C.P. No. 367

A R.C. Technical Report

LIORAPY
RÓOAL AIRC, $\because \quad T+1$ MEWT

C.P. No. 367
(18,998)
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Experimental Investigation of the Pressure Distribution at the Centre-Section of a Sweptback Wing at High Subsonic Speeds

By
T. E. B. Bateman, B.A., B.Sc. and A. J. Lawrence, B.Sc.

Experimental Investigation of the Pressure Distribution at the Centre-section of a Sweptback Wing at High Subsonic Speeds
by
T. E. B. Bateman B.A., B.Sc. and
A. J. Lawrence B.Sc.

SUMMARY

The uncertanty of the validity of theoretical estimates and the absence of experimental data for the pressure distribution at the centresection of a sweptback wing at high subsonic speeds led to the present tests. The measurements have been made on a 4° sweptback wing over the, Mach number range 0.50 to 0.94 , at zero incidence.

Given pressures are reached further aft at the centre-section than on a section of the infinite sheared wing. In particular the supersonic region, when formed, occurs much further aft and the shock-wave moves quickly to a position close behind the trailing edge. The isobars lose their sweep in the neighbourhood of the centre-section and this reduces the cratical Mach number from 0.38 for the sheared wing to 0.81 for the centre-section. The maximum local Mach number at the centre-section tends to a steady value of about 1.15 at high subsonic speeds.

Theoretion estimates of the pressure distributions on the sheared wing at zero incidence are shom to agree well with the measured values for speeds at which no shockwaves form but estimates for the centresection agree well oniy at very low speeds. At higher speeds (even at $M=0.5$) the theory predicts too low a pressure over the forward half of the chord and too low a suction over the rear hale, i.e. it underestimates the "centre effect".

IIST OF IIIUSSTRATIONS

	Figure
Model 5 of Refs. 1 and 2	1
Wing and floor fairing of present tests mounted on tunnel floor	2
Variation of local Mach Number along chord of sheared wing and with free-stream Mach Number	3
Variation of local Mach Number along chord at centre section and with free-stream Mach Number	4
Experimental and theoretical pressure distributions on a sweptback wing. $M_{0}=0.50$ and 0.82	$5(\mathrm{a}) \&(\mathrm{~b})$
Experimental and theoretical pressure distributions on a sweptback wing. $M_{0}=0.86$ and 0.90	$5(\mathrm{c}) \&(\mathrm{~d})$
Experimental and theoretioal centre effects at $M_{0}=0.50,0.82$ and 0.86	6
Variation of trailing-edge pressure coefficient with free-stream Mach Number	7
Variation of maximum looal Mach Number with free-stream Mach Number	8
Variation of tangential pressure-force coefficient with freestream Mach Number	9
Transition positions at $M_{0}=0.50$ and $M_{0}=0.91$	10
Shock-wave positions at $M_{0}=0.91$ after 5 and 6 minutes running time	11

LISTI OF CONTENES

Page
1 Introduction 4.
2 The Model and Tests 5
2.1 Details of the Model 5
2.2 The Tests 5
3 Results 5
3.1 Preparation 5
3.2 Accuracy 6
3.3 Results from Earlier Tests 6
3.4 Presentation of Results 7
4 Discussion of Results 7
4.1 Variation of Looal Mach Number 7
4.1.1 The Sheared Wing 8
4.1.2 The Centre Section 8
4.2 Pressure Distributions 9
4.2.1 The Sheared Wing 9
4.2 .2 The Centre Section 9
4.2.3 The Centre Effect 10
4.3 Trailing-Edge Pressure 10
4.4 Maxinnum Local Mach Number 10
4.5 Tangential Pressure-Force Coefficient 11
5 Conclusions 11
List of Symbols 12
References 13
LIST OF TABLES
Leading Dimensions of Wing I
Positions of Pressure Points (at symmetrical positions on upper and lower surfaces) II
Values of p / H III
Values of M IV
Values of C_{0} V

LIST OF IHLUSTRATIONS

Figure
Model 5 of Refis. 1 and 2 1
Wing and floor fairing of present tests mounted on tunnel floor 2
Variation of local Mach Number along chord of sheared wing and with free-stream Mach Number 3
Variation of local Mach Number along chord at centre seotion and with free-stream Mach Number 4
Experimental and theoretical pressure distributions on a swept- back wing. $M_{0}=0.50$ and 0.82 5(a) \& (b)
Experimental and theoretical pressure distributions on a swept- back wing. $M_{0}=0.86$ and 0.90 $5(\mathrm{c}) \&(\mathrm{~d})$
Experimental and theoretical centre effects at $M_{0}=0.50,0.82$ and 0.86 6
Variation of trailing-edge pressure coefficient with freestream Mach Number 7
Variation of maximum local Mach Number with free-stream Mach Number 8
Variation of tangential pressure-force coefficient with free- stream Mach Number 9
Transition positions at $M_{0}=0.50$ and $M_{0}=0.91$ 10
Shock-wave positions at $M_{0}=0.91$ after 5 and 6 minutes running time 11

Introduction

The flon at a "kink" or change of sweep of a swept wing can be regarded as that on an infinite sheared wing together with an additional kink effect. One result of the kink effect is that the isobars are brought nearer the edge which is concave when vieved from just outside the wing. On a wing of constant thickness/chord ratio this leads to changes in the local positions of boundary-layer transition and the shock-wave (if any) and in the value of the critical Mach number. Knowledge of the kink effect is required in understanding its influence on the characteristics of an aircraft with a kinked or swept planform. In particular, there is the case of the centre-section of a swept-back wing, where the isobars are unswept. Knowledge of the "centre effect" associated with this is required in designing Junction shapes to decrease the drag of wing-body combinations, partioularly at transonic speeds. 1,2,3.

Theoretical estimates of the pressure distributions at such contral sections (replacing the wing by a system of kinked source-lines) and on infinite sheared wings may be derived for inviscid, incompressible flow 4. These may be extended to compressible flow according to linear theory (Prandti-Glauert rule) and with higher order approximations involving the use of the incompressible pressure coeffficients in the compressibility factor (Weber rule 5). In any particular case the difference between the distributions at the centre-section and on the sheared wing shows the magnitude of the "centre effect", although this difference is not given directly by the method of calculation.

Measurements at low speeds have been made on both sheared wings and at the centre-sections of sweptback wings, and agreement with incorpressible theory has been good (See for cxample the comparison for wings of thickness/ chord ratio 12% in Ref. 5).

Measurements have also been made at higher speeds of the pressure distributions at several spanwise stations on a sweptback wing, including some at the junction of the wing with a flat-sided body2. Certain of these measurements gave a good approximation for the infinite sheared wing, and, regarding the flat-side of the body as a reflection plane, the measurements at this junction were considered to give a good indication of the flow at the equivalent centre-section. However, theoretical estimates did not agree very well with these measurements at high subsonic liach numbers, and some designs for wing-body junction shape did not produce the desired calculated effects when tested, partly because of this discropanoy.

The need for accurate measurements at high subsonic speeds on an actual centre-section led to the present tests, which have been made on a model used for research on wingwody junction shapes 3 . In the present report, reference to the earlier results ${ }^{2}$ is included to enable a comparison to be made between the flow at the centro-section and on the infinite sheared wing, and also to show the accuracy, in both cases, of theoretical estimates according to the Weber rule.

Hercafter, the terms "centre-section" and "centre effect" refer specifically to those of a sweptback wing, and "sheared wing" is used to mean strictly the infinite sheared wing eather in the theoretical case or in the experimental approximation (see section 3.3).

2.1 Details of the Model

The wing used was primarily required, in combination with several different bodies, for tests concerned with the design of junction shapes. It was baszcally a 40° sweptback wing of symmetrical RAE 101 streamwise section with a thickness/chord rat 10 of $12,{ }^{\prime}$, the maximum thickness being at 31% chord. These values of sweepback and thickness were chosen so that the critical Mach number was well below the choking Nach number of the tunnel, allowing tests to be extended into the supercritical range of Mach number. It was not possible to use either a conventional sting-mounted model or half-model for the centre-section pressure measurements because of the interference of the sting or the tumnel floor in the respective cases. Therefore a complete model of the sweptback wing was designed to be mounted on one tip in the half-model position on the tunnel floor, as shown in Fig. 2. The wing is described in detail in Ref. 3 and leading dimensions are given in Table I.

A floor fairing was designed to cancel any reflection effects from the floor which might have interfered with the flow at the oentre-section. Measurements ${ }^{3}$, with and without the floor fairing present, showed that it had no noticeable effect on this flow; the centre-section ras presumably at a sufficient height above the floor for there to be no interference. The measurements reported here were all made with the floor fairing in position.

Inspection of the model when the tests had been completed, showed that along the centre-section the thickness of the wing varied between 0.005 in . and 0.012 in . oversize (on a chord of 13 in .). Near the trailing edge, however, the presence of the measuring tube increased this to 0.016 in. oversize.

2.2 The Tests

The tests were made in the RAS $10 \mathrm{ft} \times 7 \mathrm{ft}$ High Speed Wind Tunnel during February 1954. The Reynolds number was 1.3×10^{6} based on centresection chord and the lhach number range was 0.50 to 0.94 . The incidence range covered was $-1^{\circ}, 0^{\circ},+1^{\circ}$ but the tests were primarily concerned with measurements at zero incidence.

Photographs were taken of transition position using the acenaphthenesublimation technique. Transition was also fixed on one surface of the wing at 10% chord (using a thread of 0.010 in . diameter), and in this condition of the model, the position of the shock-wave was photographed.

Forces measurements, which were made on the wing, both with and without bodies, are reported in Ref. 3.

3 Results

3.1 Preparation

The blockage effect on the free stream Mach number, Mo, was deruved by the method of Evans ${ }^{6}$ using the force measurements of Ref. 3.

The pressure measurements were recorded as differences between those at the measuring holes on the model and either the working section static pressure or the total head in the settling chamber. These were converted to values of local p / H by the usual procedure for reduction of results. Pressure coefficients, C_{p}, were computed from these values. Mean values
(i.e. of upper and lower surfaces) of p / H and C_{p} were taken, and the local Wach number M was obtained directly from the mean values of p / H using compressible flow tables*. To obtain the values for the upper and lower surfaces at $+1^{\circ}$, the means were taken between the required surface at $+1^{0}$ and the opposite surface at -1°.

The coefficients of the tangential pressure-force, C_{T}, were obtained by numerical integration of the pressure distribution, as described in Ref. 2. In the present tests at zero incidence, these coefficients are the same as normal-pressure drag coefficients; the term C_{T} is used for consistency with Ref. 2.

3.2 Accuracy

The blockage effect on M_{0} varied from 0.001 at $M_{0}=0.50$ to 0.023 at $M_{0}=0.94$, and the corrected value of M_{0} is expected to be accurate over the whole range of the tests to within ± 0.003.

The measurements over the centre section may be in error due to the variations in M_{0} and of the blockage correction over the model position and to errors in reading the manometers. The maximum errors may reach the following orders:-

	$M_{0}=0.50$	$M_{0}=0.94$
M	± 0.003	± 0.004
C_{p}	± 0.008	± 0.008
p / H	± 0.002	± 0.003

Small inaccuracies in the incidence at both $\alpha=0^{\circ}$ and $\pm 1^{\circ}$ are overcome by taking the mean values of readings at two surfaces as explained in section 3.1 above. The C_{T} integrations should be accurate to ± 0.0002 (see Ref. 2). The effects of the tip and the floor are considered to be negligible ot the certre-section and this assurnption is justiried by the sporwise variation of the positions of trensitior and shock-wave shown in Fig. 10 and 11.

3.3 Results from Earlier Tests

Reference is made to two groups of measurements from tests on stingmounted models described in Refs. 1 and 2. In these tests the wing is fundamentally the same as that of the present tests except for a small difference in the span. Model 2 is a combination of the wing with a flatsided body. Model 5 is a combination with a body having a modified junction shape and is shown in Fig. 1. The difference in the span, (compare Figs. 1 and 2), is such that the wing outboard of the flat-sided body of Model 2 is exactly the same as the upper part of the present model. Thus the measurements in the wing-body junction of Model 2 correspond durectly with those at the present centre-section, and it is now possible to see to what extent measurements in such a junction represent the flow at an actual centre-section. Errors in the junction measurements arise from the holes being in the body rather than the actual junction (about 0.1 in. away, except near the leading edge). There are also boundary-layer interaction effects probably leading to premature separations or the generation of vorticity. The position of transition is well forvard in the junction whereas it is towards the rear of the actual centre-section.

Entropy increase through any shocks being neglected, for the shock strengths present

The wing-body Junction shape of Model 5 is designed to gave the same flow in the junction as on the infinite sheared wing, at $M_{0}=0.87$. Although this is not attained in the junction, the flow at "section f" (see Fig. 1) is seen from measured isobar patterns to give a good approximation for the sheared-wing flow, and better than obtained on any of the other models tested at the same time. Thus "model 5 section $f^{\prime \prime}$ has been chosen in this report to represent the flow on the infinite sheared wing. At some Mach numbers, the sweepback of some isobars is slightly (2° or 3°) less than 40°.

3.4 Presentation of Results

The mean values of p / H, M (Iocal Mach number) and C_{p} are tabulated for 0°, and $+1^{\circ}$ (upper and lower surfaces) in Tables III, IV, V. The values at $+1^{\circ}$ are for reference only and are not used in this report. The results taken from Ref. 2 (see section 3.3) are the mean values of the upper and lower surface measurements at zero incidence.

Fig. 3 shows the variation with frec-stream Mach number of local Nach number, M, over the chord of the sheared wing (i.e. "Model 5 section $f "$), and Fig. 4 shows that over the centre-section chord. The "three-dimensional" representation of these variations enables certain results to be seen clearly. The local Mach number is plotted in preference to the pressure coefficient as it shows more clearly the growth of the supersomic region and associated differences between the centre section and sheared wing. In order to spread out the, curves at high free-stream Mach numbers, a logarithmic scale of $\left(1-M_{0}^{2}\right)^{\frac{1}{2}}$ is used. Also, to illustrate the important trends, the locus of the positions of maximum local Mach number $\mathbb{M}_{\text {max }}$ and the contour of $M=1.00$ are shown as thick lines. Contours are drawn for several other local Mach numbers and thin lines give a guide to the chordwise position over the figures. It should be noted that the individual distributions are frequently at different values of M_{O} for the two sections tested.

Figures of experimental (interpolated where required) and theoretical pressure distributions are shown for $\mathrm{M}_{0}=0.50,0.82,0.86$ and 0.90 (Fig. 5 $a, b, c, d)$. These four Mach numbers are considered sufficient to compare the effects of compressibility on the flow at the two sections, and the manner in which the theory fails. The centre effect is shown in Fig. 6 at three Mach numbers for both the theoretical and experimental cases. It is obtained directly from the values used in plotting Fig. 5 as the difference between the pressure coefficients at the centre-section and those at corresponding positions on the sheared wing.

The variations of trailing-edge pressure coefficients, maximum local Mach number, and tangential pressure-force coefficient are of interest at the higher Mach numbers and are plotted against the free-stream Mach number in Figs. 7, 8 and 9. The earlier measurements of CT at different sponwise positions were found in Ref. 2 to fit straight line approximations when plotted against $\left(1-k^{2}\right)^{\frac{1}{2}}$. Similar approximations do not fit very olosely with results for the centre section, which are therefore show plotted. against M_{0} only.

Photographs of the positions of transition and shock-wave are shown in Figs. 10 and 11.

4 Discussion of Results

4.1 Variation of Iocal Mach Number

On the infinite sheared wing the isobars are swept at 40°, and since the streamline, in plan view, is curved, the measured local Mach number at
any point is the maximum at that point rather than the streamwise onmponent. On the other hand, the symmetry of the centre-section means that the isobars there are unswept and the velocities at the centre section are everywhere in a streamwise direction. Thus the measured Mach number at any point on the centre section is the maximum at the point and is also normal to the isobars.

The critical Mach number, Morit, is here defined as that at which the component of the local Mach number normal to the isobars farst reaches unity.

> 4.1.1 The Sheared Wing (Ref. 2)

The position on the chord of the maximum local Mach number, Max, is seen from Fig. 3 to move only slightly rearwards along the chord with increasing freestream Mach number. A local Mach number of unity is first reached at about $M_{0}=0.80$. The supersonic region, enclosed by the heavy contour of $M=1.00$ gradualiy expands with increasing Mach number, extending principally over the forward half of the chord.

The critical Mach number as defined above (section $4 \cdot 1$) occurs at about $M_{0}=M_{\text {crit }}=0.88$. This has been obtained using a calculated deviation of the streamine from the freestream direction of about 7° in the region of 30% chord. Estimation according to the Weber rule also gives $M_{\text {crit }}=0.38$.

The shock-vave is not as clearly defined on the Mach number distributions as on the distributions of pressure coefficient. However, there are kinks in the contours of constant local lach number which are probably associated with the formation of the shock-wave. In particular the contour for $\mathbb{M}=1,10$ has a distinct kink where it crosses the distribution for $M_{0}=0.894$; this suggests that the shock-wave forms at about this freestream liach number, although it is not strong enough to show on the distribution of local Mach number. The maximum local Mach number is then 1.24 and its component normal to the isobars is approximately 1.05.

4.1.2 The Centre-Section

Comparison of Figs. 3 and 4 shows primarily the goneral characteristic of the centre-section, viz. that the isobars, maximum local Mach numbers (peak suctions) and associated effects occur further aft than on the section of the sheared wing. The supersonic region enclosed by the line $M=1.00$ lies at the rear of the section instead of being mostly in the forward half. From Fig. 10 it is seen that transition at the centre section occurs at about 0.85 c at $\mathrm{M}_{0}=0.5$ and at almost 1.0 c at $M_{0}=0.91$, whereas the corresponding positions for the sheared wingt are 0.45 c and 0.57 c . Also from Fig. 10 an idea may be obtained of the spanwise extent of the centre effect.

At the centre-section the critical Mach number, as defined above (section 4.1), occurs at $M_{0}=M_{\text {orit }}=0.81$. This is the some value as a theoretical estimate according to the Weber rule.

The rearwerd movement of the position of the maximum local Nach number with Increasing free-stream Mach number is much nore marked than on the sheared wing, although at $M_{0}=0.5$ the position at the centre-section is only about 0.1 chord aft of that on the sheared wing. In particular it moves back rapidly in the range $M_{0}=0.84$ to 0.88 , probably as a result of the development of a shockwave. Although the shock-wave is not strong enough to be distanguished on any partioular distribution of local Mach number (or of G_{0}) in this region, the finst sign of it is assumed to be the increased movement in the position of $M_{\max }$ at about $M_{0}=0.84$. At
this Mach number the value of $M_{\max }$ is 1.05 , which is the same value as the component of $M_{m a x}$ normal to the isobars on the sheared wing when the shockwave first appears there (section $4 \cdot 1.1$. Thus the shock-wave appears to form at about 70% chord (where $M=1$) at $M_{0}=0.84$ and it moves rapidily back to the trailing edge by $M_{0}=0.89$ (see also section 4.3). The photographs showing the shock-wave position (the dark lines on Fig, 11) confirm that it is at the trailing edge of the centre-section at $M_{0}=0.91$. There is a suggestion of a bifurcated shock-wave pattern occurring over the mid-span portion of the wing but there is no sign of the weak forward limb on any of the centro-section measurements and it is presumed to have died out at this section.

4.2 Pressure Distributions

4.2.1 The Sheared Wing (Ref. 2)

The theoretical estimates (calculated on the principles of Refs. 4 and 5) are seen (Fig. 5) to agree well with the experimental curves at Mach numbers up to $M_{0}=0.86$. The very good agreement over the first 30% chord at $M=0.82$ and 0.86 is rather forturtous. The agreement in this region at $M_{0}=0.5$ is not as good and the consistert discrepancy here cannot be completely explained by the possible error in C_{p} of ± 0.008.

The theoretical distributions heve been calculated for $\phi=40^{\circ}$. The possible effect of the actual isobar sweep differing slightly from 40° (see end of section 3.3) is indicated by theoretical calculations for different values of ϕ. For example, at $M_{0}=0.86$ and $\mathrm{x} / \mathrm{c}=0.309$ (near the position of peak suction) the theoretical pressure coefficient for $\phi=35^{\circ}$ is -0.581 , whereas for $\phi=40^{\circ}$ it is -0.487 as in Fig. 5(c). Thus the theoretical distributions, and presumably the experimental ones too, are sensitive to deviations from the nominal angle of sweep. The fact that some of the isobars are slightly less swept than 40° on "Model 5 section f" means that on the truly infinite sheared wing the suctions maght be rather less than the measured ones in Fig. 5. In general the agreement between theory and experiment is very satisfactory at subcritical Mach numbers. It should be noted that the steep pressure rises on the experimental curves of $M_{0}=0.82$ and 0.86 (in particular) do not represent shock-waves since $M_{c r i t}=0.88$.*

4.2.2 The Centre-Section

The distributions in Fig. 5 include those measured in the junction of the wing with a flat-sided body (see section 3.3). Although these measurements agree in a general way with the present centre-section measurements, they indicate that if accurate measurements are required for the centre-sections of swept wings it is necessary to make the measurements at the actual centre-section.

The theoretical distribution has been shown to agree well with experiment in the incompressible flow case ${ }^{5}$ and the agreement is still good at $M_{0}=0.50$ (Fig. 5). At $M_{0}=0.82$, however, a serious discrepancy with the actual distribution is seen to have arisen. The magnitude of the peak. suotion C_{p} is reasonably correct, (thus the estimated value of Morit agrees with experiment) but its calculated rearward movement due to the centre effect is considerably less than actually occurs.

The Weber rule does not strictly apply at supercritical Mach numbers, but there are no sudden changes at the critical Mach number ($M_{0}=0.81$) in the theoretical distributions so that the comparisons at $M=0.82$ and 0.86

[^0]merely accentuate the discrepancies at high subcritical speeds. The compressibiluty factor becomes indeterminate over part of the chord by $\bar{M}_{0}=0.90$ and no theoretical distribution for the centre-section is shown on Fig. 5(a).

2.2.3 The Centre Effect

The centre effect itself is derived as the difference between the pressure distributions at the centre and on the sheared wing. The comparison between the centre effects derived from theory and experiment is shown in Fig. 6. This indicates the type of error to be allowed for if similar calculations are made in such cases as wing-body junction design, when the important consideration is the centre effect itself. At the lower speeds the theoretical estimate is satisfactory, but the approximations in deriving the compressibility effects cause poorer estimates at higher speeds. The correction to the theory as it now stands requires, in general, an increase in pressure over the forward half of the chord, and a decrease over the rear, i.e. the centre effect is at present underestimated.

4.3 Trailing-Edge Pressure

The variation of the trailing-edge pressure coefficient with freestream Mach number M_{0} is shown in Fig. 7.

It has been found that the variation of this coefficient gives a good indicetion of flow separation, by showing an increase in trazling edge suction (e.g. Ref. 7, Fig. 27). Such an increase also occurs if the shock-wave on the wing moves back to, or behind, the trailing edge before separation occurs. The pressure distributions show that no separations were present in these tests; in the case of the sheared wing, ansufficiently high Mach numbers were reached and at the centre-section the shock-wave moved quickly back to, or behind the trailing edge. Thus the changes in trailing edge pressure shown in Fig. 7 illustrate only the development and movement of the shock-waves on the two sections.

At both the centre-section and on the shearcd wing there is seen to be a slight increase in pressure above the free-stream Mach numbers at which the shock-wave is assumed to begin developing (i.e. $M_{0}=0.84$ and 0.894 respectively, see section 4.2 .1 . The most significant result is the sudden rise in suction when the shock-wave moves back to the trailing edge at the centre section at about $M_{0}=0.89$. This gives the clearest andication of the Mach number at which the shock-wave reaches the trailing edge. The increased suction above $M_{0}=0.89$ shows that the shook-wave is downstream of the measuring hole, so that it would appoar that the shookwave is slightly detached upstream from the trailing adge through boundary-layer interaction.

4.4 Maximum Inocal Mach Nuriber

The chordwise movement of maximum local liach number, Mmax, can be seen in Figs. 3 and 4 and has been discussed in sections 4.1 .1 and 4.2.1. The variation of the magnitude of $M_{m a x}$ with free-stream Mach number, M_{0}, is shown in Fig. 8.

At the centre-section the rate of increase of $M_{\max }$ with M_{0} falls off at the highest. Mach numbers tested and tends to zero at about $M_{\max }=1.15$. As is seen from Fig. 4 the chordwise Mach numiber distribu tions become quite flat so that a value close to the maximum is maintained over an appreciable chordwise distance.

On the sheared wing the increase of $M_{\max }$ continues as far as the tests were made, i.e. up to $M_{0}=0.91$ but other tests (Ref. 7) have shown that this rate of increase dies away and, at higher subsonic Mach numbers, $M_{m a x}$ levels off in the region 1.3 to 1.5. It is consistent whth the effects of sweepback that this effect on $M_{\max }$ occurs at higher free-stream Mach numbers on the sheared wing and that the peak value itself is higher than at the centre-section.

It is clear that no sudden changes in the magnitude of $M_{m a x}$ occur during formation of the shock-wave at either of the sections tested, not even in the region of rapid movement of the shock-wave at the centre-section between $M=0.84$ and 0.89 .

4.5 Tangential Pressure-Force Coefficient

The variations of the tangential pressuremorce coefficient, C_{T}, with free-stream Mach number M_{0} for both the centre-section and sheared wing are show in Fig. 9.

In general the high values of C_{T} at the centre-section are due to the positions of the isobars and peak suction being further aft than on the sheared wing. The rapid increase of C_{T} with M_{O} is partly due to the continual rearward movement of the peak suction and partly duc to the general increase of suction. When the shock-wave develops it is unswept and therefore stronger at the centre-section and the associated drag is higher.

At the centre-section the values of C_{T} falls of f at the highest Mach numbers ($M_{0}>0.91$). Thas is principally due to the fall off in the rate of increase of $M_{\max }$ (see section 4.4) and the fact that the shock-wave so quickly establishes itself at the trailing edge that the usual continued. drag increase due to the shock-wave moving aft cannot occur.

5 Conclusions

Measurements have been made of the pressure distributions at the centro of a sweptback wing at zero incıdence for Mach numbers between 0.5 and 0.94 . These were required to extend earlier work at low speeds and for comparison with theoretical estimates.

The principal difference between the pressure distribution at the centre-section of a sweptback wing and that on an infinite sheared wing (of the same sweep) is that the pressures are increased over the front part of the centre-section and reduced over the rear part. This difference, which is clearly seen in the measurements, occurs at all subsonic Mach numbers, becoming more pronounced as the free-stream Mach number M_{0} is raised. As a result, transition, the peak suction, the shock-wave and the supersonic region all occur nearer the trailing edge of the centre-section than on the infinite sheared wing.

It follows that a loss of sweep of the isobars occurs in the neighbourhood of the centre-section. This reduces the critical Mach number (when the component of local Mach number normal to the isobars reaches unity) from $M_{0}=0.88$ for the sheared wing (taken from Ref. 2) to $M_{0}=0.81$ for the centre-section. Various results for both sections indicate that the shock-wave begins to form when the component of local Mach number normal to the isobars is about $1.05,1 . e . M_{O}=0.894$ for the sheared wing and 0.84 at the centre-section. At higher Mach numbers, whereas on the sheared wing the shock-wave moves only slowly rearwards over the chord and the supersonic region is largely ahead of 50% chord, on the centre-section the shock-wave moves rapidly to the tralling edge, where its arrival at
$M_{0}=0.89$ is shown up very clearly by a sudden increase in trailing edge suction. The supersonic region is then largely over the rear half of the chord.

At the centre-section the increase of $M_{\max }$ with M_{O} gradually falls of \bumpeq above about $M_{0}=0.90$ so that $M_{\max }$ tends to a value of about 1.15 . This is expected to occur on the sheared wing at higher values of M_{0} and to tend to a higher value of $M_{\max }$, nearer 1.5 .

The values of tangential pressure force coefficient, CT, are mucn higher at the centremsection than on the sheared wing, and because of the continuous rearward movement of the supersonic region, they increase rapidly with increasing M_{0}. However when the increase of $M_{m a x}$ falls off and the shock-wave is woll established at the trailing edge the value of C_{T} actually decreases slightly, i.e. above $M_{0}=0.90$.

The theoretical pressure distributions on the sheared wing and at the centre-section agree woll with the measured values at low speeds and the allowance for compressibility according to the Weber rule gives good agreement with the sheared wing measuremonts up to about $M_{0}=0.86$ (just below the critical). At the centre-section however, the agrcement is not so good at high speeds, principally because the estimated rcarward movement of the position of peak suction is too small. In general at the centre-section the theory gives too low a pressure over the forward half of the chord and too low a suction over the rear half, i.e. insufficient allowance is made for the "centre effect". The theoretical values of critical Mach numbers on both the sheared wing and centre-section agree well with experiment.

Previous measurements in the junction of the wing with a flat-sided body give only a fair indication of the pressure distribution at the actual centre-section, the error involved being of the order of 0.1 in C_{p}.

IIST ON SYMBOLS

x distance downstream from leading edge on section
c wing chord (except near tips)
α nominal incidence
M Iocal Mach number
$M_{\text {max }}$ maximum local Mach number
M_{0} free-stream Mach number
p local static pressure
H free-stream total head
C_{p} pressure coefficient
$\mathrm{C}_{\mathrm{T}} \quad$ tangential pressure-force coefficient, made non-dimensional by free stream dynamic pressure and wing chord.

REFMRTINOSS

No.	Author	Title, etc.
1	D. E. Hartley	Investigation at high subsonic speeds of wang-fuselage intersection shapes for sweptback wings. Part I. Force measurements on some inltial designs. RAR Report No. Aero 2464, liay 1952 ARC $15165 \cdot$
2	D. E. Hartley	Investigation at high subsonic speeds of wing-fuselage intersection shapes for sweptback wings. Part II. Pressure measurements on some initial designs. RAR Report No. Aero 2503, Dec. 1953 ARC 16780.
3	T. E. B. Bateman D. J. Harper	Further tests at high subsonic speeds in the RAi $10 \mathrm{ft} \times 7 \mathrm{ft}$ Wind Tunnel on wing-fuselage intersection shapes for sweptback wings. (Unpublished R.A.E. Report).
4	J. Weber	The calculation of the pressure distribution over the surface of two-dimensional and swept wings with symmetrical aerofoil sections. R \& Ii 2918, July 1953.
5	D. Küchemann J. Weber	The subsonic flow past swept wings at zero lift without and with bcdy. R \& in 2908, inarch 1953.
6	J. Y. G. Evans	Corrections to velocity for wall constraint in any 10×7 rectangular subsonic wind tunnel. R \& Mil 2662, April 1949.
7	D. W. Holder H. H. Pearcey G. E. Gadd	The interaction between shock waves and boundary layers. C.P. 180, Feb. 1954.

TABLE I

Leading Dimensions of Wing

Sweepback	40°
Chord (except near tips)	13 in.
Mean chord	12.66 in.
Span	43.4 in.
Area	3.82 sq ft
Aspect Ratio	3.43
Section: Symmetrical RAE 101	(max. thickness at 0.310)
	0.12

TABEE II

Positions of Pressure Points (at symmetrical positions on upper and lower surfaces)

x / c	Inches aft of Leading Edge
0	0
0.0025	0.033
0.01	0.130
0.03	0.390
0.05	0.650
0.08	1.040
0.13	1.690
0.20	2.600
0.30	3.900
0.40	5.200
0.50	6.500
0.60	7.800
0.70	9.100
0.80	10.400
0.90	11.700
1.00	13.000

-
-

Values of P / H

TABTE III (Cont.)
Values of $9 / \mathrm{H}$
$M_{0} \approx 0.84 \quad M_{0} \approx 0.88$

α	0°	$+10$		0°	$+10$		0°	$+10$		α
		Ueper Surface	Lower Surface		Upper Surface	LHOWE Surface		Upper Surface	Lower Surface	
$100 \mathrm{x} / \mathrm{M}^{\mathrm{M}_{0}}$	0.840	0.840	0.840	0.861	0.861	0.861	0.881	0.880	0.880	110 $100 \mathrm{c} / \mathrm{c}$
00	0.999	0.999	0.999	0.999	0.999	0.999	1.000	0.999	0.999	00
0.25	0.925	0.913	0.936	0.924	0.912	0.935	0.923	0.912	0.934	0.25
01	0.836	0.822	0.852	0.833	0.820	0.849	0.831	0.816	0.844	01
03	0.741	0.727	0.757	0.736	0.723	0.753	0.732	0.717	0.746	03
05	0.700	0.686	0.716	0.694	0.681	0.710	0.688	0.674	0.703	05
08	0.660	0.646	0.676	0.652	0.639	0.669	0.646	0.631	0.660	08
13	0.627	0.613	0.642	0.617	0.605	0.633	0.610	0.596	0.624	13
20	0.588	0.575	0.604	0.578	0.566	0.594	0.570	0.557	0.584	20
30	0.540	0.526	0.555	0.527	0.515	0.544	0.519	0.506	0.533	30
40	0.508	0.492	0.526	0.492	0.479	0.509	0.482	0.469	0.497	40
50	0.499	0.481	0.519	0.479	0.465	0.498	0.467	0.453	0.483	50
60	0.507	0.481	0.527	0.475	0.460	0.502	0.461	0.446	0.4 .77	60
70	0.524	0.500	0.544	0.487	0.463	0.519	0.462	0.447	0.486	70
80	0.552	0.532	0.567	0.512	0.482	0.541	0.476	0.454	0.507	80
90	0.601	0.607	0.603	0.560	0.515	0.579	0.503	0.480	0.538	90
100	0.662	0.663	0.663	0.652	0.656	0.656	0.647	0.601	0.601	100

TABIE III (Cont.)

Volues of p / H
$M_{0} \approx 0.89 \quad M_{0} \approx 0.90 \quad M_{0} \approx 0.91$

α	0°	+10		0°	$+1^{\circ}$		0°	+10		a
		Upper Surface	Lower Surface		$\begin{array}{\|c\|} \hline \text { Upper } \\ \text { Surface } \end{array}$	$\begin{array}{\|c\|} \hline \text { Lowar } \\ \text { Surface } \end{array}$		Upper Surface	$\begin{aligned} & \text { Lrovicr } \\ & \text { Sumface } \end{aligned}$	
$100 \mathrm{x} / \mathrm{c}^{\mathrm{Mo}_{0}}$	0.891	0.891	0.891	0.902	0.902	0.902	0.912	0.913	0.913	$100 \mathrm{x} / \mathrm{c}$
00	1.000	0.999	0.999	0.999	0.999	0.999	1.000	0.999	0.999	00
0.25	0.923	0.911	0.931	0.922	0.942	0.933	0.924	0.911	0.932	0.25
01	0.830	0.812	0.841	0.829	0.817	0.844	0.828	0.814	0.841	01
03	0.730	0.712	0.741	0.728	0.717	0.745	0.727	0.713	0.740	03
05	0.686	0.669	0.697	0.684	0.673	0.700	0.682	0.668	0.695	05
08	0.643	0.626	0.654	0.641	0.629	0.657	0.638	0.625	0.652	08
13	0.607	0.590	0.618	0.604	0.594	0.620	0.602	0.589	0.615	13
20	0.567	0.551	0.577	0.564	0.553	0.579	0.561	0.548	0.573	20
30	0.515	0.500	0.526	0.511	0.502	0.526	0.508	0.497	0.523	30
40	0.478	0.462	0.488	0.473	0.463	0.488	0.470	0.458	0.482	40
50	0.462	0.445	0.473	0.456	0.446	0.473	0.452	0.441	0.465	50
60	0.455	0.434	0.467	0.449	0.438	0.465	0.444	0.432	0.457	60
70	0.455	0.438	0.469	0.448	0.438	0.465	0.443	0.431	0.456	70
80	0.463	0.445	0.480	0.452	0.441	0.469	0.445	0.433	0.459	80
90	0.486	0.467	0.502	0.468	0.459	0.484	0.453	0.445	0.465	90
100	0.571	0.552	0.552	0.492	0.485	0.485	0.476	0.471	0.471	100

TADLE III (Cont.)							
Values of $P /$ H							
$\mathrm{M}_{0} \approx 0.925$				$M_{0} \approx 0.94$			
	0°	$+10$		0°	$+10$		α
α		Upper Surface	Lower Surface		Upper Surface	Lower Surface	
$100 \mathrm{x} / \mathrm{c} \mathrm{M}_{0}$	0.926	0.925	0.925	0.940	0.940	0.940	M0/100 $/ \mathrm{c}$
00	1.000	0.999	0.999	1.000	0.999	0.999	00
0.25	0.923	0.910	0.931	0.921	0.910	0.931	0.25
03	0.826	0.813	0.839	0.826	0.812	0.839	01
03	0.724	0.711	0.739	0.724	0.710	0.737	03
05	0.680	0.666	0.694	0.679	0.665	0.692	05
08	0.636	0.623	0.650	0.634	0.621	0.648	08
13	0.599	0.587	0.612	0.597	0.584	0.610	13
20	0.557	0.546	0.570	0.555	0.543	0.568	20
30	0.505	0.494	0.517	0.502	0.491	0.515	30
40	0.466	0.455	0.478	0.463	0.452	0.475	40
50	0.448	0.437	0.462	0.445	0.433	0.458	50
60	0.440	0.428	0.453	0.436	0.424	0.449	60
70	0.438	0.427	0.452	0.434	0.422	0.447	70
80	0.439	0.428	0.454	0.435	0.424	0.448	80
90	0.2444	0.435	0.456	0.438	0.428	0.450	90
100	0.467	0.463	0.463	0.461	0.456	0.456	100

TABLE IV (Cont.)
Values of M

			10		$+1$	10		+1		
α	0°	Upper Surface	Lower Surface	0°	Upper Surface	Lower Surface	0°	Upper Surface	Lower Surface	a
$100 \mathrm{x} / \mathrm{c} \mathrm{M}_{0}$	0.840	0.840	0.840	0.861	0.361	0.861	0.881	0.880	0.880	100 $1 / \mathrm{c}$
00	0.041	0.041	0.041	0.041	0.041	0.041	0.027	0.034	0.034	00
0.25	0.335	0.362	0.308	0.339	0.365	0.312	0.339	0.366	0.314	0.25
01	0.512	0.536	0.484	0.518	0.541	0.490	0.522	0.547	0.498	01
03	0.669	0.691	0.643	0.676	0.697	0.650	0.683	0.706	0.660	03
05	0.732	0.754	0.708	0.742	0.762	0.717	0.750	0.773	0.728	05
08	0.794	0.816	0.769	0.806	0.826	0.780	0.816	0.839	0.794	08
13	0.845	0.866	0.822	0.859	0.879	0.835	0.870	0.892	0.84 .1	13
20	0.904	0.926	0.881	0.921	0.940	0.896	0.933	0.954	0.911	20
30	0.982	1.004	0.957	1.001	1.021	0.975	1.015	1.036	0.993	30
40	1.034	1.059	1.005	1.059	1.082	1.031	1.077	1.099	1.051	40
50	1.049	1.079	1.014	1.083	1.106	1.051	1.102	1.126	1.076	50
60	1.034	1.079	1.002	1.088	1.115	1.044	1.113	1.139	1.085	60
70	1.007	1.046	0.975	1.068	1.109	1.015	1.110	1.138	1.070	70
80	0.961	0.995	0.938	1.027	1.076	0.979	1.088	1.124	1.035	80
90	0.884	0.875	0.881	0.949	1.022	0.919	1.041	1.080	0.985	90
100	0.791	0.789	0.789	0.805	0.800	0.800	0.813	0.885	0.885	100

TABTE IV (Cont.)
Values of M
$M_{0} \approx 0.90$
$M_{0} \approx 0.91$

a	00	$+1^{\circ}$		0°			0^{0}	$+1^{\circ}$		a
		Upper Surface	Lower Surface		$\begin{aligned} & \text { Upper } \\ & \text { Surfface } \end{aligned}$	Lower Surface		$\begin{aligned} & \text { Upper } \\ & \text { Surface } \end{aligned}$	Iower Surface	
$100 \times / \mathrm{c}$	0.891	0.891	0.891	0.902	0.902	0.902	0.912	0.913	0.913	
00	0.027	0.043	0.043	0.041	0.023	0.023	0	0.044	0.044	∞
0.25	0.341	0.366	0.322	0.343	0.292	0.317	0.339	0.367	0.319	0.25
01	0.524	0.553	0.504	0.525	0.544	0.497	0.527	0.550	0.505	01
03	0.686	0.713	0.668	0.689	0.706	0.662	0.691	0.713	0.669	03
05	0.754	0.780	0.736	0.757	0.774	0.732	0.760	0.782	0.740	05
08	0.820	0.846	0.802	0.824	0.842	0.798	0.827	0.848	0.806	08
13	0.875	0.901	0.859	0.880	0.895	0.855	0.884	0.904	0.864	13
20	0.939	0.964	0.922	0.944	0.960	0.919	0.948	0.967	0.929	20
30	1.021	1.047	1.005	1.028	1.043	1.003	1.033	1.051	1.009	30
40	1.084	1.111	1.067	1.092	1.109	1.067	1.098	1.117	1.077	40
50	1.112	1.141	1.091	1.121	1.138	1.092	1.128	1.148	1.105	50
60	1.124	1.160	1.102	1.134	1.153	1.106	1.142	1.164	1.119	60
70	1.122	1.154	1.100	1.136	1.152	1.106	1.144	1.166	1.121	70
80	1.109	1.141	1.079	1.129	1.148	1.099	1.141	1.162	1.117	80
90	1.070	1.102	1.043	1.101	1.116	1.073	1.126	1.142	1.106	90
100	0.932	0.962	0.962	1.061	1.072	1.072	1.086	1.095	1.095	100

TABIE IV (Cont.)
Values of M

$$
M_{0} \approx 0.925 \quad M_{0} \approx 0.94
$$

α	0°	$+1^{\circ}$		0°	$+1^{\circ}$		a
		$\begin{aligned} & \text { Upper } \\ & \text { Surface } \end{aligned}$	$\begin{gathered} \text { Lower } \\ \text { Surface } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Upper } \\ \text { Surface } \end{array}$	$\begin{array}{\|c\|} \hline \text { Lower } \\ \text { Surface } \end{array}$	
$100 \times / \mathrm{M}$	0.926	0.925	0.925	0.940	0.940	0.940	$\mathrm{m}_{100 \mathrm{x} / \mathrm{c}}^{\mathrm{M}}$
00	0.027	0.011	0.011	0.027	0.026	0.026	00
0.25	0.341	0.369	0.320	0.346	0.370	0.321	0.25
01	0.529	0.553	0.506	0.530	0.553	0.508	01
03	0.695	0.715	0.672	0.696	0.717	0.675	03
05	0.764	0.785	0.743	0.765	0.786	0.745	05
08	0.831	0.851	0.810	0.834	0.855	0.813	08
13	0.888	0.907	0.868	0.891	0.911	0.871	13
20	0.953	0.971	0.933	0.956	0.976	0.937	20
30	1.039	1.057	1.018	1.042	1.062	1.022	30
40	1.105	1.123	1.083	1.109	1.128	1.089	40
50	1.136	1.155	1.112	1.141	1.161	1.119	50
60	1.150	1.172	1.126	1.157	1.180	1.134	60
70	1.153	1.173	1.128	1.160	1.182	1.136	70
80	1.151	1.171	1.125	1.158	1.180	1.135	80
90	1.143	1.159	1.121	1.153	1.171	1.132	90
100	1.102	1.110	1.110	1.113	1.121	1.121	100

TABLE V

Values of C_{p}

$M_{0} \approx 0.50$
$M_{0} \approx 0.75$
$M_{0} \approx 0.82$

α	0°	+10		0°	$+1^{\circ}$		0°	$+1^{\circ}$		α
		Upper Surface	Lowver Surface		$\begin{aligned} & \text { Upper } \\ & \text { Surface } \end{aligned}$	Lower Surface		$\begin{aligned} & \text { Upper } \\ & \text { Surface } \end{aligned}$	Lovrer Surface	
$100 \times / \mathrm{c}$	0.501	0.500	0.500	0.750	0.752	0.752	0.820	0.819	0.819	$10 / 100 \mathrm{~m} / 0$
∞	+1.065	+1.061	+1.061	$+1.144$	+1.145	+1.145	+1.178	+1.175	+1.175	00
0.25	+0.818	+0.763	+0.866	$+0.904$	+0.859	+0.944	+0.937	+0.898	+0.974	0.25
01	+0.521	+0.4.51	+0.582	+0.615	+0.560	+0.667	+0.643	$+0.604$	$+0.700$	01
03	+0.221	+0.152	+0.286	+0.306	+0.251	+0.363	+0.346	T0.296	+0.395	03
05	+0.096	+0.030	+0.160	+0.174	+0.119	+0.232	+0.214	+0.164	+0.261	05
08	-0.014	-0.076	$+0.049$	+0.050	-0.006	+0.106	+0.085	+0.035	+0.134	08
13	-0.097	-0.152	-0.040	-0.052	-0.105	+0.002	-0.020	-0.069	+0.026	13
20	-0.190	-0.244	-0.139	-0.168	-0.223	-0.117	-0.143	-0.191	-0.097	20
30	-0.287	-0.336	-0.238	-0.306	-0.362	-0.254	-0.298	-0.349	-0.238	30
40	-0.306	-0.346	-0.263	-0.364	-0.422	-0.311	-0.389	-0.447	-0.334	40
50	-0.275	-0.309	-0.236	-0.346	-0.4,400	-0.300	-0.401	-0.465	-0.342	50
60	-0.231	-0.258	-0.198	-0.301	-0.350	-0.260	-0.367	-0.432	-0.314	60
70	-0.173	-0.192	-0.150	-0.240	-0.258	-0.223	-0.305	-0.364	-0.254	70
80	-0.106	-0.125	-0.091	-0.158	-0.168	-0.147	-0.208	-0.246	-0.191	80
90	-0.037	-0.043	-0.031	-0.066	-0.073	-0.100	-0.082	-0.082	-0.076	90
100	+0.097	+0.097	+0.097	+0.100	+0.099	+0.099	+0.100	+0.102	+0.102	100

$M_{0} \approx 0.84$				$\frac{\text { TABIE V (Cont.) }}{\frac{\text { Values of } C_{p}}{M_{0} \approx 0.86}}$			$M_{0} \approx 0.88$			
	0°	$+1^{\circ}$		0°	$+1^{0}$		0°	$+10$		α
a		Upper Surface	Lower Surface		$\begin{array}{\|c\|} \hline \text { Upper } \\ \text { Surface } \\ \hline \end{array}$	Lower Surface		Upper Surface	Lower Surface	
$100 \mathrm{~K} / \mathrm{c}$	0.840	0.840	0.840	0.861	0.861	0.861	0.881	0.880	0.880	$M_{0} / 100 \mathrm{k} / \mathrm{c}$
00	+1.185	+1.185	+1.185	+1.196	+1.196	+1.196	+1.208	+1.207	+1.207	00
0.25	+0.948	+0.910	+0.974	+0.960	+0.925	+0.996	+0.976	+0.940	+1.007	0.25
01	+0.664	+0.618	+0.712	+0.677	+0.636	+0.726	+0.693	+0.647	+0.733	01
03	+0.357	+0.312	+0.409	+0.375	+0.333	+0.427	+0.391	$+0.345$	+0.435	03
05	+0.226	+0.179	+0.276	+0.241	+0.201	+0.293	+0.258	$+0.213$	+0.303	05
08	+0.096	+0.051	+0.147	+0.112	+0.070	+0.164	+0.129	+0.082	+0.172	08
13	-0.011	-0.055	+0.079	+0.003	-0.036	+0.053	+0.021	-0.024	+0.062	13
20	-0.134	-0.177	-0.085	-0.120	-0.159	-0.071	-0.101	-0.143	-0.060	20
30	-0.291	-0.334	-0.24,	-0.278	-0.316	-0.228	-0.257	-0.297	-0.216	30
40	-0.393	-0.442	-0.336	-0.388	-0.429	-0.335	-0.371	-0.412	-0.326	40
50	-0.423	-0.480	-0.356	-0.431	-0.474	-0.372	-0.415	-0.460	-0.370	50
60	-0.395	-0.480	-0.331	-0.442	-0.490	-0.359	-0.436	-0.482	-0.386	60
70	-0.341	-0.418	-0.279	~ 0.404	-0.478	-0.305	-0.430	-0.480	-0.360	70
80	-0.249	-0.316	-0.202	-0.327	-0.419	-0.236	-0.388	-0.456	-0.296	80
90	-0.092	-0.073	-0.086	-0.177	-0.318	-0.117	-0.306	-0.378	-0.202	90
100	+0.103	+0.106	+0 106	+0.113	+0.124	+0.124	+0.134	-0.009	-0.009	100

TABLE V (Cont.)

$\frac{\text { Values of } C_{p}}{M_{0} \approx 0.90}$
$M_{0} \approx 0.91$

α	0°	$+1^{\circ}$		0°	$+1^{\circ}$		0°	$+1^{\circ}$		α
		$\begin{aligned} & \text { Upper } \\ & \text { Surface } \end{aligned}$	Lorter Surface		$\begin{array}{\|c\|} \hline \text { Upper } \\ \text { Surface } \end{array}$	Lower Surface		Upper Surface	Lower Surface	
$100 \times / \mathrm{M}$	0.891	0.891	0.891	0.902	0.902	0.902	0.912	0.913	0.913	M0 100 m
00	+1.213	+1.211	+1.211	+1.217	+1.218	+1.218	+1.226	+1.223	+1.223	00
0.25	+0.981	+0.948	$+1.013$	+0.987	+0.956	+1.020	+1.001	+0.965	+1.027	0.25
01	+0.701	+0.649	+0.734	+0.710	+0.676	+0.757	+0.718	+0.679	+0.757	01
03	+0.401	$+0.348$	+0.435	+0.411	+0.378	+0.461	+0.422	+0.381	+0.463	03
05	$+0.267$	$+0.216$	$+0.302$	+0.279	$+0.246$	+0.329	+0.290	+0.251	+0.330	05
08	+0.139	+0.087	+0.173	+0.150	$+0.116$	+0.199	+0.161	+0.123	+0.203	08
13	+0.031	-0.020	$+0.063$	$+0.043$	+0.011	+0.089	+0.054	+0.018	+0.093	13
20	-0.091	-0.139	-0.060	-0.079	-0.110	-0.033	-0.068	-0.102	-0.029	20
30	-0.246	-0.317	-0.216	-0.234	-0.262	-0.189	-0.222	-0.253	-0.176	30
40	-0.360	-0.407	-0.328	-0.347	-0.377	-0.303	-0.335	-0.366	-0.297	40
50	-0.408	-0.458	-0.372	-0.398	-0.427	-0.349	-0.387	-0.418	-0.346	50
60	-0.429	-0.491	-0.392	-0.420	-0.452	-0.372	-0.411	-0.444	-0.369	60
70	-0.427	-0.481	-0.387	-0.423	-0.451	-0.372	-0.414	-0.446	-0.372	70
80	-0.404	-0.458	-0.351	-0.412	-0.443	-0.359	-0.409	-0.440	-0.365	80
90	-0.335	-0.391	-0.286	-0.363	-0.390	-0.315	-0.384	-0.406	-0.348	90
100	-0.079	-0.136	-0.136	-0.293	-0.312	-0.312	-0.316	-0.329	-0.329	100

TABLE V (Cont.)
Values of C_{p}

$M_{0} \approx 0.925$				$M_{0} \approx 0.94$			
	0°	$+10$		0°	$+1^{\circ}$		α
α		Upper Surface	Lower Surface		Upper Surface	$\begin{aligned} & \text { Jower } \\ & \text { Surface } \end{aligned}$	
$100 \mathrm{~K} / \mathrm{M}$	0.926	0.925	0.925	0.940	0.940	0.940	$\mathrm{M}_{0} / 100 \mathrm{x} / \mathrm{c}$
00	+1.232	+1.231	+1.231	+1.239	+1.239	+1.239	00
0.25	+1.009	+0.972	+1.033	+1.014	+0.983	+1.044	0.25
01	+0.729	+0.689	$+0.766$	+0.743	+0.705	+0.780	01
03	+0.433	+0.395	$+0.474$	+0.451	+0.412	+0.490	03
05	$+0.304$	$+0.264$	$+0.343$	+0.323	+0.284	+0.361	05
08	+0.177	+0.138	+0.216	+0.196	+0.157	+0.234	08
13	+0.070	+0.033	+0.107	+0.089	+0.053	+0.127	13
20	-0.050	-0.085	-0.015	-0.030	-0.065	+0.006	20
30	-0.203	-0.237	-0.169	-0.181	-0.213	-0.146	30
40	-0.316	-0.350	-0.281	-0.294	-0.325	-0.259	40
50	-0.368	-0.402	-0.330	-0.327	-0.378	-0.309	50
60	-0.392	-0.429	-0.354	-0.372	-0.406	-0.333	60
70	-0.396	-0.431	-0.358	-0.377	-0.411	-0.338	70
80	-0.393	-0.427	-0.353	-0.374	-0.406	-0.336	80
90	-0.379	-0.408	-0.346	-0.365	-0.393	-0.330	90
100	-0.311	-0.327	-0.327	-0.300	-0.312	-0.312	100

FIG. I. MODEL 5 OF REFS. I \& 2.

FIG. 2. WING AND FLOOR FAIRING OF PRESENT TESTS MOUNTED ON TUNNEL FLOOR.

FIG 3 VARIATION OF LOCAL MACH No ALONG CHORD OF SHEARED WING
AND WITH FREE-STREAM MACH No
FIG 4 VARIATION OF LOCAL MACH No ALONG CHORD AT CENTRE SECTION
AND WITH FREE-STREAM MACH NO

EXPERIMENT	WEBER THEORY
- SHEARED WING	
(MODEL5 SECTION f)	-- SHEARED WING
$-\triangle$ MODEL 2 SECTIONJ	$\phi=40^{\circ}$
-- CENTRE SECTION	- - CENTRE SECTION

FIG. 5.(a) (b) EXPERIMENTAL AND
THEORETICAL PRESSURE DISTRIBTIONS ON A SWEPTBACK WING.

FIG. 5. (c) \& (d) EXPERIMENTAL AND THEORETICAL PRESSURE DISTRIBUTIONS ON A SWEPTBACK WING.

FIG 6. EXPERIMENTAL AND THEORETICAL CENTRE EFFECTS
$A T M_{0}=0.500 .82 \& 0.86$.

FIG 7. VARIATION OF TRAILING EDGE PRESSURE COEFFICIENT WITH free-stream mach number

FIG. 8. VARIATION OF MAXIMUM LOCAL MACH. NUMBER WITH FREE-STREAM MACH NUMBER

FIG. 9. VARIATION OF TANGENTIAL PRESSURE-FORCE COEFFICIENT WITH FREE-STREAM MACH NUMBER.

FIG.10. TRANSITION POSITIONS AT $M_{O}=0.50$ AND $M_{0}=0.91$

5 MINS.

6 MINS.

FIG11. SHOCK.WAVE POSITIONS AT $M_{0}=0.91$ AFTER 5 AND 6 MINUTES RUNNING TIME (TRANSITION FIXED AT 10% CHORD)

Crown copyrught reserved
Published by
Her Majesty's Stationery Oftice
To be purchased from York House, Kingsway, London w c \boldsymbol{z}^{*} 423 Oxford Street, London wi 13 A Castle Street, Edinburgh 2 ${ }_{\text {rog }}$ St Mary Street, Cardiff 39 King Street, Manchester 2 Tower Lane, Bristol i 2 Edmund Street, Burmingham 3 80 Chichester Street, Belfast or through any bookseller

PRINTED IN GREAT BRITAIN

[^0]: * An interesting point is illustrated in Fig. 5(d) which shows the differences between the pressure distributions when a shock-wave is present and when it is not. Provided flow separation does not occur, the distribution behind the shock-wave is nearly the same as that without the shock-wave.

