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Summary.~Three different approximate methods of solving the three-dimensional laminar boundary- 
layer equations are tested on a problem whose exact solution is known. From the comparison one of the 
methods, which is developed in this paper, is recommended as the one to use in general, provided that 
the cross-flow in the boundary, layer is not large. 

The method is tested on two allied problems whose exact solution is known; fair agreement is obtained. 

Finally the three methods are used to find the angle between streamlines and limiting streamlines for the 
flow over a slender delta wing, and to determine the point of separation. 

1. ~ntr~ducti~n._Very few exact s~uti~ns ~f the three-dimensf~na~ ~aminar b~undary-~ayer equati~ns 
exist, even in the incompressible case. Those that do are rather special cases, such as the infinite sheared 

wing, for which by the ' independence principle' the fl6W normal to the generators can be determined 

from a two-dimensional solution, leaving the cross-flow velocity still to be determined. Even in this 

case an exact solution only exists as a series whose convergence is usually such that the solution does 

not extend very far downstream. A finite exact solution of a family of three-dimensional boundary-layer 

problems has been given by Hansen and Herzig 1. This  family is not very realistic in that (as in the 

infinite sheared wing problem) the external streamlines are translates. Its great advantage is that the 

solution is given as a finite series and may be continued as far downstream as may be desired. Th e  

external flow is not irrotational, but  this does not preclude this solution being used as a test. The  

external flow is such that the velocity components over the surface ~ = 0, which is a plane, are of the 

form 

U I ~ constN, 1 
V 1 ~ ~ arXr 

r = 0  

(1) 

in the x and y directions respectively, the suffix 1 referring to main-stream conditions. Hansen and 

Herzig have worked out the solution for any positive integral value of N '  up to 10. 

* R.A.E. Tech. Note Aero. 2658, received 16th November, 1959. 



We shall test the method of Eichelbrenner and Oudart ~, the method of Zaat a and a method which 
is a modification of that of Zaat ; our conclusions lead us to recommend the latter for general use. 

All these methods use streamline co-ordinates and assume that the velocity in the boundary layer 
normal to the external streamlines is small. (In speaking generally of this velocity we shall use the 

term 'cross-flow' to distinguish it from the streamwise flow). Since the cross-flow velocity is zero on 
the surface of the body and zero at the edge of the boundary layer the assumption of small cross-flow 

seems a reasonable one to make. The equations governing the flow in the streamwise direction can 
then be reduced, by a Mangler transformation, into ordinary two-dimensional boundary-layer equa- 
tions which may be solved in ways well known. 

All the methods considered here are based on the momentum equations. They differ in the choice 
of velocity profiles. For the streamwise flow all use a one parameter family. Eichelbrenner and Oudart ~ 
choose a Pohlhausen quartic, whilst in Zaat's a and the present method profiles of the Timman ~ type 

are used. The methods differ widely in their manner of treating the cross-flow. Here Eichelbrenner 

and Oudart 2 use a Pohlhausen cubic, with the same boundary-layer 'thickness' as before, together 

with a multiplying parameter whose value is obtained by satisfying a boundary condition on the 

surface of the body. Consequently this parameter is determined without solving the cross-flow 

equation which is not in fact satisfied. The other two methods require the solution ~ of the cr~oss-flow 
equation and this allows the inclusion of an additional parameter in the representation of the cross-. 

flow profiles. The main difference betweem them lies in the choice of this additional parameter. 

Thus Zaat 3 uses similar profiles (originally due to Timman 5) with an extra parameter Y2 relating 

the 'thicknesses' of the boundary layer in the two directions. The assumption of similarity is very far 

from the truth • near a point of'inflexion in the external streamlines, as can be seen in Fig. 1. This 

Figure has been drawn from calculations based on an exact solution by Hansen and Herzigl"and shows 

how different in shape the cross-flow velocity profiles can be at different points along an external 

streamline. The assumption of similarity also leads to the result that the cross-flow velocity is zero at 

all points immediately underneath an external point of inflexion, and changes its direction (i.e., its 
sign) simultaneously at all such points as the external streamlines change from concave to convex or 
vice versa. Fig. 1 shows that the cross-flow velocity near a point of inflexion may have different signs 
at different parts of the boundary layer, thus violating the assumption. 

To correct this, Zaat TM 12 later modified his cross-flow profiles by the introduction of a second 
parameter K and a second profile, to carry the solution past the point of inflexion and thus avoid the 
undesirable features of the earlier method (See Appendix I for details). 

In the present recommended method the undesirable features in the cross-flow profile are avoided 
another way. In fact we go back to Timman's  original scheme B in which an additional pa rame te r / / i s  

inserted into the cross-flow velocity, and the previous parameter D, related to the ratio of the boundary 

layer 'thicknesses', is dropped. 
It may be noted that after making the assumption of small cross-flow and applying the Mangler 

transformation 7 the method of Thwaites 8 may be used for the streamwise flow. We have included this 
also in our test, as far as the streamwise flow is concerned. 

We have compared the various methods in our first example and find that the present recommended 

method is the best for the example shown. It is outlined in Section 2. We have also compared the 
solution by the recommended method with the exact solution for two further allied examples and have 

found good agreement. Finally' the present method, Zaat's first method, and that of Eichelbrenner and 



Oudart have been used to calculate the boundary-layer development on a delta wing of 72-deg sweep. 

The  correct solution is not known in this case, but  it is of interest, nevertheless, to make such a com- 

parison, which is carried through as far as separation. 

2. The Recommended Approximate Method.--We take a streamline co-ordinate system on the surface 

where the line element ds is given by 

1 1 
a,~ - u b  1 a~ ~ 2- ~ d~ °~, (2) 

where the curves ~ = const, are streamlines and the curve3 6 = coast, are their orthogonal trajectories. 

If  a velocity potential exists we may denote it by 6 a n d  take Pl = 1, P2 = I 5 as is done by T imman  and 

Zaat. U is here the resultant external velocity. 
The  determination of fi is described by Zaat 3 and by Cooke 9. We give here only the form taken 

by fi when the surface ~ = ¢(x,y) is sufficiently flat for partial derivatives of ~ with respect to x and y 

to be small. 

We then have 

aS - ~ k - g x  + - ~ - / '  

~0 0 8 u ~=u~+v~yy,  

~=v~ 

In the method we use the velocity profiles 

U 

5r = f (~ )  -- Ae(z), 

where 

¢ =  VOw)z, 

V 
El =srh(z)  - Me(z), 

2 
1 - - f (~)  = 2g(z) + e -  ~' - -  3 v '~  - -  - -  z e - ~  + e - ~ "  dt, 

~x 

h(z)=-ze  -=~, 

A ~ u ~ ,  M = ~/¢~u = a~: (3) 

a is a parameter determined in the solution. I t  is related to the streamwise momentum thickness O1~ 

by the equation 
011 = 0.293 ~/(av), (4) 

which is approximately true for the profiles given above. 



We find, as shown in Appendix I I ,  ttiat the equations to be solved are 

8¢ = 5"08 -=, 
P 

P-!/cr OT¢¢ ( ~ )  = U ~1 {H -]- M(0.067A -- 0.669)} . 

In equation (6) we have 

I ~" Z t V  

02, = - ,  o U - -  o2s(o ), 

and, as seen in Appendix I, 

(5) 

(6) 

(7) 

where 

0 2 1 =  - p H  - -  m M ,  (s) 

p = 0.2946 q- 0.0223A, (9) 

m -- 0-02983 q- 0.00380A. (10) 

Equation (5) is first solved by a quadrature. This determines a and henceA and M 13y equation (3). 
Equation (6) is an equation for the parameter//, since 021 is given by equation (8) in terms of H. It is 
best solved by a step-by-step procedure. Once H o is known at any step an estimate for H 1 is made for 
the next step. This determines (021)1 from equation (8). Equation (6) is now integrated by the 

trapezium rule, (0200 being supposed known, and thus another value for (021)1 is found. If these do 
not agree a new estimate for H is made and the process repeated. The method is quite easy and straight- 
forward in practice, but it does require the interval to be small enough for the trapezium rule to be 
used. 

Once o" and/7  are known all properties of the boundary layer are known. Thus 011 and 021 are 
found from equation (4) and (7) above. The skin-friction components are given by 

flu 2 (2+A),  (11) 

[&"~ 2 M , ) (12) 

as found in Appendix I, .and from these we obtain 

tan ,8 = 'v o_2 = (3V '~ /2 )H + M 
"%1 2 + A 

2.6587H + M 
2 + A  ' (a3) 

where fi is the angle between streamlines and limiting streamlines. 

In view of the comparison with exact results and with other methods as shown in Figs. 3, 4, 5 and 6, 
this is recommended as the standard method to use in general laminar flow. It follows closely the 
method of Zaat 2 as regards the streamwise flow though the cross-flow equation is quite different. 
Equation (6) contains the parameter H instead of Zaat's parameter g2. The new form is easier to 
integr.a.te .a.r~.d does l~Ot r!¢ed extensive tables of functions of ~2 which the earlier form required. 



It is to be understood that the integration is to be carried through along a streamline, or rather 

along a set of streamlines, one at a time. 
Starting is often difficuk and often occupies a large fraction of the total computing time. Fortu- 

nately it has been repeatedly found that the downstream solution is not at all sensitive to the way in 

which the solution started. 

3. The Choice of Test Example . - - I t  is necessary to make some choice out of the many possible in 

equations (1). In attached flow over slender wings at low incidences the streamlines are fairly straight, 

and as a rule there is over the surface a favourable pressure gradient to begin with, followed by a 

point of inflexion in the external streamlines and then an unfavourable pressure gradient. In an en- 

deavour to reproduce these characteristics and yet retain as much simplicity as possible, the following 

external velocity was chosen. 

V:/Uo = 1, 

g: /Uo = 2 + (x/c) - -  (x/c) ~, (Example I) 

(14) 

where U0 is a representative velocky and c a representative length. This gives a family of streamlines 

having a point of inflexion at x/c = 0.5. Streamlines and limiting, streamlines for this system are 

shown in Fig. 2. It is surprising how much the very slight bending of the external streamlines down- 

stream of the point of inflexion (and in the region of adverse pressure gradient) causes the limiting 

streamlines to bend. This seems to be a characteristic property of laminar flow over slender wings, 
and suggests that laminar separation is apt to take place a very short distance downstreanl of the point 

of inflexion, even though the curvature of the external streamlines is quite small. 
This example was tested by all three approximate methods. As there may be some doubt as to the 

validity of the assumption of small cross-flow for very slender wings it was decided to use as a second 

example one which corresponds to a higher sweep, and so the value of V:/Uo in equation (14) was 

changed to 

V:/Uo = 4 + 4(x/c) --  4(x/c) ~, (Example II) 

making the simulated angle of sweep equal to 76 deg. Thirdly, as a matter of general interest it was 

thought worth while to try the method when the pressure gradient is originally unfavourable, changing 

to favourable downstream of the point of inflexion which remains at x/c = 0.5 in all the examples. 

For this final test V:/Uo was given by 

V:/Uo = 4 - 4(x/c) + 4(x/c) 2, (Example III). 

A streamline and a limiting streamline for each of Examples II  and III 'are shown in Figs. 7 and 11. 

respectively. 

4. The Exact  So lu t ion . - -We  take Cartesian co-ordinates x, y in the plane surface ~ = 0, and suppose 
that the velocity components in the direction of the axes are U: and V1 outside the boundary layer. 
We suppose also that the velocity components along and perpendicular to the external streamlines are 

u and v. 



We write 

G = u : / G ,  G = G~  G ,  u = V ( u :  2 + v ? ) ,  o = u~ Uo, 

= u~ Uo, ~ = v/Uo,  ~ = x/c, y = y/c.  

The external velocity components may then be written 

N "  

12~ = ~ aft ~ 
t = O  

(15) 

Hansen and Herzig: show that 

N" 

1 

r = l  

(16) 

where 

= OF'(~) + ~12,, ' 

~ ( Uo~ ~'~ 
= \ v x /  ' 

and F(~) (the Blasius function) and Hr(~/) are tabulated by them. Primes denote differentiation with 
respect to ~. 

The equation of the streamlines may be written 

N '  

37 = + const, .d..~ r + 1 
T = O  

and the equation of the limiting streamlines is 

:Y = r + 1 J,(0) + const, 
r = ' 0  

(17) 

where d~(~) is tabulated by Hansen and Herzig 1. 
If we denote by On the momentum thickness in the streamwise direction we have 

0n----- o 8 1 -  d~=~-,\Uoo] Jo 
Hence we have 

N '  N '  N" ~,12 ~, 
On \ ~ /  

r=l r=l s=l 

6 



where 

.< .o  = 

and the coefficient of 0 ~ comes from the result 

g~,  = H J/= d~, 
0 

(18) 

f •  (1 -- F')  dfl = 0.66412. F '  

The  skin friction in the streamwise direction, denoted by *ol, is given by 

Hence we have 

= 

~o~ = ff \ a U o  ffUo T,~ o 

N t 

_ (%,,,f 
\ VXl  t 

\ E l  = 0-33206 q- ~ a,~'H,'(O). 
r = l  

The  skin friction at right angles to the streamlines, denoted by %2, may be found m a similar way. 

We have 

24' 

~ o  tUo/ o, = ¢~,H,'(O). 

I f  fl is t he  angle between the limiting streamlines and the external streamlines we have 

0.3320602 
cot  ~ = ~o~ = P1 + ,v' 

%2 ~ a,x-"H, ' (O)- 
r = l  

By numerical integration from the results of Ref. 1 we find that 

//10 = 1.6106, H20 = 2.2750, Hl l  = 0.7558, 

H12 = 1"0918, 

and it can be shown that 

His = 0.8659, 

From the Tables of Ref. 1 we also have 

H2. = 1"5892, 

H , )  = 1.1619. 

H / ( 0 )  = 1.0860, H / ( 0 )  = 1.8651. 

Thus  the main properties of the boundary layer may be obtained in a straightforward way. 



For this particular example the basic method of solution outlined in Section 2 must be slightly 

modified. It is only a modification of detail, not a change of method, and is due to the fact that the 
external flow is not irrotational and so a velocity potential does not exist. This modification is carried 
out in Appendix III .  

5. The Recommended Method of Solution in the Special Case.--In this case we take 

and by Appendix III ,  equation (39) we find ~ from the equation 

so851 { c ' = ~ do C4 d2 = - 0a 1 -}- a,2 r d2.  (19) 

The integral may be immediately evaluated since the integrand is a polynomial. 

We de t e rmine / / f r om equation (40), that is, 

where 

" '  + 0 TA - 0 1 

A = c~Uo 121 dP1 M -- A 
c ~2 d;? ' V~' 

and 021 is given by equations (8), (9) and (10). When a and /7  are found the other properties of the 
boundary layer are obtained from equations (4), (11), (12) and (13). 

6. Discussion of the Results.--Figs. 3, 4, 5 and 6 give respectively the streamwise momentum thick- 
ness, streamwise skin friction, cross-flow skin friction and angle between streamlines and limiting 
streamlines for Example I as calculated by various methods. These are compared with their exact 
values. 

Oll and %1 are unchanged in Zaat's two methods, but %2 and /3 are different. In these cases, in 
Figs. 5 and 6 the earlier method 3 is denoted by 'Zaat (1')' and the later method 11' ~ by 'Zaat (2)'. It  will 

be seen that the later method gives some improvement on the earlier one, but the main source of error 

in both seems to be the parameter N, introduced originally in order to produce a streamwise 'separation 

profile' in the two-dimensional sense. This may not be necessary as, in general, three-dimensional 

separation is not singular and does not require the vanishing of the streamwise skin friction. In any 
case all the methods probably break down when separation is approached, which will usually be at a 
place where the cross-flow is not small. The effect of N is to make "Cot far too small. I f  N were dropped 
the curve for To1 by Zaat's method would become identical with that marked 'present method' in Fig.4. 
That  for ~oz would be hardly changed at all, but tan/3 would be greatly improved. 

8 



It will be seen that the recommended method gives the greatest accuracy and will give reasonably 
close results up to an angle/~ of 15 deg. This may be sufficient for slender wings, as it seems likely 
that for angles greater than this the boundary layer may separate or become turbulent. Strong cross- 
flow is known to promote instability. The method may be adequate for the rough determination of 
separation, as this usually occurs when the limiting streamlines are turning rapidly. 

Examples II and III  compare only the recommended method with the exact solution. Example II, 
illustrated in Figs. 7, 8, 9 and 10, suggests that increased sweep may not noticeably affect the earlier 

conclusions. The errors in Example III  are greater than the others in the earlier stages, but show a 
tendency to correct themselves. On the whole one may infer that the method is quite good at the start, 
even for adverse pressure gradients, and continues quite good downstream so long as the pressure 

gradient is favourable. When the limiting streamlines turn considerably the method ceases to be of 
value (as is to be expected in view of the violation of the basic assumption of small cross-flow), but it 
may still forecast separation if the latter occurs abruptly enough. 

All the methods used resemble each other for the streamwise flow. They all involve a simple 

quadrature to find the momentum thickness, but then vary slightly in the determination of other 

streamwise properties. 
For the cross-flow the order of increasing complexity is first, Eichelbrenner and Oudart's method, 

second, the present recommended method, and third, Zaat's method. The last two require the 
numerical solution of a differential equation in which the interval must be taken sufficiently small for 

the trapezium rule to be used. 
We give one more example, calculated by all three methods, in which the exact solution is not 

known. It is for a Conically cambered thin delta wing from Ref. 10, with attached flow along the leading 
edges. The angle of sweep is 72 deg. The calculations by Zaat's method were done in Ref. 9. In Fig. 15 
is shown the angle between the limiting streamlines and rays, calculated by the three methods. 
Separation takes place at the point where this angle vanishes. In this Figure ~/ is defined by the 
equation 

~] = ( y / x )  tan 72 °, 

where the axis of x is taken along the centre-line of the wing and that of y is perpendicular to it. 
It will be seen that separation takes place at ~1 = 0.625, 0.645 and 0.690 for the three methods. From 
this it can be calculated that separation is along rays making angles 11.5, 11.8 and 12-7 deg with the 

centre-line. The leading edge makes an angle of 18 deg with the centre-line. 
Compared with the present method Zaat's method gives a slightly early separation line, whilst 

Eichelbrenner and Oudart's method gives separation earlier still. At separation the angle fl between 
streamlines and limiting streamlines is about 16 deg. Fo, r this example separation occurs very early, 
and as a result the external and boundary-layer parts of the flow cannot match. In Ref. 9 a calculation 
was done by Zaat's method for a different cambered wing in which ~ = 0. For this example we show 
in Figs. 16a and 16b a streamline and a limiting streamline. This illustrates the type of streamline to 
be expected on slender wings with attached flow, though strictly, as before, the internal and external 
flows do not match, though the discrepancy is less marked here. 

7. C o n c l u s i o n s . - - - F r o m  the examples tested all three methods give a reasonable picture of the flow, 
displaying all its main features. The present recommended method, which does not involve excessive 

9 



computing time, gives quite an accurate solution so long as the limiting streamlines do not diverge in 
direction greatly from that of the external streamlines. All the methods require the use of streamline 
co-ordinates, which are sometimes laborious to compute, but it seems well established that any method 
will require this preliminary work. 

The tests give grounds for hope that the recommended method may be acceptable to quite reason- 
able accuracy in an accelerated flow and in the earlier part of retarded flow; it may even be hoped that 
it will predict separation without gross inaccuracy. 

10 



LIST OF SYMBOLS 

a r 

£ 

f(z), g(z), h(z), h(z) 

F(~) 

H(~) 

h~, h2 

H.o, H.j, H.. 

H(A) 

j,(o) 

m 

N' 

N 

P 

T 

U~ V 

U,V 

Uo 

U 

u ,v1 

x,y, 

x, y 

t 

Coefficient of x ~ in equation (1) 

A reference length 

Velocity profiles defined by equations (2), (21) and (22) 

The Blasius function (Ref. 1) 

Defined by equation (16) (See Ref. 1) 

Defined by equation (26). Coefficients in line element 

Defined by equation (18) 

Defined by equation (34) 

Defined by equation (17) (See ReL .l) 

Defined by equation (10) 

Highest power of x occurring in equation (1) 

Defined by equation (22) 

Defined by equation (9) 

( UI~ + VI~) 11~ 

Velocity components in the boundary layer along and perpendicular to 
the external streamlines 

ulUo,  lUo 
In Appendix II. External velocity components parallel to the co-ordinate 

c u r v e s  

A reference velocity 

Resultant external velocity (along a streamline) (except in early part of 
Appendix II) 

External velocity components along the axes of x and y 

u1/Uo, vl/uo 

Cartesian co-ordinates 

x/c, Sic 

Angle between external streamlines and limiting streamlines 

Displacement-thickness 'components' 

Defined by equations (33) 
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Oil'  012' O31' 033 

011, 021 

z] 

K 

A 

M 

H 

Pi, P3 

G 

T01 ~ Z'03 

D 

LIST OF SYMBOLS--cont inued 

Momentum-thickness 'components' 

Defined by equations (83) 

Distance from the surface 
/ \1/2 

Velocity profile parameter 

Velocity profile parameter 

Velocity profile parameter 

Coefficient of viscosity 

Kinematic Viscosity 

Velocity profile parameter 

Defined by hi 2 = 1/p1U2, h23 = 1/p3U ~ 

Form for P2 when p~ = 1 

Parameter related to boundary-layer thickness 

Skin-friction components 

Function behaving like a velocity potential 

Function behaving like a stream function 

Velocity profile parameter used in Refs. 3 and 5 
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We take 

A P P E N D I X  I 

The Velocity Profiles 

U 
U = f(z)  -- Ag(z),  (20) 

V 
u = g h ( z )  - M g ( z ) ,  (21) 

where A and M are parameters given in equation (3), wh i l eH  is a third parameter to be determined. 

Other functions are defined by 

- ~ / ( ~ )  z ,  

1 - f ( z )  = 2g(z) + ~ - "  

+ - ~  e -  dt, 

h(z) -= z e-~2. 

Although we do not use them here we give for completeness Timman 's  and Zaat's profiles. 

The  former are 

U 
-0  = f ( z )  --  Ag(z)  --  Nit(z),  (22) 

where N = 0 irA >~ 0, N = A ifA < 0, and D is a parameter relating the thicknesses of the stream- 

wise and cross-fllow boundary layers. 
Zaat's later method n, t2 replaces Timman's  equation for v~ U by 

where 

2~(z) = 1 - f ( z )  - (1 + z ~) e-~'~, 

and _K is a new parameter. Zaat puts K ----- 0 until the point of inflexion is approached. After some point 

not completely specified(beyond the fact that it is somewhere upstream of the point of inflexion of the 

external streamline) he keeps D constant at the value it has now reached, and varies K,  starting at 

K = 0, continuing until K once more becomes zero. At this point K is again kept zero and X2 is 

allowed to vary once more. 
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T i m m a n  shows tha t  for  the profiles. (20) and (21) 

b l = f ; ( 1 - - u )  dz=O'752253--O'O66987A, 

f:u  02~ = - -  (j. ~ d z  = - -  p H  -- raM, 

where  

W e  have at z = 0 

Th i s  gives 

(23) 

p = 0.294628 + 0.022314A, 

m = 0.029826 + 0.0037975A, 

011 = ~ 1 --  dz = 0"289430 ' +  0"007335A --  0"003798AK 
• 0 

f =g  = h  = f "  = f ' "  = g " '  = f  .... = 0 ,  

4 
h '  h " =  g " =  f ' =  - -  2g '  = 3~/ :~,  = 1, 0, 1. 

O 

l {~u~ " (2 ÷ A) = 0-376127(2 ÷ A) . .  

1 ( %  2 
-U\-~zz)z=o =/ /+.  ~ M " 0 . 3 7 6 1 2 7 ( 2 . 6 5 8 6 8 / / +  M) .  

(24) 

(2s) 
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APPENDIX II 

Derivation of the Equations 

In a co-ordinate system ~, ~?, ~ whose line element is given by 

ds 2 = hi ~ d~ ~ q- h. ~ d~ ~ -/d~ ~, (26) 

where ~ is distance measured normal to  the surface, Timman ~ has shown that the boundary-layer 
equations in incompressible flow may be written 

I ( u O U  ~u~ I ( v O U  ~ _  Ou 

~ (V~-- ]hlh~ ~ -- 

a2u 
~ ,  (27) 

hl h~ ~7 -t- UV -- uv hl hz a~ --  v-~2.  (2s) 

In these equations U and V are external velocity components parallel to the co-ordinate curves. 
The corresponding momentum equations are also given by Timman 5. They take the form 

1 8011 1 501~ 2 8T 2 aT 1 OU 1 8U q- 
ht 8~ -k h~ 0,--~- -k hi T 8~ 011 + h2T ~ 012 -~- hiT a$ A1 q- h2----T ~--~ A2 

1 Sh~ V ~ Oh1 01_bo~_bVA1 T ' \~)o  ~ hlh~ O~ 011 -- 0,,~ ----TA2 q- hth2 8~ 

1 0022 1 8021 2 ST 2 OT 1 OV 1 8V 
h,, a~ q-h,  a~ 1-. hJ'  ?~r/ Oz,.-k hl T a~ 021-~-h~T. ~'~l A2 -+-hi T a~ A l -k  

(29) 

1 8k1( U ) 1 c~h,,/O q- U ) f f__[~ 
-I-hlh~@ 0 ~ - 0 1 1 - . ~  -÷h~h2a~\ ~1 0~+7~2 =r~\8¢} o, (,so) 

where 
T 2 = U 2 + V ~, 

AiT = f ~  (U--  u) d~, A z T = / ~  (V- -  v)d~, 

011T2 = f~  (u  -- u)u d~, 
2 oo 

O~T = f o ( U - u)v d~, 

2' cO 
O~T = f o  (V - v)v d~. 

16 



It should be noted that the definition of T given here is different from that of Timman 5. 
We introduce streamline co-ordinates so that the line element ds on the surface is given by 

d ~ 2  , . d~o2 

as ~ _ p ~ U ~  ~- p~ U ~" 

We again differ slightly here from Timman because we wish to be able to consider rotational flows 
for which a velocity potential does not exist. Nevertheless, surface streamlines ~0 = const, and their 
surface orthogonal trajectories 96 = const, still exist in general. The point is that the co-ordinates are 
'streamline' co-ordinates and we must now have 

v = 0 ,  T = u ,  

and U is the resultant velocity along the streamlines. 

If we use the velocity profiles (20) and (21) of Appendix I, with ¢ = (av)i/2z, equations (27) and 
(28) provide us with boundary conditions on the surface ~ = 0. We put u = v = w = 0, V = 0 in 
the equations, and we find on putting hi = 1/U ~Pl, h2 = 1/U v'p~, V = 0, T = U, and using the 
co-ordinates ~ and % 

OU 
A = ~/pl ~ U-g-~b, (31) 

uF~U u api7 
M = ~/p2 L o~f -]- 201 a~0~-" (32)  

We now make the assumption that v, the cross-flow, is small in the equations (29) and (30). Writing 

°~U U ' 7 a, =/0(1 - u) dz, 011 =f0 ~(1 ~)az, 
(33) 

0"1 = --Jo -u2dz" 

and using equations (24) and (25) we obtain 

{ ~  v'(~OU v'(~ ~P2 0 ] 1 2 
Vol ( V~o11) + u o~ (011 + oi) = 2p, ~ ilj ~/~u ~ SV=(2+A) ,  

2 { I O U  1__ Opi) (0ii q_ di) VPI 

1 ( H +  2 M )  
= ~ / o ~  ~ • 

Using equations (31) and (32) and rearranging we obtain 

0/'U2(~Oii2"~ 4 

17 



p22 a_(~021 ~) L( 

as may be verified directly. 

Now we may put approximately 

0 n  = a = 0.293, 

• as Zaat does. Fig. 17 shows that  these approximations give 

1 > A > -- 0.8 which seems to be sufficient. 

Equation (34) then reduces to 

, /p ,  ~ = s .os -p~, 

whilst equation (35) becomes 

M 2 
P~v~(P:~) ~7-~ \ - -77-~ / = U ¢ 

1 {H M(0.067A = U2 + - oi~69)~ 

using the values of a and ~ from equations (38) and (23). 

H(A) = 0"436 -- 2a2A, 

reasonable accuracy in the 

(as) 

(36) 

range 

(37) 

(as) 

1 8  " 



A P P E N D I X  I I I  

Equations in the Special Case 

If the external flow is of the form given in equation (15) a velocity potential does not exist. However, 
a s tream function ~? exists in the sense that a ~0 can be found such that 

N s 

~---~ = Vi = Uol?i = Uo ~ a~,~", 8~v 
ax @ - -  

r = 0  

- - - - - -  U i = - -  Uo. 

We may therefore take the streamline co-ordinate 

N t 

~/~ = cUo r + l  
r = O  

I 

We find also that we may take the other streamline co-ordinate 

since these give 
~Tr 2 ,4./.2' 

1 *"F  -L_ d~02  
ds 2 = dx 2 + dy ~ - ~ - -  U 2. 

This form shows that the system is orthogonal as required, but  6 is not a velocity potential. 

Hence we have 

1 
P i -  ~712, P2 = 1. 

We also have, when q~ is constant 

and, when this equation holds, 

and so, when ¢ is constant 

d~ V+dg=0, 

d,1, = c U o ( G  - 

T 1 + Pl  2 
CUO----~i dx, 

3 1 17id  
3~ cUo U~ d~ ' 

19 



noting that 

~3"= 1 +/Td. 

In a similar way we can show that, when ~o is constant, 

1/71d 
a4 - ~u0 - 0 ~ "  

Hence we find from equations (32) and (32) 

A - aUo/71 d/71 
c ~.~ d~ ' 

Now equation (37) becomes 

and hence 

) 0 4 = 5.08& 4, 

aUo 5.08 f ;  04 d~ 
C - -  ~ J 0 

since a = 0 at the start as can be seen from the exact solution. 
Equation (38) becomes 

A 

d {~/(~_o)021} = 1 {.F/+ M(0.067A --0.669)} 
d~ ~ / ( ~ U o / c )  • 

(39) 

(40) 
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FIG. 1. Cross-flow velocity profiles. External point of inflexion at x/c = 0.5. 
Example I. Exact. 
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Fie,. 13. Cross-flow skin friction. Example III. 
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