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Part I. The Numerical Solution of the Navier-Stokes Equations for 
Steady Viscous Axi-symmetric Flow 

Summary. In this Report numerical methods used to solve the Navier-Stokes equations for steady viscous 
two-dimensional flow are extended to include the case of axial symmetry. The equations and their finite 
difference apprbximad0ns are derived working in cylindrical polar co-ordinates with the Stokes' stream 
function and the vorticity as variables. A new method of dealing with the boundary conditions is given. 

1.1. Introduction. The problem of solving the Navier-Stokes equations for the flow of a viscous; 
incompressible fluid past an obstacle is a matter of considerable complexity. The theory of non-linear 

partial differential equations is as yet insufficiently developed to provide a general analytical method 
of solution. A numerical approach is the only one that has so far been productive. In two dimensions 
numerical methods have been successfully developed and applied to specific problems, the majority 

of the earlier work having been done by Thorn:. 
The main difficulties arise from the non-linearity of the equations and under certain circumstances 

it has been possible to simplify them to some extent and make them tractable by analytic means. 
The non-linear terms in the equations are the inertia terms and if these are neglected after the 
manner of Stokes, or only partially taken into account as in the Oseen theory, analytical methods 
can Be used to study the very slow motion of a viscous fluid. These solutions are only valid for an 
extremely low Reynolds mimber and when the viscous and inertial forces become comparable 
in magnitude the theory is no longer applicable. Even in the simplest cases the analysis is difficult 
and can only be used on a few types of body prgfile. When a slightly viscous fluid flows "past a 
body the viscous and inertia forces are only comParable in a very thin layer of fluid near to the body 
surface and the methods of Prandtl's boundary-layer theory may 'be used. Numerical and analytical 
solutions have been obtained for many profiles; the reader is referred to Schlichting 2 for a survey of 
the theory. There remains a wide range where neither the slow motion theory or boundary-layer 

theory can be applied and the full Navier-Stokes equations must be solved. It is primarily with 

this region that we are,concerned. 
In the axi-symmetric case the full equations have proved intractable analytically and only a few 

exact solutions of-them are known, most of Which have littl~ physical ~61eviince. Numeric~il m. ethods 

have attracted little attention, mainly due tQ:the-difficu!ty, of.so[v~m~ [he rather unwieldy finite 
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difference equations whose non-linearity has made attempts at solution extremely long and tedious. 
Even in the solution for slow flows, using the Stokes' approximation, by numerical methods the 
labour required is almost prohibitive and the inclusion of the non-linear terms so complicates the 
problem as to make it impracticable for solution by hand. However, the growing use of electronic 
computors removes much of the difficulty and affords encouragement for the development of a 

satisfactory routine method. The machine time used can be quite high even with a relatively 

straightforward problem..The success of a solution may well depend to a large extent on the choice 
of the initial starting values; to build up a solution with all function values initially zero may seem 
the best procedure but has the disadvantage of taking so much machine time. On the other hand, 

an unfortunate choice can easily lead to divergence in the numerical process employed. It should 
be emphasised that this divergence arises from the numerical method and has no connection with 
hydrodynamic stability since steady flow is postulated. Divergence can usually be combated when 
working by hand but can be difficult to deal with on a computer, the usual technique being either to 
reduce the mesh size or employ only a partial movement in function values at mesh points. 

The first attempt to obtain a numerical solution was made by Thom 3 who examined the slow 
motion of a viscous fluid through an abrupt expansion in a circular pipe, working in cylindrical 
polar co-ordinates and solving the Stokes' equations. The only work valid at a finite Reynolds 
number appears to be that of Jenson 4 who has produced solutions for the flow past a sphere placed 
on the axis of a circular pipe at Reynolds numbers up to forty (based on the sphere diameter). 
The co-ordinate system used was spherical polars. 

Some of the methods applicable in two dimensions will now be extended to the case of axially 
symmetric flows using cylindrical co-ordinates. The working variables are the Stokes' stream 

function ~b and the vorticity ~. In two dimensions, this two-field related system of variables, first 
in'troduced by Thom 1, has been shown by Fox 5 to have a faster rate of convergence than if the single 
variable ~b had been used. It is to be expected that a similar result will hold for the axially symmetric 
case. An accurate formula to relate ~ and ~b at a solid boundary, analogous to Woods' formula in 
t w o  dimensions (Ref. 6), is derived. This formula has been found to be quite satisfactory in the 
problems so far considered and gives a reasonable rate of convergence. It has unfortunately not  

yet  proved possible to derive an easily applied convergence criterion as for the two-dimensional 

flow (Ref. 7), but in practice it seems that the two-dimensional test does give some indication as 
to when divergence can be expected. ' ' " 

As an example of the method and the technique used, the effects of viscosity on a pitot tube at a 
low Reynolds number have been investigated in some detail in Part II. 

1.2. The Axially Symmetric Form of the Navier-Stokes Equations. A brief derivation of the 
axially symmetric form of the equations in cylindrical co-ordinates is now included. 
In terms of Stokes' stream function the velocity components may be written 

a a¢ 1 a¢ 
r 8~; q r ' = r o z ' % ' -  0 

and the vorticity components 

(curl q)~ = 0; 
3qr 3q~ 

(curlq)~-- O; (curlq)~ = ~ -  8-7-- ~" 

If  i~, i~, and  i r are uni t  vec tors  in the  mer id ian  plane and perpendicular to  that  plane, 

q - qzi~ + q~ir, and ~ = ~i~. 

2 



In-vector form the Navier-Stokes equations are 

aT 
at VA(qag) = - ~VA(VAg). 

Now 

- -  VA (qA~)  = 
{a(qog) a(~) I ~+ ~ +  

a a(,% a 
v~(v~) = -  t~(~  .a~l + ~ ( ~ ) ) I  i+ 

where 

3qr Oq, 1 t 3~¢ 32~b 1 3¢I 1E~b 
~ = ~  W-T/az=+g~r~ 7 g  =7  

3 s a 2 I 0 
E 2 = --+ 

O z  ~ Or 2 r & " 

The equation of continuity is 

~(a,q,,-, + a ( q ; , )  _ o. 
0z 3r 

From (2) and (5), 

3 
-- VA(qA~) = r lqz~--z (~) -[- qr~r (!)I i¢" 

From (4) and (3), 

V A ( V ~ )  = -- E~4* i~. 

Substituting in (1) 

at a(¢, g/O .E~¢ = O. r~+r  3(z,r) 

Assuming steady motion 

R4¢ r a(¢, g/r) 
,, a(z, r) - 0 .  

Equations (4) and (6) will be considered in the form 

1 a# 
a~¢ = r¢ + - -  

r a r  

where 

A2~= 1 3r + - -  7 - vr 3z 3r ar3z vr ~3z 

A~ - ~ r  2 + az--~. 

(1) 

(2) 

(s) 

(4) 

(5) 

(6) 

(7) 

(8) 
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It is interesting to note that many of the known exact solutions of the axially symmetric equations 
can easily be obtained from Equations (7) and (8) by assuming that ~b is of the form Azmr  ~, where A 
is a constant. The solutions obtained by substitution and equating the coefficients to zero are 

and the particular case 

¢ = A;  Ar~; Ar4; A z ;  Azr2; Az~'r 2 

¢ = 2urZ/z. 

Working in spherical polar co-ordinates the solution ¢ = 2vr2/z (the well-known round laminar jet) 
has been obtained by Squire s, and the solution ¢ = AzZr ~ given by AgrawaP. 

1.3. Boundary  Conditions. The usual conditions to be satisfied at a solid boundary are that no 
slipping should occur there and that there should be no flux across the boundary. 

In terms of the stream function ~b these can be expressed as 

¢ =  constant; --=0~b O; --=0~b O. (9) 
Or Oz 

1.4. 

in the form 
The Determination of  Pressure Differences. The axially symmetric equations are considered 

p o t  = O-~ + q ~-r + qz ~-z - v -~£r~ + - + r Oz~ t 

F. 1 ap Oq~ Oqo Oqo tO'go 1 Oq~ ~q°t 
p 3z  Ot + q" -~r + q~" ~ z  - v t Or2 + - r Y r  + Oz2t 

together with the equation of continuity, 

0q~ 0q~ qr + = 
Or Oz r " 

Deleting the time derivatives and integrating along a path A B  in the fluid we have 

f 1 f~ l, oq~. oe,.] 
A P A 

+ k q -~r + q~ Oz ] dz  - v {V2qflr + V2q~dz). 
A 

Now, 

Tr  + q 7 z  ) dr + ~ q" ~ r  + q~ Oz ] dz  = {qflq,. + qflq~ - q,.~dz + q~¢dr} 

also 

Hence 

- -Oz d z + -  r -~r  dr - 

-~ f~ ( l ~ + ; ~ '  dr- l~+~l ]" (10) 



This equation enables the pressure difference between any two points A and B in the fluid to be 
determined by integration along a path connecting them. 

1.5. The Non-Dimensional Form of the Equations. It is frequently convenient to work with the 
equations in a non-dimensional form. If a dash is used to denote a non-dimensional quantity, 

r Lr', z Lz' ,  q Uq', F =  U F , ,  
U 

= = = p = 1 y 7 2 ~  ~ , ~.P~ 2" , ~b = UL¢' and ~ = - ~ ,  

where U is a representative velocity and L a representative length. 
Substituting these expressions in Equations (4) and (6) of Section 1.2: 

E'~¢' = r'~' (11) 

r ' E ' 2 ( r ' ~  ') = R e  1 8¢' O~' 8~b' a~' ~' a-~t (12) 
8z' 8r' 8r' 8z' r' Oz' 1 

where Re is a Reynolds number UL/v, and 

8 2 8 ~ 1 8 
E'~ _-_ + - -  

8Z '2 Or '2 r' Or'' 

The equation to determine the pressure difference between two points becomes 

2 (F/dr'  + F:'dz') - (PB' - P f f )  = qB '~ - q~'2 _ 2 ~t' t 7  ~ az. + ~ / ,  dr' - 

2f I Re t \ Oz' + - -  dr' - + dz' ~ ,  r S az ! \ S t  7 

where A' and B' are the points corresponding to A and B in the non-dimensional form. 

(13) 

1.6. The Numerical Solution of the Equations. The technique used in the numerical solution of 
the axially symmetric equations is similar to that used by,Thorn in two-dimensional problems. 
The continuous field of flow is replaced by a rectangular mesh and at the mesh points assumed 
values of ~b and ~ are placed. These values of ~b and ~ are then recalculated alternately by means of 
finite difference approximations to the Equations (7) and (8), with assumed values of ~ on the solid 
boundaries. From the new configurations of ¢ and ~ in the neighbourhood of the boundary new 
boundary values of ~ have to be calculated. The whole process is then repeated until the values of ~b 
and ~ are repeate d everywhere to the required degree of accuracy. 

1.7. Finite Difference Approximations to the Navier-Stokes Equations. The simplest finite 
difference approximations to the Equations (7) and (8) of Section 1.2 are based on two point 
differentiation. With a diamond (i.e., the mesh is orientated as shown in Fig. 1), the approximations 
are given by 

r n  2 

~bo = Cm - ( D - B )  - - ~ -  ~o (14) 

I I n ( d _ b ) _ l ~ . { ( A _ C ) ( d _ b ) _ ( D _ B ) ( a _ c ) } ,  (15) n~ n (A-C) =~m+~; 
~o 1 + 4r 2 8r2v 

5 
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where capital letters are used to denote the values of ~b and small letters values of ~ at the corresponding 
mesh points as shown in Fig. 1. The suffix 'm' indicates that the mean of the function values at 
the four points A, B, C, and D is taken. 

If a square mesh is considered , as in Fig. 2, then the finite difference approximations are given, 
with a similar notation to that for a diamond, by 

rn ~ 
n ( A + D - B - C )  ~ - ~ 0  4,o = # ~ - ~ r  (16) 

~o l 1 + 
n 2 n ( A + B - C - D ) }  
2r ~ 8r~v 

n (a+d-b-c)-  = t . , + ~  

1 
16rv {(B - D) (a - c) - (A - C)(b - d)}. (17) 

Alternatively, the first derivatives occurring in Equations (7) and (8) can be calculated using the 
five point differentiation formula. In view of the wider spread of points required it is difficult to 
say whether the accuracy of the solution is improved by this, it is, in any case, inadvisable to use 
any but the simplest approximations in the early stages of a calculation until a reasonably settled 
solution has been obtained, refinements can then be made in an attempt to improve the accuracy. 

Owing to the non-linearity of the equations simple formulae analogous to the 'twelve' and 
'twenty' (Ref. 10) used in two dimensions cannot be derived. 

1.8,. Treatment of the Boundary Conditions. For convenience the axially symmetric equations 
are considered in the form 

E~4~ = t* (18) 

where 

E ~  * = f(r, z) (19) 

0 ~ 8 ~ 1 [a 
E 2 = ~ + ~ r  ~ rSr ;  

~'~ = r [ ;  f ( r ,  z )  - r 8 ( ¢ , ~ / r )  
~(z, r) 

and r and z are cylindrical polar co-ordinates. 
At a solid boundary ~b is known and is constant, but the values of ~ are usually unknown and 

must be calculated from the flow pattern in the neighbouring area of the boundary. In solving the 
finite difference approximations to the Equationg (18) and (19) the procedure is to recalculate 
the values of ~b and ~ for certain assumed values of ~ at the boundary. Boundary values of ~ are 
then recalculated from the new- values of tb and ~ in the neighbouring flow. 

The usual conditions appertaining to a viscous flow problem are 

a~ 
= constant = ~O;Tr 

04, = 0 ; ~  = 0 (20) 

on a solid boundary. 



In order to derive a finite difference equation for obtaining ~ on a solid boundary subject to the 

conditions given in Equation (20), the configuration shown in Fig. 3 is considered. Suppose the 
r and z axes are rotated through an angle 0 so that the new Z axis is parallel to the tangent to 
4  ̀ = constant at 0, and the new R axis is parallel to the normal at 0, then 

Z =  z c o s O + r s i n O  

and 

R 

/e 

0 
Or 

= r c o s 0 - z s i n 0  (21) 

= Z s i n 0 + R c o s 0  

0 O 
= cos 0 ~ + sin 0 0--2 (22) 

0 0 O 
- sin + cos 0 - -  (23) 

Oz 0 oR OZ" 

Equations (18) and (19) transform to become 

O34̀  034  ̀ 1 l O4̀  04`l = C. (24) 
OR - ~  + OZ 3 (Z sin 0 + R cos 0) cos 0 ~ + sin 0 ~-~ 

OR ~ +  OZ ~ ( Z s i n O + R c o s O )  c o s 0 ~ + s i n V f f Z t  ' (25) 

where f '  is used to denote f (r ,  z) in the transformed plane. On the boundary: 

04, a4, 
0-R - 0 ; f fZ  = O; 4` = 4`0. (26) 

nsidering a point 2 on the normal to ~b = constant at a distance h from 0 in the direction of R 
increasing, Taylor 's  theorem gives 

04`0 h a 02 h ~ h ~ 4'0 034`0 0 %  
4`2 = 4`0 ÷ h-g~ + 2 ~ + 6 OR ~ + 24 OR ~ + O(M). (27) 

Differentiating Equation (24) and evaluating at the point 0 making use of the boundary conditions 

(26), the fact that all derivatives with respect to Z are zero and a~4`° - 0, the following relations 
OROZ 3 

can be obtained: 
034`0 

- ~o* (28) OR 2 

0~4`o 0~.o* cos 0 
+ ~0 ~ (29) 

OR 3 OR (Z 0 sin 0 + R 0 cos 0) 

04~o 044̀ 0 cosO0. ~o* cos 0 0¢o* 
OR ~ +  OR20Z ~ +  (Z o s i n O + R  0 c o s 0 ) - ( Z  o s i n 0 + R  ocos0 )  OR 

sin 0 085b0 0e~o * 
- (Z 0 sin O+Ro cos 0) " OR20Z = OR s (30) 

034`o 0~o* 
OR20Z OZ 

(31) 

a'~o a~'o ~ 
0R2aZ 2 aZ 2 

(32) 



From (30), (31) and (32), making use of (25), 

0460 - 2 02~°* 
OR" ~ - fo' - 

c°s20. ~o* 
(Z o sin 0 + R o cos O) z" 

Substituting from (28), (29) and (33) in (27), 

69.= 6 o + ~  ~0 ~ + ~  + Z  0 s i n 0 + R  0cos0 

h' I 32~o * cos20. ~0 * _fo, I 
+ ~  2 3R 2 (Z o s i n 0 + R  ocos0) 2 

Also, by Taylor's theorem, 

~2 ~ = ~o* + h ~ + - - - -  
h 2 82~o* 
2 OR ~" + O(h3) 

+ o (h~ ) .  

(33) 

(34) 

(35) 

Eliminating O~oe/OR from (34) and (35) and rearranging, the terms in O2~o*/OR ~ cancel out and 

l ;  ( G - G )  - ~* + -~fo'l 

~0" = h cos 0 
2 + (Z ° sin 0 + R  o cos 0) - 4(Z o sin 0 + R  o cos 0) 2 

Transferring to the original (r, z) co-ordinates this becomes 

t 6 h' I 
~0 . = th2 ( ¢ ~ - 6 o )  - ~2" + y L  

h cos 0 
2 4ro 2 t 

+ 
I '  0 

In the axially symmetric form of the Navier-Stokes equations 

E~(r~) - r 0(6, ~/~) 
v 3(z,r) - f ( r ' z ) "  

At the boundary 

(36) 

Or - 0; = 0 

and so fo is zero. 
The correct form of finite difference equation for use at the boundary is given by replacing 

~e in Equation (36) by r~, and f0 by zero. Hence 

12+--hc°S0r0 h 2 _ 4 r o  2c°s~Ol" (37) 

This formula is correct to O(h ~) in ~ andis probably the most convenient and accurate formula that 
can be used. 



As an example of the use of this formula let us consider the Poiseuille flow in  a circular pipe. 

With a pipe radius of twenty units and a centre-line velocity of two units, the stream function and 

vorticity are given respectively by 

= 0.00125r ~ -  r 2 

and 
= 0 .01r .  

Suppose that the value of ~ on the boundary (r = 20) has to be found f rom the values of ~ and ~ on 

the line r = 19. In  the boundary formula (37) the directed mesh length h is - 1 and 0 = 0. 

Substituting in the formula, 

20~0 = 6 (200-198 .09875)  - 19 x 0.19 = 4 .0  
(2- 

which gives ~ = 0"20 as required by the theory. This  complete agreement is to be expected in a 

Poiseuille flow, because the neglected terms in the derivation of the boundary formula are then zero. 

'9 



Part II. The Effects of  Viscosity and Orifice Size on a Pitot Tube at 
Low Reynolds Numbers 

Summary. The effects of viscosity and orifice size on a blunt-nosed pitot tube have been theoretically 
investigated up to a Reynolds number of ten, where the Reynolds number has been based on the radius of 
the tube. Results are expressed in terms of a pressure coefficient 

CI ~ _ Po - P.~ 
½pU ~ 

where P0 is the pressure measured in the tube, p the density of the fluid, and p~ and U the static pressure and 
velocity in an undisturbed flow at the position of the tube. 

The values of ff:~ for a blunt-nosed tube are found to be less than those for tubes with hemispheroidal 
heads, b~it always greater than unity in the range considered. The effect of the orifice size is to decrease C2~ 
as the orifice size increases, this decrease is very small but increases with the Reynolds number. At a Reynolds 
number of ten the decrease is at most five per cent of the value of Cp when there is no orifice. 

It is suggested that the decrease of C~) below unity found in some experimental investigations at a higher 
Reynolds number could be due to the effects of orifice size. 

2.1. Introduction. When determining velocities in a fluid from impact pressure measurements 

with a pitot tube a special interpretation is necessary when the tube Reynolds number  is small. 

I t  is usual to assume that the fluid on the stagnation streamline is brought  to rest wi thout  the 

action of viscous forces, and that the pressure measured at the tube orifice is the stagnation point 

pressure. T h e  velocity can then be determined from Bernouilli 's equation. When  the viscous and 

inertial forces become comparable in magnitude the Bernouilli formula is inapplicable and a new 

interpretation is required to determine the velocity correctly. 

The  geometry of the tube has been found to influence considerably the readings at low Reynolds 

numbers.  T h e  tubes most frequently used are the straight cylindrical blunt-nosed type and those 

with hemispherical or source shaped heads. T h e  corrections to be applied to the blunt-nosed types 

at low Reynolds numbers  have been found experimentally to be smaller than those required for 

tubes with hemispheroidal heads. I f  the tube orifice is large a complex flow pattern is set u p  inside 

and around the tube which can so disturb the flow that the pressure recorded is not  the true 

stagnation point pressure; this effect is not confined to measurements at low Reynolds numbers.  

When the tube orifice is small compared with the tube diameter this flow does not occur to the 
same extent and the pressure measured differs little f rom the true stagnation point pressure. 

A considerable amount  of research has now been done on the effects of viscosity and of probe 

geometry on pitot tubes, the majority of which has been experimental. Th e  only theoretical bases 

available for comparison have been either the flow near the stagnation point of a sphere or a prolate 

spheroid. Reasonable agreement between theory and experiment has been obtained in the cases of 

hemispherical headed and source shaped tubes. Wi{h the blunt-nosed tube we can expect the flow 

pattern to differ f rom that around a spheroid and whilst the flow round a spheroid has been used by 

some authors for comparison the r.esults have not been in agreement and there is little justification 
for mak!ng the comparison. 

T h e  earliest work on the effects of viscosity on pitot tubes was that of Miss Barker n, who 

experimented with straight cylindrical tubes in a Poiseuille flow. T h e  viscous effects were found 

10 



to be apweciable below a Reynolds number of thirty, where the Reynolds number has apparently 
been based on the internal radius of the tube. Whether the radius was internal or external is not 
made completely clear when the dimensions of her apparatus are given, but it seems likely that at 
the mouth of the tube these radii differed only slightly. 

Homann ~2 has investigated the flow past a sphere by means of boundary-layer theory and also 
studied the flow experimentally. In terms of a pressure coefficient Cp such that 

C~- Po -.P~ 
½pU 2 

where Po is the pressure measured in the pitot tube, P8 and U t h e  static pressure and the velocity 
in the undisturbed flow and p is the density of the fluid, the result of Homann is given by 

6 
= 1 . +  

Re + 0.455~/Re' 

where the Reynolds number Re is based on the radius of the sphere. It is difficult to specify the exact 

range of validity of Homann's theory but it is quite accurate above a Reynolds number of ten. 

This is supported by the fact that the values of C~ agree quite well with some numerical results 
given by Jenson ~ for solutions of the complete Navier-Stokes equations for the flow past a sphere 
at Reynolds numbers up to twenty. 

Hurd, Chesky and Shapiro la have experimented with cylindrical blunt-nosed tubes and found 

that between Re = 60 and Re = 1000 the pressure in the tube is slightly less than in an inviscid 
fluid, i.e., C~ < 1. MacMillan 14 has also experimented with similar tubes and failed to find the 
decrease of C~ below unity; he did however find it using tubes of rectangular cross section (Ref. 15). 

The work of Sherman 16 was carried out in both subsonic and supersonic airstreams using three 
types of tube, two were source shaped and the other was blunt nosed with a sharp lip. At supersonic 
speeds a marked tendency for C~ to decrease below unity was found; at subsonic speeds the 
occurrence of values below unity was slight. Sherman also suggests that the tube Reynolds number 
should be based on the internal radius of the tube orifice rather than the external radius of the tube. 
In view of the disturbance caused to the flow at low Reynolds numbers by the tube there seems no 
reason to assume that the value of C~ is independent of either radius although much closer agreement 
is obtained between experimental results when the internal radius is used as the characteristic length. 
Whilst there is considerable scatter in Sherman's results at low Reynolds number's in subsonic 

flow, the source shaped tubes tended to give values of C2) following Homann's theory whereas the 
blunt-nosed tube gave results nearer to those of Miss Barker and the values of C~ were much lower 
than for the source shaped tubes, the Reynolds number being based on external radius. 

The present investigation was conducted with the object of providing a theoretical comparison 

for use with the blunt-nosed pitot tube, and also to ascertain whether the effect of orifice size could 
be determined. 

2.2. Theoretical Model. The model used to arrive at a theoretical solution was as follows: 
a semi-infinite blunt-ended cylinder with a radius of 1 cm was placed on the axis of a circular pipe 

of radius 20 cm. Upstream of the cylinder there was a Poiseuille flow and downstream the flow was 
assumed to tend to that in an annulus. The upstream centre-line velocity was taken as 2 em/sec. 
Initially there was no orifice in the cylinder but later the walls were assumed to be infinitely tlfin 
so that the orifice effect could be studied. (See Figs. 5 and 6.) 

11 
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The origin of co-ordinates was taken at the stagnation point 0 on the cylinder (see Fig. 4) With 

the z-axis along the axis of the pipe and the r-axis perpendicular to it. We specified ¢ = 0 on the 

cylinder surface and t~ = - 200 on the surface of the containing pipe. The upstream Poiseuille 

flow was given by 

¢ = O" 00125r 4 - r 2 (1) 

= O.Olr where 0 ~< r ~< 20 

and the limiting annular flow downstream by 

¢ = 0.0018716r ~ - 1. 14798r 2 log r + 0.245538r 2 - 0-247409 (2) 

= 0.014973r - O" 997125/r where 1 < r < 20. 

2.3. The Numerical Solution. With an initial mesh length of unity, assumed values of ¢ and 

were placed at mesh points throughout the field. Upstream, boundary values given by the 

Poiseuille flow of Equations (1) were placed about two pipe radii from the cylinder. Downstream, 

similarly about two pipe radii away, boundary values given by Equations (2) were used. These 

artificial boundaries were completely arbitrary for it was obvious that the transition from Poiseuille 

to annular flow could not take place over such a short distance. Placing the boundaries any further 

away initially would have so increased the size of the field to be worked as to make an attempt at 

solution impracticable. 
Using the methods of Part I, an approximate solution to the Stokes' equations (i.e., the case of 

zero Reynolds number) was obtained working entirely by hand. The next step ~in the process was 

to move the assumed boundaries further away and investigate the effect which this had upon the 

function values in the neighbourhood in which we were particularly interested. After moving the 

boundaries further away and settling the field again it sdon became apparent that whilst the upstream 

flow was settling fairly rapidly and the disturbance caused by the insertion of the cylinder was not 
being propagated very far upstream, the flow downstream could not settle to the annular flow for 

many pipe diameters. Fortunately this was no serious disadvantage, for changes of quite large magni- 

tude in the function values a short distance downstream were found to have almost no effect 
on the upstream values. Since our main interest lay in the region around the end of the cylinder 

and in the upstream flow it was found possible to fix the downstream function values when they 

were only changing slightly after each recalculation from the finite difference equations, without 

causing too serious a disturbance of the upstream flow. This procedure was adopted and the field 
settled. The mesh length was then reduced in the region extending about one pipe radius up and 

downstream of the stagnation point 0 and further reduced in the region near the cylinder and 

stagnation point. 
At the sharp corner of the cylinder the empirical method introduced by Thom 17 for use in two 

dimensions was used. In Fig. 7 two values of ~ were used at the point A, one of these was calculated 

from the values of $ and ~ at B and used in the recalculation of the function values at B using a 

diamond, and the other was calculated from the values at C and used in the diamond centred on C 

for recalculating values there. The two values of ~ at A are artificial, effectively one is on the inner 
wall of the annulus and the other on the blunt end of the cylinder and both are slightly removed 

from the actual corner. Repeated subdivision of the field in this neighbourhood has been found to 

raise these values considerably while hardly affecting the surrounding points. 
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A sufficiently accurate approximation to the Stokes' flow having been obtained this solution was 
used to provide a series of starting values for the problem at a finite Reynolds number. The Reynolds 
number was based on the radius of the cylinder and the upstream centre-line velocity, v the kinematic 
viscosity being the parameter used for varying the Reynolds number. 

It was found that the flow away from the cylinder at a low Reynolds number deviated only 
slightly from the solution given by the Stokes' approximation and that changes in the function 
values at some distance from the cylinder did not affect the solution closer in. This enabled a much 

smaller field to be used for the finite Reynolds number solutions and the assumption was made that 

the flow four radii upstream and downstream of the cylinder, and three radii out into the stream, 

was given by the solution of the Stokes' equations. Initially the field used was even smaller than 

this and the boundary taken only two radii up and downstream, the extension to four radii still 

caused only slight changes and it; seems that the assumption is reasonably valid provided that it 
is not used at too high a Reynolds number. 

Solutions have been obtained under the assumptions already mentioned at Reynolds numbers of 

0, 1.0, 2.5, 5.0 and 10. It was felt that the assumptions made should certainly be valid as far as 

Re = 5 and whilst solutions above this could be obtained care should be taken in interpreting 

them. The calculations at Re = 0 and Re = 1 were both initially worked by hand and later checked 

on an electronic computer; those at Re = 2.5, 5.0 and 10 were entirely worked on a computer. 

When the problem had been solved for a blunt-ended cylinder without an orifice, the geometry 

was changed to that shown in Fig. 6 where the cylinder is assumed to have infinitesimally thin 

walls, and the problem reworked. In this case three artificial values of ~ were required at the sharp 
lip of the cylinder. 

2.4. The Calculation of the Pressure Coefficient. It was convenient to express the pressure 
measured at the stagnation point 0 on the cylinder in terms of the coefficient 

C p  - Po - P~ 
½p U 2 

where Po is the pressure measured at O, p~ the static pressure at 0 in a Poiseuille flow undisturbed by 
the introduction of the cylinder, p the density of the fluid, and U the centre-line velocity in the 
undisturbed upstream flow. 

A point A was taken on the pipe axis at such a distance from 0 that the flow there was practically 
undisturbed. The pressure coefficient was then given by 

= ½ p  U 2 -  = ~ - 1 2 " \ NpU ] Disturbed \ ~-p S ]Undislburbed 

The pressure differences were then determined using Equation (10) of Part I. Between two points 
and a on the pipe axis we have 

Pl-(P -PP) - qf2 + fi ( !) 
On the pipe axis both ~ and r are zero, making ~/r an indeterminate form; L'Hopital 's rule gives 
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The Reynolds number was based on the radius of the cylinder and the undisturbed centre-line 

velocity (U = 2 cm/sec) whence 

2 
P - -  Re" 

On substitution the following formula was arrived at for the calculation of C~): 

0"02l 2 fo O~ 
C D = 1+ Re Re ~TrdZ 

where l is the distance between 0 and A. 

2.5. Results. Numerical values for ~b and ~ m a portion of the field near to the cylinder at a 

Reynolds number of five are recorded in Figs. 8 and 9; in Fig. 8 we have the values for the 

blunt-ended cylinder and in Fig. 9 those for the cylinder with an orifice. 
A careful numerical integration led to the values of C~) set out in the Tables below being obtained. 

TABLE 1 

Bhmt-ended Cylinder 

Re Cp 

0 -> 2.37/Re 
1-0 3.21 
2-5 1.818 
5.0 1. 384 

10.0 1.185 

TABLE 2 

Cylinder with Orifice 

Re C~ 

1.0 3.17 
2.5 1.765 
5.0 1-326 

10.0 1-128 

The value of Cp in the limiting case Re ~ 0 is artificial. It should be realised that when we solve 
the Stokes' approximations by a numerical method the solution is still being obtained for a finite 
Reynolds number. This Reynolds number varies with position in the field and is related to the order 
of magnitude of the neglected terms in the finite difference approximations and to the residual at 

each point in the field. 
The variations of pressure and velocity on the stagnation streamline for the blunt-nosed cylinder 

are shown in Figs. 10 and 11 respectively. 
The change of position of the zero streamline with Reynolds number near the cylinder with 

infinitely thin walls is depicted in Fig. 12. It is seen from Fig. 13 that the streamline enters the 

tube and that a very weak eddy is set up inside the orifice. 
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2.6. Comparison with Experimental Results. The variation of C~ with Reynolds number, based 
on the internal radius of the tube, is plotted in Fig. 14. Also shown are the experimental results of 
Miss Barker, Sherman, Hurd  el al. and MacMillan for tubes which had a similar geometry to that 
of the model used in the present investigation. The experimental points are rather scattered but the 
general agreement with the theoretical result is quite good; also shown is the theoretical result of 

Homann for the sphere, which lies considerably above the present result. 
Wi th  the tube Reynolds number based on the external radius the results are given in Fig. 15. 

Miss Barker's resuks have been plotted on the assumption that the tube was sharp lipped and the 

internal and external radii were the same. 
MacMillan has drawn faired curves through his own experimental points and also curves through 

the points of Sherman and Hurd et al. with the Reynolds number based on the external diameter 

of the pitot tube. Plotted on this basis it is apparent that the values of C~ for blunt-nosed tubes lie 

below those for hemispheroidal headed tubes, and that as the orifice size increases so C~ decreases. 

The results obtained using the present approach confirm both of these experimental facts. When 

the internal radius is used in defining the Reynolds number all the experimental results tend to 
lie much closer together as has been shown by MacMillan. Certainly in the case of the blunt-nosed 

tube it seems that the internal radius should be used in the definition of the Reynolds number; 
without further investigation on hemispheroidal headed tubes it is difficult to determine which 

dimension should be used in their case. The fact that as the orifice size increases so C2~ decreases 
could possibly explain the decrease of C~ below unity as found by Hurd et al., it may be that the 
orifice effect outweighed the viscous effect around a Reynolds number of 60. Since the orifice and 
viscous effects are presumably interdependent and have some dependence on the ratio of internal 
to external radius of the tube, the value of this ratio used by MacMillan may not have been high 
enough to influence sufficiently the orifice effect in his experiments with circular tubes, and there 
was no decrease Of C~ below unity. The tubes with a rectangular cross section with which MacMillan 
found C~ < 1 had been formed by flattening circular tubes whose original ratio of internal to 
external radius was between 0.8 and 0.9. If the flattened tubes could be regarded as equivalent 
to the original circular tubes from which they were formed then this ratio would appear high enough 
for the orifice effect to outweigh the viscous effect. The tube geometry of Sherman was slightly 
different and from his results with an open-ended tube there appears to be some Math number 
effect even at subsonic speeds. Sherman states that at subsonic speeds there was no tendency for 
C~ to fall below unity; however, on a close examination of his readings in the range of Reynolds 

numbers between 50 and 1000 with the open-ended tube, out of some sixty readings about half 

were either less than or equal to unity. At supersonic speeds C~ was less than unity over a wide range. 
This suggestion that C~ decreases below- unity at some value of the ratio of internal to external 

tube radius when the Reynolds number is high enough for the viscous effects to be outweighed 

by the orifice effect is very tentative. The experimental evidence is by no means conclusive and 

much scope is still available for further experiment. 
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Thanks are also due to the Oxford University Computing Laboratory for providing facilities on the 
Mercury Computer which enabled part of this work to be done. 

15 



¢ 

q~., q¢, qz 

A2 

E ~ 

V2 

p 

72 

P8 

P 

n 

0 

(R, Z) 

U 

L 

Re 

% 

LIST OF SYMBOLS 
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Fluid density 
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Transformed plane where the r, z axes are rotated through an angle 0 

Representative velocity 

Representative length 

Reynolds number 

Non-dimensional pressure coefficient 

Unprimed symbols are dimensional whereas primed symbols are non-dimensional. 
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