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Part I 

The Longitudinal Stability and Control of the 
Tandem-Rotor Helicopter 

B y  A .  R .  S .  B R A M W E L r .  

COMMUNICATED BY THE DEPUTY CONTROLLER AIRCRAFT (RESEARCH AND DEVELOPMENT), 

MINISTRY OF AVIATION 

Reports and Memoranda No. 3223* 

January, I96o 

Summary. A siinple method of calculating downwash interference is presented and comparison of 
theoretical and flight test trim curves indicates that the method is reasonably accurate. 

Since the stability of the tandem-rotor helicopter depends largely on small differences between the thrusts 
of the front and rear rotors it is necessary to calculate the rotor thrust derivatives far more accurately than for 
the single-rotor helicopter. More accurate expressions than those given in Ref. 8 have therefore been calculated. 

The downwash interference causes a reversal of stick position with speed for part of the speed range with an 
associated divergence in the dynamic stability. This may be eliminated by choosing a suitable value of 
swash-plate dihedral angle. If, in addition, a suitable differential delta-three hinge angle is applied the tandem- 
rotor helicopter appears to be stable over the whole speed range except at hovering and very low speeds. 

If the swash-plate dihedral is too small the normal acceleration curve, following a step input of control, 
flattens out and then increases again. Thus the tandem-rotor helicopter may satisfy the N.A.C.A. manoeuvr- 
ability criterion yet possess unsatisfactory response characteristics. It is suggested that the N.A.C.A. criterion 
is Unnecessary if stability of the short and long period modes is ensured. Again, a proper choice of swash-plate 
dihedral and differential delta-three hinge enables satisfactory control response characteristics to be obtained. 

1. Introduction. The  longitudinal stability of the tandem-rotor  helicopter presents an easier 
problem to the helicopter designer than that of the single-rotor helicopter. It  is well known that the 
single-rotor helicopter without  tailplane or automatic means is inherently dynamically unstable. 
But  when the lift of the aircraft is shared by more than one lifting surface, as in most fixed-wing 
aircraft or the multi-rotor helicopter, it is possible to arrange that the configuration is stable by 
suitably choosing the rates of change of pitching moment  of the lifting surfaces, i.e. of the wing and 
tail combination of the fixed wing aircraft and front and rear rotor combination of the tandem-rotor  
helicopter. In  the f ixed-wing aircraft this is achieved by correct choice of the C.G. position. In the 
tandem-rotor  helicopter not only is C.G. movement  available to control stability but  there are also 

the powerful  effects of varying the angle between the rotor-hub axes (called swash-plate dihedral) 
and applying differential 33-hinges to front and rear rotors to control their lift-slopes. 

e Previously issued as R.A.E. Report Naval 3 (A.R.C. 21,943). 
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This report examines in detail the effects-of varying these parameters on the control to trim, 
dynamic stability and control response of a tandem-rotor helicopter having ,a configuration similar 
to the' Bristol 173. : ' ' . ~ , i . . :' 

2. Estimation of  Do~nwash Effect. ~ The, longitudinal stability and control of the tandem-rotor 

helicopter depends almost entirely on small differences in the thrusts of the front and rear rotors. 
Since thrust depends greatly on the rotor inflow i t is  eyident that a reasonably accurate estimate of 
the effect of the downwash of the front rotor on the rear rotor must be made before attempting the 
estimatio_n of the stability derivatives. Various forms of the, downwash pattern i n forward ̀  flight 
have been considered in the past, the most usual being a uniform cylindrical jet of air, e.g. Ref. 1, 
and the distribution due to a cylindrical vortex sheet, e.g. Ref. 2, but neither of these two patterns 
represents a precise physical description of the flow. 

The idea of a cylindrical wake probably arose from Glauert's proposaP, that the induced velocity, 
assumed constant, at the rotor disc is the same as that of'a Wing of spin 2R carrying the same lift 
distributed elliptically across its span, i.el as give n by 

T = 2rrR2pVvi o -- (1) 

This expression is the same as would have been calculated if the thrust had been supposed due to 
the"increase of  molrientum of a. cylindrical stream' of air whose  cross-secti0nal area .on.. passing 
through the rotor is the same as the rotor'area and Whose velocity is increased from V before reaching 
the rotor to V + 2 v  i o in the final wake, where v i 0 is a vector velocity in the opposite direction to 
the thrust. Such a physical picture is convenient as it is identical with that o f the  slipstream of a 
hovering rotor, o r propeller and pr"ovides an easy way of calculating the induced velocity for a given 
thrust and forward speed for .V >>. vi. o (strictly speakingi f6r the momentum 'considerations, we 
should take the ftow velocity through the rotor disc .~/t all speeds as ( g  2 ÷~ vio~) 11~, which reverts 
to V at high speed,, as in  equation (1), and v~0 at hovering). 

.. An extensive series of wind tunnel tests ~ have shown, however, that the f low behind a lifting 

rotor at forward speed is :very similar to that of a wing Of the same sPan and ,aspect ratio, i.e. the 
well known horse-shoe vortex system,, and indeed measurement of the induced velocity behind a 
rotor shows very good agree.ment with the calculated values behind such a wing. 

As shown in Ref. 4,: and as predicfed for a circular wiiag in Ref. 5, the vortex' sheet in the  vicinity 
of the rotor rolls up very rapidly and is almost completed at the rear edge of the rotor. Thus it can 
be said that in forward flight, the rear rotor of a tandem helicopter is completely immersed in the 
f low of a horse-shoe vortex system for values of/~ at least as low as 0. 095 which was the lowest 
value of/x in the tests of Ref. 4: Obviously, .between/z = 0 and/z = 0- 095 there is transition {:rom 
the propeller type slipstream at hovering to the line-vortex flow of forward flight but it is not known 
.exactly in what manner the chaflge takes place. It is likely that the flow due to the cylindrical vortex 
• sheet, of Ref. 2 would give satisfactory results for very low /z, say up to about 0.04, although, 
'unfortunately, the lateral variation is given., on. ly for the plane through the .centre of t he  (front) 
.rotor and judgment must  be used to estimate the induced veloc!ty, at other positions behind the 
-rotor, the longitudinal distributions being used as a gnide; The line-vortex flow should be satisfactory 
,for values of/z of 0.1 and above but the gap between/~ = 0.04 and/z = 0.1 will have to be 'faired 
in' graphically. Ref. 7 gives expressions for the induced velocity beh!nd a rotor based on the idea of 
the horse-shoe .vortex system and is intended for use at all speeds by.usinglan artificial expression 
for the circulation which reduces to zero in hovering and to a value which corresponds to the lifting 
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wing at high speeds. However, a good deal of computation is necessary to find the induced velocity 

at enough positions to give a good idea of the flow in the whole region of the rear rotor. What  we 

require is a suitable mean value of the induced velocity in this region so that it can be included as 

part of the inflow ratio A and used in the familiar expression for thrust coefficient 
J 

t c = C10o + c~,~ (2) 
where 

and 

a l ] B ( B ~ -  B2t~2 + ~tz4) I 
. q  = ~ B 2 + ,~tz 2 

a B  2 B 2 _ ½t~ 2 

c 2 -  4 " B ~ + ~1~ 2 

This mean value can be Obtained from the measurements of Ref: 4 where it is seen that, except 

in the region near the vortex cores, the induced velocity is fairly uniform laterally across the disc for 

given longitudinal and vertical positions. Thus the lateral variation of induced velocity Could well be 
replaced by its arithmetic mean value. Now one would expect that the distribution of non- 

dimensional induced velocity vi /v  io relative to the axes of the vortices would be constant at all 

speeds and the mean values of the lateral variation have been plotted relative to axes fixed, following 

Ref. 2, so that the origin is at the centre of the rear rotor and the ~-axis lying parallel to a line 

making an angle v i o /V (downwards) relative to the direction of flight, as shown in Fig. 3. This is 

different from the orientation of the axes of Ref. 4 where the X / R - a x i s  (corresponding to the ~-axis) 

lies in the plane of the front rotor disc, that direction, of course, being arbitrary. 

The  values thus obtained are shown in Fig. 4 for the three longitudinal positions ~ = 1.07, 

2.07 and 3.14 corresponding roughly to the front edge, centre and rear edge of a rear rotor. The 

~-axis is not exactly parallelto the axis of the trailing vortices since in general the latter are curved 

Slightly and it is for this reason that the curves shown in Fig. 4 are not symmetrical about the 

= 0 axis. Thus  for any given value of ~, which measures the distance of the particular part of the 

rear rbtor above the trailing vortices, the value of v J r  i o can be read off for the three values of ~ and 
the mean of these three values gives the mean interference velocity due to the front rotor. 

The  mean induced interference velocity at the rear rotor can now be expressed as 

vi  = k v i o  (3) 

Or if ~i = v~/~2R 

kstc F f~ R 
= 2(t~ + ;~)~/2 (4 )  

kstc F 
vi = 2(~2 + ~2)1/2 (5) 

where tcF is the thrust  coefficient of the front rotor. 

.=, The  effective downwash angle is taken as 

:? kv~ o ' kstc F 
E - -  - -  - -  
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The derivatives of e with respect to ~, @ and 00 are : , " 

d~ k d~ i k~ i . . . .  ! . . . . . .  

d~ P d~ f72 ; ' 

k s Oa st~ f d[~ + I d A  sto F (7) 

- p 2 ( ~  + A~)~ 2 ( ~  + ~)~ ~ ~ - 2 ~ ( ~  + ~ ) l ~ j  

de k s ~ ste~, dlz dA (8) 

= P 2(~+ ~)1~ 2(~ + ~)3~ ~ + ~ 

d~ k 300 stcF dl~ ~ dh . (9) 

• d00 - ~ z ( ~  + A~)I~ a(~2 + A~)3,2 ~ 0  + 

In order to check, the above method of estimating the downwash effect wind tunnel tests are needed 

of the loss of rear rotor thrust '  due to, the downwash of  the front rotor. Unfortunately, no reliable 
tests are available but the pi tching moment  of the helicopter, in the lower half of the speed range at 
least, depends almost entirely on, differential thrust changes (since pitching moments  due to the 

flapping will be comparatively small) so that comparisons of theoretical and measured tr im Curves 
should be a good test of the method. :These comparisons are made in the following section on the 

stick position to trim. ., , . . . . .  : - 

3. Control Angle to Trim. 3~1. Derivation of Equatio n for Control Angle. The general layout 
of the tandem rotor helicopter is shown in Fig. 1 and the force and moment  diagram in Fig. 2. 

The  reference line of the tandem-rotor helicopter is takep as the line which passes through the c.G. 

and meets the rotor hub axes at equal angles ~r/2 - ¢, where 2~ is the angle between the rotor 

hub axes (positive when the axes meet above the c.~.). The angle 2~ will be referred to as 'swash- 

plate dihedral'.  

I t  is assumed that the movement of the stick applies the same amount of cyclic pitch to both 

rotors, i.e. 
• B 1 = kl~q (10)  

where kl is the gearing between stick and rotor-hub tilts. We also assume that a forward movement 

of the stick, ~, reduces the collective pitch of the front rotor by k ~ / a n d  increases the collective pitch 

of the rear rotor by kz~ 7 so that 
0 F = 00 - k2~ / =. (11) 

a~/a 
oR = 00 + k ~  (12) 

where kz is the gearing between the changes of stick angle and changes of collective pitch angle. 
The  relative values of kt and k~ define what  is known as the 'control mixture'  in tandem-rotor 

helicopters. 
Finally a tr immer will be added such that a tr immer movement of ~ increases the collective pitch 

on the front rotor by k ~  and decreases the collective pitch on the rear rotor b y k ~ .  We will then have 

0~ = 00 + k ~  - k~ /  (13)  
imd 

OR = 00 k ~  + k ~ .  04)  
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Resolving forces horizontally 

T• s i n  (J~l - a l F  - 0 - ¢ ) - +  T R Sill ( B  1 --  a i r  - -  0 + ¢ )  --  H B, c o s ( B  1 - a l / p  - 0 - ¢ )  

- H2~cos(B 1 -  a l ~ -  0 + ¢ ) -  D scos ro  = 0. (15) 

Resolving vertically 

T • c o s ( B  1 -  a l F -  0 -  ¢) + T R c o s ( B 1 -  a i R -  0 + ¢ )  + H F s i n ( B  1 -  a l ~ -  0 - ¢ )  

+ H ~ s i n ( B ~ -  a , :  e -  0 + ¢ ) -  1)] s i n y e -  W =  0. (16) 

and taking moments  about the c.c., 

T F c o s ( B  1 -  a l ~ -  ¢ ) ( l f -  h F t a n $ ) R -  T R c o s ( B  1 -  a i r  + ~) (1 R -  h R t a n ~ ) R  

- r F s i n  (B ~ - a~F - ¢ ) h F R  - TR sin (B ~ - a~R - ~ ) h R R  + H F s i n  

(B 1 -  a 1 / ~ -  4 ) ( I  F -  h F t a n c )  R 

- HR sin (B 1 - a i r  + ¢ ) ( l  R - hRtan ¢ ) R  + H~ cos (B 1 - alz~ - ¢ ) h E R  

+ H R COB ( B  1 --  (/1R + ¢ ) h l ~ R  + M] = O. (17) 

This  report  assumes that the tandem-rotor  helicopter has rotors of the same diameter, so that 

after dividing by p s A ( f 2 R )  °~ and approximating for small angles equation (17) becomes 

t c~ l  F - t~Rl R - (t~Fh F -- t~RhR) ¢ -- t~Fhz~ (B1 - a~F - ¢) - tcRh R (B1 - a~R + ¢) 

+ h o ~  ( B ~  - ~ 1 ~  - ¢ )  (l~, - h ~ ¢ )  - h ~  ( B ~  - ~ R  + ¢ )  ( l ~  - h ~ ¢ )  

+ hcFhF + h~nh R + 2C,,~i = O. (18) 
We will now write 

t~ = qO o + c2A (2) 
and 

a l =  c~O o + QA (19) 
for each rotor, where 

8 B~ 
ca - 3 B ~ + ~/z ~ 

and 
2~ 

c~ - B~ + ,23_/z ~ 

The  functions Q, c~, c a and Q are show~n in Fig. 48, plotted for a range o f /x  and with B = 0-97. 

I t  will also be assumed that k o = l/x8 since the contribution of the in-plane rotor forces to the total 

pitching moment  should be very small in the tandem-rotor  helicopter. Substituting in equations 

(18) for t o and a~ and using equations (1), (13) and (14) we obtain 

[c~ {0o - k~ (,/ - ~)}] l F + l~c~2~ - [c a {0 o - k s (~/ - ~}] k~¢ - hFcv~ ,  ¢ 

- [q {Oo + ~ (7 - ~)}]. z~ - ~c,,.~ + [q {Oo + ~ (7 - ~)}] ~ ¢  + hRc~;t~¢ 

- ~ [~ {Oo - ~ (7  - ~)}  + ~ ]  [~v - ~ {Oo - ~2 (7  - ~)}  - ~ a ~  - ¢] 

- ~ [ q  {oo + ~ (7  - ~)} + c~Z~] [ ~ v  - c~ {oo + ~ (7  - ~)}  - c ~  + ¢ ]  

+ hoF [k1~1 

- hoR [k~n 

+ hophF  + 

- c~ {eo - ks (v  - ~)} - c~A:~ - ¢]  ( z .  - h ~ ¢ )  

- c~ {eo + ks  (7  - e ) }  - c ~ R  + ¢ ]  ( z .  - h R ¢ )  

hoiff~R + 2C.,,~i = O. 

5 
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Equation (20) is a quadratic in ~/but it has been found from numerical calculations that most of 
the terms in the coefficients are very small, so that retaining only the important terms equation (20) 
can be written 

AV 2 +  B n +  C =  0 (21) 

where A = qk~k~ (h F - h~) + qc3k3 ~ (h F + hR) 

B = --  c2k I (h.F,~tl~ + hR)t.l:d) --  Clk2 ( l  B, + l~)  --  ClklO 0 (hp, + hR)  

- 2qc~&Oo (h~ - h~) - 2 q e ~ k ~  (h~, + h~) 

c = qOo (l~,~ - l~) + c~ ( l~;~ - l~a~) + c~Oo ~ (h~ + h~) 

+ (q~ + e~c~) (h~a~ + h ~ )  0o + q& (l~ + l~) 

+ q~.&0o (h~,~ - h~) ~ + 2C,~.  

A typical solution of (21) gives a very large root, Which has no practical significance, and a small 
root which gives us the control angle we are seeking. 

To a good approximation this latter root is given by 

= - C / B  , .  

3.2. Calculation of Parameters for use hz Trim Equation and Stability Derivatives. The solution 
of the trim equations for the single-rotor helicopter corresponding to equations (15), (16) and (17) of 
this report is comparatively simple since the horizontal force equation is independent of the other 
two. Equations (15), (16) and (17) however are interdependent and require further equations 
relating A, ~9 and t~ and to solve them simultaneously would result in great complication. It is 
much simpler to represent t c and a 1 in terms of 00 and A and calculate the latter by approximate 
means. 

Now for small angles and taking the level flightcase we can write equation (15) as 

D~ + H= + H= = - {T~, No)= + T= (c~)=}. 

If we assume H F = HR, this equation in non-dimensional form is 

~ %  + & = - ½ {tc~ ( . . ) ~  + to~ ( ~ ) ~ } .  

The relation between the front and rear thrust coefficients can be expressed approximately as 

and since 
toFIF = t~Rl~ 

tc~, + t~R = 2to' 

7Now 

and 

to' {l~ ( ~ ) ~  + l~ (~)~}. 

a~ = ~ - ( ~ ) ~  - (~i)~ 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



The  values of (Si)F and (~)= in equations (26) and (27) can be obtained from Fig. 50 using the 

approximate values of tc~ and tc= from 

2t~' l= 
tcF - l F + l= 

and " ' 

'2t~' l F 
t~= = l ~  + l = • 

Also 
( c / ~ ] ) ~ ,  = ( c / n ~ ) =  + 2 ¢  

and 
o~n] ---- c~ O -- a 1 

therefore 
(c/9) = = (c/D) = -- (a~)= + (a~) F + 2 ¢ .  

Writing 
( a l ) ~  = c~0~ + c~Z~ 

and 
(al)= = c80= + ceh= 

(28) 

and assuming the collective pitch is the same on both rotors 

( a l ) ~  - (a l )=  = c~ B ~  - ~ )  
i.e. 

(al)F - (al)R = ~ Q {(c/o)~ - (c/o)=}.- Q {(0,)~ - ($,)= - k (~0}. 

But h is very close to unity so that approximately 

(a~)~  - (a~)= -- 17 c~ {(c/p)~ - (c/o)=} + c~ (~,)= 

therefore from equation (28) we obtain 

2 ¢  + q @i)=  (c/o)R = (c/o)F (29) 
1 - Fc~ 

and substituting in equation (25) gives 

(c/o)~ - ~d0 + & + l~ {2¢ + c~ @,)=} (30) 
t c' (l F + l=) (1 - 1~ q ) "  

(ao) = can now be obtained by using equation (29) and then A) and A R from equations (26) and (27). 
Finally the mean collective pitch angle 00 can be obtained from 

0 0 
2t~' - c3 (AF + A~) 

C 1 

3.3. Comparison of Theoretical Trim Calculations with Flight Tests Results. Figs. 5(a) and 5(b) 
show the comparison between the theoretical level flight trim curves and some flight test measure- 
ments for two different helicopters. In Fig. 5(a) the theoretical curve would show much better 
agreement if it could be displaced downwards  by about ½ deg. This  may mean that the nominal 
t r immer setting in the flight tests was not in fact being achieved since there is no such disagreement 
in Fig. 5(b). Also, a fuselage pitching moment  to account for this disagreement would have to be 
extremely large and beyond any reasonable value. Apart from this the agreement in both  cases is 
quite good although the theoretical curves have, perhaps, too sharp a peak in the neighbourhood of 
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/x = 0-1. For this case the interference factor k (=  vJV~o) was taken, from Fig: 4, as 1.5 and it 
may be that at such a low value of/ , ,  the values of k given by Fig. 4 are a little too large. For lower 
values of/z, k was estimated from the results of Ref. 2. 

Since, as mentioned in Section 2, the trim curves depend very largely on the rotor downwash 

effect, especially at the lower values of/z, the above comparisons.~ndicate that the present method 

of calculating the downwash is reasonably accurate. 

3.4. The Theoretical Tr im Curves for  the Bristol 173 Configuration. Figs. 6 to 9 show the 

effects of c.o. position and swash-plate dihedral on the trim curves of a helicopter similar to the 

Bristol 173. When 6 = 0 deg there is a marked reversal of stick position with speed in the range/z = 0.1 

to/z = 0.25 due to the powerful downwash effect. Also, in this range, there is a rapid divergence in 

the dynamic stability. Increasing the swash-plate dihedral reduces the severity of the stick reversal 

until at 6 = 3 deg th'e reversal is almost absent. Again, this is reflected in a marked improvement 
of the dynamic stability. 

Movement  of the centre of gravity seems to have little effect other than that  of displacing the 
tr im curves vertically. 

4. Equations o f  Motion and Stabili ty Derivatives. 4.1. The Equations o f  Motion. As in Ref. 8 
wind axes are chosen for the stability axes and the assumption of no coupling between lateral and 
longitudinal motions is also made but we must now include the downwash lag terms M,~ and M~ 
which, for the tandem-rotor helicopter, are considerable, as will be shown in later sections. The  
derivatives X~, X~, Z~ and Z~ have been found to be extremely small and are omitted. 

In order to render the equations of motion non-dimensional we use the same scheme as in Ref. 8 

but divide the equations by a factor which includes the total disc area, i.e. if d is the area of one 
rotor we divide the force equations by 2psA(f~R)  2 and the moment  equation by 2psd( f2R)ZR and 
the non-dimensional form of the equations of motion is 

da 

d~- 

d~ 
- z~¢~ + 

d~ 

where 

x~ dO 
- -  -- xuu -- XwW + tc~O COS Te 

1~2 dr  

- zwv3 + t c ' O s i n T e -  17+ ~ 

d~ d~O dO 
+ J f u  + X ~  + oJ~ + ~  + Vd.c 

x,j~ + xooO o (31) 

= z ~  + zooO o ( 3 2 )  

_ kc~m~ tz~mo o ( 3 3 )  

i + % : 2  - 

m,~ /z2mu . m~ 
- ' - i B  ' x - i B  

Ix~m w mq 
~o - a n d  v - 

Solving the above equations by the usual substitution ~ = Uo ea~, etc. and putting 

x~l = Xoo = z~ = zoo = m~ I = moo = 0 

gives the frequency equation for disturbed motion 

A A  4 + BA 3 + CA ~ + DA + E =  0 



where 

and : " " " , : : -  ..:-!:_ 

B = N + v + . x  ( z +  

C = P + N v +  Q x + ~ o  1~+ Sfl 

D = Pv  + R X +  Qo~ - S # g  - f l T  

E = R~o - Td/ f  

N =  - x ~ - z w  

P = x u z  w - XwZ,u 

" : " " - "  ' "  - Q  = - - l  g +  x ~ -  t c sinye + z , ~ - -  
/ *2  

R = - t e' (z= cos Ye - x,~ sin ye) 

... .  ' S =  t c c o s y ~ -  x w ~ +  + z w - -  
~2 

T = - t o' (z~ cos Ye - xw sin Ye). 

Usually the terms zJF= and xq/iz= and products involving them are,negligibly small. 

(34) 

(35) 

(36) 
(37) 

(38) 
(39) 

(40) 

(41) 

(42) 

(43) 

4.2. Calculation o f  Rotor Derivatives. 4.2.1. Derivatives o f  t, and a 1 wi th  respect to ~, ~ and 0 o. 

Since the, pitching moment  of the tandem-rotor helicopter depends mainly on the difference in 

t h r u s t b e t w e e n  front and rear rotor it is necessary to calculate very accurately (e.g. to at least four 
significant figures) the thrust derivatives of each rotor. The  approximate ~expressions and values 
given in the graphs of Ref. 8 for the thrust derivatives are not accurate enough for tandem rotor work. 
The  derivatives of the basic relations between t,, ax and ~D have therefore been recalculated without  
making approximations except, perhaps, in the final form when known to be satisfactory for the 
tandem rotor work. These calculations are made in Appendix 1 and the approximate results given 

again below. They  are .~ 

/ )~st~ t 
O t o _  + I Cl'00 + c(~  ] t l  - 2 ( ~ 2  + ~,~)sI2/ ... .  (44) 

~a~ c~ ~D + 2(~2 + ~,~)~I25 + cs'Oo + c~'A 1 2(t~e + Az)a/z + 
2(t~2 + A2)1/2t ( 4 5 )  

'~ :-.. Oa 1 c4 

7:~ Ot o cl 

: : ,  ,, O0 o 

C a • . . . ~ , 

A 

1 

9 

(46) 

(47) 

~48) 



where 

Oa~ ca 1 - 2(t~ 2 + h~)312 t + 2(/,z + ~)~!~ qQ - c~c3 
00--~ = A (49) 

A = I -  )~st e c2s 
2(~2 + a2)3/2 + 2(/~ ~ + a2/~;~ c , ~ .  (50) 

. r 

Equations (44), (46) and (48) should be used as they stand for the front rotor only. Expressions 
for the rear rotor thrust derivatives must include corrections for the downwash interference which 
appears as a change of rotor incidence. 

If the suffices F and R denote the values of the derivatives of front and rear rotors as calculated 

from equations (44), (46) and (48) and if the suffix RD denotes the value of the rear-rotor derivative 
corrected for downwash interference, we have 

since in this case the values of 

-,oo .l 
~ ] R  and \0v3]~ are almost exactly the same. 

(51) 

(52) 

= - dgo 
(53) 

4.2.2. Rotor derivatives with respect to q. The usual method of calculating the rate of pitch 

derivatives in previous stability work, e.g. Ref. 8, has been to use the results of Ref. 9. It is claimed 

in Ref. 10, however, that these results do not compare well with flight tests and a more detailed 
analysis is given there which gives better agreement. A similar analysis, but using the notation and 

system of axes of this report and giving also the roll derivatives, is presented in Appendix 2. The 
result for m~ is 

~4ah l§BOo + ~h_½t~al I (54) (mq) r = 7(B g _~ ½/z2) 

The xq derivative is usually negligibly small and zq = 0. 

4.2.3. Effect of 83-hinge on rotor thrust derivatives. It will be seen in a later section that the front 
rotor downwash causes severe instability with incidence, i.e. m w becomes large and positive. 
A method of achieving a negative m~o on the tandem-rotor helicopter is to provide differential 
88-hinges for the rotor blades--negative on the front rotor and positive on the rear, where a negative 
8a-hinge is one in which the blade angle decreases with increase in flapping angle. This has the 

effect of decreasing the lift slope of the front rotor and increasing that of the rear, thereby providing 
a powerful nose-down pitching moment with incidence. The calculation of ~t~/~ for a rotor 
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with a 33-hifige is given in Appendix 3 and shows that if Oto/SZ~ is the value of the lift slope of a 
rotor without a 8a-hinge, then the corresponding value with the 38-hinge (Ote/8~)s ~ is 

\07~1~ 8 - ~ 1 + 6c3 - ~ )  (55) 

where the positive sign refers to a positive 83-hinge and vice-versa. 

4.3. Comple te  Hel icopter  Derivat ives .  

where 

The expressions for the force derivatives are 

xu = (xu)F + (xu)= + (:@ 

+ _ 

~ u ] ~  + \ ~ u l ~ t J  

O o 

do . -  104ps2A 

I I 

- -  and \ ~ - ] F  = \ 0u ]i2 = 7~ approximately. 

(56) 

The total derivatives of rotor force with respect to rate of pitch are very small and are not wortl~ 
including but the separate components must be found in order to calculate the moment derivatives. 

(59) 

the h c terms being very small 

zu = - ½ i \ ~ u ] ~  " + k~u]~D} 
( 5 8 )  

Thus 
~ = (~)~ + (~)~ = { ( ~ h ~ ) ~  - ( ~ j ~ ) ~ }  + ( (~,ol~)~ - ( x & ) ~ }  

and 
~ = (~)~ + (~)~ = {(~.~h~)~ - (~,ol~)~} + { (~wl~)~  - ( ~ u h ~ ) ~ } .  

The moment derivatives are then 

m u  = - ( z u l l ) ~  - ( x u h l ) ~  + ( z J 1 ) ~  - (x~h~)~  

m w = _ (zwll) ~, - (xwhl) F + (zwl~)i~ - (xwha) R 

m a  = - ( Z q l l )  F - (xqhl) F -t- (Zqll) R - (xqha)R + (ma)r 

where (mq) r is the moment due to rotor tilt given by equation (54) and 

hlF = h Fcos(% + ¢) + l F s i n a  s--- h F +  lF% 

h~;~ = hR cos (% - ¢) - lR sin % = hR -- lR% 

: l ~  = l~  cos,-8 -- hF sin (% + ¢) " l~ -- h~ (% + 'k) 

lli~ = IR cos a s +  hR sin (~  - ¢ )  ___ li~ -- hR ( % -  ¢). 
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(61) 
, i 

(62) 

(63) 

(64) 

(65) 
(66) 
(67) 
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4.4. Derivatives due to Downwash Lag. .  4.4.1. Lag in change of incidence. Let e be the mean 
downwash angle at the rear rotor and ~ the change ;of helicopter incidence. The distance betw~een 
the rotor centres is (l F + IR)R and we will treat this as the significant distance between the rotors 
although the downwash pattern in this region is by no means well defined. The time taken to traverse 
this distance is (l~ + l~)R/V and the downwash angle at the rear rotor is therefore 

de r & (t~ 
e = - ~  L ~ - d t  

The incidence ~' at the rear rotor is 

N o w  

therefore 

o r  

and 

V -/R)R] . " (69) 

. , "  h ~ t  

.~J1 * 

dt V 

_ dt 

& & (l~ + l~)R 
da dt V 

de) & ~ (z~ + Z~)R 
~ ' = a  1 - ~ / ~  + ~  V 

. 

so that 

i.e. 

de) de ~ . . . .  
: w ' = v ~  1 - N  + U ~ ' P  (IF +119R 

(70) 

" " ,  ] : j : '  ..'.7:,, 

I (  de) ded~ (l~,+ lR)l iRR d M =  (Zw) Rw'IRR = Z w Va 1 - ~ +-d~x 

M~ = (Z~)R -Ud = (zw)R G v 

de (71) 

The derivatives x ,  and z ,  can, of course, be calculated but they are negligibly small. 

4.4.2. Lag 'due to change of forward speed. 
speed is 

e = ~ u  u dt --  
and " , - 

du k dt V J 

Thus,  in a similar manner to that of 4.4.1 

-The change of downwash due  to change of forward 

(72) 

4-  ~ ~, % '  

de 
m~ = (zw)R(l ~ + IR)I ~-d~. (73) 

Again the force derivatives with respect tO ~ are negligible. I t  is interestiiag to note that derivative 

m~ does not appear in fixed-wing aircraft calculations as de/d~t is zero. , 
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5. Discussion of Derivatives. 5.1. Force Derivatives. The force derivatives are shown in Figs. 
12 to 15. The variations of the total derivatives due to changes of ~ and c.c. position are negligible 

since the changes of front rotor derivatives are cancelled by opposite changes on the rear rotor. 
The variations of the derivatives with tip-speed ratio tz are thus very similar to those/of the 

single-rotor helicopter. These variations have been fully discussed in Ref. 8 and so will not be 

repeated here. 

5.2. Moment Derivatives. 

5.2.1. v -= 

The variation of v with/x is shown in Fig. 16. The contribution due to precession of the rotor 

discs (which is the only source of rotor damping in the single rotor helicopter) is also shown and 
is seen to be small and, except in hovering, may even be considered negligible. The large damping 
in pitch of the tandem-rotor helicopter is due, of course, to the fact that a steady rate of pitch 
increases the rear rotor incidence and decreases the front rotor incidence thus providing a large 

nose-down pitching moment. 

5.2.2. Yf (---- t~2. mu]zB ! 

The variation of Y{ with/z is shown in Fig. 17. It will be seen that there are three effects: 

(a) large variations with/~ due to downwash changes 

(b) large variations with q~ 

(c) mainly small variations with c.c. position. 

In considering (a), we assume that the downwash effect is zero at hovering and rises to a maximum 
at about/~ = 0.1. The downwash effect with 'forward speed above t~ = 0.1 is determined from 

equation (7) of Section 2. The three terms of equation (7) can be recognised as (i) the change of 

induced velocity due to change of thrust and (ii) and (iii) as the change in downwash angle due to 
change of induced velocity at constant forward speed and change of forward speed with constant 

induced velocity. The first term (i) is usually small. The last two terms can be shown to be of equal 
sign and magnitude for/~ >~ A, and represent a decrease of downwash angle with forward speed. 
Thus when t~ .4 A the downwash always causes a nose-down pitching moment with increase of 

forward speed, the effect being most severe at about/~ = 0.1. 
In (b), variations of ~ alter the incidences of front and rear rotors and it can be seen from equation 

(44) of Section 4.2.1 that in general the derivatives of thrust with respect to forward speed of front 
and rear rotors will be different. If ~ is positive the front rotor will have a larger thrust derivative 
than the rear one and this will provide a nose-up pitching moment with speed. A given value of 

will provide a contribution to Yf which is roughly constant over the lower part of the speed range 
(see Fig. 17), whereas the destabilizing effect of the downwash varies considerably in this range. 
The value of ~ required to eliminate the downwash effect is probably about 5 deg for the type chosen 
and with central C.G. position. However, this value may then be too large for the hovering case, where 
the downwash effect is absent, and would lead to a rapidly divergent oscillation similar to that of 
the single-rotor helicopter. The same effect may also appear at high speeds where the downwash 

effect is small. 
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It would be desirable, therefore, to have means of varying ~ in flight in order to have the optimum, 
or at least a suitable, value of Jg' at any given speed. This could be achieved, for example, by a 
trimmer which moves the front and rear swash-plates in opposite directions. The trimmer could be 
calibrated in terms of forward speed so that the pilot could select the appropriate value of g/g" for 
the speed at which he wished to cruise. 

Whether or not it is worth providing such a trimmer depends on the designer's opinions as to 
the seriousness of the instability and the complexity of the other flying controls. 

5.2.3. ~o(--  tz~m*°] 
iB/  

Fig. 18 shows the variation of ~o with/~ for zero 38-hinge for different values of ¢ and C.G. position. 

It will be seen that the effect of ¢ on oJ is smaller. For the tandem-rotor helicopter the longitudinal 

cyclic pitch B 1 does not cancel the backward flapping al , in fact at high speeds a 1 may be several 
times larger than B1, and the rotor force vectors are then tiked backwards in trimmed flight and 

cause a destabilizing nose-up pitching moment when the incidence is increased. This effect gets 
worse with increase of speed as shown in the case of ¢ = 0. Increasing ¢ changes the moment arms 
of the force vectors in the stabilizing sense as shown by the case ¢ = 3 deg. 

The effect of C.G. position on ~o is very marked. The downwash effect reduces the thrust derivative 
on the rear rotor tending to result in a destabilizing nose-up moment With incidence. This destabiliz- 
ing moment can be reduced, of course, by setting the C.G. forward, the moment being directly 
proportional to C.G. position. The downwash effect can be seen in the peaks of the curves in the 
region of/~ = 0.1. 

Fig. 19 shows how a $3-hinge affects the case ¢ = 0 and C.G. position central. It is seen that oJ, 
even for this 'worst case' ,can be completely shifted into the stable region for a reasonable value of C. 

m~ m~b 524  )aodx( ) 

The variations with/z of the downwash lag derivatives/3 and X are shown in Figs. 20 and 21. 

The curves were calculated from equations (7), (8), (71) and (73) for t~ = 0.1 to tz = 0.4 and faired 
in for the region/z = 0 to/~ = 0.1 on the assumption that the derivatives are zero at/~ = 0. T h e  
Slight variations with c.~. position are due to the variations in length of moment arm and strength 
0f downwash from the front rotor. 

6. Discussion of Stick-Fixed Dynamic Stability. 6.1. Effect of C.G. Position and Swash-Plate 
Dihedral. 6.1.1. Stability in hovering. 

The dynamic stability in hovering of the tandem-rotor helicopter, as can be seen from Figs. 22(b) 
and 22(c), is independent of C.G. position and varies only with the 'dihedral' angle of the rotor-hub 
axes, 2~. In fact, as with the single-rotor helicopter, stability of the tandem helicopter in hovering 
depends almost entirely on m~ and ma; both m~ and m e are unaffected in hovering by C.G. position 
but m u is directly proportional to ~. If m u is positive there is a divergent oscillation, which becomes 
more divergent and whose period becomes shorter as m~ is increased. 

On the tandem helicopter it is possible to reduce mu to zero by tilting the rotor-hub axes outwards 
(i.e. ~ becomes negative) so that the positive contribution to m~ from the rotor tilt derivatives is 
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balanced by a negative contribution from the thrust derivatives. This can be expressed by 

In hovering 

[Saq {Sto] ?to] 
te~'hF \-O-(tt ]~, + t"Rh~ + IF - IR = O. (74) 

(sto  c2(% + ¢) { to] c2(% - ¢) 
\ a JF = A ; \ S ]R = 

Inserting typical values for the Bristol 173 into equation (74) gives ~ = - 1.3 deg, i.e. when the 
rotor-hub axes are tilted outwards and make an angle of 2.6 deg to one another m,~ is zero and the 
helicopter is neutrally stable. If m u is negative there is a pure divergence and, as with the single-rotor 
helicopter, it is impossible to obtain dynamic stability with m u and m a alone. 

6.1.2. Stabili ty a t / z  = 0.1. It will be seen from Figs. 23(a) and 23(b) that at about/~ = 0.1 the 
stick-fixed motion of the tandem helicopter is rapidly divergent for all the cases considered, the 
motion doubling its amplitude in about 2½ seconds. In these cases the constant term E, which is 

proportional to m~z~ - muzw, is negative since the m u term is positive because of the powerful 

downwash effect, as explained in Section 5.2.2. The rotor-hub dihedral necessary to make the m~ 

term negative would be about 16 deg (¢ = 8 deg) and this may be an excessive value in practice. 

The mw term, which is much smaller, also acts in the destabilizing sense due to the downwash effect 

and it can be seen from Fig. 23(b) that the variations in mw due to C.G. movement are too small to 

have much effect. 
It appears, then, that at speeds in the region of/~ = 0.1 the tandem-rotor helicopter, except 

perhaps with 3~-hinges, will suffer from a purely divergent instability. 

6.1.3. Stability above/~ = 0.1. As the trimmed speed increases above t~ :- 0.1 the downwash 

effect on the stability diminishes rapidly and it can be seenfrom Figs. 24(b), 25(b) and 26(b) that 
the purely divergent motion occurs only for ¢ < 2 deg at/~ = 0.2  and for ¢ < 1 deg for/~ = 0.3 
and 0.4. Forward movement of the C.G. also becomes more effective in improving the stability and 
it can be seen that with the correct combination of ~b and C.G. position it is possible to make the 
helicopter dynamically stable. 

6.2. Effect of  38-hinge. It will be recalled from Section 4.1.3 that the fitting of 3~-hinges enables 
the derivative m w to be varied over a wide range and the effect on the dynamic stability of varying 
the 83-hinge angle is shown in Figs. 27 to 30. In hovering there is no coupling between the vertical 
motion and the fore-and-aft and pitching motion so that the 38-hinge has no effect on the stability. 

At /~ = 0-1, as can be seen from Fig. 27, the 83-hinge effect alleviates the strong divergence 
although increasing the value of C beyond 0.15 has no further effect. However, it appears that a 
much smaller value of C--about 4 deg instead of 8 deg without 38-hinges--can now be used to 
obtain positive stability and this value may be acceptable. 

For/z  -- 0.2 and above Figs. 28 to 30 (C.G. back) show that the 38-hinge greatly improves the 
stability but  again there is little further improvement when C exceeds 0.15. 

The problem, which occurs with the single-rotor helicopter, of introducing a pure divergence by 

having too great a value of m~o at the higher speeds (where z~ is positive) need not arise with the 
tandem-rotor helicopter since the static stability can always be made positive by choosing a suitable 

value of m~ by varying ¢. 
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6.3. Effect of Downwash Lag on the Stability. Th e  effect of downwash lag on the stability has 

been calculated for two cases a t /z  = 0.1 (where the derivatives are largest) and the results given 

below. 

X and/3 included 

X omitted 

/3 omitted 

X and ~ omitted 

q~ = 0 ° C.G. Central q~ = 3 ° C.G. Forward 

r = 0.332 sec - t  

r = 0.343 sec -1 

r = 0.418 sec -1 

r = 0-431 sec -1 

r = 0.233 sec -1 

r = 0"252 sec -1 

r =  0.311sec -1 

r = 0.342 sec -1 

i t  will be seen that both derivatives improve the stability, the lag due to forward acceleration having 

the greater effect. 

7. Discussion of Control Response. Figs. 31 to 46 show the t ime histories of the response of the 

tandem-rotor  helicopter to a sudden 1 deg backward displacement of the stick. A peculiarity of 

tandem-rotor  helicopter response can be seen in many of the normal acceleration-time curves. 

In  Fig. 31, for example, the slope of the curve increases up to about t = 1 sec, then decreases slightly 

up to about t = 3 secs and then increases again. This  cannot be regarded as a satisfactory response 

because the normal acceleration never 'settles down ' ;  nevertheless the curve satisfies the N.A.C.A. 

manoeuvrabili ty criterion s, since d2n/dt ~ < 0 before t = 2 secs. T h e  reason for this shape of curve 

• is that there is large damping in pitch (large mq) which damps the motion in its early stages, but  as 

speed increases the divergent m** effect predominates  and causes the acceleration to ' run away'.  

Thus ,  satisfaction of the N.A.C.A. criterion does not necessarily indicate acceptable manoeuvrabili ty 

for the tandem-rotor  helicopter. T h e  N.A.C.A. criterion was devised from measurements of the 

normal acceleration of the single-rotor helicopter where m u usually has a small positive value and 

where there is no purely divergent mode. In this case (and also for the subsonic fixed-wing aircraft 

case) the condition d~n/dt ~ < 0 is all that  is required to ensure that the normal acceleration curve is 

satisfactory. A typical curve for the latter case is shown in Fig. 47 together with the desirable 

response curve and a typical curve for the tandem-rotor  helicopter. I t  is clear that  the N.A.C.A. 

criterion, which is intended to describe an acceptable response curve, is not detailed enough to 

cater for the case of the tandem-rotor  helicopter. I t  is difficult to express a satisfactory response 

curve in words but  since the response is determined by the dynamic stability satisfactory response 

will certainly occur if there is good damping of the short period mode and if the long period mode 

is no worse than slowly divergent. Thus  for the single-rotor helicopter a tailplane strongly damps the 

short period mode and improves the long period mode so that even if the latter is still unstable 

the manoeuvre will have been completed before its amplitude begins to increase rapidly. T h e  

tandem-rotor  helicopter has adequate damping in pitch but  if the swash-plate dihedral is too small 

the latter part of the manoeuvre will be divergent. T o  ensure satisfactory response requires that the 

stability associated with speed changes must not be rapidly divergent. A slow divergence or slowly 

divergent oscillation is permissible since the effect of the speed changes will not  be felt much before 

the manoeuvre is over. 
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Another peculiarity of helicopter control response, described in Ref. 13, is the sudden change of 
• normal acceleration with sudden stick movements: On the single-rotor helicopter this is followed 

by an unpleasant pause in the increase of acceleration in a pull-out and its severity is determined by 
the ratio of rotor thrust change to rotor pitching moment with stick movement. In this case, the 
ratio can be varied only between narrow limits but on the tandem-rotor helicopter it can be varied 
arbitrarily through the control 'mixture' (Section 3.1) since differential collective pitch supplies 
a moment without a change of total thrust. For typical control mixtures the force-moment ratio is 
much smaller than values for the single-rotor helicopter and the pause in normal acceleration, 
although clearly seen in Figs. 31 to 46, should barely be noticeable in practice. 

Forward movement of  the e.G. improves the response but is more effective when associated 
with values of ¢ > 0. 

The effect on the control response of fitting Ss-hinges is shown in Figs. 39 to 46. It can be seen 
that although the response is considerably improved for the case ¢ = 0 deg it is seldom satisfactory 
at any speed even for the largest 88-hinge angles. However, when ¢ = 3 deg the response is well 
damped in nearly every case. 

: 8. Conclusions. 8.1. Reasonably accurate estimates of the front rotor's downwash effect can 
be made from the wind-tunnel measurements of Ref. 4 for/z > 0.1 and from Ref. 2 for/~ < 0.05. 
The relevant measurements from Ref. 4 are represented in Fig. 4 of this report. These estimates can 

be checked by comparing theoretical trim curves with those measured in flight. Agreement is 

quite good. - 

8.2. The trim curves show a stick reversal with speed between/~ = 0.1 and /z = 0.25 for 
¢ = 0 deg. Increasing ¢ reduces the stick reversal and eliminates it when ¢ is about 5 deg. 

8.3. In hovering the tandem-rotor helicopter has a divergent long period oscillation whose rate of 
divergence and frequency of oscillation increases with ¢. When ¢ is about - 1.3 deg (for a helicopter 
similar to the Bristol 173) m~ is zero and the motion is neutrally stable but it is impossible to make 
the helicopter positively stable. 

8.4. At about/z = 0.1 and for a certain range above this value (depending on ¢) there is a rapidly 
divergent stability mode associated with the stick reversal of 8.2, i.e. negative rn u. Increasing ¢ 
improves the stability and when ¢ = 5 deg rn~ is positive at all speeds but there may then be a 
divergent oscillation if the e.G. is not fully forward {(/• ~ lF)/(1R + lr) = 0-1}. 

8.5. Differential Sa-hinges greatly improve the stability and by a correct choice of swash-plate 
dihedral and ~3-hinge angle the helicopter may be made positively stable at all speeds except 
hovering. It appears that there is little further improvement when C exceeds about 0.15. 

8.6. The control response is unsatisfactory if there is a p.ure divergence, unless i t i s  fairly slow, 
since although there is large damping i n pitch the normal acceleration 'runs away' before the 
manoeuvre is over. In fact it is possible f0r the helicopter to  satisfy the N.A.C.A. divergence 
requirement yet still possess unsatisfactory response. Again, a suitable choice of ~a-hinge angle and 
swash-plate dihedral can be made to provide satisfactory control response. 

. . .  : - 
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• L IST  O F  SYMBOLS - 

Lift slope of blade section. (Taken in this report as 5.6) 

Coning angle of rotor blades 

Angle between tip-path plane and plane perpendicular to no-feathering 
axis. Positive for backward tilt of disc 
! 

Angle between tip-path plane and plane perpendicular to rotor hub axis. 
Positive for backward tilt of disc 

Area of  one rotor disc 

Coefficient of ~7~ in trim quadratic 

Angular velocity vector of blade 

Lateral cyclic pitch application 

Number of blades 

Lateral tilt of rotor disc relative tono-feathering axis. Positive when disc 
tilts towards advancing blade 

Lateral tilt of rotor disc relative to rotor hub axis. Positive when disc 
tilts towards advancing blade 

Tip-loss factor. (Taken in this report as 0.97) 

Coefficient of 2, 8 in stability quartic 

Moment of inertia of helicopter about lateral axis, slugs ft 2 

Coefficient of ~1 in trim equation 

Longitudinal cyclic pitch application 

Blade chord ft 

Rate of change of blade pitch with flapping (see equation (131)of  
Appendix 3 on ~8,hinge) 

See equation (2) 

See equation (19) 

dC1 dC4 
- -  . , o o  

Constant term in trim quadratic 

Coefficient of ~2 in stability quartic 

L 
2psA(~R) ~ 

rolling-moment coefficient 

Y 
2psA(~R) 2 

side-force coefficient 
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Oral 

D 

DI 

Do 

do 

E 

hR 

hlR 

H 

hc 

H 

i,j,k 

Ii 

k 1 

L 

L 

M 

M.~, M w etc. 

mu, m w etc. 

M1 

P 

L I S T  OF SYMBOLS--c6ntinued 

MI 
2psA(~)R)~R 

Coefficient of h in stability quartic 

Drag of fuselage ib 

Drag of fuselage at 100 if/see 

Do 
l O~ps2A 

Constant term in stability quartic 

See Fig. 1 

See Fig. 2 

Component of rotor force parallel to tip-path plane lb 

H 

Angular momentum vector of blade 

Set of perpendicular unit vectors; i lies in the plane of blade flapping 
and k is paratlel to the rotor hub axis 

B dimensionless form of pitching moment of inertia 
WR2/g 

Moment of inertia of blade about flapping hinge, slugs ft ~ 

vjvi o, ratio of inddced velocity at a point in the induced velocity field to 
the momentum velocity 

Ratio of longitudinal cyclic pitch.angle to stick angle, see equation (10) 

Ratio of differential collective pitch angle to stick angle. See equations 
(i1) and (12) 

Lift of a blade, lb 

Rolling moment, lb ft. Positive when it tends to roll helicopter to 
starboard 

P!tching moment, lb ft. Positive in nose up sense 

Moment  derivatives OM/~u, OM/Ow etc. 

Dimensionless moment  derivatives 

Fuselage pitching moment lb f t  

Increment  Of normal acceleration in g-units 

Rate of roll, angular velocity about longitudinal axis, positive when to 
starboard 

Rate of pitch, angular velocity about lateral axis, positive in nose-up sense 
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L I S T  OF S Y M B O L S - - c o n t i n u e d  

X 

X 

Xu, xw etc. 

xu, x w etc. 

Y 

Z 

z ,zw 

Zu, z~ etc. 

r Distance of blade element from axis of rotation, ft 

r Real part of root of stability quartic 

R Rotor radius, ft 

bc 
s ~r--R solidity of rotor 

T Rotor-force component  perpendicular to tip-path plane 

T 
t ,  = 

[sA(~2R) 2 

W 
tO ? ----_ 

2psA(~R)  2 

u Increment of velocity along flight path, ft/sec 

U 
- ~ R  ' dimensionless form of u 

Up Component  of relative wind perpendicular to bladel ft/sec 

U T Component  of relative wind parallel to blade chord, ff/sec 

V Tr immed speed of helicopter, ft/sec 

V 
- f ~ R '  dimensionless form of V 

v i Induced velocity, ft/sec 

vi0 Induced velocity at rotor disc as calculated from momentum theory, 

ft/sec 

^ vl dimensionless form of v~ 
vi - f2R ' 

w Increment  of velocity perpendicular to flight path, ft/sec, positive 

downwards  

gO 
= Y~R ' dimensionless form of gO 

= r/R,  fraction of blade radius 

Component  of force parallel to x-axis (wind axes) 

Force derivatives ~X/~u, ~X/~w etc. 

Dimensionless form of X~, X ~  etc. 

Component  of force parallel to y-axis (wind axes) 

Component  of force parallel to z-axis (wind axes) 

Force derivatives ~Z/~u, ~Z/~w etc. 

Dimensionless form of Zu, Z w etc. 
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LIST OF SYMBOLS--continued 

Incidence of rotor disc, angle between relative wind and tip-path plane, 
positive for backward tilt of disc 

Incidence of no-feathering axis, angle between plane perpendicular to 
no-feathering axis and relative wind. Positive for backward tilt 

Incidence of helicopter, angle between flight path and reference line of 
helicopter. Reference line defined in Section 3.1. Positive when 
nose up 

Incremental change of % 

Change of incidence of rear rotor 

Blade flapping anglerelative to plane perpendicular to no-feathering axis 

Blade flapping angle relative to plane perpendicular to rotor-hub axis 

Lock's inertia number, pacR4 
/1 

Angle between horizon and trimmed flight path. Positive when aircraft 
climbing 

Blade profile drag coefficient. (Taken in this report as 0. 016) 

Defined in equation (50) 

Downwash angle 

System of perpendicular axes used for describing induced velocity 
distribution. The ~-mxis passes through the centre of the rotor and 
lies in the plane of symmetry at an angle e 0 (=  tan -1 v i o/V) pointing 
downwards. The T-axis is positive to starboard and ~ positive upwards 

Differential application of collective pitch due to trimmer movement. 
Positive when collective pitch of front rotor is increased 

Angular displacement of stick. Positive when forward 

Angle of displacement kn pitch of helicopter f rom flight path. Positive 
when nose up 

Collective pitch angle at 0.75R 

V sin az) - v~ 
, coefficient of airflow perpendicular to tip-path plane. 

~ R  
Positive for upward flow through disc 

V sin % I -  vi coefficient of airflow parallel to no-feathering axis. 
~ R  

Positive for upward flow through disc 

V cos a 9 coefficient of airflow parallel to tip-path plane 
f~R 
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LIST  OF SYMBOLS--continued 

W 
- -  relative density parameter 

2gpsAR 

Air density, slugs ft -3 

Non-dimensional measure of time 

Half swash-plate dihedrak Semi-angle between rotor-hub axes. Positive 
when axes meet above helicopter 

Angle between relative velocity at blade and tip-path plane 

Azimuth angle of blade, angle between blade and rearward longitudinal 
axis 

Angular velocity of rotor-hub axis rad/sec 

Suffices 

Fuselage 

Front rotor 

Rotor contribution (to be distinguished from fuselage contribution) 

Rear rotor 

Rear rotor corrected for downwash 
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A P P E N D I X  I 

Calculation of  Rotor Derivatives 

The  equations for to, al, tz and )~ are 

t o = qO o + ceh 

a l =  caO o + c42~ 

1,2, = ~ ' C O S ~  D 

st c 
= 12 sin aD 2(tza + aa)lI~" 

Differentiating with respect to ~ (i.e. with respect to ~ also) 

ate3~ - (Q'O o + c(A) ~u otz + c,. Oka~ 

aa~a~ _ (ca,00 + q,;~) a/za~ + c~-0}aA 

a/, aa~ 
a~ - cos c¢,) - fl sin ~D a~ 

~t c 
s - -  

aA _ sin ~D + a cos a n a~ ;~)ll= + a~)al~ / * -  + ;~ " 
a~. 2(/, 2 + 2(/, ~ + ~ ~u] 

T h e  results of solving these four simultaneous equations are 

c2 I sin aD + 

~t e 

2 ( ~  + a~)~a} + cos ~ .  (c,'Oo + ca'a) 1 2(~= + a~)~} 

+ ~{c~ (c~'Oo + ~,':~) - ca (cl'Oo + c~'~)} 

where 

~a 1 

A = 

ca I sin 

1 

o~.o + 

+ 

2 ( ~  + a~)~,~} + cos ~ (c3'Oo + q'a) 1 2(~= + a~.)3~ =} 

s {ca (c~'Oo + c;a) - q (q'Oo + c;a)} 

A 

~Stc C2S I 

- -  ~ c  4 
l stanc~ D I I~tc 

1 2(/~ + ;~)lte ~ + )~ 

24 

+ /~ tan c~ D (ca'O o + Q'h)} - 

(c1'0o+ c2',~)] I • 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 



Differentiating equations (75) and (78) with respect to ~ gives 

Ote -- (c1'0 o + cz'A) alz Ok 

aa~ (c(Oo + c4'k) Ol~ aA a-~ = ~ + c , -~y  

aa 1 a~, _ a f~7 cos (% + ~ ) )  = - sin ~ - ~ sin ~ T~ 

a t  e 
s - -  

3A ~a~ 3~  st c ( atz 
a~ - cos ~9 + I7 sin ~ a~ 2(~ a + A~) 11~ + 2(/z a + A~) ~ta ./z 

These equations give 

aw} " 

(86) 

(87) 

(88) 

(89) 

t 5a~st  ~ [ . Ast~ 7I ato ~ cos ~ - sin o~ t2 (~  + Aa)~ + (COo + ~;A) 1 2i~a ¥ ~)~ja_/ 
0v3 - A (90) 

l sin. t l  ,tc I c a cos ~D 2 ( ~  + A2)3/~ t - sin ~z)(ca'Oo + ca'A) 1 2(/~ a + Aa)ai2 

s sin ~D 
2(~a + Aa)l~a {ca (~;0o + q'A) - q (COo + ~(Z)} aal 

a~ A 

Differentiating equations (75) . . . .  (78) with respect to 0 o gives 

(91) 

Otc _ (q,O ° + c2,A ) atz OA (92) 
a0 ° ~ + cl + caa0 ° 

Oa 1 _ (c8,0o + c4,A ) 3/z 3A 00o ~oo + c, + c 4 ~ 0  (93) 

at~ I7 sin <o aal ~0o - ~ o  (94) 
at~ $ - -  

~a 1 a0 0 st c ( 0/z 0A) 
- ;7 cos o~ ~0o 20,~ + Aa)~a + 2(~a + ?,a)~ " ~  + A ~  . (95) 

aA 

a00 

These equations give 

ll 2(/~ ~ + Aa)ala ) q - l?sin cod [q (ca'Oo + C4'A) -- Ca (q'Oo + C='A)] 

' l 19" sin ~jglxsto t 
ate = - (qc  4 - c2ca) , 17 cos aD -- 2(t~= + Az)3/2} (96) 

30 o k 

aa 1 _ 2(~2 q~ Az)lta (clca - c2c3) - c8 , 1 2(/~a + Aa)8/a} (97) 

300 A 

The  above derivatives, equations (83), (84), (91), (92), (96) and 97, can also be used for steep descent, 
except in the vortex ring region where the momentum theory, on which equation (82) is based, 
breaks down. However, even in this region these derivatives seem to give reasonable values. 
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For level flight good approximations to the derivatives are 

~t e 
O~ 

£2 
l i~st e ! 
~ + 2(~. + ~)3r~ + ~ ( ~  (~3'oo + ~ 'h)  - q (COo + ~,'h)} + 

+ (q'0o + ~'~) 1 - 2(~  + h~W 

Oal _ C4 l °~D + 

A 

t~stc } l Astc 
2(tx~ + ,~2)slz + (c8'0o + c~'A) 1 2(~2 + As)st2 + 2(~  + h~p )  

(98) 

(99) 

~t c 
00o 

£1 

A 

~t e C 2 
~z A 

~ a  1 c 4 
~e = 

1 2 ( ~  + ~)3~'~ t ~ (qc~ - c ~ )  

C 3 

A 

l ~stc t .s 
1 - 2(tz ~ + A~)s/2 t + 2(tz ~ + ~2)1]2 (clc4 - c2t'3) 

~00 A 

where the approximation to A is 

A = 1 ;~ste c2s + C~/z . 

(100) 

(101) 

(lO2) 

(lO3) 

(lO4) 
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A P P E N D I X  II  

Calculaiion of  Ra te -o f -Ro l l  and Rate -o f -Pi tch  Derivat ives  

Consider the system of axes in Fig. 6. In the mutually perpendicular set of unit vectors i, j ,  k, 

k is parallel to the rotor-hub axis and i lies in the plane of flapping. Relative to the helicopter th i s  

system rotates about  k with angular velocity ~.  In the other mutually perpendicular set of unit 
vectors x, y, z, x always is fixed in the blade and y always coincides with j. The  x, y, z system 

therefore rotates relative to the i, j, k system with angular ve loc i t y -  fl about j. Finally since the heli- 
copter is rolling and pitching about  its longitudinal and lateral axes with rates p and q respectively 

the angular velocity of the blade can be represented by the vector 

A = { f 2 s i n f l - p c o s ~ b c o s ] ~  + qs in~bcosf l}x  + {psin~b + q c o s ~ - ~ } y  

+ (f~ cos fi - p cos ~ sin fl - q sin ¢ sin fl} z - A~x + Avy + A~z. (105) 

The moments of inertia about  x, y, z can be taken as 0, I1, 11. Therefore the angular momentum 

of the blade is 
H = I 1 A v y  + I i A , z  (106) 

and the rate of change of angular momentum is 

d H  OH 
- + A A H .  (107) 

dt ~t 

Expanding equation (107), and equating the component  abou t j  to the aerodynamic moment  Ma,  

gives the flapping equation 

M ~  = I 1 {]3 + f22fl - 2pf2 cos ~b + 2qf~ sin ~b}. (108) 

The total pitching moment  on the helicopter of the rotor forces is 

C m = h (t  c (a 1 -- B1),+ he} (109) 
and the rolling moment  

C l = h { t  o(b 1 + A1) + Cy}. (110) 

We have now to calculate re, h o a 1 and b 1 in terms of p and q. 

The  pitch angle in the tip-path plane is 

0 = 00 - a l s i n ¢  + b l c o s ¢ .  (111) 

The  relative wind perpendicular to the blade span (in the sense of increasing incidence) for a 

blade element distance x R  from the hub is 

U v = ~2R (~ - ixao cos ~b + xp sin ~b + xO cos ~b) (112) 

where ~ = p/f~ and ~ = q/f2 

and along the chord 

U r = f~R (/~ sin ~b + x). (113) 

The  blade incidence is 
)t - /~a 0 cos ~b + xp sin ~b + xO cos ~b 

~ = 0 + ¢ = 0 +  
b~ sin~b + x 

therefore the elementary lift is 

d L  = ½pac f~R  ~ (tz sin ¢ + x) ~ (0 + ¢)dr .  
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Expanding equation (115), taking the mean value round the disc, i.e. with respect to ¢, and integrating 
between x = 0 and x = B results finally in a thrust coefficient 

a {~BO ° (B~ + ~tz ~) + B~h = tzaxB ~ + ½Bt~P} [116) t e = 

or in terms of ~/.  (A referred to the no-feathering axis which does not change incidence with q) 

since 

Also, from Fig. 11, 

6 / B  3 2 to. = ~ -  {~0o (B~ + , ~  ) + m ~  + ½~p) 

d H  = - d L  a o cos ¢ - ( d L ¢  - dD) s in  ¢. 

Proceeding as above we obtain for the in-plane force coefficient 

h~ = -}~3 - -~- aob 1 - ½BF, a o 

andtherefore, in terms of )t~, 

+ -~-B~aoO - -  ½BAa 1 + B A }  + 1~Oo2i - 

~Btzpa~ + -8-Blxqb ~ + -~-B2Oop 

% = ~ l~3h  + 

+ 

Calling the lateral forceY 
have 

d Y  = - d La  o sin ¢ + ( d L ¢  - riD) cos 

and in a similar manner to the calculation of C m we have 

aBh 
l 3 ~ bO BZ~/(.~I bO - 

_ ~l~aoO ° _ B ^ B B 
: . 8 1 ~ a l q  + ~ B ~ b l p  + ~ qOo + ~ h~lbl + 

B B ~ B 2 

+ 2 I~albl - 3 - a ° P  + 3 a°al - /xa°AnS I " 

The moment of lift of a blade element about the flapping hinge is 

d M  A = d L x R .  

Equation (123) is integrated' by using equation (115) and M ~  together with the relation 

13 = a 0 -  a l c o s ¢ -  b 1sine,  

is substituted in equation (108). 

(117) 

(118) 

(119) 

l B 9' a B h  3"2 
- -4-  ~Oo(B2 + ~ ) (al - BO + ~ B ~ l a l  - Y aob~ + 

½Bm~o - ~-B2aoO - B ~ / B ~  + ½B~a~  - B ~ / p  - 

tzOoA~/ - i,~Ooa~ - ~Bl~a lp  - ~ B l ~ b  ~ - 

~ B~Oop - ½ ~  I " (120) 

and its coefficient C v (positive in the direction of the retreating blade), we 

(121) 

(122) 

(123) 

(124) 
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Equating coefficients of sin ¢ gives 

2/*(~B00 + ;~l) 16~ B2p + (125) 
a ,  = B "~ - }~," - r B =  ( B ~  - ½~,~) B ~  - ½ t " "  

Equating coefficients of cos ¢ gives 

*B.t*a0 16p B=~ 
bl - B2 + ½t,2 Y B~ ( B2 + ½t *~) - -B= + ½tz2. (126) 

Now C,~ and C~ depend on a 1 and b 1 which in turn depend on ~, therefore the derivatives with 
respect to ~ must be written 

and 

l y l g ) r  - -  

and 

ma \ ~ f q / , , ~  = ~-~-q/=a, bl + \ 3al /bl,~ \ aO] + \ Obl ]al, q \ -~q] 

{ac,] {acq {acq. {a q {ac,]. {abq 
% = <T~L,~ = \ ~ A : , b :  + \~a:h:,~ <~P] + \ ab:A:,~ \~p] 

(127) 

(128) 

where the suffices indicate those variables kept constant during differentiation. 
We find on differentiating equations (120), (122), (1i5) and (126) and substituting in (127) and 

(.128) that the first and third terms on the right-hand sides of (127) and (128) cancel almost exactly, 
provided also that the t e rm/ .  (A 1 + bl) in (128) is very small, which it should be in tr immed flight. 

Thus we have 

4ah 
{~BO o + a-2t - ½l~a~} (129) 2 

7 (  B ~ _ ½f,2) 

4ah 
(l~), = - v B ( B  2 + ½l~ ) (§0 o ( B  2 + al~)  + ~ B 2  - Bl*al} (130) 

Similar expressions, if required, can be obtained for xq and yp but these are usually negligibly 
small. 

It is interesting to note that although the disc incidence changes due to precession when the 
helicopter is steadily pitching the incidence o£ the no-feathering axis does not change so that there 
is a corresponding variation of cyclic pitch angle in the tip-path plane which keeps the thrust 
constant, i.e. zq = 0. This can be inferred from equations (116) and (117). 
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APPENDIX III  

Calculation of ~ t~ /~  for a Rotor Fitted with 3a-hinges 

The relation between feathering and flapping for a blade attached to a 38-hinge is 

( 0 ) ,  3 = O o + Cfls .  (131) 
If 

~8 = ao - a18 cos ¢ - b18 sin ~ (132) 

the feathering in the tip-path plane is 

O= 00 + Ca o -  C a l s c o s $ -  C b l s s i n $ -  a l s i n ¢ +  blcos~b (133) 

and the incidence at a blade element is 

A - /~ao cos ¢ 
= (134) 0 + /~sin~b + x 

therefore 
A - ~ao cos ~I 

d T  = ½pacf~R ~ (iz sin ~b + x) 2 0 + dx. (135) 
/zs in~ + x / 

Expanding (109), taking the mean value with respect to ~b and integrating between x = 0 and 
x = B gives a thrust coefficient 

(t,)a3 = q (0 o + Cao) + c~A (136) 

assuming Cb 18 is small compared with a v 
By considering the flapping moment  equation we obtain 

al = c3 (0o + Cao) + q)t (137) 
and 

a 0 1 1 - ~ ( 1 +  ~ 2 ) I =  l~0o(1 + /z~)+ ½ ( ~ -  /~al) I (138) 

From (136), (137) and (138) and neglecting some small terms i n / ~  we get 

(~to~ ~to (1 Ce~ (i39) 
°~"" = ~ /  + 6e, (1 - ~) 

?o where i~N is the thrust derivative without ~a-hinge effect. 
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TABLE 1 

Particulars of example helicopter (basically Bristol 173) 

Weight 13,000 lb 

Rotor radius 25 ft 

Rotor speed 26 rad/sec 

Solidity 0" 04 

hF o.22 

h a 0.424 

lg + l v 1.62 

C.G. range from lp = l~ (fully back) to la - 1~ = 0.1 (IF + l~) (fully forward) 

h 1 0" 286 

k 2 0" 143 

Fuselage drag 300 lb at 100 ft/sec 

Moment of inertia in pitch 85,000 slugs ft 2 

Lock's inertia number for rotor blade 8 

3 0.016 
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Part II 

The Lateral Stability and Control of the 
Tandem-Rotor Helicopter 

By A. R. S. BRAMWELL 

Summary. The lateral stability and control of the tandem-rotor helicopter with a basic configuration 
similar to that of the Bristol 173 has been investigated. A method of calculating the derivatives is given. Values 
calculated for the HUP-1 helicopter show fairly good agreement with those obtained from flight measurements. 

The stability investigation shows that a tall fin may provide an effective dihedral several times larger than 
that of the rotors and lead to an unstable Dutch-roll oscillation which becomes progressively worse with increase 
of speed. The corresponding spiral mode is stable. If the rotors provide the only contribution, the Dutch-roll 
oscillation is stable but the spiral mode may become unstable. 

Simple approximations are given for the. estimation of the damping and period of the stability modes and 
show quite close approximation to the more exact calculations. 

1. Introduction. This Report is the second part of a study of the stability and control of the 
tandem-rotor helicopter and deals w i t h t h e  lateral motion. As in Ref. 2 which dealt with the longi- 
tudinal behaviour, a configuration similar to that of the Bristol 173 is used as an example. 

The equations of motion used in the main part of the Report are referred to wind axes in the 
usual manner but it is shown that, for the tandem-rotor helicopter, it may be advantageous to refer 
the equations to the principal inertia axes for lateral stability studies. When these axes are used the 

derivatives are easier to calculate and, since product of inertia terms are absent, the terms in the 
stability quartic are easier to interpret. 

The  fuselage derivatives have been given special attention since they appear to be at least as 

important as the rotor derivatives especially in the case of l v where the fin contribution may be 
several times that from the rotors. 

As in fixed-wing aircraft stability studies, it is possible to obtain simple approximations to the 
damping and periods of the modes of motion. 

2. The Equations of Motion. As usual, wind axes are used, the axes being fixed in the body with 

the x-axis directed initially parallel to the t r immed flight path, the y-axis directed to starboard and 
the z-axis pointing downwards. The equations of motion for small disturbances are then 

[/V 
Wi~ Yv v Y~p + Vr Y~r W ¢ c o s T e -  W~bsinTe = Y ~  + Y ~  (1) 
g g 

- L~v + Ap - Lpp - Ei - L,r = L ~  + L¢~ (2) 

- N ~  - E p  - X ~ p  + C t  - N~r = N ~  + N d .  (3) 

Previously issued as R.A.E. Report Naval 4 (A.R.C. 21,918). 
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Dividing equation (1) by 2 p s A ~ 2 R  2 and equations (2) and (3) by 2psA~2Ra and moments of 

inertia A and C respectively the non-dimensional forms of the equations of motion become 

dr  y~v ~2 dr  t~' ¢ cos y~ + 1~-- y~ de G - to'~b (4) sin y~ = yCf + y;~ 

d24 12o d 4 i E d2~ l r d~ f22 l ~  + t'2 I~lv ~ + . . . . . . . . . . . .  
i x d r  z i x d r  i x dr  ~ i~ dr  - i x 7~ l ~  (5) 

i o i v d r  ~ i c dr  + dr  ~ i v d r  zc n~f + ~ n;~. (6) 

The scheme for the conversion of the force and moment derivatives and moments of inertia of 
equations (1), (2) and (3) to the non-dimensional derivatives and coefficients of inertia of equations 
(4), (5) and (6) is given in the table of Section 2 of Ref. 1 except that, as in Ref. 2, d is replaced 
by 2_//. 

Solution of equations (4), (5) and (6), when the control terms on the right-hand side are zero, by 

the usual substitution ~ = ~0 e~, etc. gives the frequency equation 

where 
A(A'A 4 + B'A a + C'A 2 + D'A + E') = 0 (7) 

A ' =  1 zE2 
i f ic  

+ = + " " /" + ( s )  
ze z x z e  i~t i o /  

C ' = y ~  l ,  +~_  + ~ _ =  + + 
z c z c z x z x to/  i e z• 

+ - ~ -  1 7 -  - + ~ - -  1 7 -  : (9) 

D ' =  -Yv  \ i a  i c z ~  

Yr nr Yp , 
+ ~ -  ---P 1 7 -  + -~ t o cosye + t c sinye 

ic ~ ~ + = - - -  t~ s i n 7 ~ +  cos7~ 
ZA /~2 i x  c 

= zx" - t o sin Ye + ic t, cos Ye -- --ic t o sin Ye + ~ to' cos Ye • 

The  zero root given by equation (7) implies that  the aircraft has no preference for a particular 
heading. 

3. The Lateral  Stabi l i ty  Derivatives.  3.1. The Rotor Derivatives.  When a rotor is placed in a 

stream of air of velocity V the rotor disc, relative to the no-feathering axis, will tilt backwards with 

angle al, and sideways towards the advancing side with angle b r The resukant tilt will be of amount  
(al 2 + ble) 1;~ and at angle ~b 0 = tan -1 bl/a 1 towards the advancing blade, ¢0 being measured from 
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the rear-most position of the blade. I f  a small side-wind of velocity v blows from the retreating side 
of the disc the relative windwi t l  appear to come from a new direction at angle e = tan -1 v / V  cos a D 

in the plane of the disc relative to the original direction. The new sideways flapping component 
b 1 + 8bl, will be given by 

i 1 + 8b 1 = (a l  = + ble) 1/2 sin (¢o + e) 

= (al 2 q- b12) 1t2 {sin 4'0 cos e + sin e cos ¢o} 

therefore 

therefore 

= b 1 + ale, for small e 

alV 
8b l  = a l e  - V cos ~D 

~bl al 2(~B00 + h) 
-~-~ = / ,  B = + ~/ ,2 (12)  

using the familiar expression for ap 

It  should be noted that the sign O f b 1 for a given direction of tilt depends on the sense of rotation 
of the rotor and that 8bl/8~ will be of opposite sign if the side-wind blows from the advancing side. 
However, there will be no confusion if it is remembered that the disc always tilts away from the 
side-wind. 

In addition, a side-wind will also cause a sideways component of the in-plane H-force. This 
component will be 

hcv 
hoe - V cos ~D 

therefore 

I 
~ Vcos ~D/ t z 

~3. (13) 

The front and rear rotor contributions to the side-force will then be 

a lF  + ~8) (Y~)F= - ½ t~F /z 

( air  + ~a) " (y~)~ = - ½ t~R 

These side forces will result in contributions to the moment derivatives 

(14) 

(15) 

(l~)~ = (yv)~,, hl~ + (y~)R hl~ 
and 

From Ref. 2 we find that the side-force contributions due to roll are 

(16) 

(17) 

(y.)~, = - ½ ( t ~  

(YD)R = -- ½ ( t c ~  

B2a~,~ 16 

8 / rB~ (B~ + ~-~) 

B~_~)  16 
~B~ (B" + ~ 2 ) -  
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The total rotor contributions to the moment due to roll derivatives are therefore 

(l;)r = (Yo)P h lF  + (Y~)R hlR (20) 

(n~)r = (y~)F l l ~  - (Y~)R 11~. (22) 

When the tandem-rotor helicopter rotates in yaw side-winds (of opposite signs) will be imposed on 
the front and rear rotors and we find that 

/ 

(yr)F = - ~t~F l ~ ,  a~F/~ (22) 
1 (Y~)R = + ~to R /1R al R/b*. (23) 

The  total rotor contributions to the moment due to yaw are then 

(l,), = (y,)F hl~ + (Y~)R h~R (24) 

(nr)r = (Yr)F 11F -- (Yr)R ll n" (25) 

It is useful to note that (y~)~ = (nv) r. 

(It is unfortunate that the standard symbols for rate of yaw and suffix for rotor contribution are 

the same, namely r. However, when r appears outside a bracket throughout this Report it refers to 
the contribution of both rotors.) 

3.2. Fuse lage  D e r i v a t i v e s .  

3.2.1. (y~)1 

It is difficult to make a theoretical estimate of (Yv)1 but the wind-tunnel  tests of Refs. 3 and 9 

should give a reasonably accurate value for a typical fuselage. An analysis of these results shows that 
the fuselage contribution can be represented by 

- O. 3 t~S B 
(Y~)i - s A  (26) 

3.2.2. (l~) I 

The  calculation of lo due to a fin is usually of secondary importance for the fixed-wing aircraft 

but for the helicopter without  a wing the fin contribution to l v may be far greater than that of the 
rotors and is therefore of great importance. 

I f  the fin effect is calculated in the manner of Ref. 4 we have 

(lv) 1 = - V la /F(oOl2  (27) 

where. the interference factor, KFZ~ , of Ref. 4 is taken to be unity. 

In the notation of this Report (see Fig. 2) V 1 becomes 

Ai 
VJ = 4 s A  

and 
F(~) = h I cos a s - l] sin %. 

a] can be calculated from Ref. 4 but a more accurate value can probably be obtained from Ref. 5. 
No tandem-rotor helicopter flying at present has a wing but wings may be fitted to future designs. 

• The calculation of l~ due to a wing may be calculated from Refs. 4 and 6. 
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Again, we are in difficulty with notation. We would like to use the symbols f o r  F to denote the fin 
contribution to the derivatives but they have already been used to denote-fuselage and front rotor 
respectively. 

However, in lateral stability work, the term 'fin effect' is meant to include all those fuselage 
effects which act like a fin and so there will be no ambiguity throughout this Report if the suffix f is 
used to denote the fin contribution. 

3.2.3. (n~) s 

The method of Ref. 7 has been used for estimating (nv) s but care must be taken to convert the non- 
dimensional values given there to those which correspond to the tandem-rotor helicopter. Thus the 

values of n~B of Ref. 7 must be multiplied by ~SB IB/4sA.R and the values of n ~  v by ~Sb/4sAR. 
For the fin itself Ref. 7 uses the results of Ref. 5, i.e. the fin contribution, in the notation of this 

'Report, will be a s A s I] V/4sA. 

3.2.4. The momem derivatives due to rate of roll and rate of yaw. These derivatives, like (lv)s, 
may be considerable for the helicopter and have been calculated by strip theory, as follows. 

Let x be the distance above the centre of area of an elementary strip, parallel to the flight path, 
of chord C and width dx. A rate of roll p will change the incidence of the strip by p{F(~) + x}/V 
and the rolling moment of the fin will then be 

giving 

~_paspR2 fx2 - ~ e { F ( ~ )  + x ? d x  (C3s V xl 

(l~) s = _ a s & ~  {y~(~) + h~g~} 4sA (28) 

where h& is the radius of gyration of the fin about an axis through its centroid parallel to the flight 
path or, approximately, parallel to the aircraft datum line. 

Similarly we derive 

( n ~ )  s - as~AslsF(°t) 
4sA (29) 

(4)s - as~Asl1F(~)  
4sA = (np)s (30) 

( n r )  1 = - a f f / A s l l  2 
4sA (31) 

3.2.5. Control moment derivatives. Adopting the notation for fixed-wing aircraft, an angular 
displacement of the cyclic stick to port, ~:, produces equal changes of cyclic pitch, kl~: , on front and 
rear rotors such that both tilt to port. A displacement, ~, of the rudder bar, with the left foot 
forward, produces tilts, k~,  of both rotors, the front rotor tilting to port and the rear rotor to 
starboard. The control angle notation has been used for stick and rudder displacements rather 
than the rotor disc displacement because of the possible confusion arising from the signs of the 
lateral tilt and cyclic pitch application for counter rotating rotors, as mentioned in Section 3.1. 
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In non-dimensional formthe  control force and moment derivatives will then be 

y¢ = - k~t c' (32) 

y~ = - k z ( t c F . -  tcR ) (33) '  

1~ = - k~ ( t c F h l F  + teRh~R ) (34) 

l~ = - kz  ( t c E h i F  - tcRh~R ) (35) 

n~ = -- k~ ( t ~ f l ~ F  - t, RI~R ) (36) 

n; = -- hz ( t~v l~F + t~al~R). (37) 

3.3. Compar i son  o f  Theore t ica l  Der i va t i ve s  w i th  Es t ima tes  f r o m  F l igh t  Tests.  The trim equations 
in level flight for a given steady sideslip angle f i ( ~ / ~ )  are obtained from equations (4), (5) and (6) 
of Section 2 by omitting the acceleration and rate terms and putting 7~ = o, giving 

~/~Yv + to'¢ = - (Yd + Y~) (38) 

i~fllv = - ( l ~  + ! ~ )  (39) 

~fln~ = - ( n ~  + nc~). (40) 

Thus by measuring the control angles (assuming the control derivatives are known from 

equations (32) to (37)) and the angle of bank for a given sideslip angle the derivatives Yv, lv and n v 
can be obtained. A number of such measurements for the Vertol HUP-1 tandem-rotor helicopter is 

given in Ref. 8. From these measurements the derivatives were calculated and the results for Yv 

and lv; together with the theoretical values are shown in Figs. 3 and 4 where it is seen that the 
agreement is quite good. On the other hand n v has not been shown as agreement was extremely poor; 

it was unfortunate that the fuselage of the HUP-1 is very short and 'stubby' whilst the fin section 

has a thickness/chord ratio of 35 per cent and a trailing edge angle of about 45 deg. Thus the 

fuselage and fin contributions to n~ were both difficult to estimate accurately and since the total 
n v is the difference between these comparatively large quantities it is not surprising that the 
theoretical estimate should be so poor. The estimation of n v for a comparatively slender fuselage, 
such as that of the Bristol 192 which closely resembles fixed-wing aircraft practice, should be far 
more reliable. 

4. Discussion o f  Der iva t ives .  The estimated derivatives for the Bristol 173 helicopter are shown 
in Figs. 5(a) to 5(g). The force-rate derivatives y~ and Yr have been omitted as they are negligibly 
small. 

4.1. Yv 

The rotor contribution is roughly proportional to al/tz which is almost constant throughout the 
speed range. The fuselage contribution which varies linearly with speed is very much larger at all 
but the lower speeds so that for most of the speed range the rotor contribution can be neglected. 

4.2. lv 

The rotor contribution is again roughly constant with speed for the reason given above in 4.1. 
The fin contribution increases rapidly with speed and above/~ = 0.2 is already larger than the rotor 
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contribution. Thus  it will be seen that the fin has a powerful dihedral effect compared with that Of 
the rotors but  wi thout  a corresponding effect on the damping in roll (Section 4.4). It Will be shown 
later that this may lead to a very unstable Dutch-roll  oscillation at the higher speeds. 

It  should be noted that, although the force derivative on the fin is linear, the moment  derivative 
rises more rapidly than this since the fin height relativeto the wind-axis increases with the increasing 

nose-down attitude in pitch. 

4.3. n,v 

The  rotor contribution is usually negligible and the total n v depends almost entirely on the 
fuselage and fin contributions. However,  it is interesting to note that setting the e.G. forward 

increases the front rotor thrust  and tilt and decreases the rear rotor thrust and tilt thus  causing 
the rotor contribution to be unstable. 

4.4. l~ 

The rotor provides nearly all the damping in roll, a small contribution arising from the fin at 
higher speeds. It will be seen later that it would be desirable to be able to increase l~ considerably 
~ut  presumably this could only be done by fitting a small wing. 

4.5. n r 

This  derivative hardly warrants discussion as it is usually unimportant  and, in any case, appears 
in combination with other derivatives in such a way that its effect can always be eliminated by slight 
changes in the others. 

4.6. lr and n~ 

These derivatives will be discussed together as their most important effect is their appearance 
in the constant term, E, of the stability quartic. In level flight E is proportional to lvn ~ - n~l~. 

N o w  n~ is negative and so is lv, usually, so that the first term contributes to the stability of the 
spiral mode. On the other hand l r is positive and n v must be positive for positive weathercock stability 
so that the second term represents spiral instability. However,  as can be seen from Figs. 5(f) and 

5(g) both l,. and n,. increase With speed, although not necessar!ly in the same ratio, and the effect of 
one tends to cancel the effect of the other. Therefore the spiral stability depends mainly on the 

choice of l~ and n~ being, in any case, easier to control than l r and nr which depend mainly on fin and 

rotor heights. 

5. Discussion of  S t ick -Fixed  Stabili ty.  5.1. Approximate  Roots of  Stabil i ty  Quartic. Before 
discussing the stability in detail, it is worth while obtaining approximations to the roots of equation (7) 
to see more clearly the dependence of the motions on certain derivatives or combinations of derivatives. 

Dividing equation (7) through by A' we obtain 

;~ + B;t 8 + CA ~ + D;~ + E = 0. (41) 

N o w  the coefficient D is always several times larger than E so that to a good approximation one 
root of equation (41) is h 1 = - E/D.  This is the spiral root, familiar also to fixed-wing aircraft 
practice, and since D is usually positive a stable mode requires that E is als O positive i.e. l,n r - n~l,. > O, 

Comparisons between this approximation and more exact calculations are shown in Fig. 8 where 
agreement is seen to be extremely good. 
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Dividing equation (41) by (A + E/D) leaves a cubic which can be written approximately as 

~3 + BAS + ( C - BE~D) A + D = 0. (42) 

• in fixed-wing aircraft practice the coefficient B is large enough (compared with the other 
coefficients) to take as a good approximation ;~s = - B but this is not always true for the helicopter 

as'is shown at the higher values of/z in Fig. 9. Also, Newton's process of approximation which is 

often used to obtain a better value of )t s is slowly convergent or may even be divergent at the higher 
values of tz. However, another iterative process, which seems to work quite well, consists of writing 

equation (42) as 
A s = - {B1 s + (C - B E / D ) h  + D} (43) 

and substituting ;~ = - B (or a better approximation, if known) into the right-hand side of 

equation (43) and taking the cube-root, this latter value being used as the next approximation and 
the process repeated until the desired accuracy is obtained. This process can be carried out quickly 
on a slide-rule. Since this root is roughly equal to - B and since B consists very largely of the term 
l,/i,j, this root can be regarded roughly as representing the damping of the rolling motion. Let c~ be 

the value o.f the root obtained from the above process. Dividing equation (42) by (h + ~) leaves a 

quadratic ()/s + 13A + y) so that to a good approximation ' , 

(A + E/D) (~ + a) (~2 + 13A + ~,) = ~4 + BA3 + C)tS + D)~ + E. 

Equating the constant terms and the terms in A s gives 

fl = C/a - D/a s - EID. (neglecting E/D compared with a) (44) 

.and 
(4s) 

If we take a B, which is a good approxiniation for t~ < 0.3, then ~, = D/B,  an approximation 

used in fixed-wing aircraft work giving for the time of oscillation 

To = 27r~ %/(B/D) (46) 
assuming t3 is fairly small. 

5.2. Lateral  (Dutch ROll) OscillaEon. 5.2.1. Damping of oscillation. The damping of the 

lateral oscillation of the complete helicopter is shown in Fig. 6 where it can be seen that the 
oscillation becomes rapidly unstable with speed. That this is due to excessive dihedral effect is 
shown by the lower Curves in Which the value of i v used in the calculations is that from the rotors 
only: T h e  beneficial effect of increas!ng l, is shown in Fig. 10 where doubling the existing l ,  greatly 
improves the stability. Unfortunately it does not appear possible to increase'/, considerably except 
by fitting a wing and the only other way of obtaining a damped oscillation is to prevent the fin and 

tailplane contributing too much to lv. This might be done by fitting a tailplane which has anhedral 
or possibly by a retractable fin which, in the extended position, is placed below the aircraft centre 

line. 
We can examine the effect of l .  and l o on the damping of the oscillation by referring :to the 

expression for ]3, equation (44). Since ~, D and E are almost always positive a damped oscillation 
can only be achieved if C is positive and the term C/o~ (or approximately C/B) is larger than_the sum 

of the other two. 

77. 



Now numerical calculations show that the coefficients A',  B', C', D' and E' of equations (8) to (11) 
can be written approximately 

A' = 1 iE2 
• i ~ i  ° (47)  

B t - -  l~O 
i a ., (48) 

C ' =  l.  Yv + + i~ + (49) 

D'  - " ~21~z~ t,' ~,2nvio 7Al~° p (50) 

e '  = . Ix2. ( l ~ n ~  - n v l ~ )  . (51)  
ZAI C 

The separate terms 

C 
B 

D 
B 2 

E 
D 

in ]3 are approximately 

_ _ _  
\ i ~  "i~ + zo / 

< . ,  

l#o'i o +'nfl~ l?" 

(52) 

(53) 

(54) 

Taking the effect of I, first, all other derivatives remaining constant, the  terms in/3 all decrease 
nr E 

with increasing l .  except the constant positive term - Yv + ~ !  and the term ~ .  Thus  as  lp 

increases 3 tends to the value - Yv + ~ ~ which except, perhaps, at hovering and very low 

speeds is positive and increases with speed, i.e. the stability improves. 

Turning now to the effect of lv, the most important terms are D/B  2 and the second term of C/B. 
When l v and l~ are negative and n v positive, i.e. when they represent positive static stability, D/B  2 is 
positive and contributes to instability of the Dutch  roll. This term increases with increase of l v and 

usually increases rapidly with speed also. The  second term of C/B also contributes to instability 
/x~l~ i E 

increasing rapidly with speed due to the term 7 • --  which becomes negative, as the longitudir/al 
z~ i e 

principal axis assumes a nose-down attitude, and overwhelms the weathercock stability term/x~ nv . 
zc 

Since i E is determined by the mass and fuselage attitude and cannot be varied easily it follows that 
too large a value of l~, especially at high speeds again leads to instability. These effects ean be seen 
clearly in Fig. 6. Thus  as far as the Dutch roll damping is concerned we wish to make nv as large as 

possible and keep /~ and i E as small as possible, assuming iE is positive as is almost certain for a 
helicopter at all but  the lower speeds. 

The  reduction of damping with increase of i E is often described as a destabilizing 'produet  of 
inertia effect'. This  effect is not easy to see physically, compared with those from aerodynamic 
terms, and in any case the magnitudes of the product of inertia terms depend on the axes chosen. 

78 



Another interpretation of the term involving i~ can be obtained by writing down the equations of 

motion of the helicopter referred to its principal axes. These are given in Appendix 1 where the term 

corresponding to • -- + has become - sin ~ + cos ~ . The latter term is 
\ i x z e z e / z'~ 0 ieo 

seen to be the sum of the terms - ~ zl~ and ~n~ resolved about the yawing axis of the wind,axes 
gA 0 l~U 0 

system and therefore represents a kind of weathercock stability--it is not a true weathercock 
moment since both terms are divided by their corresponding inertias. Nevertheless, it can be seen 
that when the fuselage takes up a nose-down attitude (negative ~) a negative lo (the usual dihedral 

sense) acts partly like a negative weathercock stability and since/~.~l~ is usually several times larger 

than/x.~n~ it is quite easy for the whole term to become negative. Thus the deterioration of stability 
*e 

which is often regarded as a 'product of inertia effect' can be interpreted simply as a transformation 
of the dihedral effect into negative weathercock stability. This interpretation is especially appropriate 
to a helicopter since the moment derivatives (except those from a wing) are directly related to the 
t~uselage geometry (and therefore to the principal axes) so that when referred to these axes will be 
almost independent of attitude. Since helicopter moment derivatives are simpler to calculate when 

referred to these axes their use in the study of helicopter lateral stability may be an advantage. 

5.2.2. Period of oscillation. Th e approximate expression for the period of lateral oscillation is 
T O = 27r~ ~/(B/D). This approximation gives good agreement with more exact calculations, except 

perhaps at the highest values of/~, as Fig. 7 shows. Using the approximations for B' and D' in 

equations (48) and (50) gives 

B 1 

D - -  t~' +/~2n~. 
l.  ~ 

(55) 

The two terms in the denominator are usually of the same order and since both increase with/z the 
period decreases as/z increases. If a wing is fitted Iv will be much larger and l~ possibly smaller and 
the time of oscillation would depend almost entirely on n v. The approximation to the time of 

oscillation would then be 

T o =  2 7 r ~ / [  i° ~ (56) 
N/ \l~2~nJ 

an expression corresponding to one derived for fixed-wing aircraft, Ref. 10. 

5.2.3. Dutch Roll-yaw ratio. If l., lv and n~ are varied to improve the damping of the lateral 
oscillation or perhaps the spiral mode the ratio of amplitudes of roll to yaw in disturbed flight varies 
also. A simple approximate expression for this "ratio is derived from equations (5) and (6) of 
Section 2, for zero control movement and neglecting n,, 

z~ ~ ~ ~ g) = 0 (57) 

= o. (58) 
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Now 4 = P = Po e~* and ~ = r = roe ~ where Po and r o are the (complex) amplitudes of the roll and 
yaw oscillations respectively and A is complex in general: Substituting for ~ and ~ in equations (57) 
and (58) gives 

Oo + zpo l po _ = = 0 ( s 9 )  

Eliminating l)o/r o gives 

~2n~e0 i E z p 0 + A  n~. 
ic r0 ic r0 ia = 0. (60) 

P 0 _  =~- ~ ~ + i~ ~ (61): 
ro ~2n~(~ ~ )  ~21~iE 

ic - + - : - _ _  A ZA ~C 

If the coefficient fi of the Dutch-roll quadratic is small compared with 7 then ;~ = - 7 or A = i3, 
say, equation, (61) becomes 

Ix~n~ iE i3 + lr + i~ 
PO ZG 

- . ( 6 2 )  

i c ~ + z~ [z c 

Inserting typical values into equation (62) shows that many terms can be neglected when the 
modulus of po/ro is calculated and we have as quite a good approximation 

(63) 
r 0  /~2nv. Iv " 

It can be seen from Fig. 11 that the time of oscillation, and therefore 3, does not vary greatly 
with changes of l~j and l~ so that the Dutch-rolfratio can be said to be roughly proportional to l~ and 
inversely proportional to n~ and lp. For the Bristol 173 the value of [po/ro [ from equation (63) is 
3.75 at/z = 0.2 and agrees well with more exact calculations from an analogue computer. 

In fixed-wing aircraft practice a large ratio of roll in yaw is regarded as objectionable. From 
equation (63) this requires that, for a given 12o , l v should not be too large compared with n~, a 
combination required also for satisfactory damping of the Dutch-roll oscillation. 

5.3. TheSpiralMode. Fig. 8 shows the damping of the spiral mode with /~ for two configurations. 
Fig. 12 shows the effect of varying l~ and l v on this mode. Since, approximately, A 1 = - E/D we 

can infer from the expression for E, what is shown in the Figures, that the larger the value of l v the 
better the damping of the mode whilst increasing no tends to make the motion divergent. These 
derivatives have been shown to have the opposite effect on the Dutch-roll damping and, as for 
fixed-wing aircraft, the choice.of l v an d n.o must often be a compromise between accepting some degree 
of instability of one or other, or even both, modes. Divergence of the spiral mode does not become 
very severe even for quite large changes in lo and % and it is usual, in fixed-wing aircraft practice, 
to accept some spiral instabifity in order to achieve satisfactory d a @ n g  of the Dutch roll. 
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6. Control Response. Fig. 14 shows the response of the helicopter to a sudden 1 deg lateral tilt 
of the rotor discs at/~ = 0.2 for three values of l~. In the original configuration the helicopter is 
about neutrally stable and reaches maximum bank angle in about 4 seconds and maximum rate of 
roll in about 1 second. If the stick were held in the displaced position for long enough the helicopter 

would roll from side to side with a period of about 8 seconds. 
If l~ is increased the oscillation becomes stable and the angle of bank reaches a steady value but 

the maximum bank angle decreases and the time to reach it increases so that too much damping 

in roll for a given l v may cause the aircraft to appear sluggish. 
If l v is increased for a given value of lp, Fig. 15, we see that the maximum rate of roll is roughly 

the same for each case but that the maximum angle of bank is reduced and the time taken to reach 
it is also reduced. However,  if l, is increased too much the lateral oscillation becomes unstable 
and a steady bank angle is not reached. In these cases the rapid reversal of rate of roll is regarded 
as undesirable as it may prevent the pilot from banking the aircraft accurately. This effect becomes 
more pronounced at higher speeds where l v increases and lp falls off slightly. 

7. Conclusions. 7.1. A method of calculating the aerodynamic derivatives of a tandem-rotor 

helicopter is given and shows fairly good agreement with values obtained from a series of flight 

tests. 

7.2. The sideslip derivative, l v, is greatly affected by a tall fin which may provide a contribution 

several .times larger than that of the rotors.. Since there is no corresponding increase of l•, this leads 

to an unstable Dutch-roll oscillation at the higher speeds which becomes progressively worse as 

the speed increases. The corresponding spiral mode is stable. 

7~3. If the rotors provide the only contribution to l~, the Dutch roll is stable and the stability 

improves with speed. The spiral mode becomes unstable at the higher speeds. 

7.4. The Dutch-roll characteristics could be improved by fitting a small wing or large tailplane. 

This would improve the damping in roll considerably and provide a control over l~. Further, it has 
been shown that the Dutch-roll stability decreases as the fuselage attitude increases (in the nose-down 
sense) so that a clean fuselage, resuking in a small attitude, is beneficial. Considering, also, the 
remarks made in 7.2 it is evident that great care must be taken wKh the design of the fuselage. 

• It may be that not all of these requirements can be satisfied together in which case auto-stabilization 

may be necessary. 

7.5. Simple approximate expressions for the damping and period of the lateral modes can be 
derived from the coefficients of this quartic and give adequate agreement with more accurate 

calculations. 

7.6° It may be an advantage to use equations of motion which are referred to the principal inertia 
axes of the helicopter rather than the wind axes. The coefficients of the stability quartic are no 
simpler but the derivatives are more closely related to the body axes than the wind axes and generally 
should be easier to calculate. Also, the product of inertia terms disappear and are replaced by 
aerodynamic terms which are easier to interpret physically. 
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Ao 

A 

A' 

Ai 

al 

a] 

B' 

B 
B 
bl 

b 

C 

Co 
C" 

C 

c, 

£ 

D' 

D 

E 

E' 

E 

(hlFR). 

(hi RR) 

ho 

hlgR 

i o, iao, iE 

L I S T  OF SYMBOLS 

Moment  of inertia about longitudinal wind axis, slugs ft ~ 

Moment  of inertia about longitudinal principal axis, slugs ft 2 

Area of one rotor disc 

Coefficient of M in stability quartic 

Fin area, ft ~ 

Longitudinal backward flapping of rotor disc 

Lift slope of fin 

Coefficient of ~t 8 in stability quartic 

B'/A' 

Tip-loss factor (taken as 0.97) 

Sideways flapping of rotor disc, positive when tilted to advancing side 

Number  of rotor blades 

Moment  of inertia about normal wind axis, slugs ft z 

Moment of inertia about normal principal axis, slugs ft s 

Coefficient of )¢ in stability quartic 

C'IA' 
Rolling-moment coefficient, rolling moment 

2psAlteR 3 

Yawing-moment coefficient, 

Blade chord, ft 

yawing moment  
2DsA~R 3 

Coefficient of h. in stability quartic 

D'/A' 

Product of inertia with respect to X and Z axes 

Constant term in stability quartic 

E'/A' 

h 1 c o s % -  11sin% 

Height of front rotor above line through e.G. parallel to flight path 
(see Fig. 1) 

Height of rear rotor above line through e.G. parallel to flight path (see 
Fig. 1) 

Coefficient of longitudinal rotor force parallel to tip-path plane 

Radius of gyration of fin about axis through e.G. parallel to flight path 

A / W Inertia coefficients 0 /~"  R~, etc. 

82 



k 1 

k2 

L 

L~, L , ,  L~ 

I ~ R  

llRR 

. IzR 

N 

nv, n~, n r 

p 

P 
R 

T 

s~ 

$ 

To 

t~' 

V 

Vj 
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W 

Y 

Y ,Y,,Yr 

Y~, Y,, Yr 

L I S T  OF SYMBOLS--continued 

Ratio between lateral stick displacement and cyclic pitch change 

Ratio between rudder bar displacement and differential cyclic pitch 
change 

Rolling moment, lb ft 

Rolling-moment derivatives, ~L/~v, OL/~p, ~L/~r 

Dimensionless rolling-moment derivatives, ~ Cz/~ ~ Ct/~p ~ Ct/~P 

Distance of front rotor from c.c. ft (see Fig. 1) 

Distance of rear rotor from c.o. ft (see Fig. 1) 

Distance between rotors, ft 

Length of fuselage, ft 

Yawing moment, lb ft 

Yawing-moment derivatives ~N/Ov, ~N/~p, ~N/~r 

Dimensionless yawing-moment derivatives ~ C~/0~, 0 Cn/Op, ~ CJ  ~P 

Rate of roll, rad/sec 

p/~ 

Rotor radius, ft 

Rate of yaw, rad/sec 

Projected side area of fuselage, ft ~ 

bc 
Rotor solidity, 7rR 

Period of oscillation of Dutch roll 

W 
2psA~2R 2 

Trimmed flight velocity, ft]see 

V/nR 
Fin area ratio, A1/4sA 

Lateral velocity of aircraft, ft/sec 

vl~R 
Weight of aircraft, lb 

Lateral force, lb 

Lateral force derivatives, ~ Y/~v, ~ Y/~p, ~ Y/~r 

Dimensionless force derivatives 

Value of a root of the stability quartic 
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LIST OF SYMBOLS~--continued 

Incidence of rotor disc, angle betV~een relative wind and tip-path plane 

Incidence of helicopter,-angle between relative wind and datum line 

Coefficient of ~ in Dutch roll quadratic ' ' 

Constant term in Dutch r011 quadratic " - 

Angle of climb, radians 

Drag coefficient of rotor blade " ~-' 

Displacement of rudder bar, positive for negative yawing moment 

Angle be tween  trimmed flight t~atl~ and undisturbed position of 
longitudinal principal axis ~': 

Angle between horizon and undisturbed, position of longitudinal principal 
axis 

Collective pitch angle of rotor blades, radians 

Root of stability quartic 

Coefficient of flow normal to rotor disc 

Tip speed ratio, V cos ~l)/f2R 

Relative density parameter, Vg/2gpsAR 

Lateral displacement of stick, positive to port 

Air density, slugs/ft 3 ,, 

Time in aerodynamic units 

Angle of bank, positive to starboard 

Angle of yaw, positive to starboard 

Angular velocity of rotor - 

Suffices 

fuselage or fin contribution 

front rotor 

rear rotor 

rotor contribution 
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A P P E N D I X  

Equations of Motion Referred to Principal Axes 

1. Equations of Motion Referred to Principal Axes. T h e  equat ions  of  m o t i o n  re fe r red  to the  

pr inc ipa l  iner t ia  axes are (see e.g. Ref. 10) 

W 
- - ( 9  - p V s i n  t9 + r V c o s  tg) = A Y  (64) 
g 

Ao~b = AL (65) 

Co~ = A N  (66) 

w h e r e  t~ is the  angle b e t w e e n  the  longi tudinal  pr incipal  axis and  the  di rect ion of  the  t r i m m e d  fl ight 

pa th  (posi t ive w h e n  the  axis is nose-up) ,  and 

A Y = W(~ cos O + ¢ s i n  O) + Yv v + Y . p  + Yrr + Y ~  + Y ~  (67) 

AL = L~v + L . p  + L,r + L¢~ + Lg~ (68) 

A N  = Nvv + N , p  + N~r + N ~  + N ~  (69) 

w h e r e  0 is the  angle b e t w e e n  the  longi tudinal  pr inc ipa l  axis and the  hor izon  (posi t ive w h e n  axis 

is nose-up) .  

I n  non -d imens iona l  f o r m  the  equat ions  (64) to (66) b e c o m e  

d~ ^ y ,  de 12 sin t$ de y~ d~b + I7 cos ~ ~ - t~'~ cos O 
d'r yvv P'2 d-r d'r I~ d'r 

- t~'~ sin ® = y ~  + y ~  (70) 

/~flv e + - - -  - = -  - -  - = -  - -  = = -  ~ -  (71) 
iA o dT~ ~A 0 d~- L,~ o d r  z~t 0 zx o 

tz~n,~ np d¢ d2¢ n~ d~b _ fxz ng~ + lx~ ng~. (72) 
ic o i~ o dr + dr ~ i~ o dr iA o Zc=oo 

T h e  f r equency  equa t ion  is the  quint ic  

w h e r e  , 
A(A'A 4 + B'A a + C'A ~ + D'A + E ' )  = 0 

A ~ = I  

lp n r 
B '  = - Y v  • • 

C' = y~ ~ o  + -[ff; + \ i a o i c  ° i ~ o / ~ o  

/z~l~ 12s inv  a + + ~ - -  12 cos T 

ZA o ~C o 

D' [ lp  n~ l~ l ; )  
] 

+ ~ -  12 c o s ~ -  + = -  12 s i n ~ +  - t o c o s ®  
Z.d o $c o 

) ( tzenv 1, 12 c o s ~ 9 -  Yr l~ 12 s i n ~  + - t c ' s i n @  

= = - -  t c' cos O - = - - t  c s i n ®  . _ _ t  o' cos O - = = - t  c' sin O . 
Z.d 0 ZC 0 ZC 0 ZA 0 ZA 0 
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2. The Aerodynamic Derivatives with Respect to Principal Axes. The forms of the rotor-moment 
and fuselage-moment derivatives of Section 3.2 remain the same except that the terms hlF , h 1R, 

h v  and 11• are replaced by the constant values (h~)F, (h~)±¢, (l~) F and (lp) R respectively in the 
rotor-moment  derivatives and F(~), l 1 and hig are replaced by the constant values (hp)l, (lp) i and 
(hp)lg in the fuselage derivatives, the suffix D denoting measurements from or along the longitudinal 
principal axis. 

(82028) 
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T A B L E  1 

Particulars of the helicopter, similar to the. Bristol 173, used in th¢ stability calculations 

Weight 13,000 lb 

Rotor radius 25 ft 

Solidity 0.04 

Rotor speed 26 rad/sec 

h F 0- 2 2  

h• 0.424 

1F + l R 1.62 

h 1 O" 286 

k 2 O" 143 

d o O" 08 

A o (principal moment of inertia in roll) 4,260 slugs ft ~ 

B o (principal moment of inertia in pitch) 92,500 slugs ft ~ 

C O (principal moment of inertia in yaw) 89,000 slugs ft z 

Longitundial principal axis perpendicular to rotor hub axes when ~ = 0 

Lock's inertia number 8 

l] 0.72 

h/~ 0.126 

A t 122 ft ~ 

a] 1.6 
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v _ _ ~ _ / _ i  _ ~ s  ~ . . . . . . .  J_/_l___ 

FIG. i. Rotor force diagram for lateral stability. 

FIG. 2. Diagram defining fin dimensions. 
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