 (15) 

It can be ~hown ~ that if our problem reduces to a two-dimensional one, then t5 = A / U  2, dd? = U dx, 
and equation (15) then reduces to 

2 ( ou o) = 0.010~u,, 
Ox 

which is Spence's form for the two-dimensional solution s. 

Thus we see that equation (15) for the flow along the streamlines is a generalised form of the two- 
dimensional equation, modified to take into account the effect of the three-dimensional nature of 

the flow. 
In the case of a body of revolution Zaat ~ shows that # = 1/r~U 2, where r is the radius of a section. 

Thus for a body of revolution equation (15) becomes 

~s 0U%6/5 = 0"0106U%~/5' 

where s is the arc measured along a section through the axis. 

. The Cross-Flow Equat ion . - -From equations (4), (7) and (10) we have 

( ~/~(H-i),2 

and we define ~21 by the equation 

U ~ 2 1 =  --  f l  uv d'~. (16) 
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Hence we have, using equation (7), 

whilst 

Hence 

~21 = - -  2 f l d / H ( H  + 1)(H + 2), 

0 = On ----- (5(H - -  1 ) / H ( H  + 1). 

621/0 = ~ / 3 / f ,  where f = ~(H - 1)(H +2) .  (17) 

Equation (3), on making the assumption of small v, may be written 

aU 2Ua~2z(~  0t5 1 0U 

using equations (5), (9), (12) and (16). 
Writing R = UO/v and using/equation (17) we have 

that is, 

3o ( ~ )  ou u"o/3a~ 
- v ~ + ~/~v~(1 + n)o ~ + f~ a~ - ~/3U~R-" 

a {/30~ (1 + H)O ~U ~fiR-" (18) 
U¢\?-]/= U~/~ 0~o V~ 

If  we do not assume, as we did before, that H is constant we may as well use the more accurate 
equation (8) for the skin friction, instead of assuming e constant and n equal to 1/5. 

Finally, then¢ we may write equation (18), which is a linear equation for/3, in the form 

where 

~ (C /3 )  = A - -  e / 3 ,  
U(tt) 

UO C = --0 A _ (1 + H)O OU B _ o~R-"  R = - - .  

~f' uV~ a ~ '  g~  ' 

In. the equation for fl we take n = 0-268 and 

c* = 0"123 × 10 -°'67sH. 

Alternatively we m a y  simplify equation (18) considerably by assuming, as  w e  did in obtaining 
equation (15), that H is constant and equal to 1.5, n = 1/5, and cc = 0"00885. Putting in these values 
and making use of equation (14), we may reduce equation (18) to the form 

where 

d,/ 0.0166 2.187 OU 

+ - -U-O - ~  - U ~~ av, ' 

. q _  .v ,~U~.5  • 

(19) 



It may well be that equation (19), with different numerical constants, to be.determined by experiment, 
may suffice for the determination of/3. In the example given below, where H changes from 1-5 to 
1.67, the values of/5, as found by this equation, agree fairly well with experiment. Strictly, however~ 
equation (18) requires knowledge of H before it can be solved, and we proceed to consider the deter- 

mination of H. 

6. The Determination of H.--We attack this problem by a method analogous to that used in two 
dimensions. In streamline co-ordinates the u equation of motion is given by Zaat ~ as 

8U) 8u 8u 8U 8U + v2U 8~ 8~'u a. u~¢ + v U ~ / ~ + w ~ - . v ~ / ~ + ~  u , ,~- ~ 2~0¢- ~8~ s 

Making the assumption that terms in v are small, this may be written 

" 8 U) 8u 8ht 
a, u ~  w g~ v u ~ + = ~ . ( 2 0 )  

@he equation of continuity is 

8w 8u 8U uU 8~ 8v 8U 
8~- vu~ + ~ +2~8¢ u ~ / ~  + ~ / ~ '  

or again if v is small 

8w 8u 8U uU 8~ 
0-~ = -- V-~c + u - ~  + 2fi 8¢" (21) 

We note also that, integrating through the boundary layer, 

and so 

uw ~ d~ = u~w -- us SW 8u o ~ + uw de, 

_ = ( U  S - -  u s) ~-~ d~  ( 2 2 )  
uw -fff d~ 2 u ~-~ d~ -2 o 

making use of the fact that w vanishes at both limits. 
We now multiply equation (20) by u and integrate with respect to ~, making use of equations (21) 

and (22), and obtain after some reduction 

2 - s 8 (u(u s -  U~)}d~ _ _  _ - " u 4 z 8¢ u(uS -- Us) d; = -- v \8;,] 

/ 

We have here integrated the right-harid side by parts. 
If we define 68 by 
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the equation becomes 

where 

o r  

~u 

Od3 263 aU 1 aft 6 2~, 
a¢ + U  a¢  -ou 

where 

If  we assume the power law equation (7) it can be shown that 

(23) 

d~ 63 4H 
0--= 61~ = 3H -- i"  (24) 

For our purpose here it will be sufficient to assume that 

6~ = Of(H), 

which has been verified experimentally in two dimensions. 

Substituting in equation (23) and making use of equation (14) we have 

dH f O OU f Zol 2 "~ 
0 -~¢ = T  (H -- 1)ff0~ f, + pU 3 f r  ~ • (25) 

It will be noticed that f5 has disappeared, except in so far as it is implicitly involved in the deter- 
mination of 0 from equation (15). I f f (H)  is given by equation (24), then equation (25) is the same as 
equation II (64) in Ref. 5, provided that the equation is supposed taken along a streamline, so that 
arc ~ U dx by equation (1). The rest of the arguments of Ref. 5 may therefore be continued, much as 
though this were a two-dimensional problem. Using the expression (8) for %1, and the expression 

% FI(H) -- 0 ~ F~(H), pU s --  

suggested in Ref. 5, for % where FI(H ) and F~(H) are functions of H, we may reduce equation (25) 
to the form 

where 

dH 1 
O ~ = ~(H) F -- • ~(H), 

, v -  u # "  

(26) 



It  remains to determine ¢ and ~. We may obtain ~ in a similar manner to Spence,5 by consideration 

of the flat-plate problem to which equation (26) reduces when _P = 0. Spence finds that, with n = 1/5 

~(H) = 0.00307(H -- 1) ~. (27) 

We may adopt this value here, but the determination of ¢ must await further experiment. We may 

only remark here that the value 

¢(H) = 9 . 5 2 4 ( H -  1.21)(H -- 1), (28) 

used in Ref. 5 in the two-dimensional case, is not suitable for the problem of Ref. 4, as may be seen 
in Table 3 below. 

7. Separation.--In two dimensions separation takes place when H is in the range 2.0 < H < 2.8. 
One is tempted to try to use the same criterion in three dimensions. I f  this were true any work which 
was undertaken for the express purpose of determining the separation line would be greatly simplified, 
because it would not be necessary to solve equation (19). Consideration of the laminar case leads to the 

conclusion that it would be incorrect to use the criterion given above. Two-dimensional laminar 
separation takes place when the surface shear stress vanishes, and writers have similarly been tempted 

to say that three-dimensional laminar separation takes place when the shear-stress component along 

the streamlines vanishes. Certain laminar calculations on delta wings have shown this to be highly 

inaccurate and we must use the criterion s that the separation line is tangential to the limiting stream- 

lines. This means that we must determine/~ by equation (19) before we can find the separation line. 

8. Examples.--Two attempts were made to compare with experiment, though the experimental 

results are not nearly detailed enough for accurate computation. However, the curves of Wallace 4 at 

station 40.41 and angle of incidence 8 deg gave the following values: 

TABLE 1 

x/c 

0.3 

0.5 

0.7 

0.9 

U ~ 

1.69 

1.44 

1.21 

1.04 

(deg) 

7 

9 

12 

17 

H 

1 "50 

1.57 

1 "64 

1 "67 

0/c 

0.00104 

0.00176 

0.00288 

0.00449 

0-704 

0.855 

1 "064 

1.299 

Angle of flow 
(deg) 

9 

7 

4½ 

10 



The values of fi are very much of an estimate, on the assumption that locally, for the purpose of 

calculating fi only, the wing may be considered as an infinite yawed wing. It was in fact tapered. 

In order to obtain any results from these it was also necessary to assume that the external streamlines 

were straight. They were not so, as shown by the last column, termed 'angle of flow', which gives the 
angle the external streamlines makes with the chord, measured towards the centre-section (See Fig. 4). 

Naturally the results are crude with so few points, but on integrating the equations (15) and (19) the 
following results were found: 

TABLE 2 

x/c 

0.3 

0.5 

0.7 

0.9 

O/c (calc) 

0.00105 

0.00183 

0.00293 

0.00425 

O/c (expt) fl (calc) 
(deg) 

0.00105 

0.00180 

0.00288 

0.00449 

7 

10 

1Q 

19 

fl (expt) 
(deg) 

7 

9 

12 

17 

The calculated values of H from equation (26) are shown in Table 3. It has already been pointed out 
that the value for ¢ may not be suitable for this problem, and must await further experiments. 

TABLE 3 

x/c H (calc) H (expt) 

0"3 

0"5 

0"7 

0"9 

1 "50 

1 "61 

1 "94 

3-01 

1.50 

1.57 

1.64 

1.67 

The second attempt at comparison was on a wing tested by Brebner (unpublished). It was a swept 
wing of aspect ratio 8.4, angle of sweep 55 deg, thickness/chord ratio 4½ per cent, at a lift coefficient 
of 0.2, the measurements being made half-way out along the spanl Figs. 5 and 6 show that the agree- 
ment is quite good. This time there is much better agreement for H than for the first example. 

9. Solution Procedure.--It is first necessary to know the ,external flow and to transform into stream- 
line co-ordinates. If  Cartesian co-ordinates were in use originally, with velocity components U, g 
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and l~, the projection of a streamline on the xy plane is obtained from 

d x - -  ~7' 

and the corresponding z co-ordinates follow.from the equation of the surface z = z(x, y). 
Integrals with respect to ¢ are evaluated on the  understanding that ~o is kept constant; hence de 

may be replaced by (T/O) dx or (T/V) dy where T = O ~ + 12 2- = U s. 
Derivatives with respect to ¢ and ~p are given by 

o = o 2  0 8¢ 6 8¢ 6 
TX/(~g) 09 -- 6y 6x ~x 6y' 

where 

6 0 0 6 0 0 
6x -- Ox + zx~z '  6y -- Oy + ZYO--z' 

8¢ 
U(1 + z2) + ~'z,~y, 6x--  6¢ _ 12(1 + zy 2) + OZ~y. 6y- -  

t5 is found from formulae given in Section 2. 

In places where the flow has become turbulent the surface is usually not very highly" curved. In such 
places we may suppose that zx and Z.v are small, if the surface approximates to z = 0.. We then have 

1 ~t5 2 (~1_.7 al2'~ 
a¢ - ~ , \ ~  + W / ,  

and equation (15)may be written 

~-~ OU ~15 + ~ ~ + ~ y  = O.O106UgJ 5, 

which is a linear equation for 0U1~/5, replacing the simple quadrature of equation (15) but avoiding 
the determination of/5. 

Again, it may be shown that along a streamline ~0 = constant 

and so we have 

0 1 0  
a¢ --  U Os' 

(29) 

Again, along a streamline we have 

ds-- Dd4-- Odx+ ~@)---- dx, 

12 



since dy ~ (I7/U) dx on a streamline; and so equation (29) may be written 

O( )I '2 /O001P)OUI~;~= 0.0106 U 19'5 

We fix our attention on a particular streamline and all that follows is understood to apply to that 
particular streamline only. 

Initially the flow is laminar and calculations are made by any method suitable for laminar flow, the 
obvious choice being the method of Zaat ~. This is continued to the point of transition, if this is known. 
Herein lies a difficulty, in that it is not certain what the criterion for transition is in three-dimensional 
flow. For the purpose of experiment transition is often deliberately caused by wires or other artificial 
means. In this case the position is known. If it is not known, Spence 7 recommends that at high 
Reynolds numbers the best assumption to make is that transition begins at the velocity maximum. 

Starting from the transition point and following a streamline 0 is found from equations (15) or (29). 
This is expected to give 0 with sufficient accuracy. The initial value of 0 is taken from the laminar 
calculations. 

Next fi is determined from equation (19), the starting value again being known from the laminar 
calculations. The equation is linear and may be solved by a step-by-step method. 

Once 0 and/3 are known much of the physical information about the turbulent boundary layer that 
may be required is known. 

10. Gonclusions.uThe method given here is computationally feasible provided the streamline co- 
ordinates are obtained, or, more specifically, provided that/5 is known everywhere. 

Very little experimental check is available. What there is can only give very crude checks and suggests 
that equation (15) may be adequate for the determination of 0. Equation (19) for 13 seems to give 
reasonable results, but later work may show that the constants should be modified. Equation (26) for H, 
with ~ given by equation (27), may be the right form when a suitable expression is found for ¢. The 
lack of information here is not so serious, as knowledge of H is not required for the determination of all 
physical properties of the boundary layer; it is not required, for instance, for separation in the three- 
dimensional case. 
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LIST OF SYMBOLS 

C 

X, y ,  Z 

S 

u , v , w  

U 

W 

T ~ 

U, % W 

U m 

f 

g 

R 

~(H) 

Y 

~n 

~i 

~3 

Local chord 

Cartesian co-ordinates 

Arc length 

External velocity components parallel to axes x, y, z 

External velocity component parallel to surface 

External velocity component perpendicular to surface 

Square of resultant external velocity 

Boundary-layer velocity components parallel to external streamlines, perpendicular to 

external streamlines and normal to surface 

Resultant velocity in the boundary layer parallel to surface 

-~(H --  1)(H + 2) 

1 q- zx~q - z~, ~ 

UO/~, 

Distance measured normal to surface 

0.123 × 10 -°6nil  

Angle between limiting streamlines and external streamlines 

( H -  1)/H(H + 1) 

Boundary-layer thickness 

-- f :  
Angle between flow direction in the boundary layer and external streamlines 

U d~ 
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LIST OF SYMBOLS--continued 

0 

H 

# 

p 

T 

To 

TOl~ "go2 

T, 

¢ 

~p 

(o 

1!0 

Coefficient of viscosity 

Kinematic viscosity • 

Density 

Integrating factor 

0u 
= ,~  

Resultant skin friction 

Components of the skin friction along and perpendicular to the external streamlines 

O u 

Velocity potential 

Defined by equation (28) 

Stream function 

Defined by equation (27) 

15 



LIST OF R E F E R E N C E S  

No. Author 

1 R. Timman ... 

2 J .A.  Zaat . . . . . . . . . . . .  

3 E .A.  Eichelbrenner and A. Oudart 

4 R .E .  Wallace . . . . . . . . .  

5 B. Thwaites (editor) . . . . . .  

6 A. Mager . . . . . . . . . . . .  

7 D.A.  Spence . . . . . . . . .  

8 E .C .  Maskell . . . . . . . . .  

9 H. Sch|ichting . . . . . . . . .  

10 A .D.  Young . . . . . . . . .  

Title, etc. 

A calculation method for three-dimensional boundary layers. 
Report F66 of the National Aeronautical Research Institute, 
Amsterdam. 1951. 

A simplified method for the calculation o f  three-dimensional 
laminar boundary layers. Report F184 of the National Aero- 
nautical Research Institute, Amsterdam. 1956. 

M~thode de calcul de la couche limite tridimensionelle. Applica- 
tion h un corps fusel~ inclin6 sur le vent. Publication 76. 
O.N.E.R.A. 1955. 

The experimental investigation of a swept-wing research model 
boundary layer. Aerodynamic Report 092 of the Municipal 
University of Wichita. 1953. 

Incompressible Aerodynamics. Oxford University Press. 1960. 

Generalization of boundary-layer momentum-integral equations 
to three-dimensional flows including those of a rotating system. 
N.A.C.A. Report 1067. 1952. 

The development of turbulent boundary layers. J.  Ae. Sci. Vol. 23. 
No. 1. p. 3. 1956. 

Flow separation in three dimensions. A.R.C. 18063. November, 
1955. 

Boundary Layer Theory. Pergamon Press. 1955. 

Calculation of the profile drag of aerofoils and bodies of revolution 
at supersonic speeds. 
College of Aeronautics Report 73. A.R.C. 15,970. April, 1953. 

16 



/ 
)L 

FIC. l a .  

EY~TERN AL .STREAMLINE 

EX~TEP, NAL 
STREAMLINE 

External velocity components. Fie. lb. Boundary layer velocity components. 

U~t~ 

I.O 

" 8  

-G 

1 o 

~,~..~,~ **'~I//~f 
, , /7 .  

,'/,'/ J ~ ~ 'I-" 
;I//'/',..Z'. . . , ~  "" "" ~"  " 

/ /  

• ÷ . 8  

FIG. 2. 

I.~. • I 'G a ' O  : .4-  a . 8  

~ / c  x I 0  ~ 

MEASURE.D 
C A L C U L A T E D  

Velocity profiles from Ref. 4. Station 40"41, c~ = 8 deg. 

I 

17 



I'0~ 

" 8  

el~ 

~_-8 e 

5TA. 40"~- I  
~[C = 0'9 
~/C = 0 ' 7  

~/c= 0'5 

:~/c = o '  5 

® 

V 

~ L = 8  ° 

~TA. ro3"lO } 
x./c = 0 - 7  4 

gTA. ao.os" L 
x /c=  o'~ j D 

\ 

-4- " ~o " 8  I 'O 

0 

0-3 

0"5 

0-7 

0'9 

5TA. 
~-O.~rl 

EY~TE~J~IAL 

~,E.AML|NE 

FIG. ,3. Values of E/fi from Ref. 4. FIG. 4. Streamlines at station 40"4i, Ref. 4. 



~D 

0 ' 0 0 5  

0'004- 

0"00~ 

O 

0 ' 0 0 ~  

0'001 

0 

DISPLACEMENT THICKNESS 
CALGULATED 

B MEASUKED 

I 

J j J  

J 
f 

® 

MOMENTUM TNIGKNKSS 
CALCULATED 

0 MEASUP-ED 

0"% 0"5 0 - ~  0 '7  O'B 0 .~  I ' 0  

FIG. 5. Momentum and displacement thicknesses for swept wing RAE 101, 
thickness/chord ratio 4:5 per cent, angle of sweep 55 deg (Brebner). 

J 

+ 
CALCULATED 
MEASUKED 

O- ~ O'S 0-¢~ 0-7  O'e~ 0"~  I '0  

FIa. 6. Values of fl,-the angle between streamlines and limiting 
streamlines, for wing of FIG. 5. 



R. & M. No. 3199 

© Crown copyright 1961 

Published by 
IIER MAJESTY'S STATIONERY OFI,'ICE 

To be purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London w.1 
13A Castle Street, Edinburgh 2 

109 St. Mary Street, Cardiff 
39 King Street, Manchester 2 

50 Fairfax Street, Bristol 1 
2 Edmund Street, Birmingham 3 

80 Chichcstcr Street, Belfast 1 
or through any bookseller 

R. & M. No. 3199 

S.O. Code No. 23-3199 


