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Summary. An approximate analysis, outlined in the Appendix, shows that momentum thickness, skin

friction and heat transfer of the compressible laminar boundary layer developing under pressure gradients

may be given by formulae formally the same as those obtaining under zero pressure gradient conditions if an

appropriate length transformation is applied to the x-co-ordinate. Also, the formulae for skin friction and heat

transfer include factors land h respectively, which are functions of a pressure gradient parameter m.
Cohen and Reshotko's transformed similar solutions are used to provide values of l(m) and h(m) and of an

index appearing in the length transformation. Compared with the pressure gradient parameter n of Cohen

T
and Reshotko's generalised method, the present parameter m = TW n (where Tw is surface and To is stagnation

o
temperature), and there is a good collapse of values of land h when plotted against m.

If pressure gradients are adverse, then the value of m at natural separation (which depends on TwfTo) is an

additional parameter in the determination of the skin-fricti~n parameter l, but h is approximately a constant,

equal to its zero pressure gradient value, in this region.

Comparisons are made also for an external velocity variation U1 = ua(l - x).

1. Introduction. For a number of years, the so-called 'flat plate' (zero pressure gradient)

formulae for estimating skin friction and heat transfer have enjoyed considerable popularity among

the designers of high speed aircraft and missiles, largely because they are simple, concise and easy

to apply. Also, the slender wings and bodies usually thought suitable for supersonic flight have

involved only small pressure gradients (except, perhaps, in limited regions), so that a fair degree

of accuracy could be expected. This expectation has been confirmed in many cases by comparison

of theoretical predictions with experimental results.

Many refinements have been included in the formulae as the years progressed, but in their

simplest form, assuming that viscosity (fL) varies linearly with temperature (T), we have

(1)
and

* Previously issued as R.A.E. Report Aero. 2640-A.R.C. 21,974.

(2)
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for the momentum thickness and skin friction of _zero pressure gradient, compressible, laminar

boundary layers, where the local skin-friction coefficient

T W

Cf = lp U 2
2 I I

and the Reynolds numbers

and

R
_ PIUIX

x-
iLl

where T w is the local shearing stress at the wall,

02 is momentum thickness \ = IO

pu (1 - ~-) dy 1
( 0 PlU! U I ~

x, yare co-ordinates along and normal to the surface, respectively,

p is density,

u is the velocity component in the direction of x,

and suffix 1 denotes conditions in the stream outside the boundary layer.

A first approximation to the effects of pressure gradients, when the external velocity varies along

the length of the body, is to use Equations (1) and (2) with Pv UI and iLl taking their local, instead of

their main-stream, values. This artifice is fairly successful if the velocity variations are small.

This is the situation in the (low) supersonic speed range. However, as speeds increase into the

hypersonic regime, the need for protection against aerodynamic heating can lead to classes of

shapes with relatively blunt leading edges (or noses) and appreciable variations in velocity along

their length. An extreme example is the high drag-to-weight ratio body suitable for re-entry into

the earth's atmosphere (e.g., a sphere).

These trends lead to increased interest in methods for estimating boundary-layer development

under appreciable pressure gradients. In particular there is interest in skin friction and heat transfer,

and also in momentum thickness Reynolds number, vvhich is of interest for predicting where

transition to turbulence may occur. By contrast with similar studies in incompressible flow, there is

little interest in predicting the natural separation point of a laminar boundary layer, since separation,

if it occurs, is much more likely to be the result of a shock interaction.

The problem may be complicated by three-dimensional effects, interactions with the external

flow· and, indeed, the presence of shear in the external flovv (caused by highly curved bow shock

waves), so, in any treatment that neglects such effects (as in the present paper) there is much to

be said for seeking simplicity in application, even if this sacrifices some accuracy. Approxin1ate

solutions using the momentum integral equation would seem to be suitable in this respect. Examples

of such solutions are given by the \vork of Rott and Crabtreel and of Young2 for cases with zero heat

transfer, and of Cohen and Reshotko3, and of Luxton and Young4,5 for the more general cases when

heat is being transferred.
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Effectively, these solutions of the momentum equation introduce a transformation of the

x-eo-ordinate which may be· expressed in the form

(3)

where suffix a denotes a reference condition (from which local conditions are reached by an

isentropic flow process), and gl and g2 are functions for which various expressions are given by the

various authors.

In the treatments by Luxton and Young4,5, gl and g2 are quantities which vary with x, so that

Equation (3) must be solved in step-by-step fashion. (However, in some of the cases they considered,

quite large steps were adequate to give good agreement with known exact solutions.)

Concurrently with the later work of Luxton and Young5, Monaghan and Crabtree made a similar

study of the solution of the momentum integral equation (unpublished Royal Aircraft Establishn1ent

work). Starting from the same assumption, but vvith additional manipulation of the integral equation,

they found it possible to obtaing1 andg2 as functions only of Twi Tr (where Tr is recovery temperature),

of viscosity-temperature relationship and of Prandtl number. An outline of this study is given in

Appendix I. The result was what seemed to be a plausible extension of Thwaites' method6 to

compr'essible flow. For the case fJ- oc T and Prandtl number unity, this gave

Ro2 ~ o· 664Rx 112

cf Rx
l
12 = 0·664 (0./22)

where

with X given by Equation (3) with

2 Tw
gl == 3 + -

To

(4)

(5)

(6)

(7)

where To is total temperature (invariant)

and T,u; is wall temperature (assumed constant).

In Equation (5), 1is a function of m, where

m == _ o. 44 TwX dU1 .

T 1 U1 dx

The function l(m) may be obtained from suitable correlations of known exact solutions (e.g., in

the first instance the correlation of incompressible flow results by Thwaites6 was used). If pressure

gradients are favourable, then the linear relation

or

may be adequate.

(82477)

1 == O· 22 - 1· 64m

I
-- == 1 - 7·45nz
0·22

3

(8a)

(8b)
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(9)

(10)

The similarity of Equations (4) and (5) to Equations (1) and (2)is apparent~ The variations of

the external flow quantities around the body will be known in advance, so the main source of

additional work is the evaluation of X from Equation (3), with gi and g2 from Equation (6).

Also, we may note that under zero heat transfer condi.tions, (Tw == To), gi and g2 become the

constants used by Rott and Crabtreel .

If, instead of being given Uv we are given the variation of Mach number MI around the body,

then it is easily shown that Equations (3) and (7) become

X = I: (~r M1gl dx

(~:r M1gl

and

m = _ 0.44 T~ X dMI

To M I dx

with the remainder of the Equations staying as before.

Having obtained these results, comparisons were made with examples used by Luxton and

Young4,5 (the author wishes to acknowledge- their co-operation in this respect), which showed

deficiencies in some cases when heat was being transferred. These deficiencies are probably common

to any method based on the very simple assumptions of the Appendix: in particular a straightforward

transformation of Thwaites' incon1pressible flow correlation is not immediately possible. This was

recognised by Luxton and Young in their modified method, wherein they introduced correction

factors based on the transformed 'similar solutions' of Cohen and Reshotk)?

This finding led to a critical examination of the formulae in relation to the transformed 'similar

solutions '7 which led to the conclusions to be discussed in the following sections. Section 2 considers

the comparison with the similar solutions7 and this is followed in Sections 3 and 4 with a fresh

examination of the generalised approach3 based on these similar solutions, which leads (Section 5)
to what seems to be a sufficiently accurate method for estimating the development of compressible

flow laminar boundary layers without sacrificing the simplicity of Equatid'ns (3) to (10) above.

2. Comparison of the First Approximation with the Transformed Similar Solutions for Pr == 1
and fL oc T. 2.1. Results from Cohen and Reshotk07• Application of the Stewartson-Illingworth
transformations

Xi = I: (~:r dx

Yi == (TI )l12 IY

f dy
To 0 Po

reduces the differential equations of the laminar boundary layer to forms which, for Pr ==

oUi + OVi = 0 1
dXi oy",

oUi 8ui H dUi I 82Ui
U·-- + v· - == - u' l ~- + vo--

t 8xi '" 8Yi Ho t dXi 8Yi2

8H 8H a2H
Ui O~ + Vi 0Yi = VOJyi2 J

4

(11)

1, are

(12)



(where H is total enthalpy). These are identical with the corresponding equations of incompressible

flow, except for a factor Jf multiplying the velocity gradient term on the right-hand side of the
o

momentum equation.

The transformed x-wise velocity, Ub is

and, for present purposes, we require only the velocity outside the boundary layer, so, in what

follows, we shall take

(13)

If solutions in incon1pressible flow are known for an external velocity distribution Ui == Ui (Xi)'

then when TwlTo == 1 (zero heat transfer), we can transform the results by Equations (11) to obtain

corresponding results for the distribution M I == MI(x) in compressible flow.

In particular the 'similar solutions' resulting from the velocity distributions

(14)

can be transformed in this manner.

This 1: 1 correspondence does not hold when Tw =F To, but, by a method of successive approxi

mations, Cohen and Reshotko succeeded in obtaining transformed similar soltitions for a range of

Twi To from 0 to 2, and the numerical results are given in Ref. 7.
In particular they tabulate values of functions

and

(where cf w== T wltPwul 2 and (Jtr == (TIl TO)382 in the present notation).

';Vith a small amount of manipulation we can transform these quantities to

(15)

and

where

and

R
82

= ~UI02
ILl

R . _ PIUIXi
X~ - •

ILl

5

(16)



2.2. Results from the Present Method. Turning now to the formulae of the present method, the

appropriate length transformation is

(9)

with

(6)

Equation (9) includes the Stewartson-Illingworth transformation of the x-eo-ordinate (note

Equation (11)) and thus may be written

(17)

Hence, with

(14)

we obtain

(18)

and, from Equations (4), (5) and (7),

(19)
where

and

(20)

with I a function of

(21)

The right-hand sides of Equations (19) and (20) are to be compared with the tabulated values

z and fw" of Equations (15) and (16). This is easily done over the whole range of values of f3io
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2.3. Numerical Comparisons, on Basis of First Approxinlation for gl (Equation (6)). Figs. 1 and 2

compare Cohen and Reshotko's values7 of z and fw" with the approximations of Equations (19)
and (20). In each case the plot is against f3i' where, as above,

Thus, f3i < 0 corresponds to adverse, and f3'i > 0 to favourable pressure gradients. f3i == 1
corresponds to stagnation point flows and f3i == 2 to 1ft == 00. The individual curves are for constant

values of Twi To. (Note the change in scale between f3i > 0 and f3i < 0.)
Considering the mon1entum thickness parameter z (Fig. 1), we see that the present approximation

(Equation (19)) is reasonably accurate when pressure gradients are adverse. With favourable pressure

gradients, there is good agreement when Twi To == 1 (zero heat transfer) but the approximation

underestimates the spread of Cohen and Reshotko's results for other values of TwiTo. Effectively

this means that Equation (6) for gl'

(6)

is not weighted sufficiently in favour of Twl To when pressure gradients are favourable.

The agreement for Twl To == 1 means that the sum of the numerical coefficients in Equation (6)

should be around five. Alterations in the individual values (increasing the coefficient of Twl To)
would ilnprove the approximation for f3i > 0, but immediately this would worsen the approxima

tion for f3i < O. Further consideration of gl will be deferred to Section 3.
Considering the skin-friction parameter fw" (in Fig. 2), where additional values of Twl To are

included, \ve see that the present approxirnation is fairly reasonable over the whole range of f3i'
except when approaching separation with negative {3'i' (Nate that the scale of fw" is altered between

f3i > 0 and f3i < 0: that for f3i < 0 is the more open one.)

In estimating the function I of Equation (20), the linear approximation of Equation (8b)

I
0.22 == 1 - 7·45m (8b)

was used for f3i > 0. For f3i < 0, Thwaites' correlation6 of the incompressible flow similar solutions,

were used.

However, if we use the revised values of I {== I(m, TwlTo) when (3i < O} derived from Cohen

and Reshotk03 in Section 3 below, then the skin-friction results are in quite good agreement over the

whole range of f3i' This is illustrated by the points (crosses) added for the case Twi To == O· 2 with

f3i < O. The reason for this agreement in skin-friction coefficients, whereas momentum thickness

can be considerably in error, is that the errors in Ro2 and nt largely compensate for each other when

estimating skin friction.

A feature of the approximate method is that \vhen Trwl To == 0, Equation (21) gives m == 0, so

that I == 0·22 and the divergence of Equation (19) from the flat plate value of 0·332 is accounted

for solely by the X-transformation of Equations (17) and (18). This feature and the failure of

Equation (6) for gl to give good results for momentum thickness over the whole range of f3i' led to

a fresh examination, in Section 3 below, of Cohen and Reshotko's generalised met~od3 for dealing

with the laminar boundary layer in compressible flow.
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3. Examination of Cohen and Reshotko's Generalised Method3• By analogy with Th.waites'

treatment of incompressible flow, Cohen and Reshotk03 introduce the correlation parameters

and

n=
8i

2 dUi 1
---

Vo dXi

(23)

where 0i (= et1. of Ref. 7) = (~:) 3 °2 , .

Then they draw on the transformed similar solutions of Ref. 7 to produce plots of the various

boundary-layer functions against n. As an exaniple of these plots, the skin-friction parameter I is

plotted against n in Fig. 3 and shows considerable variation with Twi To. (Note also the reversal of

the curve for Twi To = 2 when n < 0.)
In the derivation of the present approximate method (Appendix I), Monaghan and Crabtree

chose to define

I _ L\2 (' au)
- U I ay y=o

(24)

m = ~:2 (:~2) 1'=0

(i.e., both parameters are defined in terms of the derivatives, at the wall, of the velocity profile).

In Equations (24),

L\2 = Tw 02
T I

Y = JY fLw dy
o fL

( = J: ;: dy if fL oc T) ,
U is the velocity in the physical plane and, from the equations of motion with the aid of the

Y -transformation,
PIUI dU I---
fLw dx

(25)

(for more detail, see Appendix I).

Comparing Equations (23) and (24) (invoking the various transformations involved) it is easily

shown that, in terms of quantities in the physical plane, the definitions of I are equivalent, but

Twm=--n.
To

This suggested re-plotting Cohen and Reshotko's values of I against m, which has been done in
Fig. 4. Compared with Fig. 3, there is a good collapse of the results for m < 0 (favourable pressure
gradients). In particular the results for o· 6 ~ Twi To ~ 2* are close to the approximation of
Equation (8a) .

I = 0·22 - 1·64m.

*Neglecting the reversal of the curve for Twi To = 2, shown by the broken (dashed) line.

8
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For m > °(adverse pressure gradients) the curve for TwlTo = 1 is the same as Thwaites'

correlation of the similar solutions in incompressible flow (as would be expected), but there is a

spread for other values of Twi To. However, the individual curves exhibit a similarity in shape and

those for Twl To = O· 2 and 0.· 6 have been extrapolated to I = 0 in accordance with this similarity,

instead of retaining the backward loops they had in Fig. 3. (The extrapolations commence from

the breaks in the curves.)

Denoting the value of m for I = 0, by msep then Fig. Sa shows the values of msep (of Fig. 4)

plotted against Twi To, and Fig. Sb illustrates the similarity of shapes (for m > 0) by plotting I
against mlmsep • The individual points are derived from the numerical values of I and n tabulated by

Cohen and Reshotko in Ref. 3.

Thus it is suggested that, when m > 0, the curve of I against mlmsep of Fig.5b be used to determine

I; the value of msep being taken from Fig. Sa. (If the analysis is being made on the basis of the

correlation of the similar solutions, then nlsep for Tw = To is o· 0681.)

(In passing, it may be noted that the results for m < 0 do not correlate any better by plotting

against mlmsep • Instead, they are over-corrected and it seems preferable to use the simple plot of I
against 1n when m < 0.)

Cohen and Reshotko also provide results for the case Twi To = 0, but a drawback of the present

definition of m is that m = 0 when Twi To = 0, so they cannot be plotted on Fig. 4. Twi To = 0 is

a limiting case and for practical purposes the drawback is obviated when m > 0 by using the

alternative presentation of Fig. 5. When m < 0, one would expect the slopes of the curves for

TwlTo < 0·2 (in Fig. 4) to increase more and more as TwlTo tends to zero, finally becoming

vertical when TujTo = 0. However, within the limits of the transformed similar solutions (~i :} 2)

the deviation in the values of I would not be large. This is indicated by the dotted line which shows

where the value f3i = 2 is reached on the curves for individual values of Twi To.
In summary, therefore, it would seem that Equation (8a)

for m < °and Fig. 5 for m > 0, should provide reasonably accurate estinlates of skin friction,
provided m (or X, note Equations (7) and (10)) is estimated with sufficient accuracy. This question
is considered in Section 4.

3.1. Heat Transfer Coefficient. Defining Stanton number

(where qw is the heat flow per unit area and time), then, by analogy with Equation (5) for skin

friction, we take

StRx
l l2 = 0.332 (_h_)

0·22
(25)

(remembering that the analysis is for Prandtl nUITlber unity).

Cohen and Reshotko's results3 for skin friction and for the ratio of skin friction to heat transfer

enable us to estimate h, and Fig. 6 plots h against m. The collapse of the results for the various values

9



(26)

of Twi To is very good, apart from end-points, and, when pressure gradients are favourable (m < 0),
a good approximation is given by

hh~ 0·22 + 0.6m}
0.22 - 1 + 2 7m.

or

This trend is the opposite to that displayed by l(m).
An interesting feature when pressure gradients are adverse (m > 0) is that, unlike I, It does not

tend to zero as separation is approached. There is a small decrease near to the separation point,

but in general the values for m > 0 are nearly constant around 0·220 to 0·225.

4. Improved Estimates of X and m. To complete the solution, we require

and

(9)

In Section 1, we took

m= (10)

(6)

which we shall refer to as the first approximation for gl' We now seek improved values of gv which,

in general, is a function of m as well as of Twi To.
Equations (9) and (10), for X and m, have simple solutions (Equations (18) and (21)) for the

transformed similar solutions, so we shall use Cohen and Reshotko's results3,7 to find

gl = gl(m, TwITo)· (Thus, from Equation (25) we have

(25)

and combined with Equation (21), this gives

0·44+ (f)n
n

and values of n are given in Ref. 3.)
The values of gl thus obtained are given in Table 1 and Figs. 7 to 9.

Concentrating first on the values of gl for Twl 1~ ~ 1, Fig. 7 gives curves of gl against m for

constant values of TwiTo. The full-line curves for TwlTo = 1,0'6 and 0·2 were obtained directly
from the tabulated values of n in Ref. 3. The remainder were obtained by graphical interpolation*.

For Twl To = 1 (zero heat transfer), Fig. 7 shows that gl is approximately constant over the
whole range of m. This feature would explain the success of Rott and Crabtree's solution of the

* Making use, in this interpolation, of the tabulated values3 of n for TwlTo= O.

10
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momentum equation for these conditions, using gi = 5 (note the agreement of results for Twi To = 1

in Figs. 1 and 2) and it would seem that a revised value of gi = 4·3 to 4·4 would give very close

agreement with the results of the transformed similar solutions.

However as Twl To is reduced below 1 (heat transfer from air to body), gi becomes increasingly

dependent on m, so that, for close agreement at low values of Twi To, a step-by-step integration

of Equation (9), for X, would be necessary, changing the value of gi in accordance with the values

of m obtained. (This feature has been noted already by Cohen and Reshotk03.) In essence, this is

the procedure adopted by Luxton and Young in their modified treatment5.

However, it may still be possible to secure a good approximation to the exact results for momentum

thickneEs, skin friction and heat transfer by choosing an overall mean value of gi for the range of

values of m that may be expected in any particular problem. For example, when m > 0, the values

of gi become grouped together and are in a region similar to that given by the first approximation

(Equation (6)), although the actual values of gi vary by up to 0·5 from those given by the first

approximation. This feature explains the success of the approximation in predicting momentum

thickness parameter (Fig. 1) when fJi < 0 (m > 0) and, in turn, the extent of the agreement found

in Fig. 1· for fJi < 0 suggests that extreme accuracy in choosing gi is not essential.

An idea of the accuracy required is given by differentiating the momentum thickness parameter z
(of Equations (15) and (19)) with respect to gl' which gives

This shows that the maximum error in z is 50 per cent of the error in gi' This occurs for fJi = 2.
When fJi = 1, the error varies from 30 per cent for gl = 1· 5, to 40 per cent for gi = 4·5.

Examples are given later. Meanwhile, Fig. 8 gives an alternative representation of the results for

gv by plotting gi against Twi To for constant values of m. {The curve for m = 0 is a limiting case,

dividing favourable (m < 0) from adverse (m > 0) pressure gradients.} This shows that, in most

cases, a linear relation between gi and Twi To should be adequate. The relation varies from

when m = - 0·1

when m = O· 02 to 0· 04.

through
Twgi ::e::: 2·3 + 2·2 - when m = 0
To

to
Twgl::e::: 3 + 1·5
To

Finally, Fig. 9 givesgi against m for TwlTo = 2. This shows the awkward feature thatgi becomes

double valued when m < 0, which is probably a characteristic of the similar solutions for all

Twl To > 1. How this affects the application is considered in the examples of Section 6, but if

there is an interest in problems with Twi To > 1 and favourable pressure gradients, then additional

exact solutions of the boundary-layer equations for values of Twl To between 1 and 2 are essential.

5. Suggested Method for Calculating the Development of the Laminar Boundary Layer for Pr = 1
and /1, ex T. The analysis of Sections 3 and 4- has shown that the method of calculation outlined

in the Introduction should be adequate provided that suitable values of land gi are used.

11



Recapitulating, the momentum thickness will be given by

skin friction by

and heat transfer by

1/ ( I ),cfRx 2 = 0·664 --
0·22

StRx
I I2 = 0.332 (_h_)

0·22

(4)

(5)

(25)

where Reynolds numbers and coefficients are based on local values of density, viscosity and velocity,

outside the boundary layer and I (Figs. 4 and 5) and h (Fig. 6) are functions of m,

(10)

which, for favourable pressure gradients (m < 0) may be approximated to by

I
_. = 1-7·45m (8b)
0·22

and
h

0.22 = 1 + 2·7m (26)

while, for adverse pressure gradients (m > 0), I is a function of TwI To as well as of m (but the

dependence on Twl To may be removed by plotting against mlmsep, where msop, the value of m at

separation, varies with Twl To; see Fig. 5), but h stays constant at approximately 0·225.

For two-dimensional boundary layers (as considered so far), the transformed length co-ordinate

X is given by

(9)

while, for bodies of revolution (as noted in Appendix I)

(27)

where Yo = yo(x) is the equation of the generating curve of the body.

The index gl is given in Figs. 7 and 8 as a function of TwI To and m. (Values of g2' used

in Equation (3), may easily be derived.)

In application, the starting values of m (at x = 0) should be easy to determine (from Equations

(27) and (10), letting x -+ 0). Then, knowledge of whether pressure gradients are favourable

(m decreasing) or adverse (m increasing) should enable a suitable first approximation for gl (i.e., a

constant) to be chosen from Fig. 7 or Fig. 8. Using this approximation, Equation (9) (or (27)) is

12



(6)

The comparisons in Figs. 1 and 2 have

solved for X; hence m is obtained from Equation (10), whereupon reference back to Fig. 7 should

indicate whether the first approximation is sufficient or whether a step-by-step integration, changing

the value of gl with each step, is necessary. (The acid test comes from the values of Ro2' which are

affected most by changes in gl.)

6. Examples. 6.1. The Transformed Similar ~Solutions.

shown that the first approximation

2 Tw
gl = 3 + 

To

does not give good agreement for momentum thickness with Cohen and Reshotko's transformed

sin1ilar solutions when pressure gradients are favourable (m <0 or f3i > 0), except in the case

TwlTo = 1. Now, reference to Fig. 7 indicates that Equation (6) would hardly be considered to be

a good first approximation when Tw < To and m < 0. Thus, it is a fairly drastic test to go on to a

second approximation on the basis of values of m determined from this clearly erroneous first

approximation. This has been done and a new value of gl was determined for each value of f3i and

Twl To via the first approximation to m and Fig. 7. The outline of the calculations is given in Table 2

for TwlTo = 0·2, and the results are plotted in Fig. 10 (momentum thickness) and Fig. 11 (skin

friction). (Compared with Fig. 2, we have now used Fig. 5 for I when m > 0, with (msep)Tw=TO =
0·0681, whereas the corresponding region in Fig. 2 was based on Thwaites' correlation, which

corresponds to the curve Twi To = 1 i,n Fig. 4.)

Fig. 10 shows that the second approximation for momentum thickness is within 10 per cent of

the exact results over the whole range of f3i' for O· 2 ~ Twi To ~ 1. (The agreement would be

better if a more reasonable first approximation had been take·n.) On the whole, there is also better

agreement between the skin-friction results (Fig. 11).

As mentioned in Section 4, there is a difficulty when Twi To > 1, since the gl(m) curve becomes

double valued when m < 0 and extends only to m = - 0·075 (see Fig. 9). Therefore, in going to

the second approximation, the last known value of gl on the lower part of the curve was used in

cases when the first approximation to m lay beyond the limits of m in Fig. 9. Such values are

enclosed by brackets in Table 2, for Twi To = 2.

The final results for TwlTo = 2 in Table 2 and in Figs. 10 and 11 are in good agreement with the

exact solutions until the point of departure from the lower curve for gl is reached (at f3i = O· 30).

After this, the values of the momentum thickness parameter (z, Fig. 10) show an increasing error.

Surprisingly, the skin-friction parameter (/lO'" Fig. 11) remains in good agreement with the exact

solutions up to the highest value of f3i used (f3i = 1). This arises from compensating errors in the

factors {2 + f3i(gl - 1)}1/2and 110· 22 (note Equation (20) and Table 2) and the same feature explains

why the first approximation gave quite a good approximation to skin friction (in Fig. 2) in regions

where its estimates of momentum thickness were considerably in error.

To improve on the approximation when Twl To = 2, and f3i > 0· 3, involves taking values of gl
from the upper portion of the curve in Fig. 9, where it will be noted that gl varies rapidly with m.

When the value m from the first approximation is greater negatively than - o· 075, then a suggestion

would be to take the value of gl at its mirror in1age about m = - o· 075. In the present instance

this would lead to an over-correction and the resulting values of z would come below the exact

solution in Fig. 10 (for f3i > 0·3). However, a third approximation might then be sufficient, but

this was not checked.

13



6.2. The External Velocity Distribution Ul = ua(l- x) with Ma = 4 and Tw = Ta. So far, the

comparisons have all been with the transformed similar solutions, so it is useful to compare against

results for a different type of external velocity distribution, as given by ttl = ua(l- x).
A numerical solution has been obtained by the Mathematics Division of the National Physical

Laboratory for the case M a = 4 and Tw = Ta. This 'has been quoted to have an accuracy of about

10 percent. Luxton and Young use it for a check on their modified method in Ref. 5 and the values

to be used here are taken from that reference.

In applying the present method, the first approximation

Twgl = 3 + 2 - (6)
To

= 3·48

was used, and the solution for X was obtained on MERCURY by Mr. A. Naysmith.

The results for skin friction and Reynolds number are given in Fig. 12, where it may be noted

that the various quantities are based on the reference conditions 'a'.

Fig. 12 shows very close agreement between the present results for momentum thickness (oz)
and those obtained by Luxton and Young (using their modified step-by-step method) until separation

is approached.

The results for skin friction depend markedly on the assumption made about the value of m at

separation (msep)' In the first instance, the value of mscp for Tw = To was taken to be 0·0681, as

for the similar solutions. In the case being considered, Twj To = Taj To = 0·24, and Fig. Sa would

give the appropriate msep to be 0·034. Fig. 12 shows that the resulting values of skin friction (using

Fig. 5b for IjO· 22) are considerably below both the 'exact' solution and the results of Luxton and

Young's modified method. Separation occurs at xjL = 0·175 by the present method, at 0·20by

Luxton and Young and at 0·22 by the exact solution.

Now, from the variation of m with xjL obtained by the present method, xjL = O· 22 corresponds

to m = 0·042, and by adopting this as the value of mscp when estimating IjO' 22 from mjmsep in

Fig. 5b, the revised curve labelled 'mscp = 0·042' was obtained, which shows quite good agreement

with the exact solution.

The interesting feature is that this latter value of mscp corresponds to an msep at Tw = To (by

Fig. Sa) of 0·084; while Th"vaites' correlatiod' of Howarth's incompressible flow solution of

U l = ua(l- x) gives msep = 0·082.

The conclusion would be that agreement is obtained if the value of msep appropriate to the flow

in question is used. Thus, although the position of natural separation may be only of academic

interest in supersonic flows, it is still necessary to use it as a parameter when estimating skin friction

under adverse pressure gradients. (However, it is not necessary to the evaluation of momentum

thickness (0 2), or Stanton number (St).)
For interest, the variations of RS2 jRx

1h, cfRx1h and StRx1h, based on local conditions, are shown

in Fig. 13. Results are included for 1'w = To as well as Tw = Ta and the plot is against xjxsep .

(The value of xsepjL for Tw = To, corresponding to ms"p = 0·084, is 0·063.)

Comparing with the local flat-plate values (also shown) the variations of Rs 2 and St are larger for

Tu; = Ta than for Tw = To, but both variations are small compared with those of cf' (For Tw = To,
the local flat-plate values would be good approximations to Rs 2 and St.) Also note that while cfRx1h
decreases with xjL, as would be expected with an adverse pressure gradient, the variation of StRx

l l2

is in the opposite direction (i.e., an increase).
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7. Concluding Remarks. 7.1. Skin Friction. The results of the examples of Section 6 suggest

that the method of calculation outlined in Section 5, and using a first approximation for gl (a constant,

with value taken from Fig. 7 or 8) should be adequate for estimating skin friction, for Pr = 1 and

fJ, oc 1', particularly if pressure gradients are favourable (m < 0) and l'wi To < 1. Similar accuracy

with favourable pressure gradients, but Twl To > 1, would require additional exact solutions of the

boundary-layer equations for l'wi To between 1 and 2.

If pressure gradients are adverse (m > 0) then the accuracy depends primarily on knowledge of

the value of m at natural separation, which is a parameter in the curve of I against mlmsep of Fig. 5b.

For external flows approximating to the transformed 'similar' flows msep = 0·068 when Tw = To,
but for flows of the type U l = ua(l-x), msep = 0·084 when Tw = To (from the example of

Section 6.2).

·7.2. Momentum Thickness. Compensating errors help to make the estimate of skin friction fairly

independent of the accuracy of choice of gl' However, the same is not true for momentum thickness,

particularly if pressure gradients are favourable (and strong), and a second approximation, or a

step-by-step integration of Equation (9), may be necessary. Experience would be the best guide in

this respect and it is suggested that a second approximation should be made as a check in sample

cases.

7.3. Heat Transfer. Estimates of heat transfer by Equations (25) and (26) have not been made,

but the same remarks as for momentum thickness would apply when pressure gradients are

favourable. It is of interest that when pressure gradients are adverse, the heat transfer parameter h

(Fig. 6) does not vary appreciably with m, and a constant value of about 0·225 should be adequate.

7.4. Extension to other Values of Pr and for more Realistic Variations of fJ, with T. Approximate

analyses of the type outlined in Appendix I may be of use for extending the results in these directions.

This suggests that a more realistic variation of fJ, with l' may be allowed for by including a factor

of the flat-plate intermediate-enthalpy type in the formulae for skin friction, etc., e.g., Equation (5)

would be replaced by

where

the suffix m denoting that the quantity is to be evaluated at a reference (intermediate) enthalpy.

Examples calculated by Luxton and Young would suggest that the assumption fJ, oc T has negligible

deleterious effect on the calculation of X.
Change in Prandtl number from 1 to O· 72 may have more effect and thus should be investigated

further. Until this is done, a first approximation would be to use the equations for momentum

thickness and skin friction as they stand, but to modify the equation for heat transfer (Equation (26))

by the inclusion of a factor depending on Prandtlnumber, e.g.,

StR 112 = O. 332Pr- 1X (_h_)
x 0.22

15



(and include also the factor C1
112) where, from Cohen and Reshotko3, following Tifford and Chu8,

and Squire9

ex == o· 667 for small pressure gradients

ex == o· 6 for. stagnation point flows9

ex == O· 5 for extreme favourable gradients8

and ex == o· 75 for large adverse gradients8•

Likewise, one would take a recovery factor (say == Pr1
/2) when estimating recovery (zero heat

transfer) temperature, and the various curves for constant values of Twl To should be read as for

Twi Tr, where Tr is the recovery temperature.
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NOTATION

Functions of Prandtl number defined in Equation (31) of Appendix I

Constant in the viscosity-temperature relation (Equations (38) of Appendix I}

Shape factor, 61/62

Total enthalpy

Mach number

Prandtl number (== CpfL/k, where k is thermal conductivity)

(
PIUIX )Reynolds number Rx = ILl ' etc.

--~~---------- Stanton number (heat transfer coefficient)
PIUICp( Tr - Trw)

Temperature

Transformed length co-ordinate, along surface of body, defined by Equation (3)
.(or (9))

Transformed distance normal to the surface, uSIng Howarth transformation

(Equation (30) of i\ppendix I)

(82477)

a Speed of sound

CjJ Specific heat at constant pressure

cj Local skin-friction coefficient (== Twl ~-PIUI2)

.lw" Skin-friction parameter used by Cohen and Reshotko (Equation (16))

11' .f2 Constants defined in Equation (42) of Appendix I

gv g2 Indices in the X-transformation (Equation (3) or (9))

h Factor in Equation (25) for Stanton number (a function of m, Equation (26))

Factor in Equation (5) for skin-friction coefficient (defined by Equation (24);",
a function of m)

m Pressure-gradient parameter (see Equations (24), (7) and (10))

msep Value of m at natural separation point of laminar boundary layer

m Index of the 'similar' flows (ui oc x1n)

n pressure gradient parameter used by Cohen and Reshotko3. (m = ~: n)
p Pressure

qrw Heat flow rate per unit area into surface of body

u, v Components of velocity in the directions x and y

x, y Co-ordinates along and normal to the surface of the body

17
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NOTATION-continued

Xi' Yi Co-ordinates along and 110rn1al to the surface of the· body, following the

Stewartson-Illingworth transforma~ions(Equation (11))

z Momentum-thickness parameter of Equation (15)

f3i 2m!(m + 1)

3 Thickness of boundary layer

01' 32 Displacement and momentum thicknesses of boundary layer

112 Momentum thickness in the (x, Y) plane

fL Viscosity

p Density

T Local shear stress

SUFFIXES

(to velocity, temperature, etc.)

w

1

o

a

At wall (body surface)

Locally in the stream outside the boundary layer

Stagnation (isentropic)

Reference (isentropic)

Recovery (zero heat transfer)

Incompressible, following the Stewartson-Illingworth transformations

Editor's note. To simplify the casting of the mathematics by machine a suffix, or power, with
an inferi?r suffix attached has been printed with the inferior on line, but detached
by a thin space.
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APPENDIX I

. Outline of an Approximate Method of Solution of the

Momentum Integral Equat£on, for Cp =:: Constant

The momentum integral equation of the steady, two-dimensional laminar boundary layer in

compressible flow is

where 02 is momentum thickness \ = JO pu (1 - ~) dy I
~ 0 P1U1 UI ~

Yf = ~1 is the shape factor
2

(28)

°1 is displacement thickness l= J: (1 - ~:J dyl
and cf = 1 'TVJ 2 is the local skin-friction coefficient, based on local conditions in the stream

2PIU1

outside the boundary layer.

(For other symbols, see Notation.)

In any given problel11, the variations of stream density (PI) and stream velocity (uI) with x will be

known, and to solve Equation (28) for O2 we need to insert in it suitable expressions for Yf and Ct.

The solution is aided by the conditions

dUl dp
- PIUI - =::-

dx dx

(29)

which are obtained from the momentum equation in its standard differential form, wherep is pressure

and f-L is viscosity.

1. Transformation of the y- Co-ordinate. We assume that if the co-ordinate normal to the surface

(y) is replaced by Y, using the transformation

Y =:: JY p'VJ dy
o f-L

(30)

then the velocity profile U =:: u( Y) is not affected by compressibility. In essentials this is the transfor

mation used by Luxton and Young4, 5 and it is closely related to Howarth transformation. The

assumption that u( Y) is not affected by compressibility is certainly valid if f-L oc T and dpldx = 0,

since in this case there is a unique curve of TITwagainst ulul for all values of MI and TwiT! (where T

is the shearing stress locally within the boundary layer). We now assume that it may also be a

reasonable approximation when dpldx =f: 0.
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2. Value of the Shape Factor£. In general, the shape factor £ is a function of Mach number,

of surface temperature and of the history of the boundary layer. The problem is simplified if

dpjdx = 0 (the 'flat plate' boundary layer) in which case yt is given, to very good approximation10,

by

Ye = Yei + AYei (~: - 1) + B (~: - 1) (31)

where T1, Twand Tr are the 'static' (outside boundary layer), wall and recovery temperatures and
A, B are functions of Prandtl number, with numerical values as given below.

I

Pr == I 0·65 0·70 0·72 0·75 1·0

A ==
B ==

1·23
1·07

1·20
1·03

1·18 1·16 1
1·05 1·04 1

! 1

(31a)

We may note that if Pr = 1 then A = B == 1 so that

Tw (Tr )Ye = :Yt"i T
1

+ T~ - 1

as has been used by several authors.

In deriving Equation (31), it was assumed that total enthalpy was a linear function of velocity

(in the boundary layer) and this is not always a good approximation if dpjdx =f: O. However, we

shall assun1e that Equation (31) can be used in the present case if a suitable mean value for Yfi is

chosen.

Meanwhile it is convenient to re-write Equation (31) in a form that isolates the quantities that

vary along the length of the body from those that are constant (or nearly constant). Twl Tr will be

assumed constant, but T1 can vary considerably, so we replace Twi T1 by

and Equation (31) becomes

Yf == eYe. + AYe. (_Tw
- 1) + (AYe. Tw + B) (Tr

- 1) (33a)
~ ~ T

r
~ T

r
T

1
·•

In application, we shall then assume that

hence

3. Relation between cj , 82 and dUlldx. We have a~sumed that the velocity profile u( Y) is not

affected by compressibility where

(82477)

J
y fJ-w

Y = -dYe
o fJ-

21
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Y == Ll;

The outer edge of "the boundary layer, y == S corresponds to Y == Ll· where

Ll == JS fLw dy
o fL

and u == u( Y) must satisfy the boundary conditions

au a2u
alT =aY2=0

(35)

Y == 0; u == 0,'

A further condition is given by Equation (29), which is transforlned by Equation (30) to give

(
a2u ) == _ PIU~ dUI
aY2 y=o fLw dx·

(36)

Equations (35), (36) are the usual boundary conditions of incompressible flow (note, however,

the combination of PI and flu' in (36)) and we shall assume that we can make use of known solutions

to obtain cf as a function of Li2 and dul/dx, where

~2 = JLl ~ (1 - ~) dY
o U1 UI

== _1 PI 02
CwPw

Cw being an appropriately chosen constant in the approxin1ate viscosity-temperature relation

(37)

Thus
fLw

T
CW -

T
·

'W

(38)

C ~ fLTw == PtL
w fLw T· PwfLw

and in the case dp /dx == 0 we would take

(38a)

where the asterisks denote that quantities are to be evaluated at 'intermediate' enthalpy. We shall

also use

(38b)

3.1. Use of Thwaites Correlation. Thwaites6 characterises known solutions of the incompressible

boundary-layer equations in terms of momentlUTI thickness and of the first and second derivatives

(at the wall) of the velocity profile, setting

(

(j2U ) U

ap y=o = ~~2 m ·

22
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Froln these, using Equations (30) and (37) we obtain

(40a)

or

(40b)

(with CI from Equation (38b)

PIU I 02 •where Ro2 == IS a local Reynolds number~

fI"l

Also, I is a function of m where

(41)

by Equations (36) and (37).

To aid the solution of Equation (28) for 02' it is convenient to take a linear relation between

1and m, i.e.,
(42)

where fi and f2 are constants, in which case Equations (40a) and (41) yield

(43)

We now re-write Equation (43) in a fOrlTI analogous to Equation (33) for Ye, i.e., in the second term

on the right-hand side we replace PI!Pw by Tw! T1 and, making use of Equations (32) and (34), obtain

4. Solution of the Momentum Integral Equation for 02. Substituting from Equations (33b) and (44)
in the momenturn integral Equation (28), and making use of the fact that

1 dPl
---

PI dx

(which follows from Equation (29) and the fact that dpjdp == a2) V\7'e obtain

(45)

where

(46)
1/ Y - 1 1/ Y - 1 ( .f2 ) TwG2 == 1 -Pr 2 -- B - Pr 2 --- AYei - - . -- . -

2 2 Cw Tr
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vVith the assumptions already made, G1 and G2 are constants, so that Equation (45) becomes

~ (0 2p 2G 2U 2G1) == 2C f ,I. Pw P (2G 2)-lU (2G 1)-1

d 2 1 1 w 1rw 1 1
X PI

which integrates to give

o2 == 2C f /I, P (-2G 2)U (-2G 1) JX Pw P (2G 2)-lU (2G 1)-1 dx (47)
2 w lrvw 1 1 1 1

o PI

(where we have assumed that fLw == fhw( Tw) can be treated as a constant).

Nate, that in this integration, P12G 2U12G 102
2 == 0 at x == 0, in all cases, including that of the

similar solutions with negative index.

Alternatively we have, from Equation (47)

(48)
where

R
x

= ~IU1X
ILl

with

Pw (2G 2)-lU (2G 1)-1- PI 1
PI

When evaluating X fron1 Equation (49), it is convenient to replace density by temperature and

relate the latter to reference conditions, which we shall denote by suffix 'a'.

Now

JX Pw PI(2G 2)-lU1(2G 1)~1 dx
X == _O_P_1 _ (49)

and we shall take Tal Twas constant*.

If we stipulate now that local conditions outside the boundary layer are reached by an isentropic

flow process froIn the reference conditions (e.g., the reference may be stagnation conditions behind
a bow shock wave), then

PI

Pet

With these substitutions we obtain

( ~:)1!(y-1)

(
T )20 5T: for y = 1·4.

Jx (T1) (5G 2)-1-5 U (2G 1)-1 dx
X 0 Ta 1

== ( T )(5G 2)-1 0 5 -
_1 U (2G1)-1
T 1

a

(50)

* Strictly, since we have assumed already that TwiT., is constant, then, unless Pr == 1 when Tr == To ==
constant, TalTw will vary to some extent along the length of the body. However, errors in X arising from this
source should be small.
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Equations (48) and (50) give the required solution of the momentum equation, the values of

G
1

and G2 being giv~n by Equations (46). In these, A and B are known as functions of Prandtl

number, a suitable value of Cw must be determined in accordance with Equation (38), and we are

left with the job of choosing suitable values of f1' f2 and :Ri • '

Now

where

and consideration of the incompressible flow correlation of Thwaites6 suggests taking

f1 == O· 22

f2 == 1· 64

(42)

(40b)

which give agreement with (a) stagnation point flow and (b) flat-plate (zero pressure gradient) flow.

The choice of :Ri is more difficult, but if we take :Ri == 2· 6, as for a flat plate, then we would

obtain close agreement with the simplest solution of the incompressible flow momentum equation

described by Thwaites in Ref. 6. Alternatively, :Ri == 2·4 (mean between stagnation point and

flat-plate values) would give equally good agreement with results (incompressible) for favourable

pressure gradients.

Taking the former value of :Ri (2'6), together with the values for f1 and f2' we obtain (after

rounding off to one place of decimals)

(51a)

5. Results for Pr == 1, fL oc T, and Summary of Method.

where Tr == To is the total temperature.

The indices in Equation (50) are then

In this case, A == B == Cw == 1 and

(SIb)

2G1 - 1 = g1 (say)

= 3 + 2 Tw

To

5G2 - 1·5 == g2 (say)

=2'5_{W.
o

The solution of the momentum equation and determination of cf then proceeds as follows.
. .
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(1) Evaluate X from Equation (50), i.e.,

Ix (T )02
X = 0 i U101dx

(
T )0 2 ..
_1 U0 1
T 1

2

Alternatively, if M 1 is specified and not Ull then it is easily shown that

I·
X

(Tl)4 M10ldx
X = 0 Ta

(;:f M10l

(Note:--if Pr = 1, then the index of (T1ITa) is 4, no matter what the value of Cw')

(2) Immediately, we have (Equation (48))

where

{or

R
_ P1U102

82--
fLl

R
x

= P1U1X
fLl

R82 = 0·644Rx
I/2}.

(3) From Equation (41), and the relation between 02 and x,

m =. (Pl)2 P10l dU1
Pw fLw dx

or

(4) Finally, from Equation (40b)

where l is obtained from m via known correlations, which~ if p!essure gradients are favourable,

may be approximated by

l = 0·22 - l·64m.

Alternatively, from step 2

If 2l
cjRx 2 = 0.664

= 0'664(0'~2) •
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6. Bodies of Revolution. The n1ethod is applicable also to bodies of revolution provided that at

each station along the body, the boundary-layer thickness is small compared with the local radius

of curvature. The only difference from the two-dimensional case arises in the calculation of X,
which is now given by

(with a corresponding equation in tern1S of M 1), where ro =: ro(x) is the equation of the generating

curve of the body.
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TABLE 1

Values of the index gl for Pr = 1 and fL oc T_

(Derived from Cohen an~ Reshotko's transformed similar solutions)

(a) From tabulated values

Tw m gl
To

1 0·0681 4·60
0·0487 4·47

(0) (4· 35)
-0·0602 4·31
-0·0829 4·31
- 0·1002 4-14
-0·1064 4·14

0-6 0·0536 4·13
0·0496 4-01
0·0369 3·85

(0) (3 -68)
-0·0433 3·09
-0·1040 2·54

0·2 0·0252 3·60
0·0242 3·52
0·0203 3·34
0·0710 2·89

I

(0) (2· 68)
-0-0167 2·26
-0·0402 1·86
-0·0504 1·75

2·0 0-0835 5·90
0·0588 6·06

-0·0668 7·52
-0·0751 8·72
-0·0622 13·15
-0-0371 23·4

I

-0·0179 49-2

28

(b) By graphical interpolation

Tw m I gl
To

0·8 0·04 4·17
0 4·08

-0·04 3·72
-0·08 3·47

0·4 0·02 3·39
0 3-19

-0·02 2·83
-0·04 2·52
-0·06 2·28

0·1 0·01 3·10
0·005 2·75
0 2-45

-0·005 2·22
-0·010 2·03
-0·015 1·86
-0·020 1·75
-0·025 1·67

0·05 0·0050 2·98
0·0025 2·64
0 2·34

-0·0025 2·12
-0·0050 1·96
-0·0075 1·81
-0·0100 1·70
-0·0125 1·63
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TABLE 2

2nd Approximation to Transformed Similar Solutions

1st Approximation 2nd Approximation Cohen and
Reshotko

Tw f3i
I

2 + f3i(gl - 1) gl - 1 2 + -f3i(gl - 1) (0.~2) f " fw"gl - 1 m z m z
To w.

I
0·2 -0·325 2·4 1·22 0·023 2·5 1·19 0·61 0·024 0·386 0·14 0·61 0·14

-0·30 1·28 0·021 2·4 1·28 0·59 0·021 0·523 0·20 0·58 0·21

-0·14 1·66 0·0075 1·9 1·73 0·51 0·007 0·841 0·37 0·50 0·38

(j·50 3·20 -0·014 1·3 2·65 0·41 -0·017 1·127 0·61 0·41 0·66

1·50 5·60 -0·024 1·1 3·65 0·35 -0·036 1·268 0·81 0·37 0·87

2·00 6·80 -0·026 1·1 4·20 0·33 -0·042 1·313 0·89 0·36 0·95
I

I

I

2·0 -0·1295 6·0 1·22 0·093 (4·9) 1·36 0·57 0·084 0 0 0·57 0

-0·10 1·40 0·063 5·0 1·50 0·54 0·059 0·44 0·18 0·54 0·18

0·30 3·80 -0·069 6·5 3·95 0·33 -0·067 1·50 0·99 0·33 0·98

0·50 5·00 -0·088 (6·5) 5·25 0·29 -0·084 1·63 1·24 0·27 1·24

1·00 8·00 -0·110 (6 0 5) 8·5 0·23 1-0.103 1·76 1·71 0·18 1·74
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Cohen and Reshotko's transformed similar solutions are used to provide
values of I(m) and h(m) and of an index appearing in the length transforma
tion. Compared with the pressure gradient parameter 11 of Cohen and

. T
Reshotko's generahsed method, the present parameter m = Tw 11 (where

o
Tw is surface and To is stagnation temperature), and there is a good
collapse of values of 1 and h when plotted against m.

If pressure gradients are adverse, then the value of 111 at natural
separation (which depends on Tw/To) is an additional parameter in the
determination of the skin-friction parameter I, but h is approximately a
constant, equal to its zero pressure gradient value, in this region.

Comparisons are. made also for an external velocity variation U 1 = ua
(1 - x).
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