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Summary. The calculations of the compressible turbulent boundary-layer by Tucker (1951), Young (1953), 
Englert (1957)) Mager (1957), Reshotko and Tucker (1957), Culick and Hill (1958), Michel(l959) and Spence 
(1959) have been examined, and extensions given simplifying the earlier two methods. It is shown that, for 
turbulent flow from the leading edge, the results of all these investigations may be expressed in the form 

B ,= f(M)XRx-b ( W  
where the symbols have the connotation shown in the Appendix; X i s  an equivalent flat plate length defined by- 

x = p-11; P d x  (ib)) 

P being a function of Mach number. The wall is assumed to be thermally insulating. For axi-symmetric flow 
P is replaced by Pr", where r is the radial distance from the axis and a! = 1/(1 - b).  Graphs of the functions. 
f ( M )  and P (see Figures 1 and 2) enable 0 to be calculated according to any of the methods. 

The average of the results may be represented to a close approximation by I 

B = 0.022 (1 + 0.16M2)-0'60XR x -'I6 (2). 

' and P = [M/(1 +. M2/5)I4 (3)-3 
P being plotted in Figure 5. The Reynolds number R, is based on the local free-stream conditions and the 

1 .  

i 

v'. 1) distance X, and may conveniently be obtained from Figure 6, or from the expression 

I '\ 
R, = UX/v = (ao/vo) XM(1 + M2/5)--(3--o) 

' (411 
where suffix 0 refers to"'stagnation. 

Provisional working formulae are discussed in Section 12.0. 

1.0. Introduction. Several methods are available for the calculation of the compressible turbulent. 
boundary-layer. T h e  earlier methods of Tucker (1951) and Young (1953) involve numerical. 
integration, while the more recent methods of Englert (1957), Mager (1957), Reshotko and Tucker- 

* Previously issued as N.G.T.E. Memorandum M.330-A.R.C. 21,399. 
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(1957)) Culick and Hill (1958)) Michel (1959) and Spence (1959) derive explicit formulae. I t  is 
found that the earlier methods may be developed analytically and that all the methods may then be 
correlated on the basis of Equation (1) of the Summary. 

The methods of Tucker, Young and Michel start directly from the momentum equation for the 
compressible turbulent boundary-layer. Tucker and Young assume th.e profile shape to be 
independent of pressure gradient, a simplification which has been found useful in incompressible 
flow; Michel assumes a constant profile in any given flow but discriminates between favourable 
and adverse gradients. On the other hand, subsequint to a suggestion by Van Le (1953), the later 
methods use, with some empiricism, a form of the theoretical transformation of Stewartson in order 
to convert existing solutions of the boundary layer equation from incompressible to compressible 
flow. In  all the methods except Mager's the variation of skin friction with Mach number is based 
indirectly on the limited amount of available experimental evidence. All the methods except, those 
of Reshotko and Tucker and of Spence restrict consideration to an insulated wall, and the present 
paper is also thus restricted. Initial regions of laminar flow are omitted from the present paper for 
clarity, but may readily be treated by the standard techniques. 

2.0. Tuckey's method. Tucker shows that the momentum equation may be expressed 

d6/dx + $6 dM/dx = Ktjarn/X1/7 (5) 
where 6 is the full thickness of the idealized boundary layer, K is a constant and $ and +a,,, are 
functions of Mach number defined in Reference 1. The quantity Xis the equivalent length such that 
a boundary layer growing at a constant Mach number equal to the local Mach number, over a 
.distance X, would attain the same thickness as the actual local boundary layer. Consequently 
6 cc X6/7 ,  i.e. cc Pi6, so that, on temporarily eliminating X ,  the momentum equation becomes a 
linear differential equation in 67/6 as dependent variable and either x, or M (by multiplying through 
by dx/dM), as independent variable. Its solution is readily obtained, and may be written in terms of 
M and X as 

B = 0.0153 (1 + M2/10)-5/' XRX-'J7 (6) 

:and 

provided 

I being a function of Mach number defined and tabulated in Reference 1. Tabulations are given 
corresponding to power laws for the velocity profile, u/U = (y/6)lin, from n = 5 to n = 11. 
Variation of n has only a trivial effect on P and the value ~t = 7 has been used for Figure 2. 

Tucker indicates experimental measurements in support of his results. 

3.0. Young's method. 

L .. .+ 
Young integrates the momentum equation to obtain 

where F,(x) = 1*2(H + 2 - M 2 )  (dU/dx)/U 

and G(x) = (U/v)-'i5h, 

h being a function allowing for compressibility in a manner defined and discussed by Young. The 
value of h varies with Reynolds number, but only very slowly, and Young recommends that a single 
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and 

provided 

X = P-l r P d x  
. n  - ”  

M 6 ( H  + 2 - M2)dM P = M-115 (1 + M2/5)19/*5h exp - s 5 (1 + M2/5)M * 

curve. appropriate to the mean Reynolds number should be used throughout any given flow. 
Equation (7) may be put in the form 

0 = 0 * 0225 h5/6XRX-lls (8) 

Values of H appropriate to the +th power law, as used by Young, have been adopted when calculating 
the function P for Figure 2. 

At the higher Mach numbers Equation (8) is an extrapolation of Young’s method as Young 
discusses his expression for h only up to M = 5. Values of 0/X given by Young’s method at 
R, = 108 become almost coincident with the mean of the other methods up to M = 4. 

4.0. Englert’s method. By using a form of Stewartson’s transformation Englert adapts 
Truckenbrodt’$O solution for the incompressible boundary layer. His formula for the momentum 
thickness can be rearranged as 

6 = 0.0153 (1 + M2/5)-30/49XRi,-1‘7 

Englert provides experimental measurements in support of his results. 

(9)  

5.0. Mager’s method. As an example of his method of applying Stewaitson’s transformation 
Mager adapts Maskell’sll solution for the incompressible boundary layer. The resulting expression 
for the momentum thickness can be written 

0 = 0.0258( 1 + &f2/5)-0*6450 X R X - - 0 1 7 7 5  (10) 

with 

and 

Mager’s results suggest that the skin friction in compressible flow is quite sensitive to the value 
of w, the exponent in the viscosity-temperature relationship. The value w = 0.76, as used by Mager, 
has been adopted for Equation (10) in Figures 1 and 2. It may be observed in passing that Mager’s 
method appears to be less empirical than are some of the others reviewed here. 

6.0. The method of Reshotko and ‘Tucker. For general values of the wall temperature, Reshotko 
and Tucker integrate the transformed momentum equation using the technique developed by 
MaskelP for incompressible flow. They obtain 

0.732 t 3268  
0 lr 1.2155 = 0 .  01173(v 0 0  /a  )0.2155 M C --B-04155 s :MeB($j  (i) dx (11) 

elP being the transformed momentum thickness. The other quantities are defined in Reference 5, 
the suffix e referring to conditions in th.e local free-stream. For consistency with the derivation of 
Equation (1 1) the conversion of this equation to the form of Equation (1) must be made assuming 
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the viscosity to be proportional to temperature and the temperature of the insulated wall to be equal 
to the stagnation temperature. The  result may then be expressed in the form 

where X =  P-1 rPdx 

and 
J O  

P = M4.2(l + 0. 144M2)-0.732 (1 + M2/5)-3*268. 

7.0. The method of Culick and Hill. Culick and Hill apply a modified form of Stewartson's 
transformation to Truckenbrodt's solution for incompressible flow. When the parameter N in 
their Reynolds number exponent is put equal to 4-a value which applies to most of Figure 1-and 
when p cc T0.S4, their result becomes 

0 = 0.0355(1 + M2/5)-0*432 XRX4/5 (13) 
t 

where 

and p M35 (1 + M2/5)-375 

8.0. Michel's method. Michel's integration of the momentum equation yields 

where 

and P = L  
L and (b being functions of Mach number defined and tabulated by Michel and taking slightly 
different values in accelerating and retarded flows. For a flat plate Michel suggests a simpler formula 

0 = 0-0221(1 + 0.14M2)-o'685 xR~-~/G (15) 
which illustrates his basic assumption for C,/C,, . 

9.0. The method of Spence. For general values of the wall temperature Spence uses a modification 
of Stewartson's transformation to reduce the momentum equation to incompressible form. 
Integrations are carried out for an insulated and for a constant temperature wall. For the insulated 
wall his result is equivalent to 

0 = 0*0226(1 + 0 .  128M2)-D'685 X R  x (16) 

where 

and 

or, for his second set of empirical constants, 

0 -= 0 + 0258( 1 + 0 128M2)-04G5 XI? s -0,177 

where 

and 

x = p-1 Pdx 

P = M4" (1 + M2/5)-3368 (1 + 0. 128M2)-oso8. 
0 
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10.0. Axi-symmetric flow. The six methods which consider axi-symmetric flow assume that 
the local skin friction coefficient for a given boundary-layer thickness is identical with that for two- 
dimensional flow. Reference to the original papers then shows that the function P should be replaced 
by Pra, where 01 = 1/(1 - b )  and where ( -  b) is the exponent of Reynolds number in the formula 
for boundary-layer thickness. 

11.0. Comparison between the methods. Values of the non-dimensional momentum thickness B/X 
are shown for the various methods in Figure 1, while the pressure gradient function P is plotted in 
Figure 2. A boundary-layer thickness if calculated by all the eight methods could be expected to 
show a variation about a mean of the order of i 10 to 20 per cent, depending upon the Mach 
number and the steepness of the pressure gradients. 

The  methods all concur in the conclusion that the momentum thickness may be expressed in the 

form 0 = f(M)XR,-b where X = P-l P dx. Now for flow on a flat plate the Mach number, 

and hence the function P, would be constant, so that X = x and d = ~ ( M ) X R , - ~ .  I n  effect, therefore, 
all the methods concur in saying that the momentum thickness in a flow with pressure gradient 

L 
may be obtained from the expression for a flat plate, provided the actual distance x is replaced by an 

equivalent distance X, X being calculated from the integral form P-l P dx. Consequently the 

methods can only differ from one another in the expression for the flow on a flat plate and in the 
value of the function P. With the exception of Mager all the methods use empirical expressions for 
the flat-plate flow, such expressions being in effect data on which the method is based rather than 

1: 
fundamental to the method itself. The  only part of the result which can differ owing to differences 
in the analytical treatments is therefore the function P. 

The  function P is of the form MB( Tl/ To)c or MB( Tl/ To)c ( TJ TrCf)” in each of the five methods 
using a transformation. The  Mach number exponent B varies from 3; in Englert’s method to 4 .2  
in the methods using Maskell’s form of analysis; consequently the ratio P/Pl.o varies by a factor 
of 7 - 4  at M = 10 due to the variations in B. The remaining terms cause a maximum variation 
between the methods of 2i to 1 at M = 10. Now the various values for the exponent B have been 
carried over from the solutions for the incompressible boundary layer. Moreover the variation in B 
accounts for most of the variation in P ,  the remaining variations being relatively small. Until, 
therefore, the variations have been resolved for the incompressible flow there would seem little 
point in trying to assign an order of merit to the present solutions for compressible flow. The  most 
expedient working formula for P would appear to be the simplest which represents a reasonable 
average of all the methods, and it is on this basis that [M/(l + M2/.5)I4 has been suggested in 
Equation (3). 

Amongst those methods using a transformation the Prandtl number, 0, and the exponent, U ,  in 
the viscosity temperature relationship are both given realistic values only by Culick and Hill and by 
Spence. Of these two methods that of Culick and Hill appears to use the more accurate form for 
the shape parameter H, at least on the experimental evidence available. Spence’s method-along with 
Reshotko and Tucker-has the advantage of including tb.e effects of heat transfer. 

As an aside it is interesting to  notice that the methods not using the transformation and existing 
solutions for incompressible flow come closer to the mean of all the methods for the function P. 

The  values given by the various empirical expressions adopted for the flow on a flat plate are, 
in effect, shown in Figures (la) and (lb). Englert’s values are probably rather low as he was 
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concerned more with the principle of the method rather than with the accuracy of his empirical 
formula for skin friction. Otherwise there is probably insufficient experimental data to judge between 
the various curves. All the methods except that of Mager use the concept of a mean, or reference, 
temperature. On this concept the expression for the skin-friction coefficient is assumed to be the 
same function of the dynamic bead and Reynolds number as in incompressible flow provided the 
density and viscosity are evaluated at the mean temperature in the boundary layer, or at the 
reference temperature. The  mean or reference temperature is chosen to give values for the skin 
friction in agreement with experiment. The  extrapolation of Young's expression to the higher 
Mach numbers gives higher values of skin friction, at the lower Reynolds numbers, than are given 
by the other methods-partly because Young has used a logarithmic expression for the skin friction 
in incompressible flow, whereas the other methods use power laws, and partly because Reynolds 
numbers evaluated at Young's particular definition of reference temperature are very low. Despite 
the numerical majority against Young's use of the log law it could be argued that in this respect 
Young's is the more logical approach. The  power laws are each essentially restricted in their range 
of Reynolds numbers; consequently they may not be able to represent the range of reference 
temperature Reynolds number that corresponds, at constant R,, to a range of Mach number from, 
say, 0 to 10. 

Examination of the results from any of the methods shows that where dP/dM is strongly negative, 
i.e. above a Mach number of about 2.5, favourable pressure gradients tend to cause an increase in 
boundary layer thickness and adverse gradients a decrease, so that there is a reversal ofbehaviour 
from incompressible flow. However, when considering, say, the flow in a duct the quantity of 
interest is the ratio of the area occupied by the boundary layer to that of the duct. Calculations 
show that this ratio varies in the same direction as for incompressible flow with, in fact, a greater 
sensitivity than incompressible flow to changes of main-stream velocity-as might be expected from 
the reduced density in the supersonic boundary-layer. 

# 

12.0. Proaisional working formulae. Equations (2) and (3) of the Summary are close to an average 
of the methods. In  finding the average, Young's result has been included for the function P, but 
in the interests of simplicity, not for B/X; in the former Young's value for R = 107 has been selected 
as representative of his method. For a given value of X values of B resulting from Equation (2) are 
within about 1 per cent of the average from the seven methods at all Mach numbers up to 10. 
The  function P of Equation (3) is within about 3 per cent of the average from the eight methods at 
supersonic speeds up to M = 5, but at higher Mach numbers the scatter excludes an accurate 
assessment. The  function P is shown plotted in Figure 2, but the results from Equation (2) have 
been omitted from Figure 1 for clarity. 

The  value of C f / C f , i ,  i.e., the ratio of the skin friction in compressible flow to that in incom- 
pressible flow at the same Reynolds number R,, for flow on a flat plate, is given by Equation (2) 
to be (1 + O-16M2)-O'60. I n  comparison with the experimental results-for example, as analysed 
by Chapman and Kester (1954)-this quantity is about 0 to 10 per cent low up to a Mach number 
of 3, and 0 to 15 per cent low between Mach numbers of 3 and 5. In  comparison with the experi- 
mental mean line proposed by Chapman and Kester it is less than 1 per cent low at M = 2, 5 per 
cent at M = 3 and 11 per cent at M = 5. The  broader limits have been suggested, however, in 
order to take some account of the experimental scatter and of the difference, mentioned by Chapman 
and Kester, between wind-tunnel tests and flight. 

. 
t 
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Equations (2) to (4), with (lb), could be taken as provisional working formulae for the com- 
pressible turbulent boundary-layer. 

When 0 is known the displacement thickness 6" and the full idealized boundary-layer thickness 6 
may be determined from the ratios 6*/0 and 0/6. In mild pressure gradients there is little error in 
'assuming these ratios to be the same as for flow on a flat plate. Now as mentioned, for example, 
by Cope (195 1) the velocity profile on a flat plate appears to be almost the same in compressible as 
in incompressible flow; consequently the use of the ratios given by, say, the +th power law, see 
Figures 3 and 4, enable SX and 6 to be calculated. When the displacement thickness 6" is required 
in a strong pressure gradient, the ratio 6*/0 should be found taking into account the change in the 
shape of the velocity profile of the boundary layer resulting from the pressure gradient, as is possible 
using Englert's, Mager's or Reshotko and Tucker's method. 

It will be found that the use of the +th power law in conjunction with Equation (2) gives values 
of the thickness 6'which become 10 per cent lower than for incompressible flow at M = 4, and 
10 per cent higher at M = 10. This is in broad agreement with experimental observations, which 
have suggested that 6 is almost independent of Mach n ~ m b e r l ~ . ~ ~ ,  and there is probably insufficient 
evidence to determine the behaviour to closer than 10 per cent. Consequently an alternative approach 
to the production of a set of provisional working formulae is to assume zero variation of 6 with 
Mach number, so that an accepted formula for incompressible flow may be used-for example, as 
given in Reference 16-and to derive 0 and 6% from 6 using algebraic expressions for the ratios 
S/S and 6*/6 arranged to fit the values given by the +th power law. The  following set of formulae 
may then be obtained. 

For free-stream Reynolds numbers R, of the order of 106, 

i 6 = 0*37XRx-1/5 

0 = 0*036(1 + M2/10)--0.70 XRX-1/5 

6' = 0.046(1 + 0*8M2)044 X R  X -115 

For free-stream Reynolds numbers of the order of 107, 

,, 
where X = .P-l f P dx 

0 

P = [M/(l -I- M2/5)I4 

(18a 

18b) 

(1b)bis 

(3)bis 

and where R, may be obtained from Figure 6 (compiled with the aid of Reference 17) or from the 
expression 

(4)bis 

suffix 0 referring to stagnation. The  quantity w is the exponent in the viscosity-temperature relation 
p & T", a reasonable value for w being 0.75, except at very high temperatures, where w = +. 

R,  = UX/v = (a0/vo) XM(1 + M2/5)- - (34  

For axi-symmetric flow 

a = 5/4 when R,  N 10G 

01 = 6/5 when R, - 107 
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The equations for 8 and 8* would be applicable only in mild or zero pressure gradients, while that 
for I9 could be used generally. 

Values of 8/X from Equation (18) are shown in Figure 1, while the ratios 0/8, etc. are compared 
with values from the power laws in Figures 3 and 4. Clearly the expression for 8% would not be 
satisfactory above M = 10. 

The value of Cf/Cf,i implicit in Equation (18) is (1 + M2/10)-0.70, which is about 0 to 5 per cent 
higher than the band of experimental results up to M = 3, and within about i- 10 per cent of the 
experimental values between M = 3 and M = 5. In  comparison with the experimental mean line 
proposed by Chapman and Kester the value of C,/C,,i implicit in Equation (18) is correct almost to 
within 5 per cent up to M = 5. 

When the boundary-layer thickness is required at only a single point the equations quoted, 
i.e. Equations (2) or (18), with ( lb)  and (3), are in a suitable form for the calculation. However, when 
values are required at several positions along a surface the calculation would be simplified by 
rearrangement. Equation (2) with (lb), (3) and (4) can be rearranged as 

' 

> 

0 = gQ5IG L(CZ~L/V~)-'/' (20) 

where Q = p w ) ,  0 (21) 

where L is any reference length, and P and g are functions which may be plotted on a large scale, 
for direct computational reference, and are shown in Figure 5. Actually P is the function of 
Equation (3), while 

g = 0.022 (1 + 0. 16M2)-0G0 (1 + M2/5)371 M-3'5 (22) 
The  quantity a,L/v, may for convenience be derived from Figure 7. Equation (1 8) similarly yields:- 
for free-stream Reynolds numbers Rs of the order of 10G, 

1 8 = g ,  p L (  a0L/v0)-l/5 

0 = gzQ4'5L(aoL/vo)-1/5 

8* = g8Q4/5L(a0L/v0)-1/5 

8 = g4Q5J6L(a,L/v,)-"G 

0 = g 5 ~ 5 / s ~ ( a 0 ~ / v 0 ) - 1 / 6  

8* = gsQ5~~L(a0L/v0)-1~~ 

for free-stream Reynolds number of the order of 107 

where the g functions are shown in Figures 8 and 9, 

where Q = Pd(x/L) 
0 

P = ( M / ( l  + M2/5))4 

(2l)bis 

(3)bis 

P being shown in Figure 5, while L is any reference length and the quantity a,L,/vo may be derived 
from Figure 7. 

The recommendations for provisional working formulae are therefore as follows. If 0 is the only 
thickness required, Equations (2) or (20) may be used, P being taken from Equation (3). If 6% or 
8 are required, and if the pressure gradients are not very steep, Equations (18) or (23) are rather 
more convenient, P again being taken from Equation (3). These equations are, of course, also 
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suitable for calculating 8. I n  strong pressure gradients 8 should still be given adequately by the above 
equations but 6” should be calculated using the ratio P l B  as obtained taking into account the change 
in shape of the velocity profile of the boundary layer resulting from the pressure gradient, as is 
possible using Englert’s, Mager’s or Reshotko and Tucker’s method. Equations (2) and (18) are 
suitable ‘for calculating values at a single point; Equations (20) and (23) are more suitable when 

.values are required at several positions along a surface. 

Acknowledgement. The authors wish to acknowledge the assistance of Miss J. A. Proud in 
carrying out the computations. 
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LIST OF SYMBOLS 

d 

X 

X 

L 

Y 
Y 

U 

U 

M 

P1 

R"' 

f, p 
-b 

Distance from the leading edge 

An equivalent distance defined by Equation ( lb)  and discussed in Section 2.0 

A reference length (also, a specialised function in Michel's method only) 

Distance from the surface 

Radial distance from the axis 

Velocity in the mainstream 

Velocity in the boundary layer 

Mach number in the mainstream 

Density in the mainstream 

Density in the boundary layer 

Thickness of the idealized boundary layer: u/U = (y/S)1/" 

Momentum thickness of the boundary. layer, i.e. 
W 

8 = 1 ( P U l P l U )  (1 - U/U)dY 

= 1 (1 - PU/P,U)dY 

0 

Displacement thickness of the boundary layer, i.e. 
W 

0 

Static temperature in the mainstream 

Stagnation temperature 

Kinematic viscosity in the mainstream 

Kinematic viscosity at stagnation 

Exponent in the viscosity-temperature relation p cc T"; a reasonable value for 

Velocity of sound 

Stagnation pressure 

Reynolds number U X / v  

Value of R, when X = 1 ft and p ,  = 1 atmosphere (data taken from 

Value of aoL/vo when L = 1 ft and p ,  = 1 atmosphere (data taken from 

Functions of Mach number defined by Equations (la) and ( lb)  

w is 0.75, except at very high temperatures, where w = Q 

Reference 17) 

Reference 17) 

Reynolds number exponent in Equation (la) 

1/(1 - b)  
Functions of Mach number defined by Equations (20) to (22) etc. 
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