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Summary. This paper is concerned with the design of annular supersonic nozzles to produce uniform 
flow in supersonic wind tunnels which are axi-symmetrical and which have an internal coaxial circular cylinder 
throughout. Symmetrical two-dimensional and conventional axi-symmetrical nozzles are special cases of 
annular nozzles. 

Proposals are made for design criteria sufficient to ensure that the flow inside a nozzle is free from limit 
lines and shock waves; the criteria for (symmetrical) two-dimensional and (conventional) axi-symmetrical 
nozzles are new. The two outstanding procedures for designing two-dimensional and axi-symmetrical nozzles 
are generalised to apply to annular nozzles. One of the design procedures is mainly analytical and the other is 
mainly numerical; the analytical expressions in both procedures are made much more complicated by the 
presence of the internal cylinder but the numerical process (the method of characteristics) is not. The design 
criteria and the mainly numerical design procedure are successfully applied to the design of a particular 
annular nozzle. 

1. Introduction. This paper refers particularly to nozzles for producing uniform flow in the 

working sections of supersonic wind tunnels. The two most common types of wind tunnel working 

section are rectangular and circular in cross-section, the former type requiring two-dimensional 

nozzles and the latter requiring axi-symmetrical nozzles. Recently, there has been introduced 1 a flew 

type of wind tunnel which is axi-symmetrical but which has an internal coaxial circular cylinder 

throughout its length from reservoir to working section so that its cross-sections are annular. 

This type of tunnel is especially suitable for base pressure and jet exhaust tests 2, 8, and may become 

more prominent i n  future experimental investigations of rocket jets 4. The nozzles required for 

such a tunnel are called annular nozzles. This paper describes a theoretical investigation of annular 

supersonic nozzles, with the emphasis on the problem of design. 

Symmetrical two-dimensional andconventional  axi-symmetrical nozzles are given by the extreme 
cases of annular nozzles when the radius of the internal cylinder is infinite and zero respectively. 
There exists a vast amount  of information about these extreme cases, and although there are various 
review papers describing the extreme cases separately 5,6 there is no adequate review covering 
simultaneously both types of nozzle. Nevertheless, the scattered information gives a qualitative 
idea of the flow through annular nozzles and suggests calculation procedures by which they may 
be designed. 
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Although the heyday of the design of two-dimensional and axi-symmetrical nozzles is long since 
past, there still remains 7 a very unsatisfactory feature of all the existing design methods: there are 
no criteria which ensure that the design requirements do not lead to a resultant nozzle flow that 
has limit lines and shock waves. Therefore, the establishing of a satisfactory design method for 
annular nozzles requires first of all the derivation of design criteria and then the generalisation to 
the annular case of the design procedures for the extreme cases. 

The flow through a nozzle is considered here to be a theoretical steady irrotational homentropic 
flow of an inviscid non-conducting perfect gas with constant specific heats s. In practice, it is necessary 
to modify the contour of a nozzle to allow for boundary-layer development 9, 1O, 11, and to make further 

modifications if the flow in the working section does not turn out to be sufficiently close to a uniform 
flow12; the problems of calculating such modifications are not considered in this paper. 

A meridian section of a typical annular supersonic nozzle is shown in Fig. 1. (With a few 

exceptions the terminology employed henceforth is that appropriate to a meridian section. ) A nozzle 
is essentially convergent-divergent, with the rate of divergence decreasing until the nozzle contour 

becomes parallel to the internal cylinder at the beginning of the working section. Sonic speed is 
attained in the vicinity of the narrowest cross-section of the nozzle, and the subsonic part of a nozzle 

has little effect on the supersonic part provided the approach to the throat is smooth 13. In the present 

discussion, the flow through a nozzle is considered from the sonic line, along which the Mach number 
is unity, to the straight characteristic along which the Mach number has its working section value. 

It is helpful to divide the flow through a nozzle into three regions by the forward characteristic 
from the sonic point on the cylinder and the backward characteristic from the point on the cylinder 
at which the working section Mach number is first attained. These characteristics are subsequently 
referred to as the first and second dividing characteristics respectively. The region between the 
sonic line and the first dividing characteristic is called the throat region, that between the first and 
second dividing characteristics is called the expansion region, and the region between the second 
dividing characteristic and the straight characteristic marking the beginning of the working section 
is called the transition region. In the throat region the flow changes from converging to diverging; 
in the expansion region the flow accelerates until the working section Mach number is reached on 
the cylinder; in the transition region the flow is turned into a uniform supersonic stream. 

For a given gas, the basic design parameters of an annular supersonic nozzle may be considered 
to be the working section Mach number, the radius of the internal cylinder, the radius (in a cross 
section) of the nozzle contour at the working section, and the distance along the cylinder between 
the sonic point and the beginning of the working section. However, prescribing values for these 
parameters does not define a nozzle uniquely. An excellent way of making the design of a nozzle 
unique is to prescribe in addition the distribution of the velocity along the cylinder. I n  this paper 
attention is concentrated on velocity distributions in which the -eelocity increases and the velocity 
gradient decreases from the sonic point to the beginning of the working section. 

The flow in the expansion region depends only on the velocity distribution between the sonic 
point and the beginning of the working section, whereas that in the throat region depends also on 
the velocity distribution upstream of the sonic point and that'in the transition region is determined 
by the condition that the velocity is constant in the working section. The velocity may be chosen  
to have all its derivatives continuous at the sonic point. However, there"is inevitably a discontinuity 
in some derivative of the velocity at the beginning of the working section, and for this reason the 
transition region must be regarded as an essentially separate region. 
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Prescribing the velocity distribution along the cylinder leads to a limit line in the flow at some 
distance from the cylinder and the flow is physically significant only in a certain neighbourhood 

of the cylinder. It is therefore important to be able to choose a velocity distribution for which the 

limit line is not likely to be situated within the throat or expansion regions of the desired nozzle. 

It is important also to ensure that there are no shock waves in the transition region of the desired 
n o z z l e .  

The basic design parameters and prescribed velocity distribution are arbitrary provided they 

satisfy criteria which are sufficient to ensure that the desired nozzle is free from both limit lines 
and shock waves. An investigation {described in an unpublished note} has been made of design 
criteria for annular nozzles and the results are presented in Section 2. It is assumed that, for given 
values of the design parameters, the velocity gradient at the sonic point is the most significant 
property of a velocity distribution and may be regarded as a parameter which typifies the prescribed 
velocity distribution. The working section Mach number, the radius of the internal cylinder and 
the cross-sectional radius of the nozzle contour at the working section are regarded as fixed, and the 
criteria then take the form of an expression for the distance along the cyl!nder from the sonic point 
to the beginning of the working section together with formulae which define a permissible range 
of values for the velocity gradient at the sonic point. It is suggested that the criteria are adequate 
for any velocity distribution which has an appropriate gradient at the sonic point and decreasing 
gradient throughout. The criteria apply for any design Mach number. The results for the extreme 

cases of two-dimensional and axi-symmetrical nozzles constitute a new contribution to the theory 
of such nozzles. 

When the design parameters and velocity distribution have been chosen, in conformity with the 
design criteria, the next problem is how best to calculate the shape of the desired nozzle contour. 

The problem for an annular nozzle is to consider how to generalise the existing design procedures 

for two-dimensional and axi-symmetrical nozzles, and to select a suitable one. The most elegant 
method of design would be one which would enable the nozzle contour to be calculated directly 

from theoretical formulae. However, since the transition region is a fundamentally separate region, 
it is not possible for a simple formula to' provide the whole of the contour of the nozzle; the portion 

in the transition region must be calculated separately using knowledge of the shape of, and the 
properties of the flow on, the second dividing characteristic and the straight characteristic. For 
two-dimensional nozzles the transition region can be calculated analytically because it is a simple 
wave 14. In aM-symmetrical flow the transition region is not a simple wave, and although there 
exists a rough method of construction 15 and an approximate analysis 16 of the flow through an 

axi-symmetrical transition region, such a flow is best calculated numerically by the method of 
characteristics 17,1s. Likewise the transition region of an annular nozzle is best calculated by the 

method of characteristics. Hence, the most that can be hoped for, from an analytical point of view, 
in the design of an annular nozzle is to be able to calculate the shape of the nozzle contour in the 
throat and expansion regions and the shape of, and the flow properties on, the Second dividing 
characteristic. 

The calculations in the throat and expansion regions can be performed for two-dimensional and 
axi-symmetrical nozzles from an analytical solution, holding also in the subsonic region upstream 
of the throat region, which is essentially a series expansion near to the axis. This idea of expanding 
in series from the prescribed velocity distribution was first suggested and worked out for 
axi-symmetrical nozzles t9,2°, and has since been adapted for two-dimensional flow2t,2 2. The 
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generalisation of this work to the case of annular nozzles involves expanding in series near to the 
cylinder. The presence of the internal cylinder makes it more convenient not to follow the precise 

lines of the original approach, and the solution has been developed by an equivalent but physically 

more illuminating method. The development has been carried far enough for an idea of the 

fundamental form of the infinite series expansion to be obtained. It appears that the solution is so 

complicafed by the presence of the internal cylinder that the use of terms of higher order than the 

first is scarcely practicable. Since the first-order solution has only a very limited practical application 

it follows that the possibility of an analytical calculation of the necessary information in both the 

throat and expansion regions of an annular nozzle must be rejected. For this reason the details 

of the analysis of the flow near the cylinder are not given here, but the salient features are described 

in the Appendix. 

An alternative, mainly numerical, procedure for designing two-dimensional and axi-symmetrical 

nozzles consists of the calculation of the flow in the throat region from an analytical solution which 

is essentially a series expansion near to the sonic point on the axis, followed by the numerical 

calculation of the flow in the expansion region by the method of characteristics. In fact, the analytical 

solution holds outside the precise throat region and so overlaps part of the expansion region. Because 
the method of characteristics is difficult to use for Mach numbers near unity it is convenient to use 

the throat solution to calculate a line of constant and sufficiently high Mach number from which to 
start the numerical calculation. Since the original treatment ~3 of the two-dimensional throat flow, 

the first-order solutions in two-dimensional and axi-symmetrical nozzles have been derived and 
developed by many authors, of whom only a few ~4 to 30 are referred to here, and recently the use of a 

high speed automatic computer has enabled the solutions to be extended 31 to a high number of 

terms. The corresponding solution for the transonic flow in the throat region of an annular nozzle 
is given in detail in Section 3. The method of solution involves a series expansion near the sonic 
point on the cylinder. The solution is given as far as the second-order terms and it is clear that the 

internal cylinder complicates the solution enormously. A suggestion is made for avoiding in the 

annular case the derivation of terms of high order by interpolating between the corresponding 

high order terms in the extreme cases. Since the method of characteristics applies directly to annular 

flow, it follows that this mainly numerical design procedure is a reasonable one for annular nozzles. 

It therefore appears that the best way of designing an annular nozzle is to use the old procedure 

of calculating the throat flow from the analytical solution up to a certain line o f  constant Mach 

number and then to use the method of characteristics for the remainder of the expansion region and 

for the transition region. It may be remarked that, whereas formerly the method of characteristics 
was applied manually, nowadays calculations are usually performed on an automatic computer 

and so the necessity of using a numerical procedure for designing annular nozzles is no longer a 

great disadvantage. 
Experience has shown that, for a given design accuracy, nozzles with continuous curvature are 

likely to induce a more nearly uniform flow in the working section than nozzles with discontinuous 
curvature. It has been proved 3~ that, in two-dimensional flow, prescribed velocity distributions for 

which the gradient is zero at the end of the expansion region give rise to nozzles with continuous 
curvature. Although the proof cannot be taken over directly to axi-symmetrical flow, it is Usual to 
assume 31,33 that the result is still true. Therefore, it is assumedhere that a sufficient condition 
for the design of annular nozzles of continuous curvature is that the velocity gradient along the 

cylinder is zero at the end of the expansion region. 



An example of the successful design of an annular nozzle with continuous curvature, using the 
design criteria and the mainly numerical design procedure proposed here, is described in Section 4. 

2. Design Criteria. For a given gas of specific heat ratio 7, the basic design parameters of an 
annular supersonic nozzle may be considered to be the working section Mach number 11~, the radius 
a of the internal cylinder, the cross-sectional radius (a + h) of the nozzle contour at the working 
section, and the distance l along the cylinder from the sonic point to the beginning of the working 
section. For brevity, the parameter/~ is referred to henceforth as the working section width of an 
annular nozzle; for a symmetrical two-dimensional nozzle it is half the total working section width 
and for a conventional axi-symmetrical nozzle it is the working section radius. 

The prescribed velocity distribution along the cylinder is taken to be the distribution of the 
specific speed K, defined as the ratio of the local speed to the critical speed. Attention is concentrated 
on velocity distributions for which the velocity increases and the velocity gradient decreases from 
the sonic point to the beginning of the working section. It is assumed that the velocity gradient at 

the sonic point is the most significant property of a prescribed velocity distribution. The gradient 

at the sonic point is represented b y t h e  non-dimensional parameter X defined by 

x = (1) 

where 1/b is the gradient of the specific speed along the cylinder at the sonic point, and ~, the 

value of the specific speed corresponding to M, is given by the relations 

(2) 

3 = (7-1)/(7- t-1) .  (3) 

Of the five parameters _M, a,/~, l and X it is probable that in practice ~r, a and/7 are fixed at the 
outset. The effect of design criteria, to ensure that the flow through the nozzle is free from limit 
lines and shock waves, is therefore to impose restrictions on the values of l and X. 

Now any streamline of the flow through a given nozzle may be taken to be the contour of another 
nozzle, and the converse that any nozzle contour may be considered as a streamline of the flow 
through some other nozzle is also true within the limit set by the outermost nozzle contour for 
which there is no risk that shock waves may occur in the transition region. It therefore follows 
that the transition region of a desired nozzle will be free from shock waves if it can be arranged 
that the desired nozzle is within this limiting nozzle. It has been proved 19 that in two-dimensional 
flow the contour 6f :he limiting nozzle is the streamline through the intersection of the first and 
second dividing characteristics. In axi-symmetrical flow the precise determination of the limiting 
nozzle is more difficult and there is only an approximate criterion 16 for the existence of a shock-free 
transition region. However, there is evidencO 5, a4 that the flow bounded by the streamline through 

the first and second dividing characteristics is shock-free in some important particular cases of 
axi-symmetrical flow. Therefore, it is conjectured here that, in annular flow, there are no shock 
waves within the flow bounded by the streamline through the intersection of the first and second 
dividing characteristics. This streamline is here called the principal streamline, and the corresponding 
nozzle is called the principal nozzle and is shown in Fig. 2. If hm~x denotes the value of h associated 
with a principal nozzle, then the desired nozzle may be arranged to be within the principal nozzle 



by first choosing a value for /~m~x which is greater than the given value of/7 and then working 

with/~r~x instead of h. 
If the desired nozzle is arranged to be within the principal nozzle, then its throat and expansion 

regions will be free from limit lines if the prescribed velocity distribution can be chosen so that there 
are no limit lines within the throat and expansion regions of the principal nozzle. It then becomes 

necessary to relate l and X to 214, a and/~max in such a way that the throat and expansion regions of 

the principal nozzle are free from limit lines. 
One way in which this can be done is by considering a velocity distribution for the case of M = oo, 

infinite Mach number being attained at an infinite distance along the cylinder from the sonic point. 
Such a distribution contains what may be regarded as special velocity distributions for all M < oo. 

If the velocity distribution for 114 = oo has increasing velocity and decreasing velocity gradient 

throughout then the special velocity distribution for any ]~r possesses the same properties. Also, 
provided the principal streamline for M = oo is outside the principal streamlines for all M < oo, 
the throat and expansion regions for the principal nozzle for _~r = oo contain what may be called 
special throat and expansion regions for all 214 < oo, as shown in Fig. 3. If there are no limit lines 
in the throat and expansion regions for ]~r = oo then there can be no limit lines in the special 
throat and expansion regions for all 21~. If the principal streamline for any value of ]~r can be located, 
that is, if a relation giving hm~ in terms of 214, a and the special velocity distribution can be found, 
then criteria can be established for the special velocity distributions for all 1~. By assuming that the 
velocity gradient at the sonic point is the dominant property of a velocity distribution it then becomes 
possible to obtain criteria for any distribution With the appropriate value of velocity gradient at the 

sonic point. 
A heuristic' argument using the foregoing ideas has resulted in the establishment of criteria 

which are helpful in preventing the occurrence of limit lines in the throat and expansion regions 
of the principal nozzles for any value of M. Because some of the information on which they are 

based was obtained by numerical calculation with ~ = 1.4 the criteria apply only for this single 

value of the specific heat ratio. 
The criteria may be expressed most conveniently as follows. Let/~m~ be chosen greater than or 

equal to h. Let (a +#max) be the radius of the sonic stream with the same mass flow as the supersonic 

stream of Mach number M and working section width/~ma~; then #m,~, which is referred to as the 
effective throat width of the principal nozzle, is calculated from the exact relation 

[ (a+#m,~)  2 - d ]  = J [(a+/~m~,:,:) ~ - aS], (4) 

where ;~, the value of the area-ratio corresponding to ]~r, is given by 

Then l is given by the expression 

= ]~r [(1 - 8).+ ~]~2]-112~" (5) 

l = ( / ~ - # ~ a x )  (a + / ~ ) / ~  (H~oa + Hoh=,~x ) , (6) 

where _~r and H--0 are functions of M known numerically and tabulated in Table 1, and ~, the 
value of the Prandtl-Meyer angle corresponding to ]14, is given by 

7r  = 8-112 cot q [8-1/~ ( ] ~ 2  1)-112] + cot-1 [(/~2_ 1)1/2] _ 5" (7) 



This result for I is independent of the parameter X and it holds with sufficient accuracy provided 

that X is chosen within the range X~ ~< X ~ X~ where the end values Xz and X~, are given by the 
equations: 

x,, , ,  = 1)(2U) + (8)  

T,,~ = 0.9228t,,~ ('~max--ffmax)(aq-/~max)/( t~- ])2gmax (Hma+H0hmax) , (9) 

U =: ( ~ -  1) + 0. 3812 ( ~ -  1) ~/~ (O/2- ;:)~m~/~a, (10) 

Vz,,, = ( ~ -  1) + 1-269tz, ~ (6 a/2~- ~), (11) 

W~, u = U + Vt,,, + 0"4520t,,u ( ~ - 1 )  a'z (6 ~/~- ~)~o~m~x/sa, (12) 

t~,. = 0"8044, t ' 5 7 6 ;  (13) 

the accuracy is greatest when X = Xt and diminishes somewhat  as X increases. 
The 

for two-dimensional nozzles (a = oo) 

g - ~  = ;~hmax, 

Xz,~, = 0"9228t~,~, (;~-~- 1 ) ( ~ -  1)-2Eroo-1/{(~ - 1) + 1 "269t~,~, (6 ~/2- ~)} ; 

for axi-symmetrical nozzles (a = 0) 

g-max = A1/Zhmax, 

l =  0 , 

Xz,~ = 0.9228t~,~, (5 -~/2- 1 ) ( ~ -  1)-~Er0-z/{(~- 1) + 1. 186t~,~, (6 z/e- ~)}. 

corresponding results for the extreme cases, which are themselves new, are as follows: 

(14) 

(15) 

(16) 

(17) 

(18) 
(19) 

The variations of l/,~ma~: and X~,,, with fl~r, for the cases a = oo, a = /7n~£ and a = 0, are shown in 
Figs. 4 and 5 respectively. The  ratio l/t~max may be used, by p u t t i n g / ~ x  = /~, to give an estimate of 

the minimum, permissible value of I for given values of ]l~r, a and h and an appropriate value of X- 
It  i.s noted that Xt, u = 1 when 3~r = 1 and X~,~, = co when 3~r = oo. 

I t  is suggested that a nozzle free from limit lines and shock Waves may be obtained by making 

a calculation (following the procedure established in this paper) using a prescribed velocity 

distribution which is any increasing function having decreasing gradient and satisfying the above 

design criteria. I f  the calculation is taken as far as the principal nozzle, the calculated working section 

width of the principal nozzle is not likely to be exactly the same as that originally assumed for/Ym~x 

in the evaluation of the design criteria. The  actual working section width of the principal nozzle 

will be different from that assumed for two reasons: the formulae on which the criteria for the 

special velocity distribution are based are fairly crude, and the velocity distribution for which the 

calculation is made may be slightly different from the special velocity distribution. The  difference 
is of no consequence provided that the working section width of the desired nozzle is obtained in 

the calculation before.the actual principal nozzle is reached. It  is therefore important to choose the 

assumed working section width of the principal nozzle to be sufficiently greater than the working 
section width of the desired nozzle to eliminate the possibility of adverse effects arising from the 

crudeness of the criteria. It is suggested that it is sufficient to take/~//~max ~< 3/4. The  smaller the 
value of/~//~m~ the bigger the value of l and hence the longer the nozzle. In some cases it may be 
convenient to choose the precise value of h/hma x so that the nozzle has a given length. The  actual 
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value of X may be chosen, preferably near to X~, in such a way that the distribution of ~ along the 
cylinder is given by as simple a formula as possible. 

The justification for the criteria rests ultimately on their efficacy in practice, and this has been 
well demonstrated for a certain group of typical cases. The criteria are used in Section 4 in the design 

of an annular nozzle and in this case they are entirely successful. 

3. The Flow near the Sonic Point  on the Cylinder. The flows through the throat regions of two- 
dimensional and axi-symmetrical nozzles have been investigated extensively 2a to 81. This background 
information provides a qualitative picture of the  likely flow pattern in the throat region of an 
annular nozzle. Along a streamline the velocity increases while the flow direction angle first decreases 

to zero and then increases. There are four lines traversing the streamlines which are of special 
importance. They are the sonic line, the limiting characteristic z9 which bounds that part of the 

supersonic region which can influence the subsonic region, the line on which the flow direction is 
zero, and the first dividing characteristic. Near the axis, the sonic line, limiting characteristic and 
zero flow direction line are concave to the oncoming flow whereas the first dividing characteristic 

is convex, as illustrated in Fig. 6 for a particular nozzle. 
In two-dimensional and axi-symmetrical flows the solution for the velocity potential may be 

found by expanding near to the sonic point on the axis and assuming a series in powers of the 
distance from the axis, and then it turns out that an exact solution of the first-order equation for the 
velocity potentia ! is obtained ~7, 29. In the annular case the flow may be found by a series expansion 

r 

near to the sonic point on the cylinder, but expansion in powers of the distance from the cylinder 
does not yield a solution. The solution is found by recognising 2s that the solutions in the extreme 

cases are polynomials in the axial co-ordinate with the sonic point as origin, and then assuming that 
the solution in the annular case is of the same form. The solution in the annular case is much more 
complicated than in the extreme cases, but in the throat region the first-order solution is of definite 

practical value. 

3.1. The Firs t -Order  Solution. 3.1.1. The velocity potential.  Take rectangular co-ordinates 
x, y with the origin at the sonic point on the cylinder and x measured parallel to the cylinder. The 

velocity potential ¢ satisfies the partial differential equation 

(q.2_ ~ x , _  ~%2) ¢xx - 2 ( 1 -  ~) ¢~%¢xu + ( q , " - ~ 2 - %  2) %u + 

+ (q.2 _ ~qbx2 _ ~y2)  ~y (a +y) - i  = 0, (20) 

where qO is the critical speed and the suffix notation of partial differentiation is used. In the throat 
region the fundamental length is b and x is small compared with b. The form of the boundary 
condition tO be satisfied by (I) depends on the order of the desired solution. To the first order the 

boundary conditions for • are 

@ x -  q o [ l + x / b + . . ] ,  d) v = 0 o n y  = 0. 

To solve for (I) to the first order the following substitutions are made: 

x = e2Xb,  

y = e Y b ,  

a = c a b ,  

(b = q* [x + e4d?4 (X ,  Y ;  A )  b + . .] ; 

(21) 

(22) 

(23) 

(24) 

(25) 



here e is a dimensionless quantity which is small compared with unity; the independent variables 

X, Y and the dependent variable ¢4 are 0(1); the parameter d varies in the range co i> A i> 0 but 
the functions which involve A in the terms of a specified order'in e are always 0(1). The introduction 

of e is a device to enable a solution which is valid uniformly in a to be obtained. By substituting 
the Relations (22) to (25) into Equation (20) and Boundary Conditions (21) and equating to zero 
the coefficient of ¢? it follows that the equation and boundary conditions satisfied by ¢4 are 

¢4x¢ ,~  - ½ ( 1 -  8) [ ¢ ~ r r  + ¢4r  ( A +  Y)-~] = 0 ; (26) 

¢4x = X ,  ¢4~ = 0 on Y = 0 .  (27) 

The equation satisfied by ¢4 is the non-linear equation of transonic small perturbation theory. 
An exact solution of Equation (26) satisfying the Boundary Conditions (27) may be found by 

assuming ¢4 to be a quadratic in X with coefficients depending On Y and .d. If  ¢4 is written as 

4~ = ~ x~ + 4 ~ X  + G2, (28) 

then substituting in Equation (26) and Boundary Conditions (27) and equating to zero the 
coefficients of each power of X leads to the following ordinary differential equations and boundary 
conditions for ¢91 and ¢~2: , - : 

¢ 2 1 ~  + ¢21~ (A+ r)-~ = 2 (1_ 8)-1, 

¢21 = O, " r ~ l y  = 0 on  Y = O; 

¢22J-ZY + ¢22Y (A+ y ) - i  = 2(1-8)-1¢21, 

¢~2 = 0 ,  ¢ ~ a r  = 0 o n  Y =  0 .  

(29) 

(30) 
(31) 

(32) 

These equations may be integrated directly, and the results may be expressed most compactly in 
terms of the variable o~ defined by 

The results are 

c~ = (1 + Y/A) 2 . (33) 

¢~1 = c A T o -  1 - l o g  ~o], (34) 

4~ = c 2 A ' [ I o ~  ~ + o~ - ~ - ( ~  + ~) log ~],  (35) 

where the constant c is given by 

c = 2-1(1-  8) -1 (36) 

and is used henceforth when it produces a simplification in the expression of a result. The corre- 
sponding results for two-dimensional flow (d  = co) are 

¢21 = 2cY2 ,  (37) 

42~ = ~c2y,, (38) 
while for axi-symmetrical flow (d  = 0) 

¢~,1 = c Y2,  (39) 

¢29 = ¼ czY4.  (40) 

3.1.2. The lines of constant velocity magnitude. The specific speed ~: is given by 

= q.-1 [qG2 + q) 211J2. 
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From Equations (22), (23), (25), (28) and (33) it follows that 

(b x = q*[1 + e2(X+¢21) + . . ] ,  (42) 

cPv = q * [ e 3 2 A - l ~ o l t 2 ( ~ 2 ~ ' X  + ¢23')  + . . ] ,  (43) 

where a dash here denotes complete differentiation with respect to w, and where from Equations 

(34) and (35) 
0 ~ '  = c A ~ [  1 - ~o-~], (44) 

~ '  = c ~ A ' [ ~ ( ~ -  ~-~)  - log o~]~. (45) 

Therefore the first order solution for K is simply 

K = l + e  e ( X + ~ ) + . .  . (46) 

I t  follows that the first order results for the Mach angle/z and the Prandtl-Meyer angle v, which 

will be required subsequently, are 

cot/x = e2 ~I2 (1 - 8) -1/2 ( X +  ~21) 1/~ + . .  , (47) 

v = ez2zlz3 -1 ( 1 -  S)-a/z ( X +  ~,2a) 3/a + . . .  (48) 

It is convenient to take the lines of constant velocity magnitude to be represented by the lines 

of constant v and these are given to the first order by 

X = e-22-13 zlz (1 - b)~Iavz/z - ~ .  (49) 

In particular the sonic line t,. = 0 is 

X = - ~ ,  (5 0) 

which explicitly in terms of dimensional co-ordinates is 

x / b  = - c (a /b )  ~ [~ - 1 - log co], (51) 

where co is here interpreted, using Equations (23), (24) and (33), as 

= (1+y/a )  2 . (52) 

The  results for the sonic line in two-dimensional flow (a = co) and axi-symmetrical flow (a = 0) 

are respectively 
x / b  = - 2 c ( y / b )  ~ , (53) 

x / b  = - c ( y / b )  2 . (54) 

3.1.3. T h e  l ines  o f  c o n s t a n t  f l o w  d i r e c t i o n .  The flow direction angle 0 is given by 

0 = tan -1 [q)y/Ox] . 

Using Equations (42) and (43) it follows that to the first order 

0 = ~2A-1J~(¢21 'x+¢2 ; )  + . . .  

The lines of constant flow direction are given by 

X = ' (421 ' )  - 1  [ g - 3 2 - 1 A ( - o - l [ 2 0  - ~22 ' ]  • 
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In particular the zero flow direction line is 

x = - ( 4 d ) - 1 4 d ,  ( 5 8 )  

which explicitly in terms of dimensional co-ordinates is 

x/b = - c(a/b) 2 [½(~o + 1) - ~o(w- 1) -1 log ~o3, (59) 

with oJ interpreted as in Equation (52). The  corresponding results for two-dimensional flow (a = oo) 
and aM-symmetrical flow (a = 0) are respectively 

x/b = - § c ( y / b )  2, 

x/b = - ½c(y/b)L 

(60) 

(61) 

3.1.4. The characteristics through the sonic point  on the m'linder. The differential equations Of the 
characteristics may be written 

dx/dy = cot (0 +/x) = + (cot lz T- tan 0) (1 + tan O cot/x) -1. (62) 

From Equations (22), (23), (47) and (56) it follows that to the first order 

d X I d Y  = + 2112(1- 3)-1/2(X+ 421) 1t2 + . . ,  (63) 

which on squaring and rearranging becomes 

( d X / d Y )  9 - 2(1 - 3 ) - 1 X  = 2(1 - 3)-1421. (64) 

Using Equations (33); (34) and (36) it follows that 

(2A-loJllsdX/&o)2 - 2(1 - 3)-1X = ( 1 -  3)-2A2 [~o - 1 - log ~o] : (65) 

Now let X be replaced by the variable Z defined by 

X = 2-1(1 - 3 ) - I A s Z .  (66) 

Then the differential equation for the characteristics becomes 

~o(dZ/&o) ~ - Z = oJ - 1 - log ~o, (67) 

where Z is a function of oJ only. The  boundary conditions are Z = O, dZ/&o = 0 on co = 1. I f  the 

two solutions for Z are denoted by - Z_(m), for the limiting characteristic, and + Z+(~o), for the 
first dividing characteristic, then it may be shown that for o~ near 1 

Z_ = ~-(c0-1) 2 + . . ,  Z+ = ½(~o-1) 2 + . . ,  (68) 
while for large ~o 

Z _  = ½(51 /2 - -1 )6o  + . . ,  Z +  = ½(5112-1-1)6o --1- . . . ( 6 9 )  

Closed form solutions for Z_ and Z+ have not been found, but some values calculated numerically ~ 
are given in Table 2. The limiting and first dividing characteristics are then given in dimensional 
form by 

x/b = - c(a/b)sZ_(co), (70) 

x/b = c(a/b)sZ+(o~). (71) 

* The solutions were calculated, using a method of wide applicability, by A. Gibbons at the Computing 
Machine Laboratory, Manchester University. 

11 



The corresponding results for two-dimensional flow (a = oo) are i 

x/b = - c(y/b) ~, (72) 

x/b = 2c(y/b) 2, (73) 

while for axi-symmetrical flow (a = O) 

x/b = - ½(5 ~1~- 1)e(y/b) ~ (74) 

x/b = ½(5 ~/2+ 1)c(y/b)L (75) 

The  compatibility relations along the characteristics in the annular case may be writ ten 

dO -y- dv + tan 0(! + tan  0 cot i z ) - l (a+y)-~dy = 0.  (76) 

From Equations (24), (47), (52) and (56) it follows that 

dO -7- dv + e~A-~co-I/2((~2~'X + ¢~z')dco = 0,  (77) 

so that on substituting for X along the characteristics t h r o u g h t h e  sonic point on the cylinder it 
follows that 

dO -T- dv + c2(a/b) 3 co-llz{[1 - co-l] (_+ Z~)  + [½(co-co -1) - log co]} dco = 0 ,  (78) 

where the upper  sign corresponds t o  the first dividing characteristic and the lower sign to the 
limiting characteristic. There  is no possibility of integrating this relation without  explicit solutions 
for Z_ and Z . .  However,  the separate results for 0 and v along the characteristics are given by 
Equations (56), (48) and (66), in terms of the two solutions for Z, as 

0 = 2c~(a/b) 3 coal2{[1 - co-~] ( + Z±)  + [½(co - co-~) - log co]}, (79) 

v = 2~3-1c~(a/b)~ { _+ Z a  + [co - 1 - log co]}a!2 ; (80) 

it is unlikely that, even if Z and Z+ were known explicitly, it would be possible to eliminate co from 
Equations (79) and (80) and so obtain explicit compatibility relations involving 0 and v only. The 
compatibility relations in two-dimensional flow (a = oo) are exactly 

0 ; = 0 ,  (81) 

while in axi-symmetrical flow (a = 0), from the first order throat solution, 

0 ~ v  = 0.  (82) 

This  latter result compares with the well-known relation 0 -T- ½v = constant near to "the axis in 
axi-symmetrical flow away from the sonic point. 

3.1.5. The streamlines. The differential equation of the streamlines is 

dy/dx = tan 0 .  

Therefore, from Equations (22), (23) and (56) to the first order 

dY/dX = e 2A-lcolt (Gl'X+¢  ') + . . ,  
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and so to the first order the streamlines are quadratic in X. Hence, in dimensional variables, to the 

first order the streamlines may be written 

y = y, + ½(x-xe)2?,  + . .  , (85) 

where x t and Yt are the co-ordinates of the point at which the flow direction is zero, and r t is the 

radius of curvature there. The  first-order results for xt, y~ and r~ may be conveniently expressed in 

terms of the effective throat width g of the streamline, defined so that (a +g) is the radius of the 

sonic stream with the same mass flow as that contained between the streamline and the cylinder. 

The results are 
xt/b = - c(a/b) ~ [½(z+ 1) - ~-(~-- 1) -1 log ~-], 

3 ~2 5 7 
ydb = g / b + c 3 ( a / b )  5E ~--1I~{ z 3 - ~  +7~ ~ - - ~  + T l ° g ~ ' -  

- ~ ( ~ - -  1 ) - 1  l o g  ~. ~}], 

rt/b = (1 - 3) (1 + z -v2) - lb /g ,  

where the quantity z is defined by 

~- = (1 +gla) 2. 

The result for r e may be written 

rt/b = (1 - 3) [(a +g)/(2a +g)]b/g.  

The corresponding results for two-dimensional flow (a = oo) are 

xt/b = - -~-c(g/b) ~, 

32 ydb = g/b + ~ c (g/b) 5, 

h/b = ½(1 - 3)b/g, 

while for axi-symmetrical flow (a = O) 

x d b  = - ½c(g/b) ~, 

yt/b = g/b + ~ c3(g/b) 5, 

rt/b = (1 - 8)big. 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

3.2. Higher-Order Terms. The flow in the throat region may, in principle, be found to any 

desired accuracy by including further terms in the assumed expansion for qb in Equation (25). 

In two-dimensional and axi-symmetrical flow this procedure is feasible up to very high orders 31 

because the expansion for q~ is a double power series in X and Y. However, the first-order terms in 

the general annular case show quite clearly that the introduction of the internal cylinder complicates 

the solution enormously. The complete second-order solution in the annular case has been obtained 

and the expressions involved are so lengthy as to discourage any attempt to calculate terms of 
higher order. Here, some selected results from the second-order solution are given. They  comprise 
the result for the velocity potential q~, from which any other quantity can be derived, and the 
result for the throat radius of curvature h, which is useful and not unduly complicated. 
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If  the second-order boundary condition on O, is writ ten as 

(b~ = q*[1 + x/b +j(x/b)  2 + . . ] ,  (97) 

and then qb is expanded as 

• = q*[x + {e'¢,(X, Y; A) + e646(X, Y ; A )  + . . } b ] ,  (98) 

the equation and boundary conditions to be satisfied by 46 are 

¢6x¢~xX + ¢6x~,¢~x - ~(1 - a) [ ¢ ~ x r  + ¢ ~ ( A +  Y)-q  = 

= - ½(1 - 8)-1(1 + 38)¢~xxdP4~x - (1 - 8 ) ¢ 4 r ¢ 4 x r  , (99) 

¢6x =jx~, ¢ ~  = o on  Y = o ,  (lOO) 

where ¢a is the first order term calculated earlier. It  appears that all further terms in the series for 
• satisfy linear equations of the same form as 46- The  solution for ¢6 may be found by writing 

¢6 = -13-jXa q- ¢31 X2 + ¢a2 X q- ¢33 ; (101) 

Substituting into Equation (99) and equating to zero the coefficients of each power of X then leads 
to simple ordinary differential equations for ¢al, ¢a2 and Caa which can be integrated directly. 
The  results may be expressed in the following way 

s 8 - - ~  

Ca~ = 2-=( I - 8) -*A=~ E Z ¢a,~a oJ~ log v~o, s = I, 2, 3 (102) 
~ = 0  q = O  

where the coefficients 6asr~ are given by 

¢a,p~ = ( 1 -  3)-tQa~r~ + 4/3jRa,~, q (103) 

with the numbers  Qasvv and Ra ,~  given as follows 

Qaloo = - Qalol = Qallo = - ( 1 + 3 8 ) ,  (104) 

Raloo = - Ralol =Ral lO = - 9/2,  (105) 

Q~oo = - ~(1 + 59~) ,  Q ~ o l  = - (1 - 13a) ,  Q~o~ = i ( s  + 7 a ) , ]  

Qa21o 3 ( 1 -  58), Qa~11 = - 3(1 + 38), Qa,z~o = ( 1 - 8 ) ;  ) ~ (106) 

Ra~o0 = 105/8, Ra~01 = 21/2, Ra202 = 21/8, J~3210 = - -  21/4, Ra21x = - 21/2,] 
(107) 

J Ra2~o = 0; 

Qaaoo = - 1 / 4 1  + 2238), Qaa61 = ~(3 + 178), Qaao2 = ~(1+ 7a), 
3 3 

/ 

Qaaoa 1 ( 5  + 73), QaalO = ¼(1 - 133), Qaa,1 = - ~(7 + 298), t (108) 

Qaa~= - (1 + 28), Qaa~o = ~-(1 - 8), Qaa2~ = ~(5 + 78), Qaa3o = 0; ] 

Raaoo = - 203/24, Raaol = 87/16, Raao~ = 21/8, Raaoa = 19/48, . ] 
Raulo 37/16, R3311 = - 57/8, Raal~ - 39/16, Raazo = 0,} (109) 

) R~a~l = 9/4, Raaao = 0 
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It  may be shown that the second-order solution for the throat radius of curvature is 

r,/b = (1 - 8) (1 + ~--I/~) -~b/g 

- ( 1  - [ ( 1  - + + 8 j ]  - 

- - [ ( 1 -  + 8 / ]  - 

- ( [ (1 -  8)-~(1 +38)  + 4 j ] r - ½ ) l o g  ~'}g/b. (110) 

The corresponding result for two-dimensional flow (r = 1) is 

rJb = ½(1 -8 )b ig -  ~ [ ( 1 -  8)-1(1 +8)  + 2j]g/b, (111) 

while for axi-symmetrical flow (r = co) the result is 

rJb = "(1 - 8) big - ~ [(1 - 8)-~(3 + 58) + 8j]g/b. (112) 

' Although in the annular case h igh  order terms are prohibitively lengthy, in the extreme cases al 

they are not. I t  is suggested now that it may be satisfactory, for designing annular nozzles which 

are no t  subject to very exacting requirements on the uniformity of the flows they produce, to deduce 

estimates of the higher-order terms in the annular case by interpolating between the higher-order 

terms in the extreme cases. The interpolation may be based on the first-order solution, and if 

desired thesecond-order  solution may be used to decide a satisfactory form of interpolation. 

4. The Design of a Particular Annular Nozzle. A brief description is now given of the design, 
along the lines suggested in the previous sections, of a particular annular nozzle. This nozzle has 
proved to be successful in its practical application 2, 3. I t  was designed some years ago when the 

study described in this paper was in its earlier stages. At that time the design criteria given here 
had not been finally established; nevertheless, this nozzle fits very conveniently into the present 

design proposals. For this reason the design is presented as though it followed the present design 
method. 

The  fixed basic design parameters have the values M = 2. 023 (corresponding to ~ = 27 deg 

exactly), a = 1-950 inches and h = 3"600 inches. The ratio h/hmax is chosen to be 0.7380, giving 

an assumed value of/Tm~ x = 4" 878 inches. From Equation (4) it follows that g-~,: = 3. 407 inches, 

and then from Equation (6) it follows that I = 8. 122 inches. The end values of the permitted range 

of X are obtained from Equations (8) to (13) as X~ = 1.40, X~ = 1.79. The  design value of X is then 

chosen to be X = 3/2, so that the prescribed velocity distribution along the cylinder may be chosen 

to take the simple form K = 1 + (~ -1 ) [½ ~ (3 -  ~)]~ where ~: = x/l; this satisfies the condition 

dK/dx = 0 at x = l so that it is expected to produce a nozzle of continuous curvature. 

The solution of the throat flow is then used to provide a starting line for the application of 

the method of characteristics*. The line on which v = 3 deg is chosen; its shape is calculated 

from Equation (49) and the variation of 0 along it is calculated from Equations (56) and (49). 

The  starting line is not used beyond the position at which 0 has a maximum in y.  Then  by 

selecting points at equal intervals of y along the v = 3 deg line, and at equal intervals of u along 
the cylinder, a pattern of characteristics is constructed. The nozzle contour within the pattern of 

characteristics is located by calculating the point on each characteristic with which is associated 
the mass f l ow  appropriate to the desired nozzle. The calculated points are joined by a line of 

* The characteristic calculations were performed by J. Reid and R. C. Hastings, to whom credit for the 
design of this nozzle belongs. 
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continuous curvature. The termination of the ~ = 3 deg line at the position of the maximum in 0 
leaves a small gap between the streamline calculated from the characteristics pattern and the throat 
streamline up to the u = 3 deg line given by Equations (85) to (89). The gap is bridged by ignoring 
the precise form of Equation (85) and fitting a polynomial which preserves continuity of slope and 

curvature, between the point in the throat region with zero flow direction and the first point on the 
calculated streamline; in order to achieve as high accuracy as possible, use is made of the second-order 

result for the throat radius of curvature given by Equation (110). The resultant shape of the nozzle 

contour from the sonic point to the beginning of the working section is shown in Fig. 6. 
The first-order solutions for the shapes of the sonic line, the limiting characteristic, the zero 

flow direction line, the first dividing characteristic and the line on which v = 3 deg are also shown 
in Fig. 6. In addition, the second dividing characteristic and the straight characteristic are displayed. 

The first and second dividing characteristics intersect outside the desired nozzle, and the associated 

value of hmax is 4" 832 inches which compares extraordinarily well with the assumed value of 

4" 878 inches. 
It is noticed that the starting line intersects the first dividing characteristic within the nozzle, 

so that a characteristic calculation including the whole starting line involves a calculation in a part 

of the throat region. A similar situation was found in the design of a two-dimensional nozzle 17, in 

which case the intersection occurred at the position of the maximum of 0 along the starting line, 

and a fine characteristic net was employed to complete the calculation beyond the intersection. 

In the present case the analytical complications of annular flow only allow it to be stated that the 

intersection occurs close to the position of the maximum of 0 along the starting line. Thus a 

characteristic calculation in the throat region is avoided in this case, at the expense of leaving a 

gap between the two parts of the nozzle contour which are calculated respectively, analytically 
and numerically. It appears that, unless special care is to be given to the characteristic calculation 

J 

in the throat region, it is preferable to avoid its use there by choosing the constant value of v on the 
starting line to be large enough for the analytical throat solution to cover the entire throat region. 

Therefore, it is desirable to be able to arrange that the constant value of u on the starting line is 
greater or equal to the value of v, say P, at the intersection of the desired streamline and the first 

dividing characteristic. The value of ~, which is related to the value assumed for the ratio h/hm~x, is 
a measure of the number of terms of the throat solution which are needed to enable the starting 

line to be calculated with sufficient accuracy. The question of the number of terms required in a 
.given case has been considered recently 31 for two-dimensional and axi-symmetrical nozzles, but 
no precise answer suitable for generalisation to annular nozzles is available. The indications are 

that for supersonic nozzles w i t h / ~  tess than about 2 the first-order throat solution may be adequate 
for nozzles of any length, but for hypersonic nozzles with M greater than about 5 the first-order 

solution applies only to nozzles of excessive length, and for hypersonic nozzles of near minimum 

length many terms in the throat solution may b e required. For hypersoni c nozzles, however, 
boundary-layer development is very significant and leads to a suggested method 35 for shortening 

such nozzles. Nevertheless, it is impossible to escape the conclusion that there is, even at this late 

stage in the history of nozzle design, scope for further detailed investigation. 
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LIST-OF SYMBOLS 

Radius of internal cylinder 

Length parameter representing velocity gradient at sonic point on cylinder 

Coefficients in formal expansion of ½(a +y)  sin O/l near cylinder 

= 2-a(1-~) -1 = (),+1)/4 

Coefficients in formal expansion of cos 0 near cylinder 

Cceff.cients in formal expansion of 69/q~l near cylinder 

Effective throat width of typical streamline 

Effective throat width of principal nozzle for design Mach number ~r 

Coefficients in formal expansion of ~/4rrpeq*l ~ near cylinder 

Working section width of desired nozzle for design Mach number 21Zr 

Working section width of principal nozzle for design Ma'ch number 

Coefficient of (x/b) 2 in expansion near sonic point of distribution of K 
along cylinder 

Coefficients in formal expansion of ~¢ near cylinder 

Distance along cylinder from sonic point to beginning of working 
section 

Coefficients in formal expansion of ~ near cylinder 

Velocity magnitude 

Critical speed 

Radius of curvature at point of zero flow direction on typical streamline 
in throat region 

Two constants used in definition of X~, 

Axial co-ordinate, measured from sonic point on cylinder 

Value of x at point of zero flow direction on typical streamline in throat 
region 

Radial co-ordinate, measured from cylinder 

Value of y at point of zero flow direction on typical streamline in throat 
region 

= a/eb 

Functions of M tabulated in Table 1 

Design Mach number in working section 

Coefficients of (1 - 5) -1 in expression of Cas~q 

Constant coefficients in term involving j in expression of ¢3s~e 

Functions used in expression of Xt, 
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x/e~b 

y /eb  

X/2-1(1 - 8)-1A2 

Solutions for Z along limiting characteristic and first dividing character- 
istic respectively 

a/l  

Ratio of specific heats of gas " 

( Y -  1 ) / ( r+  1) 

Dimensionless quantity small compared with unity 

Inclination of flow direction to axis 

Specific speed; = q/qv 

Value of ~ corresponding to M = M 

Distribution of K along cylinder 

Area ratio; = pq/p~qV 

Value of ~ corresponding to M = 37r 

Distribution of h along cylinder 

Mach angle 

Prandtl-Meyer angle 

Value of v corresponding to M = 3~r 

Value of v at intersection of desired nozzle a~nd first dividing characteristic 

x/l 
Density 

Critical density 

(1 +g/a)  ~ 

Term giving first-order solution for ~P in throat region 

Functions. of Y,  A used in expression of ~ 

Term giving second-order solution for cb in throat region 

Functions of Y, A used in expression of CG 

Coefficients used in,expression of Ca, 

Dimensionless parameter representing velocity gradient at sonic point on 
cylinder 

Lower and upper values of X in permissible range defined by design 
criteria 

(1+y/a)  ~ = (1 + Y / A )  ~ 

• Dimensional velocity potential 

Dimensional stream function; = rrp*q ~ [(a +g)= - a 2] 
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APPENDIX 

T h e  F l o w  near  the  C y l i n d e r  

The fundamental aim is to find an analytical solution of the flow through both the throat and 
expansion regions (and also through the subsonic region upstream of the sonic line). Although 
this aim has been achieved*, the solution does not yield the streamlines and characteristics in a 
usable form, and therefore only an outline of the investigation and some of the principal results 

are given. 
The velocity potential and the stream function have proved to be very Useful independent 

variables for dealing with two-dimensional flow 21, ~2 and axi-symmetrical flow 1~, 20. However, they 

can no longer conveniently be used in the annular case, and the independent variables of the 

physical plane are a more satisfactory choice. 
tn the physical plane the basic technique is to seek a series expansion solution near to the cylinder 

along which the flow is prescribed. The analogous technique in two-dimensional and axi-symmetrical 
flows is to expand in series near to the axis, and the solution for any dependent variable can be 
found by assuming an expansion in appropriate powers of the distance from the axis. In the annular 

case t he  corresponding expansion in powers of the distance from the cylinder does not yield a 

solution, and the basic form of expansion is not known at the outset. 
Although knowledge of  a single dependent variable is sufficient to enable all other desired 

quantities to be found, a quantity acceptable as the single dependent variable has not been found. 

The stream function cannot be used because the exact equation that it must satisfy cannot be 
written down explicitly. Also, it may be shown 86 that, even in the extreme cases of two-dimensional 
and axi-symmetrical nozzles, the velocity potential is not satisfactory in the present problem because 
it is exceptionally difficult to derive the streamlines from it. However, if the stream function and 
velocity potential are treated simultaneously with certain other dependent variables then a 

satisfactory series solution may be obtained. 
Take rectangular co-ordinates x, y with the origin at the sonic point on the cylinder. Consider 

the following dependent variables: p the density; q the velocity magnitude; 0 the flow direction 
angle; q5 the velocity potential; W the stream function; g the effective throat width of a streamline, 

which is connected with W by the relation 

"V = = p ' q *  [(a +g)~ - a2], (113) 

where O* is the critical density and q* is the critical speed; K thespecific speed defined by 

K = q/q*;  (114) 

;~ the area ratio defined by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z = o q / o * q *  (115) 

and expressed in terms of K by 

A = K [(1 - 3)-1(1 - 3K~)](1-~/2 ~. (116) 

The fundamental length is taken to be l, the distance along the cylinder from the sonic point to the 

beginning of the working section. 

e Acknowledgement !s due to R. C. Hastings for his assistance in the determination of the solution near 
the cylinder. 
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It may be shown that the six quantities g/l, sin 0, cos 0, ¢)/qel, K, ~ form a set of simultaneous 

dependent variables for which a convergent series solution of the appropriate partial differential 
equations and algebraic equations may be obtained (it is advantageous to retain sin 0 and cos 0 as 

separate variables). It is assumed that x/l is 0(1) and y/ l  is small compared with unity, the effect 
of a/l being included by the same device as that employed in obtaining the solution near to the sonic 

point on the cylinder. The solution develops in a progressive manner, the first-order terms being 
obtained for each quantity in the sequence quoted; and then the second-order termsAn the same 

sequence and so on. The first-order solutions which satisfy the boundary conditions of a prescribed 
velocity distribution along, and zero velocity normal to, the internal cylinder may be expressed in 

the form 
g/l = a{[1 + ;~0(co-1)] 1/~ - 1}, (117) 

sin 0 = - ½;~0-I~0'aco-~/~(oJ - 1), (118) 

cos 0 = 1 - ½ sin s 0, (119) 

( ~ / q ~ l  = I K o d ~  - -  1/¢0,~o-1~o'e~{¢o --  1 - -  10g ~ } ,  (120)  

F - 1) - 1 

~: = Ko + ~ 2  / ] -{K°'A°-~A°' _ ~ ~oAo_Z(Ao,), + ~¢oAo_~Ao,,} (~o - 1) + ] ,  (121) 
/ 
L + {/%'~0-1,~0 t - K0)t0-2(~t0') 2 -1-/%,~0-1z~0 n} log ~o 

~" = "~0 -- ' /%--1(K02--  1) (1 - ~KO2)-IAO(K-- ~ o ) ,  (122 )  
where 

~: = x/1 (123) 

and K 0 and ;~0 are functions of ~, K0(~ ) denoting the prescribed distribution of K along the cylinder 

and A0(~) the corresponding distribution of ;~; {he independent variable oJ is equal to (1 +y/a) ~ here, 

and the parameter a is defined by 

o~ = aft; (124) 

a dash denotes complete differentiation with respect to ~. 

Although throughout this paper it is assumed that the internal boundary is both a cyfinder and a 
streamline, the solution is easily extended to cover the case when the boundary is not necessarily 
either a cylinder or a streamline. When the boundary is a cylinder but not a streamline the solution 
applies to the flow through an annular nozzle which has distributed suction or blowing through the 
internal cylinder. When the boundary is a streamline but not a cylinder the solution, to the first 
order, applies to the flow past a quasi-cylindrical body' of revolution. The application of the 
first-order solution to the flow past such quasi-cylinders leads 3v to an illustration of how differences 
arise between the linearised pressure coefficient for a thin aerofoil and for a slender body of 
revolution. 

The first-order solution of the flow near the cylinder has only a limited application in nozzle 
design and for most purposes higher-order terms are needed. These may be obtained by the 
convergent procedure already outlined for the dependent variables g/l, sin 0, cos 0, C~/q*l, K, A but 
the analysis is extremely tedious. However, the derivation of the higher-order terms can be simplified 
by using the set of variables ~/4~p*q*12, (a +y) sin 0/2l, cos 0, ~/q*l, K, A. A formal solution of the 
appropriate differential and algebraic equations can be found by assuming expansions in even 
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powers of a for oo >/ a >1 0, and the formal solution can be shown a7 to be equivalent to the previous 

convergent solution. T h e  first-, second- and thi rd-order  terms of the formal solution may be 

wri t ten 

~F/4rrp*q *12 = E (lcx) ~" E g~q~oq log~ oJ + g~(~-l)0 log ~-1~o , (125) 
n=l q= - - ( n - ~ , - 2 )  

3 ('o,-1) ( 'n-lu) 
(a +y) sin e/21 = Z g Z log  (126) 

n = l  / 9 = 0  q =  - - ( n - -  to - - l )  

3 (n--l) (n--~o) 

cos 0 = Coo o + ~ (½o~) ~ 52 52 c~@oq log ~ co, (127) 
n=l ~=0 q=--(n--p) 

q~/qel = fooo + X (½a) ~ ~. f ~ c o q  log~ ~o + f,~o log ~ o~ , (128) 
n = l  q =  - - ( n - - l o - -  1) 

3 n (n--~o) 

K = koo o + >2 (½~)~ Y~ Z k~p~oqlog~ oJ, (129) 
n=l ~o=0 q=--(n--~) 

3 n ( n - p )  

;~ = looo + X (½a)~'~ X 52 l,~vqoJq logV w,  (130) 
n=l ~o=0 q=--(n--1)) 

where  the coefficients g~q,  b~q, c~q, f~)q, kn~q, l~q are functions of ~ and 

Coo o = 1, fooo = I~0d¢, k000 = K0, 1000 = A0 ; (131) 

the coefficients fi, oo, g~oo for n >/ 1 are arbitrary and allow the boundary condition to be satisfied. 

I t  is likely that the expressions are of the same form for  n > 3 also, in which case they constitute 

the basis o f  an exact infinite series solution. Th ey  are  the counterpart  in the annular case of the 

expansions in even powers of y which are the fundamental  forms in two-dimensional and axi- 

symmetrical flows. 

I t  is clear that the fundamental  form of the series expansion near the cylinder in the annutar case 

is enormously complicated by comparison wi th  the series expansions near the axis in the two- 

dimensional and axi-symmetrical cases. Th e  conclusion must therefore be that, except for the 

first-order solution which may be of some use for providing limiting results, the analytical solution 

for the flow near the cylinder is too complicated to be of practical use in the design of annular 

supersonic nozzles.  

The re  is a connection between the solution near the cylinder outlined here and the  solution near 

the sonic point on the  cylinder given in Section 3, but  the connection is not a simple one. If  the 

solution for a certain quantity near the cylinder is suitably expanded near the sonic point  the 

usefulness of the results obtained depends on the particular quantity. Strictly, the result is not valid 

because the original series expansion near the cylinder does not incorporate the essential non- 

linearity of the equations of motion near the sonic point, but  it happens that some of the results of 

the throat solution can be deduced in this way. In particular, the first-order solution for the throat  

radius of curvature can be obtained from the first-order solution of the streamlines near the cylinder. 
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T A B L E  1 

The Functions Ho~, Ho 

1 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

6 
7 
8 
9 

10 

O0 

0~6021 
0.5945 
0.5895 
0.5858 
0.5822 
0.5792 
0.5768 
0.5748 
0.5730 
0.5712 
0.5698 

0.5635 
0.5588 
0.5545 
0.5515 
0.5485 
0.5460 

0-5418 
0.5370 
0.5325 
0.5285 
0.5250 

0 .5000 

0.3221 
0.3198 
0.'3180 
0.3165 
0.3150 
0.3138 
0.3128 
0.3120 
0.3112 
0.3108 
0.3102 

0.3088 
0.3078 
0.3070 
0.3062 
0.3055 

0 .3048  

0-3040 
0.3032 
0.3022 
0.3012 
0.2998 

0.2500 

Note. Graphical interpolation is permissible for 1 ~< M ~< 10. 
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T A B L E  2 

The Functions Z_/oJ, Z+/oJ 

1#o Z_/oJ Z+/¢o 

1 
0.95 
0.90 
0 .85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0-35 
0.30 
0.25 
0.20 
0.15 
0-10 
0"05 

0 

0 
0"0006 
0"0026 
0"0060 
0"0109 
0"0175 
0.0259 
0"0362 
0"0487 
0"0635 
0"0809 
0"1013 
0"1250 
0"1526 
0.1847 
0-2222 
0"2666 
0"3198 
0-3854 
0"4715 
0"6180 

0 
0~0013 
0"0053 
0-0122 
0.0222 
0"0357 
0"0528 
0"0741 
0"1000 
0"1310 
0"1678 
0"2111 
0-2621 
0-3221 
0"3930 
0"4777 
0"5790 
0"7046 
0"8662 
1"0933 
1"6180 

Note. Graphical interpolation is permissible for 1 1> 1/no >~ 0.05 but is not recommended for 

0"05 >~ 1/oJ /> O. 
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