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Summary. A continuous solution is derived for the stress distribution in a simple wing surface represented 
by a uniformly reinforced stri p bounded by equal constant area edge members, when the sections in the 
airstream experience a uniform temperature rise. The section shielded by the fuselage is assumed to remain at 
a constant temperature. This analysis, which takes into account the bending, shear and direct stiffness of the 
edge members, is used to evaluate the shear stress distribution in a specific strip used as an example. The 
stress distribution in this same specimen strip is also calculated by the Argyris matrix force method assuming 
a finite spanwise temperature gradient at the edges of the fuselage, both for a constant chordwise temperature 
and for a parabolic chordwise temperature variation in the airstream. 

1. Introduction. When a supersonic aircraft with a continuous wing structure passing through 

its fuselage accelerates rapidly, temperature differences arise between the section of the wing 

shielded by the fuselage and the remainder of the wing in the airstream. A self-equilibrating system 

of stresses is thus produced in the wing so that the sections inside and outside the fuselage remain 

compatible. In this Report the stresses set up in this way in the surface of a rectangular wing are 

considered. Restraints imposed on the thermal expansion of the surface by the fuselage-wing 

connections and by temperature variations through the webs are neglected. The surface is 

represented by a flat isotropic strip reinforced by closely spaced stringers and ribs, and by equal 

constant area edge members. 
Expressions are derived for the thermal stresses in the strip when the sections in the airstream 

experience a uniform temperature rise while the section shielded by the fuselage remains at a 
constant temperature. An upper limit is thus obtained for the stresses produced by a uniform 
temperature rise in the airstream. In this analysis the bending, direct and shear flexibilities of the 

edge members are taken fully into account. 
The Argyris matrix force method ~, ~ is used to calculate the stress distribution in the strip due 

to a parabolic variation of temperature in the chordwise direction on the sections in the airstream. 
This analysis, which is repeated for a uniform temperature in the chordwise direction, is readily 
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applicable to any chordwise temperature variation. The temperature of the section within the 
fuselage is again taken as constant but the transition from the conditions within the fuselage to 
those in the airstream is here assumed to take place over a finite distance. 

The analysis of thermal stresses in rectangular wings in general is discussed in Appendix III.  

2. Assumptions. The following assumptions are made throughout this Report: 

(a) Stress-strain relations are linear. 

(b) Buckling does not take place. 

(c) Rivet flexibility is negligible. 

(d) The temperature is constant through the surface analysed. 

(e) The stiffening effect of the stringers and ribs may be represented by an effective increase 
in the sheet thickness in the appropriate directions. 

(f) The wing-fuselage connections do not restrict the thermal expansion of the wing surface. 
The following assumption is made in the 'continuous' analysis of Section 4 only: 

(g) The strip is infinitely long. 

The following assumptions are made in the matrix analysis of Section 5 only: 

(h) The strip may be represented as an orthogonal grid of direct stress carrying members 
separating panels each of which carries a constant shear flow only. 

(j) The cross-sectional area of these direct stress carrying members is the sum of the cross- 
sectional area of any reinforcing member along the grid lines together with half' the 
cross-sectional area of the adjacent shear carrying fields. 

(h) The influence of Poisson's ratio on the interaction of the direct stresses in the orthogonal 
flanges is negligible. 

(l) The bending and shear stiffnesses of the edge members are negligible. 

(re)The temperature varies linearly between nodal points of the grid. 

The detailed assumptions made with regard to the temperature distribution at the edges of the 
fuselage will be found in Section 5. 

Assumptions (h) to (m) are standard assumptions made in the application of the Argyris matrix 
force method to wing structures. It is seen from the results of Section 4 that the gradients of shear 
stress in the strip are sufficiently low for the limitations implicit in assumption (h) to be unimportant 
in the present application. Assumptions (j) and (k) have previously been justified in the context 
of the diffusion of end load from edge members into rectangular panels by comparison both with 
more elaborate theoretical analyses and with strain gauge results 5. 

3. The Simple Strip used as an Example. All calculations in this Report are performed on the 
simple specimen strip shown in Fig. 1. While the symmetry of the strip simplifies the analyses, 
it is not essential to them. 

The stresses calculated in this strip are expressed in dimensionless form as fractions of E~ x 
(maximum temperature difference). To give an indication of the order of these stresses, the following 
approximate values of Ec~T are quoted for a temperature difference of 200 deg C. 

Steel, E a T  = 68,400 lb/in. 2 

Light alloy, E a T  = 46,000 Ib/in. ~. 
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4. Temperature Variation in a Spanwise Direction only. In this section analytical expressions are 

obtained for the stress distribution in the simple strip described above when the parts protruding 

from the fuselage are subjected to a uniform temperature rise, leaving the remainder at a constant 

temperature. The  method used here was suggested to the author by a paper by Horvay 1 in which a 

similar method is used to analyse an isotropic strip without edge members. 

Expressions for the stress distribution in an infinitely long strip subjected to a uniform load over 

half its length are derived inAppendix  I. These expressions are quoted below. The strip lies paralM 
to the x axis and is subjected to a load intensity S from x = - co to x = 0. 

S f :  (l+Q10~)(U~p12coshplOY - Ulp2~coshp2Or) sin OX dO (1) 
% - pwt  R~U 2 -  R 2U 1 ~ 

S [-1 1 ~'~ (1+ QIO~)(U~ cosh plOY - U 1 cosh p20 Y) s in  OX dO ] (2) 
% = pat rr o R 1 U e - R ~ U  1 0 ) I 

S f ~ (1 + Q~O ~) ( uzpi sinh pl 0 Y -  Utp~ sinh p20 Y) cos OX dO. (3) 
Zxu - zrt 0 R 1 U 2 - R~ U I 

In order to find the stresses in the strip under the prescribed temperature distribution, two stress 

systems of the kind quoted above are superposed in such a way that the section of the strip between 

x = - co and x = 0 corresponds to the portions of the wing in the airstream. Putting S = p2E~ Tt 

and subtracting the local value o f  Ea T from % at every point in the strip, the following expressions 

for the stresses in the strip are obtained. The  axes of reference are at the centre of the strip as 

shown in Fig. 1. 

p2 EaT f f  (1 + QlO2)(U2pl2 cosh plOY- Ulpa~ cosh p2OY)W1 dO 
O" x ~ -  - - - - -  

Pl 7r 
(4) 

R 1 U  ~ - R 2 U  1 0 

p~Ea T ( ~ (1 + Q~O 2) ( U~pl sinh p~ 0 Y -  Ulp2 sinh p20 Y) W 2 dO 
"rxy = --7: do R1U2 _ R2U1 ~- (5) 

where 
G = sin O(X+X' )  - sin O ( X - X ' )  

W~ = cos e (X + X ' )  - cos O(X- X'). 
Within the fuselage 

% = E ~ T I 1 -  l f ~ ( l + Q x O ~ ) ( U 2 e ° S h p l O Y - U l c ° s h p ~ O Y ) W l d ~  o R 1 U ~ -  R~U I . (6) 

In the airstream 

E a T  ( ~  (1 + QIO2)(U~ cosh p l O Y -  UI cosh p2OY)W1 dO 

The evaluation of these integrals is laborious and has been restricted to finding the shear stress 
distribution along the temperature discontinuity and adjacent to the edge members when the 
infinite strip is heated over half its length. The  calculated shear stresses are not significantly 
different from those produced near the edges of the fuselage under the prescribed temperature 
distribution, as the stresses die out rapidly along the strip. The shear stresses are plotted in Fig. 5 
together with the corresponding values obtained by Horvay for an isotropic strip. It will be seen 

that for a n  edge member of the size considered here the peak shear stress is graphically 
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indistinguishable from the value for an isotropic strip (EaT/~r). The peak shear stress is however 
dependent on the width of the strip and would tend to 1.131Eo~ T/rr if the width of this strip were 
increased to infinity. 

The greatest values of % and % achieved in an unreinforced isotropic strip are both equal to 
Eo~T/2. It is seen by symmetry that the peak value of % is unchanged by the reinforcements 

introduced in the present example. The peak value of ex is reduced however by the presence of the 
edge members and the region of high shear stress is increased. 

5. Temperature Variation in both Spanwise and Chordwise Directions. In this section an analysis, 

by the Argyris matrix force method, of the stresses in the specimen strip is summarised when the 

wing is subjected to typical temperature distributions incorporating a rapid rise in temperature in 

the spanwise direction at the section at which the wing protrudes from the fuselage. The strip is 

idealised into an orthogonal grid of direct stress carrying members separating fields carrying shear 

stresses only, making the assumptions specified in Section 2. The grid lines are more closely spaced 

in those parts of the strip where large gradients of stress are likely to occur. The assembly of direct 
and shear stress carrying elements which constitute the idealised structure are analysed in matrix 
notation using self-equilibrating stress systems as unknowns. The matrix analysis of redundant 
structures including the effect of thermal stresses was developed in a series of papers by Argyris ~ 
where the structural idealisation used here was also introduced. The relevant sections of the matrix 
analysis are summarised in Appendix II. 

The grid pattern used here is shown in Fig. 3 and a typical self-equilibrating stress system is 
shown in Fig. 4. 

The temperature of the flange in the idealised structure corresponding to the edge of the fuselage 
is assumed to be at the mean of the local temperature of the strip in the airstream and the temperature 
within the fuselage. Hence the temperature effectively changes from the conditions within the 
fuselage to those in the airstream over a distance of 3 in. in the spanwise direction (i.e., 6 per cent 
of the chord). 

The following temperature distributions are considered; in each case the temperature of the strip 
within the fuselage is assumed to be constant. 

(a) Parabolic chordwise variation of temperature ov, er the sections of the strip in the airstream. 
As the temperature is assumed to vary linearly along each direct stress carrying element, the 

parabolic chordwise distribution is here approximately represented by defining the temperature 
at the nodes of the grid according to the expression 

T = T1 (Y2+1) 

where T 1 is the temperature at the spanwise edges. 

(b) Uniform temperature rise over the sections of the strip in the airstream. 
The spanwise members are assumed to experience a constant temperature right up to the edges of 

the fuselage. This approximation will not materially affect the stresses under temperature 
distribution (a) and will have no effect at all under temperature distribution (b). 

The stresses corresponding to these temperature variations are shown in Figs. 6 to 11. Comparison 
of the shear stresses produced by an abrupt change in temperature at the edges of the fuselage 
(which are virtually the same as those shown in Fig. 5) with those produced by the temperature 
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distribution (b) considered here (Fig. 11) shows that a considerable alleviation of the shear stresses 
results from assuming a high finite temperature gradient at the edges of the fuselage in place of 

an abrupt temperature change. 

6. Acknowledgement. The author would like to thank Mrs. C. A. Mason for her assistance in 

the computational work incorporated in this Report. 

7. Conclusions. The thermal stresses set up in the surfaces of a rectangular wing structure 
continuous through a fuselage have been considered when those portions of the wing in the 
airstream are subjected to a rise in temperature. Firstly a continuous solution was derived for the 
stress distribution in the surface of a hypothetical wing structure represented by a uniformly 
reinforced isotropic strip with equal constant area edge members, when those parts of the strip 
in th~ airstream experience a uniform temperature rise. The section of the strip shielded by the 
fuselage was assumed to remain at a constant temperature. The bending, direct and shear flexibilities 
of the edge members were taken fully into account. The shear stresses calculated for a specific 
example suggest that the peak shear stress in a reinforced strip with edge members of reasonable 
practical proportions is unlikely to differ greatly from that in an isotropic strip; the region of high 
shear stress is however larger. A matrix method using a finite grid size was employed to analyse 

the stress distribution produced by a parabolic chordwise temperature variation over the portions 

of the strip in the airstream. A finite spanwise temperature gradient was assumed at the edges of 

' the fuselage. It was shown by repeating the latter analysis with a constant chordwise temperature 

that the stresses corresponding to the assumed spanwise temperature gradient at the edges of the 

fuselage were considerably less than those due to the abrupt change in temperature assumed in the 
first analysis. The analysis of thermal stresses in rectangular wings in general was discussed in an 

Appendix. 
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NOTATION 

Orthogonal axes, x being in the spanwise direction 

Semi-chord 

x/a, y/a 

Half-width of fuselage 

Deflection parallel to y axis 

Thickness of shear carrying sheet 

E f f e c t i v e  t h i c k n e s s  of  s h e e t  p a r a l l e l  t o  x ,  y a x i s  
T h i c k n e s s  of  s h e a r  c a r r y i n g  s h e e t  

Direct stresses 

Shear stress 

Poisson's ratio 

Stress function 

2pW1(1 + v) - (p~ + p& 

Load on strip from x = - oo to x = 0 

Local load on strip 

Defined by Equation (10) 

ha 

f 

Pl, P2 

A1, A2 

Function of y 

Defined by Equation (12) 

Arbitrary constants 

0~ Coefficient of expansion 

• E Young's modulus 

T Temperature difference 

G Shear modulus 

B Cross-sectional area of edge member 

I 

A' 

G 

Second moment of area of edge member for bending in xy plane 

Effective cross-sectional area of edge member for shearing in xy plane 

I 
2(1 + v) A, a~ 

G 
I 

plaat 
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NOTATION--continued 

B 
Q3 = plta 

Pl/P2 + Pl ~v 
ql = 

i)i 

PI/P2 + p 2v 
qB - 

P2 

R~ = (1+  Q~0 e) coshp~0 + Q203q~sinhp~O 

R 2 = (1+  Q~02) coshp20 + ~20'~q2 sinhp20 

sinh plO + Qs 0 (pt 2 + Pl vl cosh plO U1 PÀ \ P~ / 

sinh p~O + QaO (p 2 + Pl vt cosh p~O U~ P~ \ P2 / 

Wx = sin O ( X + X ' ) -  sin O(X-X ' )  

W2 = c o s  O(X+X')- c o s  O(X-X') 
/ 
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APPENDIX I 

The Stress Distribution in an Infinite Strip Bounded by Edge Members with Bending, Direct and 
Shear Stiffness when the Edges are Subjected to a Uniform Load over Half their Length 

Consider an infinite uniform strip of width 2a, symmetrical about its centre-line. The strip, 
which is bounded by edge members of constant finite bending, direct and shear stiffnesses is 
subjected to a uniform load over half its length as shown in Fig. 2. The effective thicknesses o f  the 
strip in the longitudinal and transverse directions are pit and p2t respectively. To satisfy the 
equilibrium and compatibility conditions within the strip a stress function ~ mtlst be found such that 

and 

where 

I 
a¢ L 

P 2 % -  3x 2 F 
! a~¢ I 

"~" - axOy .J 

(8) 

p2 o-~ + K ~ j- Pl ~ = 0 (9) 

,~ = 2p:~(1 + ~,) - ( e ~ + e & .  

The solution to this equation for the boundary conditions considered here may be written in 
the form 

f o~ sin ,~x 
¢ -  Sx~4t ~rtS o f(y)  ~ dh. (10) 

Substituting for ¢ in Equation (9) and differentiating with respect to h gives " 

34f a2f 
P2~y4 - KA= ~ + P,A4f = O. (11) 

As the strip is symmetrical about the x axis, the solution to this equation is 

f = A 1 cosh play + A s cosh p~Ay 

where Pl and P2 are given by 

Hence 

p2 +_ %/(~--4pipe ) 
2p~ 

l sin x ¢ -  Sx24t Sa2~rt o A 1 cosh pl)~y + _/t~ coshp2Ay ~ d)~. 

To satisfy the equilibrium boundary conditions at y = + a 

a-~ ~ a :  p~ a.2! B axay" 

(12) 

(13) 

(14) 

8 

7- 

L 

? 

(- 

= 



where 

Substitut!ng Equation (13) in Equation (14) gives 

Ua A1 
A2 - Us 

UI = pl sinh plO + QsO (Pl~ + P--l v) c°sh 

U2 =.P2 sinhp~0 + Q30 (p2~+ PJ v)coshp~0 
P~ 

O= Aa 

B 
Q 3 -  o 

plta 

(15) 

Finally the compatibility boundary condition at y = _+ a must be considered. From Equation (13) 
for the stress function, the deflection v at y = + a cart be deduced to be 

Sail l f; 1 Et ~ + p~- (qlA 1 sinhp~O+q2A~ sinhp20) sin__~_0X dO 

X 
X ~ -  

a 

Pt/P2 + Pl ~v q l - -  
Pl 

Pi/P~ + P2 9,v 
q2 "= 

P~ 

where 

(16) 

(82871) A* 

The vertical deflection of the edge memb'er can be separated into three parts. 

(1) The  deflection v 0 when x = 0 

1 S a  
v° = 2p~ Et (17) 

(2) The  bending deformation given by 

a4vl a~¢ (18) EI-g~x 4 = P - t 

where P is the local load per unit length applied to the edge of the strip, the loading considered 
here being 

P = S ; x < O  

P = 0 ,  x > 0 .  

P can be expressed as a Fourier integral 

p = S  s f ;  sinax - X d?, (19) 2 ~r 

(3) The  shear deformation given by 

- G A '  O~v~" - P -  t ~ '  (20) 
ax ~ Ox 2" 



From Equations (17), (18), (19) and (20), the total vertical deflection of the edge member is 

1 S a  Sa ff l l a2 I s in0X Ep2 2t ~ U £ + ~  {1 + A~coshp~O + A a c o s h p 2 0 } ~ d O .  (21) 

Equating expressions (16) and (21) and differentiating with respect to 0 

QeO~(q~Ax sinhp~O+q~A~ sinhp~O) = - (1 + Q~O~)(1 +A~ coshptO+A~ coshp20) (22) 

where 
EI I 

ol  - GA'a~ - 2(1 +.) A'a~ 

I 
Qe - -  p~a3t • 

Combining Equations (15) 
obtained 

A 1 = 

A,, 

where 

and 

and (22), the following expressions for the arbitrary constants are 

Ue(1 + 9~0 ~) "~ 

R - ~  - ~ - R ~  Ue ] (23) 

UI(1 + O10 ~) 

R 1 = (1 + QIO 2) coshp~0 + Q203q1 sinhp~0 

R 2 = (1 + QtO 2) coshpe0 + Q~,O~qe sinhp20. 

Substituting in Equation (10) and putting X = x/a, Y = y/a gives 

¢ = --[-Sa2I~ + Tr-l f :  (I+QIO~)(U~c°shplOY-Ulc°shp2OY)sinOXR1U~ _ R2UI 03 dO]. (24) 

Hence the stresses are given by 

S ff(l+QlO~)(Uep12coshptOY-Vlp2~coshp~OY)sinOX dO (25) 
% - pffrt __ R 1 U s - R eU 1 0 

S S f f( l+QlO2)(U,,coshplOY-Utcoshp2OY)sinOX dO (26) 
% - 2p~t perrt R1 U2 - R2 U1 

S f f ( l+Q~O~)(U~p~sinhp~OY-U~pes inhp~OY)cosOX dO. (27) 
= o 

If the strip bounded by the edge members were isotropic (i.e., Pl = Pe = 1), the stress function 
would be given by 

¢ = ~-SaeI~ + ~l ff (l+QlO~)(U(c°shOY-Ul'OYsinhOY)sinOXRl" U~' Z ~ '  ~ Oa dO] 

where 
R 1' = (1 + Q10 ~) cosh 0 + .Q~.(1 + v)0 a sinh 0 

R e' = (1 + Q~0~)0 sinh 0 + Q20~[(1 + v)0 cosh 0 - (1 - v) sinh 0] 

U 1' = sinh 0 + Oa(l+v)0 cosh 0 

U 2' = [1 + Q3(l+v)0 e] sinh 0 + 0(1 +2Qa ) cosh 0. 
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APPENDIX 11 

The Matrix Analysis of the Thermal Stresses in the Strip 

Algebraic symbols in bold type are used in this Appendix to denote matrices. 
The matrix analysis given below is summarised from Ref. 1. 

As hasalready been described in Section 5 of this Report, the strip is idealised into an orthogonal 

grid of direct stress carrying members separating fields in each of which the shear stress is assumed 

constant. Hence the load in the direct stress carrying members varies linearly from node to node. 

The strip can therefore be thought of as an assembly of direct stress carrying members in each of 

Which ~ the load varies linearly, and shear fields in each of which the shear flow is constant. 

Let X be the column matrix of the n redundancies in the idealised structure. In the present 

application the redundancies are selected as self-equilibrating stress systems of the kind shown in 

Fig. 4. As the structure and the temperature distribution are both doubly symmetrical, only one 
quadrant need be analysed. 

Let b 1 be a load transformation matrix such that the product blX gives the column matrix of 

the loads in the elements of the idealised structure due to the redundancies. The b 1 matrix has n 

columns and has two rows corresponding to each direct stress carrying element and one row 
corresponding to each shear carrying field. 

Let f be a matrix consisting of a diagonal assembly of the flexibility matrices of the unassembled 

elements of the structure. As the cross-sectional area of the direct stress carrying members is assumed 
constant, the flexibility matrix of each of these is of the form 

l 2 

where 
l Length of element 

A Cross-sectional area' of element. 

The flexibility of each shear field is a scalar of magnitude 

q~ 

Gt 
where q~ is the area of the f ie ld .  

If  H is the column matrix of the extension of the members of the structure due to their unrestrained 

thermal expansion and if V is the column matrix of the total extensions of the elements, then 

V = fblX + H .  

By the principle of virtual forces, the compatibility conditions at the (generalised) points of 
application of the redundancies X may be expressed as 

bl'V = bl'[fb~X + HI = 0. 
Hence 

X = - (bl 'fbl)-lbl 'H 

and the column matrix S of the loads in the elements of the structure is given by 

S = blX = - bl(bl ' fbi)-lbl 'H. 

The direct stresses are obtained by dividing the relevant loads by the cross-sectional areas of the 
members in the idealised structure. 

11 



APPENDIX III  

Review of the Analysis of Thermal Stresses in Rectangular Wings 

The surfaces of thin-skinned wing structures are usually too complicated for a 'continuous' stress 
analysis to be practicable. When however all the members in the surface conform to an orthogonal 
grid, the matrix method given in this Report can always be used to  obtain an approximate solution. 
Furthermore, provided the same grid size is used, a major portion of the computations involved in 
the thermal stress analysis is also incorporated in the analysis of the stresses due to external loads by 
the Same method. Provided therefore the expected temperature gradients are not too severe, this 

method requires very little extra computation. 
In the analysis of thin solid rectangular wings, complications due to the presence of reinforcing 

members do not arise and, while the matrix method used in this Report is still applicable if it is 
assumed that the wing thickness does not vary significantly within any one cell of a finite grid, an 

alternative 'continuous' approximate method due to Mendelson and Hirschberg ~ can also be used 
if the temperature variation is purely in the plane of the wing. In this method the governing equation 

for the stress function is satisfied at a finite number of chordwise stations by a polynominal 
approximation along the chord. If only a few temperature distributions are considered and if the 
thickness variation of the wing has a simple mathematical form, this method may be preferable. 

No analytical solution has yet been obtained for a temperature distribution including both an 

abrupt change in temperature in the spanwise direction at the edges of the fuselage and a chordwise 
temperature variation. It is however possible to modify the matrix analysis used in this Report for 

such a temperature distribution. If the portions of the wing inside and outside the fuselage are 
considered as independent grids with no connection between them, each may be subjected to the 
relevant temperature distribution over its entire area. The relative deflections of the nodes of the 
two grids along the edges of the fuselage can then be found by the method given here as can the 
redundant forces necessary at these nodes to make the different sections of the wing compatible. 

12 
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FIG. 2. Infinite strip loaded over half its length. 
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