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Summary. The report describes a theoretical investigation in support of measurements being made on an 
oscillating half-wing model of the plan-form shown in Fig. 1 in the National Physical Laboratory 25 in. by 
20 in. Wind Tunnel fitted with slotted liners. Little is known about the steady or unsteady characteristics of 
M-wings. Results are obtained by low-frequency theory at Mach numbers 0 and 0.8 and by general theory for 
frequency parameters 0.3 and 0.6 (based on mean chord) at the Mach number 0- 8. The calculations cater for 
rigid pitching about an arbitrary axis and rigid bending about the wing root, the latter mode being used 

experimentally to estimate forces on a complete rolling M-wing. 
The sharp kinks located at the root and mid-semi-span of the leading and trailing edges subject the theories 

to a severe test. The calculated steady characteristics reveal a very slow rearward trend in aerodynamic centre 
as Math number increases and large discrepancies in the local aerodynamic centre over the outer panel of the 
M-wing. The oscillatory characteristics are summarized in tables of the calculated pitching and bending 
derivatives, the former being given numerically for the three pitching axes for which provision .is made in 
the experiments. The figures show how the derivatives vary with axis position, frequency parameter and 

Math number. 
As compared with conventional delta or arrowhead plan-forms, the M-wing has a high minimum pitching 

damping at low speeds, which occurs for a pitching axis close to the aerodynamic centre. Although a change 
in frequency parameter from 0 to 0.6 reduces the damping derivative about rearward axes by roughly 30 per 
cent, the pitching oscillation shows no likelihood of becoming undamped. The error in the calculated values 
of the damping about all practical pitching axes may be as much as 15 per cent of its minimum value; only 
half this inaccuracy is incurred in the other derivatives. Nevertheless, exceedingly laborious calculations would 
probably be needed to establish their values to two places of decimals. The comparison between calculated 
and measured values of the pitching derivatives is good for the in-phase lift and moment and somewhat less 
satisfactory for the damping derivatives. The significance of the differences is doubtful, as slotted-wall 

interference effects in unsteady flow are unknown and there is reason to suppose that they may be large. 
The symmetrical rigid-bending mode is highly damped for the range of frequency parameter. Some calcu- 

lations with an anfisymmetrical rolling mode have been made in order to estimate the dorrections which 
mflst be applied to the experiments. It is shown that a factor of about 0.89 is necessary to convert the rigid- 
bending damping of the half-wing model to the rolling damping of the complete M-wing. 

1. Introduction. The  research programme of the N.P.L.  includes the measurement  of  oscillatory 

aerodynamic derivatives in the speed range 0. 6 < M < 1 .4  on a half-wing model having the 

plan-form shown in Fig. 1. T h e  present report  describes some theoretical calculations carried out 

* Previously issued as A.R.C. 20,649. 
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for comparison with the derivatives measured in the subsonic range. The  plan-form is of the so-called 

'M-wing '  type and has the special features of a kink at half-span, the inner panel having a quarter- 

chord sweep-forward of 55 deg and the outer Panel a trailing-edge sweep-back of 55 deg and a 

leading edge of parabolic shape with its vertex at the pointed tip. 

Although lifting-surface theories exist which have coped successfully with wings of more 
conventional plan-form, the M-wing must be expected to provide a severe test. Multhopp's  theory 1, 2 

was used for steady flow and low-frequency oscillations at M = 0 and M = 0.8, since it has 

appeared to be the most accurate; being almost completely mechanized, it carl be applied rapidly. 

Although the experiments at M = 0.8 have been made at one frequency parameter of about 
= 0:055, the theoretical work at this Mach number  covers the full practical range of frequency; 

for the higher values ~ = 0.3 and 0.6, the theory of Ref. 3 was applied, since this is also largely 

mechanized. In both these theories the collocation points lie at sections y = s sin [Trn/(m+l)] 
where m is an odd integer and n = 0, 1, . . . , ½-(m- 1). If  ( m + l )  is a multiple of 6, one of these 
sections, y = ½s, contains the kink, which may then be treated by the procedure suggested in 

Ref. 1. Accordingly m = 11 was chosen for most of the calculations although a few low-frequency 

solutions with m = 23 were also obtained as a check on accuracy. The  collocation points in a 

solution with m = 11 and two chordwise terms are shown in Fig. 1. 

The modes for which experiments are being performed are firstly rigid pitching about three 

axes and secondly rigid bending of the half-model about a streamwise axis near its centre-line, 
the latter being intended to give some idea of the forces on the rigid rolling wing. The calculations 

have therefore been carried out for rigid pitching about an arbitrary axis, for symmetrical oscillations 

of the complete wing hinged along its centre section but  otherwise rigid, and for steady rolling of 

the complete wing. Comparison of the last two calculations should give some idea of the corrections 

which must be applied to the experiments with bending mode in order to obtain the damping 

derivatives for rigid rolling oscillations. 

2. Calculations for Low Frequency. Slow pitching and plunging oscillations of the M-wing were 

considered first by Multhopp 's  theory ~,~. The logarithmic singularity in the spanwise integral for 
the downwash was treated by means of Ref. 4. In fact, the procedure in Appendix II  of Ref. 2 
was followed in the calculations with N = 2 chordwise terms. 

The choice of the number  of spanwise stations was dictated by the plan-form; by choosing 
m to be 11 and 23, the stations % = sin [n~r/(m + 1)] included ~ = 0 and ~/ = ½ where the kinks occur. 
The  usual 'interpolated wing'  was used, so that the local leading edge and chord at a kink station 

~7 = ~)~ are replaced by 

x~ = ~X~_l. 1 + ~ "~ ~rx~jki~ + ~x,,_.~, ~] 
5 1 

Cn TI'~Cn-1 q- B-(C)kink q- N'xCn+I J (1) 

as indicated by the dotted curves in Fig. 1. 

The  theoretical calculations with m(N) = 11(2) and 23(2) were made for both M = 0 and 

M = 0.8. In addition, for M = 0.8 only, a solution with re(N) = 11(3) was obtained. The  
introduction of a third chordwise term involves a load distribution 

I ic°xM~ t 8s [ ' /cot ½¢ + 4~(cot 1¢ _ 2 sin ¢) 
l =  exp U( I_ MZ) t  ¢rc 

+ ~(cot ½¢,- 2 sin ¢ - 2 sin 2¢)], (2) 
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where 
= ~,(v) + 4 v )  ½(! - cos 4) (3) 

and y,/2 and y depend on ~7. The  consequent boundary condition is 

7,O 
U exp 

i~oxvM 2 

v(1 - M~) I 
½(m--l) 

- E '  b.~E(i.~- %z¥..~)y~ + (j.~- %jj.~)#~ + (k.~- (~kk;.~)~], (4) 
- - ½ ( m - l )  

where % denotes the imaginary quantity io~%/[U(1-M~)]. Equation (4) is satisfied at each 
combination of the m spanwise stations flu = sin [urr/(m+ 1)] and t h e  three chordwise stations 
x~ = x~, + ½6(1-cos~b), where ~ = 2~r/7, 47r/7 and 6~/7. The  spanwise symmetry makes it 
unnecessary to consider negative v, so that the resulting ~-(m + 1) complex equations with '7-~ = ~7~, 
fi_n = /2~ and ~ h  = ~ determine the complex unknowns '7~,/2n and ~,~ for n = 0, 1 , . . .  ½(m- 1). 

The  influence functions i, ii, j, j j  in Equation (4) are defined in Section 4 of Ref. 2; the two 
-additional ones are given similarly by 

k(X, Y) = 1 f ~  ( 2 X -  1+cos qS)(cos 2qS+cos 3q5) ) 
; { ( 2 x -  1 + cos ¢)3 + 4 Y~)l/~ d~ 

(5) 

where X and Y take values 

x,,~ = ( , ¢ - x , , ) / c , ,  / .  

J Y~,~ (1 - M~)l~s(v~-,7,,)/c,, 
(6) 

There is a simple relationship 

k = 2 i -  ¼j - 2jj, (7) 

but the corresponding expression for kk is more complicated. All the influence functions were 
evaluated by a mechanized programme for the DEUCE in the Mathematics Division, N.P.L. 

It is necessary to distinguish between the method of Ref. 2 described above and the limiting 
form of Ref. 3 as the frequency parameter tends to zero. In place of Equation (2) the load distribution 
in Ref. 3 is 

/ = e x p l  ~ / T r c - - 8 S [ T c ° t ½ ~ + 4 / x ( c ° t ½ ~ - 2 s i n ~ ) ]  (8) 

Furthermore, the boundary condition (4) is multiplied by the factor 

exp ~ + U( I_M~) t  = 1 + U ( I _ M ~  ) + 0(~o 2) (9) 

to give an equation 

w Y/ U exp = b~[i~7~ + J~d~] - -½(,~-1) b~[I~7~ + J ~ ] .  (10) 

(82140) .A.* 



With the aid of Equation (3), the load distribution (8) may be rewritten as 

where 

and 

{ io,.a,~ t Ss + 
l = exp U(1 -- M"~) } .a-c [yFr tzF~`] 

F T = c ° t ½ ~  ~ I ( 1 G ~ )  + ( c o t ½ ~ - 2 s i n ~ )  U ( I _ M ~ ) t  

F , ,=co t~ l -~  U(~--~/~) +(co t½~b-2s inq~)  1 i°J(x~+½c)t~1(17-M-g)} 

(11) 

(12) 

+ (cot ½ ~ - 2  a n  ~ - 2  sin 2~) U(i-Z~/~) t . (13) 

When the load distribution (11) replaces (2), it follows from Equation (12) that the complex 
influence function (i,,,~- %ii,,~) in Equation (4) is replaced by 

I t I ,',,,,, 1 U ( 1 -  M ~) } + -,l--J,,.,~ t U ( 1 -  M ~ )  - u,,,~. { U(1- - -~ /2 )  • 

With the factor (9), the corresponding influence function in Equation (10) is 

U(1 - M 2) 
[(x,,.l+ ~c ,~ -  x,,),,,,. 1 ." -- 

- -  yffc,j~J~r~ + c~z~.~] 

(14) 

Similarly, when the chordwise loading (13) is used instead of (cot ½ ~ - 2  sin q~), there are extra 
terms in the influence function, so that (j,,,,~- %jj,,,~) in Equation (4) is replaced by 

U(1-M~) /  +:""~ 1 -  U(1-M~) +4k,,,~ e ( l : ~ )  -JJ~"~ v(i-7~vM~)t 

" {  ic°(x"a + ½%) I ic°q~ [3i;,~ - J;j~,~ - 3jj~,J 
= j,,.,,~ 1 - U(1 - M2j - + U(1 - M 2) 

by Equation (7). Hence the factor (9) gives 

L,.  = J0,~ - o - d -  3i,.,~ + (~ - -  x,.,~)y.~ + 3yy,,,j. .(15) 

The  limiting form of Ref. 3 is embodied in Equations (8), (10), (14) and (15), which were used to 
obtain an alternative solution for M = 0.8  with m(N) = 11(2). Since the real terms in both the 
load distribution and boundary condition are precisely those in Equations (2) and (4) to the first 
order in frequency, the quasi-steady quantities such as the pitching stiffness are identical. I t  is 
reassuring that the imaginary terms in the integrated loading are found to be in good agreement. 

It  is unnecessary to set out the method of solution in detail, as the treatment of Equation (4) for 
pkching oscillations is fully described in Section 5 of Ref. 2; the load distribution is writ ten as 

1 - 2 M  2 1 I • Oe M 2 x X o [ t + _ _  l - ~ + - - 1 3  (16) 
I =  0i, + ~ 1 - ~  e i l - c  I _ M~ . I _ M~ , 



where 0 is the instantaneous angle of pitch about  the axis x = x 0 and 
Equat ion (65) of Ref. 2. The  corresponding expression in the treatment of Equation (10) is 

l =  0 i1+-  ~ - c i ~ - ~ - i 1 +  2 i 2 + 1  2i~ , (17) 

where i~ is formally equivalent to ia, the influence functions ii a n d j j  being replaced by 

[ ( ~ - X ) i  - l~¢j +ii]  and [ -  3i + ( ~ -  X ) j  + 3jj] 

in accord with,Equations (14) and (15) respectively. 
The  lift and pitching-moment coefficients are readily evaluated from the integrals 

;:; } Cm = [Ic/2g] sin ¢ de &/ 
o . ( 1 8 )  

f:; C,,~ = [Ic(x o - x ) / 2 g  2] sin ¢ de d~ 
o 

The  pitching derivatives are then defined by 

c ~  = - 2 [ 0 ~ 0  + (O~/U)~o] I 
(19) / 

C~,~ = 2[Omo + (Og/U)mo] J 

and are finally expressed, as in Table 1, by formulae 

- Zo = A - B h  

- z o  = C -  D h  } (20) 
- m o  = E + Fh + Bh  2 ' 

- r n  o = G + H h  + D h  ~ ]  

where h = xo/g and for low frequency A = D = - F, B = 0 and C + E + H = 0. 
To cover the range of experiments on the M-wing,  a bending mode must also be considered. 

The  equation of the surface of a wing bending rigidly about  its centre-line is 

z = ¢o [Y ] d'°~, 

so that the boundary condition is 

w = ioJs¢o 1~7 [ e~'°' 

= l, (21) 

where ~ is the instantaneous rate of change of angle of bend. 
Whenever  there are spanwise discontinuities in w(~?) or its derivatives, it is advisable to use an 

equivalent smooth distribution. Such a procedure has been discussed and formulated for part-span 
control surfaces in Ref. 5. The  required values % = w(~7~ ) are represented by equivalent quantities 

- w , ~  = 2 U  b~y~0- ~;' b~y~ 0 , (22) 
--½(m--l) 

5 

il, i2, i a are defined in 



where 7n0 = 70(%) is the exact solution of Equation (21) by low-aspect-ratio theory 6 (De Young), 
namely, 

ls l 7o = ~¢s i n C , - c o s  ~¢'log e l + s i n  

where ~7 = cos ¢. Comparative values of l ~  [ and we,/¢s are given below: 

0 
0.1305 
0.2588 
0-3827 
0.5000 
0.6088 
0.7071 
0.7934 
0.8660 
0.9239 
0-9659 
0-9914 

m =  11 

v welles 

0 0.0371 

1 0-2623 

2 0.4987 

3 0-7084 

4 0-8653 

5 0-9667 

3 
4 
5 
6 
7 
8 
9 

10 
11 

m = 23 

v wev/~s 

0 0.0184 
1 0.1323 
2 0.2582 

0.3833 
0.4997 
0.6090 
0.7070 
0.7935 
0.8660 
0.9241 
0.9658 
0.9916 

Calculations have been made with m(N)  = 11(2) and 23(2) for both M = 0 and M = 0.8. The  
alternative conditions w~ = we~ and % = Cs I% [ are shown to give results in very close agreement. 

Since w is 0(co), the low-frequency solution is quasi-steady and with N = 2 Equation (4) or (10) 
reduces to 

~(m-1) 

- w / u  = b, ,E, ,5 +L,# , ]  - Z '  b , , [ i . , ~ ,  + L , ~ , ]  + 0(o~) .  (24) 
~.5(m-i) 

With spanwise symmetry the values of '7~ and/2~ from the (m + 1) simultaneous equations lead to 
the load distribution in Equation (2); 

l =  (¢s/U)i , 

where i is real and corresponds to the steady condition w / U  = ]7]- Hence the lift is given by 
Equation (18) and the bending-moment  coefficient is 

B 1 (lc/4g)~ sin ¢ d¢ d~ .  (25) 
Cb - pU2S~ s -  o o 

The bending derivatives are then de f inedby  

C L - 2 (¢ , /U)z~ / . .  

c~ ((~,lU)b~ j 
(26) 



The steady rolling derivative lp, defined by 

where p is the rate of roll, has also been calculated by satisfying the ant isymmetrical boundary 

condition w = ps~ 1. 

3. Calculations .for Finite Frequency Parameter. In order to investigate the behaviour of the 
wing when the frequency parameter is not small, some calculations have been carried out by the 
method of Ref. 3, which is essentially an extension of Ref. 2 to finite frequency. The loading is 

assumed to be that in Equation (8). 
The values of the frequency parameter were taken to be ~ = 9 i / U  = 0.3 and 0.6, and the 

Mach number M = 0.8 throughout. The collocation points were chosen to be the same as those 
for the low-frequency calculation with m(N) = 11(2). The influence functions 

I = i  1 + i ~ + i 8 + i 4 ]  
and / (27) 

s = Jl  + + + J d  

had then tO be calculated from Equations (47) to (59) of Ref. 3 for the appropriate values of X and Y 
in Equation (6). The functions/3, i4, J3 and J4 were calculated mechanically on the DEUCE by the 
Mathematics Division, N.P.L., but i 1 and i s were evaluated on desk machines and both j l  andj~ are 
identically zero. No difficulty was encountered in any of these computations. For each collocation 
point the upwash w prescribed by the motion of the wing is inserted in Equation (10), where the 
quantities l~  and J~ are corrected for the logarithmic singularity by Equations (62) and (63) of 
Ref. 3. The resulting set of 12 complex simultaneous equations were solved mechanically to give the 
required values of 7 and/z at the six spanwise locations % = sin [mr/(m + 1)] with n = 0, 1, . . . 
½(m- 1). 

Since the evaluation of the influence functions for the low-frequency case is much quicker than 
for a finite frequency, some calculations were made in which the elements in the matrix of the 
simultaneous equations were replaced by the corresponding values calculated by low-frequency 
theory. Thus in accord with Equations (14) and (15) 

• io c~ [ ( ~ - X ~ ) i ~  - ~ j ~  + ii.~] ] 
= 1 e , ( 2 s )  

where ~ was given the appropriate numerical value. The calculations were otherwise identical to 
those described above. Unfortunately the (esuks of this 'hybrid' method in Table 1 differ widely 
from those using the exact influence functions, although the direction of the trend with frequency 
is correctly predicted. 

The lift is given by the formula 

L = ½p U2SA exp 7(Jo + iJ~) + 4/~( - J2 + iJa d~l, (29) 
-z U 

7 



and the nose-up pitching moment about the axis x = 0 by 

~ o =  ½pU2SeA f l _ l e x p  l i~°(x'+½c)t lx' U 7 ~'(Jo + iJ~) 

4x~ 
+ ~ - t z ( - J 2 + i J a )  + (Jo+J2) 

C 

+ = ( - J o - Y 2 + i J l  +iJa) &7 , (30) 
C 

where J~ =- J~(oJc/2U) is the Bessel function of order n(= 0, 1, 2, 3), Of which tables are available 

in Ref. 7. Thus the lift and moment ~W = dZ 0 + xoL are easily evaluated, and hence the pitching 
derivatives as defined by Equations (19). In terms of the frequency parameter 

L = - p U~S[zo + i~zo] I 
d~ = p U~Sg[mo + i~m6] ) " (31) 

The equivalent boundary condition (22) was used in obtaining the solution for the rigid bending 
mode of oscillation. The bending moment is given by the lift integral (29) with a factor [y ] = s ]w ] 
in the integrand; hence 

Ii , 1 B = p U2Ss b ¢ + ~ - b  4 

= pU2Ss[b¢ + ½i~Ab,z; ] . (32) 

The corresponding lift may be written in the form 

L = - pU2S(z./, + ½i~Az,/;). (33) 

4. Results and Discussion. The results are contained in Tables 1 to 3 and Figs. 2 to 6. Table 1 
lists the pitching derivatives as linear or quadratic functions of axis position h; they are given 
numerically in Table 2 for the equidistant axes h = 0. 0650, 0. 4644 and 0. 8638, for which wovision 
is made in the experiments. Table 3 contains calculated derivatives for the symmetrical rigid- 
bending and antisymmetrical rolling modes. 

The steady aerodynamic characteristics of the M-wing, as calculated by lifting-surface theory, 
are given in the following table. 

m(N) M ha. c. ~ C.o/CL 2 

11(2) 
23(2) 
11(2) 
11(3) 
23(2) 

0 
0 
0.8 
0.8 
0.8 

ocL/a~ 

2-981 
2.854 
3-301 
3-391 
3-182 

-0.4188 
-0.3834 
-0.4189 
-0.4264 
-0.3693 

0-3984 
0.3956 
0~3914 
0-3923 
0-3943 

0.0750 
0.0754 
0.0765 
0.0762 
0.0769 

To summarize, the lift slope increases by 11 per cent from about 2.94 at M = 0 to 3.27 at M = 0.8, 

the aerodynamic centre moves from about 0.39E to 0.38g forward of the root leading edge, while 

the spanwise centre of pressure stays well inboard at ~/ = 0.395 and the lift-dependent drag 



coefficient 0 .076Cz  ~ is 20 per cent greater than its opt imum value CL2/(rrA) = 0"063CL =. T h e  

table also shows that the choice o f t h e  number  of spanwis e collocation sections may significantly 

affect the lift slope and aerodynamic centre. Th e  increase from m = 11 to m = 23 reduces 3Cz/Oe~ 

by 4 per cent and shifts the position ha.e. rearward by about 0.04& 

Figs. 2a and 2b show the local lift and aerodynamic centre as functions of spanwise position for 

M = 0 and M = 0.8:  the peaks in the curves of Xax" at ~ = 0" 5 correspond to a smooth locus of 

the local aerodynamic centre as it crosses the junct ion of the inner and outer panels. Although 

c C z z / g C z  shows only a small variation with m and no detectable variation with N, X~.~. reveals 

a remarkable dependence on m, which is emphasized in the table below. 

re(N) 

11(2) 
11(3) 
23(2) 

Values of Xa. c. for M . =  0- 8 

-q=O 

0-0243 
0-0207 
0-0764 

0.2588 

0.2735 
0.2551 
0.2838 

O. 5000 

0.4695 
0.4785 
0.4968 

0.7071 

0.1682 
0.1778 
0.2621 

0.8660 

0.1293 
0.1349 
0.2436 

0.9659 

0.0806 
0.0710 
0.1866 

Thus  over the outer panel of the M-wing,  the increase from N = 2 to N = 3 only brings about 

fairly small changes of the order 0.01 in Xa.e. , while the increase f rom m = 11 to m = 23 increases 

X,,.o. by 0.10. A similar t rend of smaller order (J. 02 has been found for arrowhead and delta wings 

(Ref. 8, Table  XVII),  though it is negligible for rectangular wings. T h e  phenomenon is therefore 

attr ibuted to sweepback, and probably arises f rom inaccuracy in the spanwise integration implicit 

in the r ight-hand side of Equation (4). Even for the M-wing with a discontinuity of 110 deg in 

sweepback at mid-semi-span, there is every reason to suppose that this could be remedied by taking 

a large enough value of m. It  is uncertain whether  calculations with re (N)  = 35(2) or 23(3), involving 

the formation and solution of 36 simultaneous equations, would establish the value of Xa.e. to two 

decimal places; for this purpose it might be necessary to undertake exceedingly laborious calculations 

with r e ( N ) =  47(3) or 35(4) with twice that number  of equations. An interesting practical 

consideration is to what  extent the convergence of the solution would be improved or worsened 

by taking values of (m + 1) which are not multiples of 6 so that the discontinuity no longer occurs 

at a collocation section, or by taking an even value of m so that the central kink is also eliminated 

from the boundary  conditions. 

In the low-frequency case, z 0 and m o are given in Figs. 3a and 3b as functions of h calculated 

_from Table  1. Fig. 3a shows that for the range of pitching axis z o increases with Mach number.  

For  M = 0.8, the min imum value of the pitching damping derivative - m 0 = 0 .7  occurs for a 

pitching axis h = - 0 .42 close to the aerodynamic centre; for pitching axes aft of this - m o shows 

a marked increase with M. For  M = 0, the min imum value - m 0 = 0.5 is significantly higher than 

that calculated for many other wings, although this seems to be less true for M = 0 .8  (Ref. 2, 

Fig. 5). Fig. 3b shows, for M = 0.8,  the effect of changing the number  of collocation points and 

the form of the load distribution. T h e  full curves correspond to the limiting form of Ref. 3 as ~ -> 0, 

which is considered in Section 2; these lie close to the result from Ref. 2 for the same re (N)  = 11(2). 

With an extra chordwise term the curves of z 0 and rn 0 lie between the other two for some negative 



values of h but diverge along the dotted curves for h ,> - 0.5. As would be expected from the 

previous discussion of steady theoretical results, there are rather larger discrepancies between the 

two dashed curves for different values of m. I t  seems that for the practical range of pitching axis 

the uncertainties in z 0 and m 0 are of order + 0.05 and + 0.10 respectively. 

Since the calculations of the effect of frequency parameter were limited to m = 11, the numerical 

values of the derivatives from Table 1 must be treated with reserve. However, Figs. 4a and 4b show 

the curves of Zo, z 6 and m0, rn 6 for M = 0.8 as functions of h for ~ = 0, 0.3 and 0.6. I t  may be con- 

cluded that frequency effect is of the same order as that of Mach number  but  often of opposite sign. 

Thus  - z 6 increases with frequency and for pitching axes aft of the aerodynamic centre - m~ falls 

by roughly 30 per cent as ~ changes from 0 to 0.6. The effect of increasing ~ is to shift the minimum 

of - m 0 to an axis further aft and reduce its value slightly. This is similar to the behaviour of - m 0 
for a rectangular wing of aspect ratio 4 (Ref. 3) and may be characteristic of wings of fairly high 
aspect ratio. 

The four pitching derivatives are plotted against ~ and M in Figs. 5a and 5b for pitching axes 

h = 0. 065 and h = - 0. 734 which lie on opposite sides of the aerodynamic centre. The  theoreticai 
curves against ~ are from results by Ref. 3 for M = 0"8, the 'hybrid '  method (Section 3) with 

re(N) = 11(2) being included for the axis h = 0.065. They  have been drawn on the assumption 
that each derivative is of the form ( P +  Q~2 + R~ e log ~), except for the 'hybrid '  case when the form 

( p +  Q~e+ R~4) was taken since no terms in ~' log ~ can then appear. In each case the constants 
P, Q a n d  R have been determined from the known values of the derivative for ~ = 0, 0.3 and 0.6. 
As mentioned in Section 3, the results of the 'hybrid '  method, in which terms of order ~2 in the 

influence functions are ignored, differ widely from those derived from the exact influence functions 

of Ref. 3. The  'hybrid '  method, though of no practical use, does predict correctly the trend of each 
derivative with frequency. The curves against ~ in Fig. 5b illustrate how, for both m o and m6, the 

effect of frequency has opposite signs for the two axis positions. 

The curves against M correspond to the low-frequency theory of Ref. 2 and include the same 

two values of h for both m = 11 and m = 23. Since the derivatives are only known for M = 0 and 

M = 0.8, special care has been taken in preparing the curves. It is explained in Ref. 2 that all the 
derivatives are fully expressed by the seven coefficients 

(IL)I, (//;)2, (I2;)3, IL* = -- (Ira)l, (Im)~, (Im)a and/m*" 

For example, from Equation (79) of Ref. 2, 

too= I ~2-~fifl3 ~ I~* + 2fl2 - 1  1 l 

{ 1 2132-1 1 I 1 
+ h - ~ (I,~)~ + 2~--T-- (IL)2 + ~fiSfia (IL)a -- he'~-fi (IL)~, (34) 

where 13 = ~/(1 - Me). For each of the seven coefficients the formula 

f ( M )  = ½(513 e - 313)f(0) + ~.5_(13 _ 13e)f(0.8) (35) 

has been used to estimate its value for any required subsonic Mach number  before substitution 
into an expression such as Equation (34) for m0. This implies that 

too(M) = ½(5t3- 3)too(O) + ~-(1 -fi)mo(O" 8) (36) 
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and that there is an identical formula for z o. Although the separate curves for m = 11 and m = 23 

cast doubt on numerical accuracy, there is reason to suppose that the variation of each derivative 

with Mach number is approximately correct. I t  is noteworthy that in practically every case the 

influences of compressibility and finite frequency are of equal order of magnitude and of opposite 

sign; for pitching axes close to the aerodynamic centre, neither frequency nor Mach number has 

much effect on the stiffness and damping derivatives. 
With regard to numerical accuracy, it is concluded that Zo, z O and m o are liable to errors of the 

order + 0.05, but that m o is uncertain within about _+ 0.10. However, it is possible to estimate 

values that  may be well within these limits. For M = 0"8 there are three solutions by 
Multhopp's  theory for low frequencies, namely, r e ( N )  = 11 (2), 11 (3) and 23 (2); the best available 

procedure is to apply the linear combination {11(3)-  11(2)} + {23(2)-  11(2)} as a correction 

to the solutions by Ref. 3 for ~ = 0, 0.3 and 0.6. When the appropriate values from Table 1 are 
used in this way, the recommended derivatives are obtained in the notation of fornmlae (20) as 

fol lows:--  

- z o = A - B h ,  

- z o  = C - D h ,  

- m o = E + F h  + B h  2 ] 

t 

m o =  G + H h  + D h  z)  
(37) 

where 

0 
0.3 
0.6 

A 

1.64 
1 . 5 1  

1.36 

B 

0 
0-02 

-0 .01  

C 

-0-79  
-0 .41  
- 0 . 0 9  

D 

1.64 
1-50 
1-34 

E 

- 0 . 6 2  
- 0 . 5 8  
- 0 . 5 6  

F 

- 1 . 6 4  
- 1 . 4 7  

- 1 . 2 6  

G 

1.08 
0.91 
0-75 

H 

1.41 
0.97 
0.56 

The  derivatives calculated for the rigid bending mode are summarized in Table 3 in the notation 

of Equations (32) and (33). The values of z¢ and b~ obtained from the alternative forms of the 
boundary condition in Equations (21) and (22) are seen to differ only by small quantities which, 

especially for bd, are within the accuracy indicated by the calculations for different values of m. 
The  in-phase derivatives z¢ and be are small but erratic functions of ~. In the lower diagram of Fig. 6 

the in-phase part of the local lift (CCLL/g) is plotted against ~7; it can be seen that the variation of 
z¢ and be with ~, particularly the negative value of - be for ~ = 0.6, is due to a region near mid- 
semi-span in which the local lift increases slightly for small values of ~ and then becomes negative. 
Since m = 11 in  these calculations, the curves in Fig. 6 must be regarded as approx!mate only and 
the sign of the stiffness derivative - be is uncertain. The out-of-phase derivatives z¢ and b6 both 
decrease as ~ increases, but  - bd remains positive and has only fallen by 16 per cent when 5 = 0.6, 

so that the bending oscillation shows no likelihood of becoming undamped.  The right hand column 
of Table 3 gives the steady rolling derivative - l~, which is always less than - bd. The  upper diagram'  

of Fig. 6 gives the out-of-phase part of (CCLc/g) as a function of ~ for ~ = 0, 0-3 and 0-6 and also 

for steady rolling. The curve for steady rolling lies below- that for the symmetrical bending mode 

at 5 = 0 and by antisymmetry must pass through the origin. From the values quoted in Table 3, 

it appears that a factor 0.89 should be applied to a measured value of bd on the half-M-wing to 

obtain the corresponding antisymmetrical rolling damping coefficient. 
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5. Compar i son  w i t h  E x p e r i m e n t .  The derivatives Zo, Zo, mo and m o have been measured on a 

half-wing model of span 11 in. mounted on a side wall of the N.P.L. 25 in. by 20 in. Wind Tunnel. 

Streamwise slotted liners were fitted to the roof and floor of the tunnel, so that the height of the 

working section was reduced to 21 in. The slots were of width 0.18 in. with centres 1" 98 in. apart. 

The experiments 9 (Bratt and Wight) included the three pitching axes of Table 2, but the lift deriva- 

tives zo and z o were only measured for the middle axis h = 0.464. The tests for this axis have been 

repeated subsequently with slots sealed to give a closed tunnel. 

The experimental values with slotted walls at M = 0.8, indicated by circles in Figs. 5b, 7a and 

7b, correspond to a frequency parameter ~ = 0. 055 and should therefore lie close to the theoretical 

full-line curves for low-frequency oscillations. The theoretical results in Figs. 7a and 7b are taken 

from the formulae (37) which are probably the least inaccurate. In fact the agreement for Zo and mo 

is good and that for z 0 is fairly good; the values of m 0 show considerable discrepancies, though the 
trend with varying pitching axis is in accord with theory. Fig. 5b also Shows the experimental 
variation with Mach number of the pitching-moment derivatives about the axis h = 0"065. 
Throughout the range 0" 6 ~< M ~< 1.0 m o agrees well with the theoretical curves, while the trend 

of mo is consistent. 
The experimental values with slots sealed are also included in Figs. 7a and 7b. Since ~ is small, the 

measured values z o = - 1.81 and m o = 1.40, denoted by squares, can be corrected for wall inter- 
ference by the method of Ref. 10 which applies to steady flow in a closed rectangular tunnel. The 

free-stream derivatives for M = 0.8 on this basis are 

Zo - 1 .71]  
(z°)I'8" - 1 - 0.032z0 , (38) 

(mo)l.s. m o - O" 01 l z  o 
= 1 - 0 . 0 3 2 z  0 = 1.34 

which are plotted as crosses and are seen to be in good agreement with low-frequency theory. 

No corrections have been applied to z 0 and mo. 

The large changes in the damping derivatives caused by sealing the slots indicate the possibility 

of large wall interference. There are at present no means of estimating possible slotted-wall 

interference effects. It might be expected that the corrections with slotted walls would resemble 

those for an open tunnel and be of opposite sign to those for a closed tunnel, so that the theory can 

be regarded as satisfactory. 

6. Conclusions. ia)  The theoretical aerodynamic centre of the M-wing lies at about 0.2 root 

chords forward of the root leading edge and shows a very small rearward movement with increasing 

Mach number. 

(b) The limiting theory of Ref. 3 has been derived by letting finite frequency tend to zero. 
Although there are formal differences in load distribution between this and Multhopp's low-frequency 

theory, the derivatives calculated by the two methods agree very closely. 

(c) As compared with conventional delta or arrowhead plan-forms, the M-wing has a high 
minimum pitching damping at low speeds, which occurs for a pitching axis close to  the aerodynamic 

centre. For axes farther aft, a change in frequency parameter ~ from 0 to 0.6 reduces the derivative 

- m 0 by roughly 30 per cent. 
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(d) Of the derivatives calculated the pitching damping is probably the least accurate. There are 
likely errors of the order + 0.05 on Zo, z 0 and m o and + 0.10 on too, as given in Table 1. The 
formulae for M = 0.8 recommended in Equation (37) are thought to be well within these limits 
of accuracy. 

(e) The combination of sharp kinks at the root and mid-semi-span in both leading and trailing 
edges puts the theories to a severe test. Exceedingly laborious solutions with m ( N )  = 35(2), 47(3) or 
higher values would be needed to establish the theoretical derivatives to two decimal places. 

(f) The damping of the symmetrical rigid-bending mode is, large and positive, while the stiffness 
isso small as to be of uncertain sign. A change in frequency parameter from zero to 0.6 reduces the 

• i 

derivative - b4 by approximately 16 per cent. 

(g) The calculations show that a correction factor of about 0.89 is necessary to convert the rigid- 
bending damping of the half-wing model to the antisymmetrical rolling damping of the complete 
M-wingi 

(h) The calculated values of z 0 and m o compare well With experimental results. The experimental 
values of z 0 and m 0 may be subject to considerable tunnel interference; if it can be assumed that the 
true experimental values lie somewhere between those measured in the slotted and closed tunnels, 
then the theory shows fair agreement. 
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LIST OF SYMBOLS 

Aspect ratio = 2s/~ 

Stiffness and damping of bending motion in equation (32) 

Spanwise integration factors in equation (24) of Ref. 2 

Bending moment = pU2SsCb 

Local chord 

Geometric mean C}lord 

Bending-moment coefficient 

Rolling-moment coefficient 

Pitching-moment coefficient 

Lift-dependent drag coefficient 

fl Lift-coefficient = (CCLL/g)d~ 
0 

1 fxe 
Local lift coefficient = -. l dx 

£ x l 

Lift-dependent drag = ½p U2SCD 

Position of pitching axis = Xo/g 

Value of h at aerodynamic centre 

~ / ( -  1) 

Influence functions occurring in equations (44) and (46) of Ref. 2 

Influence functions in final equations of Appendix II  of Ref. 2 

Influence functions occurring in Ref. 3 

Bessel functions (Ref. 7) 

Extra influence functions in equation (5) 

Wing loading = pressure difference/½p U ~ 

Direct steady rolling derivative (end of Section 2) 

Lift = ½pU~SCL 

Rolling moment = pU2SsC~ 
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/ n  0, m 6  

M 

Jig 

JgT, 

N 

p 

$ 

S 

t 

U 

gO 

gOev 

X 

xt, x~ 

x o 

Ya.c.  

x,x . 

Y 

Z 

Zo, zo 

z¢, z4; 
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LIST OF SYMBOLS--cont inued  

Number of spanwise collocation points 

Stiffness and damping of pitching motion in equations (19) and (31) 

Free-stream Mach number 

Pitching moment = ½pU2SgCm 

• Pitching moment about x = hg 

Number of chordwise collocation points 

Angular rolling velocity 

Semi-span of wing 

Area of wing 

Time 

Free-stream velocity 

Upward component of velocity 

w modified for boundary condition in equation (22) 

Streamwise co-ordinate (Fig. 1) 

Values of x at leading, trailing edge 

Value of x along pitching axis 

Local aerodynamic centre 

Co-ordinate for influence functions in equation (6) 

Spanwis e co-ordinate (Fig. 1) 

Co-ordinate for influence functions inequation (6) 

Upward co-ordinate 

Lift derivatives due to pitching in equations (19) and (31) 

Lift derivative due to bending in equation (33) 

Steady incidence of wing 

Compressibility factor, (1 - M2) tI~ 

Coefficient of wing loading in equations (2) and (8) 

Spanwise co-ordinate, y/s 
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717~ 

0 

0 

i?, /x, # 

P 

O'~ 

4 

4o 

O3 

vn 

~(m-1)  

E' 
- ' - . (m-I)  

L I S T  OF S Y M B O L S - - c o n t i n u e d  

sin [n~r/(m+ 1)], n = 0, + 1, . . . ,  + ½ ( m - l )  

Spanwise centre of pressure 

Unsteady incidence of wing = Oo d'~t 

Angular p!tching velocity 

Coefficients of wing loading in equations (2) and (8) 

Frequency parameter = ~og/U 

Free-stream density 

Imaginary quantity = ioJ%/[U(1 - M2)] 

Angular streamwise co-ordinate in equation (3) 

Amplitude of bending mode z = 4o [Y I ei°)t 

Angular bending velocity in equation (2.1) 

Angular frequency = 27r (frequency) 

Suffices numerating c, xz, ~, 9, etc., at ~/ = ~)n, ~ 

Double suffix numerating the influence functions 

Summation with respect to n with n = v omitted. 

16 



No. Author(s) 

1. H. Multhopp . .  

2 H . C .  Garner . . . .  

3 W . E . A .  Acum . . . . . .  

4 K . W .  Mangler and B. F. R. Spencer 

5 H . C .  Garner . . . . . .  

6 J. DeYoung . . . . . . . .  

7 G . N .  Watson . . . . . .  

8 H . C .  Garner . . . . . .  

9 J .B.  Bratt and K.  C. Wight .. 

10 H . C .  Garner and W. E. A. Acum. .  

REFERENCES 

Title, etc. 

Methods for calculating the lift distribution of wings (Subsomc 
lifting surface theory). 

R. & M. 2884. January, 1950. 

Multhopp's subsonic lifting surface theory of wings in slow 
pitching oscillations. 

R. & M. 2885. July, 1952. 

Theory of lifting surfaces oscillating at general frequencies in a 
stream of high subsonic Mach number. 

(With an Appendix by Miss D. E. Lehrian.) 
A.R.C. 17,824--O.1205--Comp.81.30th August, 1955; 

and Corrigenda. 25th October, 1956. 

Some remarks on Multhopp's subsonic lifting surface theory. 

R. & M. 2926. August, 1952. 

Note on the theoretical treatment of part-span control surfaces 
in subsonic flow. 

[In preparation.] 

Spanwise loading for wings and control surfaces of low aspect 
ratio. 

N.A.c.A. Tech. Note 2011. January, 1950. 

A Treatise on the Theory of Bessel Functions. 
2nd Edition, C.U.P., 1948. 

Swept-wing loading. A critical comparison of four subsonic 
vortex sheet theories. 

(With a Foreword by L. W. Bryant.) 
C.P. 102. 1952. 

Measurements of pitching oscillation derivatives at subsonic 
and transonic speeds for an M-wing. 

A.R.C. 21,661. February, 1960. 

Interference corrections for asymmetrically loaded wings in 
closed rectangular wind tunnels. 

R. & M: 2948. September, 1953. 

17 



T A B L E  1 

S u m m a r y  o f  Ca lcu la t ed  P i t ch i n g  D e r i v a t i v e s  

SoIution Method 

1 ReL 2 

2 Ref. 2 

3 ReL 2 

4 Re£ 2 

5 ReE 2 

6 Re£ 3 

7 Re£ 3 

8 Ref. 3 

9 Hybrid 

10 Hybrid 

m(N) 

11(2) 

23(2) 

11(2J 

11(3) 

23(2) 

11(2) 

11(2) 

11(2) 

11(2) 

11(2) 

M 

0 

0 

0.8 

0.8 

0"8 

0"8 

0.8 

0.8 

0.8 

0"8 

0 

0 

0 

0 

0 

0.3 

0-6 

0.3 

0.6 

A 

1.4904 

1.4269 

1-6504 

1.6956 

1.5908 

1-6504 

1.5225 

1.3761 

1.6256 

1.5821 

B 

0 

0 

0 

0 

0 

0 

0-0251 

-0 -0116  

0.0539 

0.1648 

C 

- 0 . 0 8 8 4  

-0 . 1634  

-0 -6310  

-0 .6989  

-0 .7553  

-0 . 5980  

-0 -2199  

0-1051 

-0 .5196  

-0 . 3066  

D 

1.4904 

1.4269 

1.6504 

1.6956 

1.5908 

1.6504 

1.5174 

1"3584 

1.6206 

1-5600 

E 

-0 .6242  

-0 .5470  

-0-6913 

-0 .7230  

-0 .5875  

-0 .6913  

-0 .6516  

-0 -6302  

-0 .7060  

-0-7651 

F 

-1 .4904  

-1 .4269  

- 1 . 6 5 0 4  

- 1.6956 

- 1 . 5 9 0 8  

- 1 . 6 5 0 4  

- 1.4841 

- 1.2777 

- 1.5748 

-1 .4038  

G 

0.6932 

0.5932 

1.1249 

1.2186 

0.9775 

1.1382 

0.9652 

0.8030 

1.0958 

1.0056 

H 

0-7126 

0-7104 

1.3224 

1"4219 

1-3428 

1-2893 

0-8480 

0.4399 

1"2013 

0-9751 

The derivatives may be calculated from the formulae 

- z o =  A - B h ,  - m o =  E + F h  + B h  2 

-- z 0 = C -  Dh, -- m 6 = G + H h  + DhL 



T A B L E  2 

Theoretical Pitchhzg Derivatives for Particular Axes of Oscillation 

Derivative 

- -  ' gO 

-Zo  

- - m  0 

- -  , n ~  

h 

0.0650 

0.4644 

0.8638 

0.0650 

0-4644 

0.8638 

0.0650 

0.4644 

0-8638 

0.0650 

0.4644 

0.8638 

Solution from Table 1 

1 2 3 4 5 ~6  7 8 

M = O  
~ = 0  

1.490 

1.490 

1.490 

- 0 . 1 8 5  ~ 

- 0 . 7 8 1  

- 1.376 

- 0 . 7 2 1  
/ 

- 1.316 

- 1.912 

0-746 

1.346 

2.421 

M = O  
~ = 0  

1-427 

1-427 

1.427 

--0 .256 

- 0 " 8 2 6  

- 1-396 

- 0 . 6 4 0  

- 1.210 

- 1.780 

0.645 

1.231 

2.272 

M = 0 - 8  
~ = 0  

1-650 

1-650 

1.650 

- 0 . 7 3 8  

-- 1-398 

--2-057 

- -0 .799 

- -  1.458 

--2.117'  

1-218 

2.095 

3.499 

M = 0 . 8  
~ = 0  

1.696 

1.696 

1.696 

- -0 .809 

--1"486 

- -2 .164 

- 0 . 8 3 3  

- 1.510 

- 2 - 1 8 8  

1-318 

2.245 

3.712 

M = 0 . 8  
~ = 0  

1.591 

1.591 

1.591 

- 0 . 8 5 9  

- 1 . 4 9 4  

- 2 . 1 3 0  

- 0 . 6 9 1  

- 1 . 3 2 6  

- 1.962 

1.071 

1-944 

3.325 

M = 0 . 8  
~ = 0  

1-650 

1.650 

1.650 

- 0 . 7 0 5  

- 1 . 3 6 4  

- 2 . 0 2 4  

- 0 . 7 9 9  

- 1-458 

- 2 . 1 1 7  

1.229 

2.093 

3.484 

M = 0 . 8  
~ = 0 - 3  

1.521 

1.511, 

1.501 

- 0 . 3 1 9 -  

- 0 . 9 2 5  

- 1 . 5 3 1  

- 0 - 7 4 8  

- 1-335 

- 1-915 

1.027 

1"686 

2.830 

M = 0 . 8  
~ = 0 . 6  

1"377 

1-381 

1-386 

0.017 

- 0 . 5 2 6  

- 1 . 0 6 8  

- 0 - 7 1 3  

- -1 .226 

-- 1"743 

0.837 

1"300 

2"197 



• TA BLE 3 

Summary of Calculated Bending and Rolling Derivatives 

tO 

Method re(N) 

M-O 11(2) 

M-G 23(2) 

M - G  11(2) 

M-G 23(2) 

Acum 11(2) 

Acum 11(2) 

M 

0 

0 

0.8 

0-8 

0-8 

0.8 

0 

0 

0 

0 

0.3 

0.6 

z¢ 

0 

0 

0 

0 

0-0399 

0.0400 

w. = Wev [Equation (22)] 

- b e  z¢ 

0 0"6155 

0 0"5869 

0 0"6750 

0 0"6569 

0"0116 0"6168 

-0"0006 0"5378 

- b ~  

0"3139 

0"2984 

0"3355 

0"3295 

0"3077 

0"2811 

z~ -b~  

0"6055 0"3121 

0"5844 0"2980 

0"6639 0"3335 

0"6543 0"3290 

0.2794 

0-2670 

0-2926 

0.2906 
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