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Summary. Formulae for calculating the-gradients and ordinates of the camber surfaces of swept-back 
wings of arbitrary plan-form with subsonic leading edges, and specified load distribution, are given, including 
those which have been programmed and used for DEUCE calculations for some swept-back and M-wings with 
curved leading edges. 

Some methods for the numerical calculation of singular integrals are given. 
For polygonal wings with simple load distributions, the equation of the camber surface is given in closed 

form. This is useful for obtaining approximate results for more general plan-forms. 

1. Introduction. This paper is a brief account of a method for calculating the gradients and 
ordinates of thin swept-back wings of arbitrary plan-form, with subsonic leading edges. No claim 
is made that anything is new except perhaps the suggested treatment of singularities for numerical 

integration, and some of the formulae and integrations produced. 
Integrals, based on linearised supersonic theory, for calculating the upwash or the streamwise 

gradients of a wing surface for a given load distribution (the direct problem--Ref. 3) have been known 
for some time. But until fairly recently, when large scale calculations with the aid of electronic 
computers became possible, little use had been made of these integrals for wing design. The need 
of a method for designing camber surfaces to produce specified load distributions has arisen in 
connection with a research programme on problems associated with flight at low supersonic 

speeds (Refs. 5, 6). 
In this paper will be found: 

(1) the basic integrals and formulae for calculating t ie  streamwise gradients and ordinates of a 
camber surface to support a given load distribution, the wing plan-form being arbitrary, 
with subsonic leading edges and any trailing edge; 
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(2) formulae for calculating the camber surface for some special forms of load distribution such 
that a first integration can be performed analytically; 

(3) formulae in integral form (which have been  programmed and used for calculations on 
DEUCE) for calculating the camber surface of two particular wings: a swept-back wing 
and an M-wing, with curved subsonic leading edges and straight subsonic trailing edges; 

(4) some approximate formulae, in closed form, for the ordinates of the camber surfaces of 
wings of arbitrary plan-form with subsonic leading edges and uniform chord loading; 
(these have been used for some check calculations); 

(5) some methods for dealing with singularities. 
The chief difficulty in programming for the numerical integrations lies in dealing with singularities 

which do not exist in real flow, but which arise because of the approximate linear theory used. 
These singularities are of two kinds: 

(1) those which arise because of the mathematical form of the problem. These singularities 
cannot be avoided and can be dealt with by using the concepts of 'finite part', 'Cauchy 
principal part', or 'generalised principal part' of an integral in the regions of the singularities 
before numerical integration is attempted. This method is given in Section 5, and has 
been used in existing DEUCE programmes; 

(2) those which arise from the type of load distribution chosen, such as logarithmic singularities 
in the gradients at leading or trailing edges, or in gradients and ordinates at centre or 
'kink' sections (where the gradient of leading and/or trailing edge is discontinuous). These 
singularities could be avoided if certain load distributions were chosen (e.g., a loading 
coefficient of the formf(~, ,7) . (~-F(~?))I/~). But, in practice, the load distributions required 
seem to be such that some of these singularities must occur. 

A method for calculating the ordinates at points on leading or trailing edges, where there are 
integrable logarithmic singularities, is given in Section 5. 

When the load distribution and plan-form are such that logarithmic singularities in both the 
streamwise gradients and the ordinates occur at centre or kink sections on a wing (due to the fact 
that the linearised boundary conditions no longer apply), an iteration method could be used to 
calculate the camber surface near these sections, including both incidence and thickness. Some 
calculations done for a particular wing showed that convergence could be obtained, but nothing 
will be written of this here. Some other methods, which have been used for the particular wings 
mentioned in Section 3 of this R. & M., are given in Refs. 7, 8. 

2. Calculation of the Shape of the Camber Surface of a Wing of Given Plan-form for a Given Load 
Distribution. Considering incidence effects only, and using the linear small perturbation theory 
of supersonic flow, Volterra (Ref. 1) has shown that the acceleration potential f~ can be expressed 
in the form 

1 a f f A f 2 ( x - ~ ) ( z - C ) d S  
~ ( x , y , z ) -  2~ax T [ ( y - ~ ) ~ + ( z - ~ ) ~ ] { ( x - ~ ) ~  ~ [ ( y - ~ ) ~ + (  - )]} - z 11 , ( 1 )  

where f~ = V ~x' V is the free stream velocity, parallel to the x-axis, x, y, z are a right-handed 

system of rectangular Cartesian co-ordinates, z being measured upwards, and ¢ is the perturbation 
velocity potential. M is the free stream Mach number and/?~ = M 2 - 1. Af~ is the jump in the 
value of f~ across the surface of the wing, and integration is over the part, ~, of the wing surface 
for which ( x -  ~)~ - fl~ [ ( y -  ~)~ + ( z -  ~)~] > 0 and x - ~ > O. 
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Af2 is given in terms of the loading coefficient, ACe, by the linearised Bernoulli equation: 

ACe = 2 A~. (2) 

The streamwise gradient of the camber surface is given by: (according to the linear theory) 

8z~_ 1 8 
y, (3) 

Ox V 8z V 2 8z ~o 

Taking the wing to lie approximately in the plane ~ = 0, the streamwise gradient at point (x, y, z) 
of the surface is given by 

8 z _  l 8 
8x 4~ 8z 

The spanwise gradient is given by 

f f ACez(x -  ~) d(&7 
r [(Y-- ~7) z + Z~] [(X-- ~)2 _ / ~ 2 { ( y _  ~7)2 + z2}]112 " (4) 

az s~ / 0¢ 
a y -  az / ay (5) 

It can be shown that, if terms of order z 2 are neglected, (Ref. 3) 

P P 

8z 1 f A C e ( x -  ~) d~ 

P P 

p - 4 AC~(x, y) + ~ d? ( _ , )2{~S_~-Z-~3~_~)2}1/2,  (6) 

where j denotes the 'generalised principal part of the integral'. (see Appendix II.) 

Relations (6) are equivalent to  

_ ( ~u(~, ~)d~ 

~,(~, 7) dv 

where [- denotes the 'finite part of the integral', and ~u(~, ~7) is the velocity potential on the upper 

surface of the wing. (See Appendix II.) 
In general, the gradient must be evaluated numerically from (6) or (7). The integrand becomes 

singular along the Mach lines through the point (x, y) and, in Equations (6), also along the line 
~/ = y. Also, for some forms of ACe, the value of Oz/ax given by Equations (6) or (7) may become 
infinite along the leading or trailing edges, or along certain lines ~7 = constant. Methods of dealing 
with these singularities are discussed in Section 5. 

For some forms of ACe, it may be more convenient to use characteristic co-ordinates (r, s). 
Taking the Mach lines through the origin as axes of co-ordinates, the transformation formulae are: 

(8) 

-tiM M x = (r + s), ," = ~ ( x -  flY), 

1 M 
y = ~ ( s -  r), s = yfi (x + fly), 

(82476) A* 



and the formula for the streamwise gradient is 

P P 

0,%' -- 4~  {3 -- 31 -- Y -- 1"1} 2 { ( Y - y l ) ( S - $ 1 ) }  112' (9) 

M M 
where r,  = ~ (~:-]3~), . .  = ~ (~:+/3~1), and the region of integration r is that part of the wing 

plan-form for which r - q > 0 and s - s 1 > 0. Relation (9) is equivalent to 

a ~ _  M ( (¢~(q,*l)dr ld ,1  
( lo) 

ax 4~ v J~ J{(r - ,1) (s - $1)}~ ~' 

(which can also be put  into other  forms). 

The  ordinates z of the camber surface are found by numerical integration from 

z = E & +f (y ) ,  (11) 

where f ( y )  is a small arbitrary function of y ,  or 

?x Oz 
z - z  o = ! - - d x ,  (12) 

J~o 0x 

where, for each value of y, z 0 and x 0 are arbitrary constants. 

I f  ACp is chosen so that a first integration wi th  respect to ~ or ~7 can be performed analytically, 

Oz/Ox can be found by numerical integration with respect to a single variable (~/or ~). 

Some special forms of ACp are discussed below. (The  y-axis is taken through the foremost point, 

or points, of the leading edge.) 

(1) I f  
Ac~ = Ho(~) + E K~H,~(~)], (13) 

where Ho(~?), H~(V ) are functions of ~ only, and n is a positive integer, 
P P 

az 1 ~. Ho(~) Xo, laT + X~, ~ d~ , 
Ox - 4re ',1 (Y - ~7)~ ~ " ~1 (Y - ~)~ 

where 

1 ( '2(~1, (X--  ~) d~ ~2 I _  {(/~ __ ~)2}1]2 Xo = = _ ~)2 _/32(y (15a) ' j~l(,/) {(X -- ~ ~ ~2~y-__ ~)2}1i9~ gl t- 

X .  I = (~2,,) ~ " ( x - ~ ) d ~  , (15b) 

T h e  limits of integration are given by: 

~(~) = f(~);  

~z(r/) = x - / 3  [y - ,  [ ~< g(w), x - f(~?) >/9 lY - ~7 [ 

or ~2(~/) = g(~?) ~< x - 19 [ y -  ~7 1; 

~1 = ~ = 0 for x - f (~?)  </3 ] y - ~  1, (16) 

where ~: = f(~l), ~ = g(~?) are the equations of the leading and trailing edge s respectively. ~h, % are 
given, by the equations 

x - f ( . l )  = /~(Y- Vl), 

x - f(~/e) = /~(%-y) .  (.17) 
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"ql, % are the extreme limits of integration for ~/. Intermediate limits (due to the bounding of the 
region of integration by other leading or trailing edges) are given by similar equations with the 
appropriate functions replacing f071), f0%). 

Reduction formulae for the calculation of the integrals X~, 1 are given in Appendix I. 
(2) If  

ACv = Go(~:) + £ [rl+G,~(~)], (18) 

where Go(es), G~,,(~) are functions of ~ only, and n is a positive integer, 

P - 1 F f :  Oz 5 A C / x ,  y )  + 
Ox 4 G(~:)  ( ~ -  ~) Yo,~ d~ + 

where 

P 

P 

I7o ~ = (,12(~ &7 
, j+~+~ (y  _ +l)~{(~ _ ~)~ ~ / ~ ( y  _ ~)~}1~ = 

(19) 

+". [ { (x  - ~.)2 _ f l 2 ( y  _ r/)2}i/2-1 (20a) 

• ,~ +,~+<+) ( y _  ~)~{(x_~- ~ ( y _  ~).~}m • (20b) 

The limits of integration are given by: 

O?" 

OY 

~*(~) =/-~(¢) > Y /3 ' 

x - ~  
~1(~) = Y 5 >~ f-l(~:); 

~ ( 8 )  = f - l ( ~ )  .< y + _ _  
5 

~]2(~) = Y + ~<f -*(~) ;  

~<x 

71 = ~', = 0 for ¢ > x, (21) 

where ~/ = f S ( ~ )  is the equation of the leading edge. (For a yawed wing ~h or % might be a point 
on a trailing edge.) 

Reduction formulae for the calculation of the integrals Y~, 2 are given in Appendix I. 
(3) Uniform (or variable) chord loading and load varying linearly along the chord: 

ACl~ = A - 
B (chordwise distance from L.E.) 

local chord 

= A B { ~  - f ( r / ) }  
g(r/) - f ( r l )  ' (22) 

where ~ = f0?), ~ = gO7) are the equations of the leading and trailing edges respectively and A, B 
are constants (or functions of ~7). 



This is a special case of (1) with 

- H~(7) - + H(7) = B/{g(7) -f(~7)} 
and 

H0(7) = A + f ( ~ ) .  H(7 ) = h(~). (23) 

It can be shown that the integrated chord loading is given by 

CL(y) = A - ½B, (24), 

and hence the total lift coefficient, when A, B are constant is 

¢~ = A - ~B. (25) 

The chordwise gradient of the camber surface at the point (x, y, z) can be written in the form: 
(neglecting terms of order z ~) 

P 

~ z _ / 3  Y~ f F H o ( ~ - x H ( 7 )  sinh ur + ~H(~)(u,.+ ½ sinh 2ur)] d~ 
~x - 4-; ~ I [ Y - 7  [ 

r = 1,2, 
P 

-- Z F(x, y, ~7, zq)d~ - F(x, y, ~7, u2)d~ 
t - o ~ l  a ~1 o 

= 2 (G.,b)l - 2 (Gc, a)~; (26) 

the summation is over the different regions of integration (cf. Section 3(b) and Fig. 4), and 

x - f(v) x - g(~) (27) 
ul = c o s h - l f i l y _ ~ l  , u 2 = c o s h - ~ / 3 l y _ 7  [ ,  

~7,, % are given by x -f(~Ta) = /3 [y-7a [, (28) 
b b 

~,  ~a are given by x - g(Fc)=/3  [Y- ~ [, (29) 
d ' d 

that is by the points of intersection of the fore Mach lines through the point (x, y) with the leading 
and trailing edges respectively. The integrands in Equation (26) are of the form 

P(x' ~){(x-~)~ - /3Z(Y-~'l)~}l/2 ~ l x - ~ l  (30) ( y _  ~)~ + H(~) cosh-~ /3 ~ - -  7 I ' 

where ~ = f(~7) or g(7), and P(x, 7) is a function of x and 7, and thus become singular along the 
line 7 = Y in the region of integration. 

Methods for dealing with these singularities and those which occur at the leading and trailing 
edges are given in Section 5. 

3. Formulae .for Calculating the Shape of the Camber Surface of Two Particular Swept-back Wings 
with Uniform (or Variable) Chord Loading, and Load Varying Linearly along the Chord. Formulae 
for calculating the shape of the camber surface of two particular swept-back wings (see Refs. 5, 6), 
with load varying linearly along the chord, are given. 

For each w i n g : -  

The equation of the leading edge is given by ~ = f(7), and the equation of the trailing edge by 



T h e  loading coefficient is 

B(~ - f(w)} (31) 
A C p = A  g(~) - f07 )  ' 

where A, B are constants. 
(The formulae given below also apply if A, B are functions of %) 
All lengths are measured in semi-span lengths. 
Formulae for calculating the gradient, 3z/3x,  for two swept-back wings, are given below. The  

ordinate, z, is calculated from Equation (11) or (12). 

(a) Swept-back wing with partly curved subsonic leading edges and straight subsonic trailing 
edges (Fig. 1): 

The  plan-form of the wing is given by 

o ~<. I~1 ~< ½, f07) = k 1~7 l; } 
~<~ Iwl<-a,f(w)=kl~I+c[1-{2(1-lwl)}~¢V;, g(7) = c + k l T I .  (32) 

The  length of the root chord is c and the leading edge sweep-back angle is tan-lk.  
T he  streamwise gradient of the camber surface at the point  (x, y, z) is given by (y > 0) 

P 

0z /3 f~z rh (~ / ) -  all(*?)sinh u l +  ~ H(~7)(ul+ ½ sinh 2ut) 1 d~ 

P 

f ~2F(x,  u O d ~  = (G~,~)I, i f x  /3y~< Y, C; (33) 

and ' 

3x 
( G , , ) , -  ( G , & ,  i f x  - &  ~> c, (34) 

where H(~/) = B/(g(~)  - / (~ / ) } ,  h07 ) = A + f ( 7 ) .  H(~). 
T he  variables u r and the limits ~r are given by 

- f ( ~ )  x - g (~ ) .  (35) gl = c°sh-1/3 [ y _  V [, u2 = cosh -1/3 l Y -  ~/[ ' 

x - f ( 7 0  = /3(Y-~h), x - f (~ /~ )  = / 3 ( ~ z - y ) ,  

x - g(~3) = /3(y - ~3), x - g074) = / 3 ( y -  ~7,), (36) 

71, 73 being < 0 and ~z, 74 > 0. 

(b) T h e  N-wing (Fig. 3): 
The  plan-form of the wing is given by 

o ~ I~l ~< ~, f (7)  = k l (½-  17 I), gO7) = cl + k~(½- ]-q I); 

{ ~< 171 ~< 1, f (7 )  = k(  [~71 - 1 )  + c1[1 - {2 (1 -  [7 1)}1/2]z, 

g(7) = c~ + k ( 1 7 1 - ½ ) .  (37) 

T h e  leading edges are swept forward at an angle tan -1 hi (for 0 ~< I ~7 [ ~< ½) and swept-back at angle 
tan- l f ' (~)(½ ~ 171 ~< 1); and the trailing edges swept-back at angles tan- lk2(0  ~< 1~TI < ½) and 
tan-~k(½ ~< 171 ~ 1). T h e  length of the 'kink'  chord (at Iwl -- ½) is c~, and is such that  c~ + k /2  < 

3/3/2 (so that  the wing tips at 7 = + 1 and 7 = - 1 are outside the Mach lines from the leading 
edge tips at ~7 = - ½, ~ = + ½ respectively). T h e  length of the root chord is c. 



The streamwise gradient of the camber surface at the point (x, y, z) is of the form (y > 0) 

where 

P 
OZ [~lb 
Ox ~ ., .,1. F ( . ,  y ,  ~, .r)  dr  - 2: ( a . ,  0,, 

x - f (v)  x - g(~7) ' 
u, = cosh-*/3 [ y -  ~ l '  u2 = cosh-*/3 lY- n 1' 

and f(~7), g(7/) are given by (37). 

r =  l o r 2  

(38) 

(39) 

0 < y < ½  

3. x - 5Y 4 ½fi, x -~ 5Y ~ C, -Jr- ½5 (G,, 2), 

4. ~ - 5y <. ½-5, x + 50, >1 q + ½5 (0 , ,2) ,  - (c~,~)2 

5. ½k, > x - 5y > ~5, x + 5y <. c, + ½5 (G,, 2), + (G~, & 

6. ½k, > x - 53, >>- ½5, * + 5y > c~ + ½5 ( c , ,  2), + (c~, o), - (%, , )2  

7. x - fly <<. ½1q, x + fly <~ q + ½5 (Ga, 2)x 

8. ½k, <. x - 5y <- ~, + ½5, x + 5y > c~ + ½5 ( % ,  2), - (G~, & 

9. c + ½k, > x - / 3 y  > c, + ½5 (Gs, 2), - (Ga, 4)2 - (G7, 8)2 

% (r = 1, 2, . . . 8) are given by the equations 

x - f ( ~ b )  = 51y-~l, 

1. x - 5 y  < q - ½5 (G, ,  2), 

2. x - 5 y  > q - ½/3 (G, .2 ) ,  - ( G 3 , &  

x - g(n~) = 5 l y -  n,. I, 

r =  1,6 (0~< I rl ~½) 

r = 2 , 5  (½.< Intl.<l) 
r = 3 ,  S (0.< ln~l.<½) 
r = 4 , 7  (½4 1%!~<1)  (40)  

The formulae given above for calculating the camber surface of wings (a), (b) have been 

programmed and used for calculations on a D E U C E  computer. 

4. Approximate Formulae for the Calculation of the Ordinates of the Camber Surfaces of Wings with 
Subsonic .Leading Edges and Subsonic or Supersonic Trailing Edges, with Uniform Chord Loading. 
An approximate method for the calculation of the ordinates of the camber surface of a wing of any 
plan-form with subsonic leading edges and any trailing edge is suggested, whereby curved leading 
and trailing edges are approximated by polygons. I t  is also useful in some cases to use an approximate 
formula for the prescribed load distribution, so that formulae for the gradients and ordinates at 
points on the wing can be obtained in closed form. 

Region 0~[~ 

½ < y < l  

The formulae for calculating az/Ox in the different regions of the wing are given below: (see 
Figs. 3, 4) 



The formulae can be used for calculations on a desk machine or for Interpretive Scheme calcula- 
tions on a D E U C E  computer.  This method was used for some preliminary calculations for both the 
swept-back wing and the M-wing mentioned in Section 3; these served as a partial check on the 
D E U C E  calculations for which the integrals given in that section were programmed. 

The  resulting approximate formulae  for any wing with prescribed uniform chord loading are 
given below. Similar formulae could be derived for other loadings. 

Using the notation of Section 3, the loading coefficient is 

A C p  = A B(~- f (~?))  (41) 
local chord '  

where A and B are Constants. 
The  vertices of the approximating leading-edge and trailing-edge polygons are on the edges at 

points y = yr (r = 0, 1, 2, . . .), and the slope of a leading or trailing-edge segment is given by 

kr = ( X r + l - -  xr)/(Y,'+l--Yr), (xr+l > xr), (42 )  

:where x,. = f(y~) on a leading edge, 
and x~ = g(y,.) on a trailing edge. (See Fig. 2.) 

The  local chord of the segment of the vdng defined by Yr >< Y >< Yr+l is approximated by the average 

chord 

c~ = ½{g(Yr) + g(Y,.+~) - f(Y,.) - f(Y~+l)}. (43) 

[Alternatively, circumscribing polygons could 

y = ½(y~+~+yr).] 
Writing 

be taken, 

= 3 ( y - y , , ) / ( * - = , , ) ,  

[/~r--1-- 1~ ~-12 [1 -1- tg'r~112 
e " =  \2 ,_1+1]  \1 -~%]  ' 

l + P r  
p,,= ½log l - P , .  ' 

the points of tangency being (say) at 

1 
u~ = c°sh-1/l'~--~-' (44) 

= [A, . -  1'~ 11~ {1 + ~r] 1'~ 

1 -t- Qr 
q,. = ½ log [ ~ Q , .  , (45) 

the formula for the ordinate z at the point (x, y) of the plan-form can be written in the form 

= + 

fi [ B (x-xr)2R2(t%) 1 , (46) 

with xr = f(y~) in the first sum [L], and x r = g(y~) in the second sum [ T]. Rl(tg,.), Rz(~9~) are functions 
of t% given below. The  summation of each sum is for values of r for which both x,. - fiy~ < x - [3y 

and x~ + fiy~ < x + fly. 



For points (x, y) on the wing plan-form for which x +_ fly <~ g(yr) +_ fly,., or for a wing with all 
supersonic trailing edges, the second sum [T] does not appear. 

The  functions R1, R~ are given by 

RI(#,) = (a) + (b) (47) 

i2(tg'r) = (~' £(-11 )(c)-t- \(}d-))r-1 (e)t 'c/,] (48) 

where, for k~ > O, k~_, > O: 

(a) = - ()r-/~-1) {//r -- 5/(1 _~,.2)} + (At2_)~_,)~,.u, 

(b) -- - 2 V'(A~_~- 1).  (1 - h,._~v~,.)p, + 2 ~ / ( a~-  1). (1 - k,~r)qr 

(1 -va,2) a!2 

) r - - l U r  o ' 2 
(d) = ( 3 -  2a,_~,)  V'(1 -~,Y) - - - 2 -  {(217-*- 1)t~, 

- 4 1 r _ ~ , .  + 2 }  + 2 ~- . ~/(~,._~- 1) (1 - ~,_~e,)2pr 

( 3 -  2a,e,.) x / (1  =- e,.2) - ~ z  { (2~ ,~ -  1)e~  - 4 z &  + 2} (e) = 

+ 2 ~/(A,.  2 - 1) ] (1 - A,.t~r)Zqr. ( 4 9 )  

t (~,.- 1~ '12 (At-I- 1~ 112 
When h,. < 0, replace ;~,. by - at, ~/(Ar ~ -  1) by - ~/(Ar ~ -  1), and by , with % +  17 tV~-  17 
similar replacements (with suffix r -  1) for k,._ 1 < 0. 

A sufficient number  of points y~ might be chosen so that the points (x, y) at which the ordinates 
are to be calculated lie on the middle chords of the segments of the wing. Then  

~(y+,+I-yD = 1 - l -  Y ~(Yr Y~+l), and ~ -  2(x- xD 

Also the approximation to the local chord  might be taken as 

If  point (x, y)  lies on a leading-edge or trailing-edge segment of slope + k;, va~. = 
ur = cosh-15,., and the last terms in (b) and (e), [(1 - Z~)q~, (1 - ~r)2q,.], tend to zero. 

(Point (xr, y,.) on an edge would be taken as a point on segment of slope hr_~. ) 

___ l /x , ,  

If  )t,._ 1 = A,. and cr_ 1 g= c~: 

and 
(a) = (b) = O; (e) = (d), 

Rl(e,.) = 0; R~(eD = ~,. c(_1 ( ( c ) - ( d ) ) .  
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where 

If  Ar_l.= - 2~ and cr_ 1 = c~ 

(a) = - 2 ~  {u~ - ~/(1-t9~2)} 

(b) 

(1 c!_1) (c) 

R#3 

= 2 V ( ~  ~-  l) (~ , -  ~a,~) 

= 0  

= 2 [ -  A~{u~ - a / ( 1 -  t%2)) + ~ ( ~ 2 _  1)(v~-  ?@,.w~)] 

[~i~ 3~ ~ / ( l _ ~  ~) 2 {2 + (2X~ ~ -  1)t% ~} -~- 

+ V'(~,Y- 1) {2,~,3~w~ - (1 +,~2~%2)v~} 1 
A 

(50) 

(51) 

l+Z~ l+W~l 
v~ = ½ log Vz-v;  ' ~o~ = ½ log ~ ; 

a~ . V ( I _ ~ ) ,  w~- ~/(1-~) • 

When point (x, y) lies on the leading or trailing-edge segment (slope kr), (50), (51) become 

R~(t%) = 2 {V'(A, 2 -  1) - A~ c o s h - ~ }  

R2(~5~ ) = 1 [(4A~ 2 -  1) ] 
Cr [ . ~ r r  c°sh-~Ar-  3~¢/(~2--1) 

(52) 

(53) 

For the swept-back wing (Figs. 1, 2) for which g(~) = c + k ]7 I and, for 0 < ~ ~< ½, f (~)  = h ]~ ], 
for all points (x, y) on the wing such that x + py 4 ½(k+p), (i.e., all points upstream of the after 
Mach lines from leading-edge points y = + ½) the exact solution of the linearised equation is 

obtained from (46) with (50)-(53) by putting r = 0, x 0 = Y0 = 0, Yl = ½, k,. = k = - k ~ _ l  in 

sum ILl when x + fly < c, and in both sums [L], [7"] when x + fly > c. 

I t  is not suggested that it would be better to use approximate formulae than to use the integral 
forms, except perhaps for parts of the wing where the approximate formulae become exact. The  
above formulae were used to obtain some preliminary results fairly quickly before a D E U C E  
programme had  been made. They  were also found useful later for checking. 

5. The Numerical  Evaluation of some Singular Integrals. Analytical methods for evaluating the 
'finite part '  of an integral, the 'Cauchy principal part '  and the 'generalised principal part '  of an 
integral are well known (see Refs. 3, 4 for example) and details will not be given here. For purposes 
of reference, definitions and relevant formulae are given in Appendix II. 

For the integrals in Equation (7) in Section 2, one of the usual methods for evaluating the finite 
part of an integral can be used (see Appendix II). Equations (6) are derived from (7) by an integration 
by parts and evaluation of the finite part. 

Integrals discussed here are those which arise from Equations (6): 
(1) when integration with respect to ~ is performed analytically; 
(2) when  integration with respect to ~/is performed analytically; 
(3) when the double integral is evaluated numerically; 
(4) when po!nt (x, y) is on a leading or trailing edge. 

11 



(1) I f  ACp(~, 7) is of such a fo rm that  a first integration wi th  respect to ~ can be per formed 

analytically, in general, integrals of the fo rm 

o r  

P 

f ~'~ P(~ ,  7) { ( ~ -  F (7 ) )  ~ - ~ ( Y -  7 )~F  ~ 
,11 (y _ 7) ~ d7 

P 

~'~ P(x, 7) cosh-X x - F(7 ) d7 

have to be evaluated numerically. ~ = F(7  ) is the equation of a leading or trailing edge, and the 

functions P(x, 7), F(7) are continuous in the range 7t ~< ~? ~ 72. 

For  the numerical  evaluation of these integrals when  7~ < Y < 72, w r i t e  

P P 

? f ° r ;  = + + , 
~ll ~ql d b a 

where  a, b are suitably chosen, and 71 < a < y < b < 72. ( I t  is usually not convenient  to take a = 71 

or b = 7~, one reason being that  the integrand may diverge for a different reason near 7 = 71 or 72.) 

T h e  integrands in the first and second integrals are finite and cause no difficulty. T h e  third integral 

can be put  in the form 

P 

d7 

1 1 
P(x, b) . R(~, y ,  b) - - - - -  P(x, a) . R(~, y ,  ~) 

b - y  y - a  

b - y  + [P'(x, y) ( x -  F(y)) - P(x, y) .  F'(y)]  log - -  - y - a  
fo P(x, 3~ n) d7 

. R(~, y ,  7) 

f ~ P'(x, 7). R(x, y, 7) - P'(x, y)(x-F(y))  d7 
a Y - 7  

+ fb IP(x, n)(x-F(n))F'(n) 
R(x, y, 7) 

7 1 
- P(~ ,  y ) .  F ' ( ~ ) /  dT, (54) 

" - /  Y - - 7  

where R(x, y, 7) -- { ( x - F ( 7 ) )  ~ - fi2(y_ 7)e}v~, and the dash indicates differentiation with respect  

to 7 or y. 

T h e  integrands of the three integrals in (54) are finite at 7 = Y provided that  P(x, ~7) and P'(x, 7) 
exist and are single-valued at 7 = Y. A formula  similar to (54) has been used in a D E U C E  programme.  

Another fo rm (useful if the expansion converges sufficiently rapidly near 7 = Y) can be obtained 

by  expanding R(x, y, 7) as a power  series in ( y -  ,/). T h u s  

P 

f b p(~, 7). R(~, y, 7) d7 

P 

- . ( y -  7) ~ ~ ( x -  F (7 ) )  ~ - g ( x -  F (7 ) )  ' - " 
(55) 

12 



The first integral 

P 
,~b P(x,  ~ ) ( x - F ( ~ ) )  

3o (y-  v)~ 
is equal to 

Pl(x,  b) 

b - y  

P 

f b p1(x ' 7) . 

Pl(x,  a) b -  y 
- -  + P~'(x, y )  log 
y - a  y a 

( ~  P~'(x, ~1) - PI'(  x, Y) &7. .I Y ~7 
(56) 

f b cosh -~ x - F(*/) P(x,  7) d~7 
o 

= ( b - y ) P ( x ,  b) cosh -~ x - F(b) 
5(b-y) 

f P(~, 7) [~- F(~) - F'(~)(y- ~)] 
+ . R ( x , y ,  7) 

d~ 

+ f f  P'(x, n)(Y-V)cosh-l ~ y F ~ I  dv, 

in which the integrands are finite at ~/ = y. 

(2) If  a first integration with respect to ~/is possible by analytical methods, integrals of the form 

P 

f x Q(x, y, ~) d~ 
o 3 - - ?  

occur, the function Q(x, y, ~) being continuous in the range 0 ~< ~ ~< x, and generally (but not 

always) of such a form that the integral converges near ~ = x. The treatment of this integral depends 
on the particular forms of ACp(~:, ~1) and F(~?). 

(3) If  the double integral in Equation (6) is evaluated n u me r i c a l l y : -  
The double integral to be evaluated is 

P P 

r (Y-- n)2{( x -  ~)~ -- t~2(Y-- rl)~} 1t2' 

where the region of integration, r, is the region on the wing plan-form for which x - ~ 1> fi lY-  ~ l" 
This integral can be written in the form 

P 

P P {(~- 

13 

- -  + ( y - a ) P ( x ,  a ) c o s h  -1 - -  

(82476) B 

x-F(a) 
~(y-a) 

(57) 

integral in the form 

P 

The integrands in (56) and the remaining terms of the series in (55) are finite or zero at ~7 = Y- 
The numerical evaluation of the integral 

P 

f b cosh -1 x - F07 ) 

is fairly simple (provided that ACp and Fi~ ) are suitably chosen). One method is to write the 



~1 = f (v )  and ~ = x - fl [ y -  ~2 [ or g(v), and the first integral is of the form 

P 

f ~  dn, w < Y < ~2, 
P(x, Y, ~1) . R(x, Y, ~) 

~ (Y -  ~)~ 

the same form as given in (54) and (55). 
The  integrand of the second integral in (58) is finite in the region of integration except near 

r] = y, (ACp(~, .q) being suitably chosen). For integration over a strip a <~ ~7 <<. b, the integral 

could be writ ten in the form 

l y - v l  

I{(x-~)2 - [32(Y-~7)2}aI2 ~i ACp( ~, ~) - ( x -~ )  ~ A Cp(~, ~7) 1 
(y _ ~)~ d~ & 

, (e ) -  d~ d~, (59) 

where ~:1 = f (a)  or f (b )  (whichever is least), and in the second integral a(~), b(~) vary over part of 
the range ~1 ~< ~'~ x for which the integral is to be evaluated. Before numerical evaluation, the 
second integral in (59) should be put  in a form similar to that given in (54). 

(4) When  the point (x, y) is on a leading or trailing edge (Equation: ~ = F(~))), x = F(y) and 

~1 or % is equal to y; ~1, ~2 are given by 

Integrals of the form 

P 

x - F(nr)  = 5 I s -  I r =  1,2.  

f ~2 P(x, ~) cosh -1 x - F(~7) d~/ 
~Jl -~-~ 

remain finite provided that P(x, ~) is finite in the region of integration. But integrals of the form 

P 

f 
,,2 P(x, ~) {(x - F(~/)) ~ - fi2(y _ 71)2}112 

become infinite unless ACt,(~, ~?) is so chosen that 

limit P[F(vr),  ~] R(x, y, 7) (r = 1 or 2) 
~->~,. ( ~  - ~)~ 

exists. 
If  this limit does not exist, the integral has a logarithmic singularity when ~7, = y, although, in 

general, an analytical integration of the singular expression with respect to x is possible (and finite) 
at x = F(y). This causes some difficulty when numerical methods are used, especially with respect 

to the camber shape near the wing tips. 
Extrapolation near leading and trailing edges has been used in some existing D E U C E  programmes. 

This is not very satisfactory. A programme for calculating the shape of the surface at the wing tips, 
where the distances between leading and trailing edges are small is then not possible. It  may not 
even be possible to obtain the shape near the tip' by extrapolation, since the ordinates extrapolated 
along different lines through the tip may not converge to a unique point there. 

14 



Some research on methods of programming for such singularities could b e  done. One method of 
dealing with the difficulty is suggested below. (The method is given for an integration with respect 
to ~7, but  a similar method could be used for numerical calculation of the double integral.) 

If  the point (x, y) is on an edge ~ = F(7), so that the limit % = y, writing 

(for small local chord, e.g., near the wing tips, a could be taken equal to 71), the contribution to 
the ordinate z at point (x, y) from an integral of the form 

P 

f ,,2 p(x, 7). R(x, y, 7) 
d7 

could be written 

where 

and 

m z  = ( m Z ) l  -~- ( A z ) ~ ,  

; U (AZ) 1 = P(x, 7) { ( x -  F(7)) 2 - fi=(y - 7)e} 1'= 

(A~)~ = _ {(F'(y))~ -~)~J~ limit *o P(~', y) Q'. y- ~/&'. 
x---> F ( y )  x 

The  two integrals in (60) should cause no difficulty, and (61) can be put  in the form: 

(60) 

(61) 

( A z h  = - {(F'(y))2 - fl2} 1t2 v [log ( y -  a) f~°(u ) P(x' ,  y )dx '  

- P(x  o, y)  (x o - F(y))  log {72(Xo, y) - y} 

+ P(x' ,  y)  (x' - F(y)) log (x' - F(72)) 
Ivfy) 

' I1 + P(x' ,  y) 7 2 - Y  "19+F'(7~i  dx.' . (62) 

It  must  be remembered that in the integrand, % - 72(x', y), a function of x', y, given by 

x ' -  F(72) = 5 ( > - Y ) ,  
and that 

72(x', y) = y when x' = F(y), 

%(x', y) > y when x' > F(y). (63) 

The  integrand in (62) converges at x' = F(y)  and it should be possible to programme (62) for 
D E U C E ,  or other electronic computers , and thus avoid the need for extrapolation near the edges 
and a certain amount  of guessing at the wing tips. 

15 
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The formula for the total ordinate z at a point (x, y) on an edge would be of the form 

z = z o + dx + Z (Az),  (64) 
x0 

where Ozl/ax is the contribution to the gradient from other integrals which can be evaluated at the 

edge, and x0, z 0 are arbitrary constants or functions of y. 
A similar formula could be derived if ~/1 = Y. 

6. Conclusion. A method has been given for calculating the shapes of camber surfaces of 
swept-back wings of arbitrary plan-form, with subsonic leading edges and specified load distribution, 
with particular reference to some of the difficulties encountered in the numerical integrations. The 

method is primarily intended for programming for calculations on an automatic digital computer. 
It is obviously not possible to produce perfectly general formulae or programmes (beyond the basic 
integrals from which all such formulae would be derived) to suit all plan-forms and all load 
distributions. The particular methods used must depend partly on the type of load distribution 
chosen and (to a lesser degree) on the plan-form of the wing. 
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A 

A(y, ,7) 

a 

B 

B(y, 7) 

b 

C(y, 7) 

cL(y) 

£ 

C1 

F(V) 

F(~, y, ~, ~r) 

f(v) 

f-~(~) 

(ao,0r 

a,~(~) 

g(~) 

g-l(~) 

H~(~) 

H(v) 

k 

kr 

M 

P(x, ~) 

P~(x, ~) 

NOTATION 

A constant coefficient in Equations (22), (31) 

A function of ~/, y (Appendix II) 

cf. (54), (59), (60) 

A constant coefficient in Equation (22) 

FA(~(Y) 07-Y) (Appendix II) 
,.=oL r!  

cf. Equations (54), (59) 

~ .  A(r)(Y) (Y- 7) (Appendix II) 
V=0 

Integrated chord loading coefficient 

Lift coefficient 

Root chord of wing 

'Kink' chord of wing 

Value of ~ on a leading or trailing edge 

fi th(~)_- xH(~) sinh u r + ~ n(~7)(ur+ ½ sinh 2ur) 

Value of ~ on a leading edge 

Value of ~7 on a leading edge 
P 

f ~b F(x, y, ~7, ur)&7, r = 1 or 2 

cf. Equation (18) 

Value Of ~ on a trailing edge 

Value of ~ on a trailing edge 

cf. Equation (13) 

B/(g07) - f07)) 

A + f07). H(~7) 

Tan (sweep-back angle) 

cf. Equation (42) 

Free-stream Mach number 

A function of (x, ~7)- cf. Equation (54), etc. 

P(x, 7) (x- F(~)) 
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P, 

P, 

9( x, Y, ~) 

9 ,  

q, 

R1, R~ 

R(x, y, v) 

It 

dS 

$ 

I t  

i~l, iAg 

NOTATION--continued 

I + P , .  
= } log  

A function of (x, y, ~). cf. Section 5, (2) 

[ A , -  1~ 1/2 {1 + v%~ 1,'~ 
= t a g ~ /  t i - - ~ ; ]  

1+ Q, 
- ½ log  

cf. Equation (46) 

= { ( x -  F(~) )~  - f " ( y -  ,)2}~J "~ 

M 
- 213 (x- f ly )  (a characteristic co-ordinate) 

Element of wing surface (Equation (1)) 

_ M (x + fly) (a characteristic co-ordinate) 
213 

= c o s h - 1  

cf. (27), (35) 

1 
u, = cosh -~ ]~ (c f .  (44)) 

Free-stream velocity 

_ 1 [~,~- 1~,~ 
A, t ~ ]  

I + V ,  
~, = ½ log 

{;~,.~- 1~,~ 

l + W ,  
= ~ log  

Chordwise co-ordinate (measured in the free stream direction) 

Spanwise co-ordinate (positive to starboard) 

Normal co-ordinate (positive upwards) 

(M 2-  1)1/2 
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V 

v, 

Wr 

w~ 

X 

Y 

Z 



AC~ 

Af~ 

f~ 

NOTATION--con t inued  

Loading coefficient 

Jump in the value of t~ across the surface of the wing 

c o s - 1 5 ( y -  7) 
x - ~  

fi(Y - y D / ( x -  ~ )  

lk, l//~ 
Chordwise co-ordinate--of. (l), etc. (variable of integration) 

Normal co-ordinate--of. (1), etc. (variable of integration) 

Spanwise co-ordinate--of. (1), etc. (variable of integration) 

Region of wing surface for which 

, ( x -  ~)~ - ~ [ ( y -  ~)~ + ( ~ -  ~)~]/> 0, x - ¢ > 0 

Velocity potential 

Acceleration potential 
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Evaluation of the integrals: 

(i) 

(ii) 

A P P E N D I X  I 

P 

' J~l(~) ( Y -  n)~ { ( x -  ~)~ - 5 ~ ( y -  ~)~}~ 

(i) Wri t ing 

X n ,  r = x X n ,  r--1 -- Xn+l , r -1 ,  n > O, r > 1, 
and thus  

x~ , ,  = *X~,o - x~ . , ,o  

for all values of n >/O. 

For  r = O: 

where  

Also 

(ii) Wri t ing 

and thus  

and 

n X , ~ , o  = (2n - 1 ) x X , ~ _ ~ ,  o - ( n  - 1) {x 2 - f i 2 ( y  _ ~)2} X~-2, o 

-- (2n - 1 ) x X ~ _ x ,  o - (n - 1) {x 2 - f l 2 ( y  _ ~)~}X~_z, ° 

+ f i ( y -  , )  I s inh  u { x  - , 8 ( y  - rl) cosh u}~-ll~2 , 
- . a  u 1 

X o ,  0 I co$~-1 x - ~ :  ] ' 2  : - ~ ~ - u 2 + u D 
& 

X L o  = x X o ,  o -t- ( x - - ~ )  ~ - -  ]32(y--,)2) 1/~' 

- x o,o + I , 

x - ~  
u = cosh  -1 f i ( - ~ - ~ ) l  " 

XO~ I = 

Yn~'r 

Yn, 2 = 

n > 2 .  

I-- {(x-- ~)2 -- p2(y-- r~)2}1t21 ¢2 -- - f i(y-~) Isinh ul ~2 
~1 us 

f ~a(~) ~Tn d B . 
r/l{+} (Y -- ~])r{( x -- ~ ~ ~2(y _ 71)2}1/2 

y r , , _ ~ , ,  - r~_~,,_~, 

yY~-I,~- Y~-~,~, 

Y Y n - I , 1 -  Y n - l , o ,  

n~> 1, r >  1, 

n > l ,  

n > ~ l .  
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For n = 0 

For r = 0: 

where 

'~=l_ ( ._  ~:)2 (y_ 7) -/,Jl 

[ 1" = /3 tan 0 , 

[ ~ [  ~ - ,  + ~(*-,,~- ~,,-<~'~1 '~ Yo,, = 1 log /3(Y - ~1) -~ ~1 

1 I 1 + sin O l°z 
- - l o g  - -  ' 

x ~ cosO "ol 

n - I  
nY,,~,o = (2n-1)yY,~_~, o + fi-~ {(x-~:) ~ -/32y~}Y,,~_2, o 

/33 ~ - 1  ((o,_ ~)~ _/3~(y_ v)~}~ '~ 
.z ~/1 

n - - 1  
=- ( 2 n - 1 ) Y Y , ~ - l , o  + 7 -  { (* -  ~:)~ -/3~y2} Y,,-=.o 

1 I s i n 0 { y  /3 cosO . o l  

[ l "  1 ( x - ~ )  sinO , =- y Y o ,  o - ~ ~ol 

11 /3(y-,)l.~ 1 Y00, = /~ COS-1 X- -  ~ -]'ql ~ fl (02-- 01)' 

0 = cos-~ 5(y- 7) 

(72) 

(73) 

(74) 

(75) 

(76) 
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APPENDIX II , 

Singular hztegrals--Definitions and Formulae 

The 'Finite Part' of an Integral 

The symbol ! denotes 'finite of an integral', and is equivalent to Hadamard's symbol 

for single ihtegrals, but not for double integrals. (See Refs. 3, 4.) 
e 

The order of integrations [" cannot be reversed, each definite integral being independent  of 

In using the symbol I f  all singularities for which the order of integration succeeding operations. 
I v  

is irreversible are excluded from the area of integration and are treated separately. This symbol is 
not used in this report. 

By definition: 

and hence 

A(~l) &l = {8~]~" ,(u A(7) d7 ' (77) 
( y ~  \Oy] J~ ( y - 7 )  1~ 

a (Y _ ~ + 1 1 2  g ~  - -  (2n)  ! ~Y ,o a (Y - -  7)  1/2 

n~>l .  

A sufficient condition for convergence is that the function A(~) is continuous at ~ = y  and 

integrable elsewhere in the region of integration. .. 
In particular, 

a (Y --  9]) ~+112 ( 2 . )  ! ~yy ( y  - -  7) 112 

Also 

provided that  

Writing 

where 

- 2  
n/> 0. (79) 

(2n - 1)(y - a)'~-Y ~ 

f l  A(y, 7) d,7 - ( -  1)~2=~n ! a '~ i . ~ 1 ,  ~ (2n), (Uy) j~(y--~ (~' A(y, 7)d~, 

limit ( y -  7) 1I~ A(y, 7) = O. 
r/--+ y 

f [  d y A (7 ) -  c(y, 7 ) j  C(y, 7) . (Y--7) n+l'~ 7 = fa  ~ - - - - 7 ~  ~ a7+ f :  (YZ~7)~I/2aT' 

C(y, 7) = A(,)(y) ( y -  ~), , 

(80) 
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it can be shown that 

o (y_ r/y+,= dr/= ~ - - : ~ -  

where A(~)(y) denotes ~5 A(y). 

Similarly 

" F(-1)=-'< 2 
+ ,.=o :£ L (n~r)i (2 r -1 )A(n- ' (Y)  

1 
(y_a)r-ll=] , (81) 

dr /=  dr/ 
o (s-  r/P +~= Jo ~ - r / ~ =  

+ 52" [-(- 1)"-~'+* 2 1 ! (82) 
,.=o L ( n - r ) !  (2r -1)  A('~-r)(Y'Y)(y-a) r-lt2J ' 

where 

- i-(- 1), A~(y, y) (y- r/),] C(y;y ,  r/) = 52 L~. 

E( 1 and A(')(y, y) denotes ~ A(y,  r/) . 

In both (81) and (82) the integrand on the right-hand side is finite at r /=  y. 

• f f ( Y ,  r/) . It is also useful to remember that if the indefinite integral j(y_~)741,2 ar/ - F(y, r/) exists, and 

if a < y < b and f (y ,  r/) is real in the interval a <~ r~ <~ b, then 

(y_~1,="r/ j~ (H-~) ~]="r/ 

= R e  [F(y ,  b) - F ( y ,  a)].  (83)  

The methods shown above can also be used to evaluate an integral of the form 

f ( A(~, y, ~, r/)d~dr/ 

where the region of integration is defined by ( x -  ~)~ > fi=(y - r/)=. 

The 'Generalised Principal Part' of an Integral 
P 

The symbol f denotes 'generalised principal part of an integral'. 

By definition: 
P 
f [  A(~) d r l -  1 {~]n+* b 

( r / - -~+* n ! kay] f ~ A(r/) log Is - r/] dr/ 

1 ( 3 ) ~  fo A(W), 
= 7., ~5 Y ° ~ - y "  

a < y < b ,  n > 0 .  

(84) 
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When n = O, the above integral becomes the Cauchy principal part 

fb A(*1) d*1 = a fb Y° n - y ay a A(n) J+og I n - y l d n .  (85) 

For convergence it is sufficient to assume that A(*1) and its first n derivatives exist and are single- 

valued at ~ = y, and that elsewhere, A(*1) is continuous or with integrable singularities. 
In particular 

P 

a (.1 _ _ y ) n + l  = n--i- ~yy c, 

Also 

- - -  1 I-(bYy)'+ (aYy)¢+ 1 I/+ 
n/> ]. (86) 

p 

a ( r / _ y ) ~ + l  a t /  = ~ . .  ~ y  a -r/ - -  y > 0 (87) 

provided that A(y, .1) and its first n derivatives with respect to y and .1 exist at .1 = y. 
Writing 

P p 

f° +++++> - +,,,+ f: +',+> a (*1-y)n+]-d*1= Ja G Z y ~  + (*1_y)n+l d*1, 

where 

it can be shown that 

B(y, .1) = ,£o FA<+>(Y)(+-Y)+I . = L r !  

P 

fb  A(*1) r + A(*1) - B(W, .1) Ae'O(y) l o g ~ -  y 
.(.1-y)+++~+.1 = 3 .  ~ - y S z ~ :  + T  + 

Similarly 

+ r+++-+>+ ' +I -,.~=1 [.~Z~ +r (b-Y)  + (a -Y)  + 

P 

f+ A(y, ,+) ~ F A(y, .1)- ~(s; y, .1) d*1 + - -  ° ( .1-y)++~'+.1 = ° ~ - y ~  

+ FA(~-0(Y-' .1) 1 1 
- ,.=~E k (n-r ) !  r (b -y )  

A('~)(y, y) b - y 
log - -  

n! y - a 

(88) 

+ ° 

In both (88) and (89) the integrand on the right-hand side is finite at ~/ = y. 

I t  can be proved, by induction, that if the indefinite integral f A(y, ~1) dz 1 (~_--~)~1 = H02, y) exists, 

and y ~: a, b, then 
P 

f b A(y, .1) 
('1 _ y)~+z H(b, y) - H(a, y). (90) 
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