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Summary. The method described in this Report gives an approximate solution for the cross-flow velocity
in an incompressible laminar boundary layer on an infinite swept wing. The cross flow is defined as that
velocity in the boundary layer in a direction normal to the outer flow streamline. The two-dimensional flow
in the chordwise direction is assumed known.

The boundary-layer equations are expressed in a non-dimensional form. Head’s method, which is based
on the momentum and energy equations and is used to solve the two-dimensional flow, is briefly described.
From the non-dimensional boundary-layer equations, an equation involving the cross-flow profile directly
is obtained. This equation is then integrated throughout the boundary layer giving two integral equations.
Typical cross-flow shapes have been used to calculate functions which when used in conjunction with the two
integral equations and the boundary condition at the wall enable the cross flow to be determined for arbitrary
velocity and suction distributions. The stability criterion for three-dimensional flow is expressed in the
notation of this method and is a simple condition on the cross flow.

The method is then applied to the upper and lower surfaces of a wing, suction distributions being calculated
to maintain stability at each point of the wing. For the lower surface comparison is made with an independent
method (Ref. 1) in the adverse pressure-gradient region,

Two more sets of comparisons are made, each with an exact solution. The method is tested on a number
of similar solutions, and on an exact solution obtained by American workers (Ref. 8). Consideration is also
given to some difficulties encountered in the use of the method.

* Previously issued as Handley Page Research Report No. 54—A.R.C. 22,154.



1. The Cross Flow.

OUTER FLOW
STREAMLINE

()

In Fig. (i), U, and ¥V are the components of the free-stream velocity U, in the chordwise and
spanwise directions respectively. Within the boundary layer on the infinite swept wing, the compo-
nents are # and v, becoming U(x) and a constant I, outside the boundary layer. The cross flow #

is defined as that velocity in the boundary layer in the direction normal to the outer flow streamline,
t.e., from Iig. (i)

7 = oS i — u sin if

v u
= — Vycos— — Usin,
V, ° -
but
. uv,
Vocosp = Usinyg = (O 4 V2"
therefore
. uv, (v u) _uur (’v u)
2+ vy \v, Ul (R+PyR\V, U/
where
U T,
U= T, and I = U,

It is thus seen that #, the cross flow, is directly proportional to the difference of the velocity
profiles in the chordwise and spanwise directions, which is denoted by N, the cross-flow profile.
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2. The Boundary-Layer Equations.

(derivatives with respect to y being zero)

Chordwise:

Spanwise:

Continuity:

Using the variables

where

6 being the momentum thickness, i.e., § = f

The boundary-layer equations become, in non-dimensional form
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where dashes denote total differentiation with respect to X.
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2.1. The boundary-layer equations on an infinite wing are

(1)

(2)

(3)

)

©)

2.2. The familiar chordwise momentum and energy equations can be derived by multiplying
Equation (4) throughout by factors 1 and T(X, Z) and integrating the variable Z from the boundary
wall to infinity. In his method of solving the two dimensional flow, Dr. M. R. Head (Ref. 2), has
considered a two-parameter system of profiles denoted by T = T(Z, [(X), m(X)) where the
parameters / and m are the first and second derivatives of T at the wall, i.e.,

(83324)
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Defining the functions
H(, m) = f (1-TVdZ
0

Hl,m) = f : T(1 - T%dZ

D¥(l, m) = f 0 (g) iz

A=Ur, A - \/t* N/(U"f)
14

and writing

=~ Wyt
the momentum and energy equations become
2
t* = Z (I-AH+2)- ), ; (6)
U
1
H' = ——[2D*-H {I-AH-1)- A} —A]. 7
- (1= AH-1) = 2} = ] ()

From Equation (4) the boundary condition at the wall becomes
m= —A—IX. (8)

Dr. Head gives a step-by-step process by which these three equations may be solved for the three
unknowns ¥, [, m, using charts for H, H,_and 2D* as functions of / and m. A numerical form of these
charts, used in the present calculations, may be found in Appendix I, with the equations suitably
adapted.

The T profile itself can be obtained from charts published in Ref. 2.

2.3. By subtracting Equation (4) from Equation (5) the following equation is derived for the
cross-flow profile N = § — 7.

s aN
UTS o+ {W* faX(UT)dZ_z fUTdZ}
1 &N _
e T2 4
— G — (=TT )

Since N is in general small compared with unity, it is preferable to deal with this equation directly
rather than the spanwise equation, to solve the three-dimensional component of the boundary layer.

The cross-flow Equation (9) is now dealt with in integrated form. Multiplying both sides by
j(N, T) and integrating the variable Z from the boundary wall, 7.e., Z = 0, through the boundary
layer, the equation becomes

© oN W z t*’ z
f UTaX](N )dZ+f0 I T) [\/t*_f o (OT)az ~ E*’LUW} iz

- ;*fw (N, T) aZjZdZ— U f:(l—Tz)j(N, T)dZ. (10)
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In the left-hand side of Equation (10) J or ai jdZ may be replaced by

3
U*f TNjdZ — UJ- NX]dZ Uf NT L az

and the remaining term may be integrated by parts, giving
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The term to be evaluated between zero and infinity may be taken as zero since N = (O both at
Z = 0 and as Z — o and j is taken to be bounded.

Using the relations
a7 aj\ oN aj\ aT
sx = o), ax * (37,
and

9 (aj\ 8N 3\ oT
o7~ (o), 22 * 57,

)zt 7

the left-hand side becomes,
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Substituting the left-hand side of each of Equations (4) and (9) into the expression above, the following
general integral equation is finally obtained,
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2.4. By choosing j(T, N}y equal to 1 and 1 — T, two integral equations linear in NV are obtained.
Defining

r = f NTdZ
0

yy = f NT(~T)dZ
0

5 = f N1-T)dz
0

©dN T

(3N
o= ().

82N)
A
! (32 z-0

these two equations become

-1 _
no= T A 1T + A+ H) + 5 (12

—1 o
R = o TRARLOM) S A H=H) 45 = 25+ As] (13)
A

the boundary condition at the wall, from Equation (9) being
S3A = s, + A (14)

Since there are three equations, N can be chosen to depend on three arbitrary parameters. Given
these parameters, the cross-flow profile is known.
Let

fflf(n)nL by(n) for 0 < 7 < 1

Z (15)

lo for n > 1, where y = 0o
o

(f(n) and g(») are typical profile shapes which will be dealt with in Section 3).

a and b are scaling parameters giving the magnitude of the N profile, their ratio determining its
shape. ¢ is a parameter which gives the thickness of the N profile with respect to the chordwise
boundary layer.

Using the definition (15) it can be seen that ; = f NTdZ and 7, = f NT(1 - T)dZ may be

obtained as linear functions of g and b with coeflicients which will depend on the parameters o, /, m.
It therefore follows that @ and b can be written in the form

a

— rioy(o, I, m) + ryos(o, 1, m)
b= —rpyo, I, m) + ryfy(o, [, m),
where it is supposed that «;, oy, 8, and 8, are known as functions of ¢, [ and m.
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Also
1 df) de
oo To () s (%) ]
? OUI: (d’ﬂ 7=0 d’? n=0

-1 azf / d%g
= o0t < (2),, ~? (8) L)
the derivatives being known constants.
Defining E = As3 — s, — A the boundary condition is satisfied when E = 0.

A step-by-step method can be used in the solution.

At the beginning of a typical step, all quantities on the right-hand side of Equations (12) and (13)
are known. The values of the derivatives ;" and #,” may, therefore, be calculated and hence »; and
7, at the end of the step derived.

The chordwise solution is known at the end of the step, hence values of /, m, A and A are given.

Taking suitable values of o, coeflicients o, oy, B;, Bs can be found and hence using the values of
7, and #,, @ and b can be calculated for each value of o, and thus s; and s, and £ can be found for
each o. Cross plotting E against o to find the value of o satisfying the boundary condition, the values
of a, b, 53 and s, can be derived and hence the N profile is determined. Finally it is possible to
complete the step by obtaining s, and s, from the definitions

o] 1 1
5 = fo N1 - T)dZ = amof Fln)dn + bloof g(n)dy — 7,
0 0

@
5y = fﬂ —g—Z]Y %_; = —rdiao, I, m) + rydy(a, I, m),
where d; and d, may be obtained for values of /, m, and o.

In practice it has been found to be quicker to keep plots of the quantities 7y, 7y, §;, sy, 55 against X
and thus to find the extrapolated values at the middle of the step. The derivatives #;" and 7, can thus
be calculated and », and 7, at the end of the step obtained. If these are inconsistent with the

_extrapolated 7; and #,, it is a simple matter to repeat this process to obtain consistency. Since all the
quantities 7y, 7, $3, S5, S5, are linear in NV (note that

© N oT © T
w=[ sz [ Npi
their plots are similar in shape which is helpful in the process of extrapolation. Using the values of
7, and r, and satisfying the boundary condition, the step can be completed as above, giving values
of s;, 55, and s; at the end of the step. This step is acceptable if these values are reasonably
consistent with the extrapolated values.

If the calculation is started from a stagnation point on a wing, the values for starting the method
may be obtained from the similar solution p = 1, Section 6.

The size of a cross-flow step will in general be the same as that used in the chordwise calculation.
Occasionally, however, it is possible to reduce the number of steps required in the cross flow from
that needed for the chordwise. The step size for both calculations depends on the rate of change
of the velocity and suction distributions. Smaller steps are needed near stagnation and after a
discontinuity in either of these distributions. In the calculation found in Section 5, the smallest
step taken was about 0-02 per cent of the chord, and the largest about 10 per cent.
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3. Basic Profiles. Inthe previous Section, NV has been defined as a linear function of two profiles
f(n) and g(n) where 0 < n < 1. Clearly the generality of the method depends on the extent to
which N profiles arising in practice can be represented by the f and g profiles chosen. In Fig. 1,
three profiles are shown, each scaled such that their maximum value N_,, = 1 and that they reach
1/50 N, (i.e., N = 0-02) at y = 1. These profiles have been found to cover the range of shapes
of one-sided proﬁles encountered in a number of exact solutions.

Profile A(7) is obtained by suitably scaling the difference of two asymptotic suction 7" profiles
of different thicknesses. In regions of high suction in the adverse pressure-gradient region it has been
found that this shape of profile tends to occur frequently. In particular the shape is very much like
that of the similar solution suction profiles for p = — 1.

Profile S(n) is the stagnation profile without suction (similar solution p = 1), again suitably
scaled. It is the dominant shape contributing to the N profile in favourable pressure-gradient
regions, even where suction is applied.

Profile B(n) is obtained from the difference of two Blasius T profiles of different thicknesses
scaled as above. It is likely that this shape occurs as the N profile on an infinite wing for the Howarth
flow (U = Uy + U,X) in the region where conditions are changing from those of a flat-plate
solution N = 0.

Since two profiles only may be chosen, it was decided to take f(%) = S(y) and g() = A(n) — B(x),
in order to obtain a reasonable coverage of the region. The values of N for these profiles,
at intervals of 0+ 05 in % may be found in Table 1. Note that the g(n) profile is of the cross over type.

The expressions found in Section 2.4 may now, therefore, be written:

a = — 1oy + 70 W

b= —rp+rbs

55 = 1 (0-86523a+1-48495)
o

) > (17)
1= (0-4104a+2-538b)

Il

51

o(4-7197a—1-16015) — 7,

So = — 1ydy + 7ods

The coefficients o;, oy, By, By, d; and d, may be found in Table 2 as functions of / and m for
values of ¢ = 0-7,0-9,1:0,1+1,1-2 and 1-4.

These tables were computed from similar chordwise profiles obtained from the Falkner-Skan
solution (Ref. 3), and a number of T profiles selected from those computed in a recalculation of
Head’s charts undertaken by A. W. Lindfield of Handley Page Research Department. No tables have
been calculated for the separation region, where / < 0-2, since this region is not required for
present purposes.

4. The Stability of the Three-Dimensional Flow. Professor Owen first suggested the Reynold’s

nmax |

number y = | % 1 based on the maximum cross flow | 7,,,,, |, and 2, at which | n| = 1/10| »

MmMuX ’

as being a suitable criterion for the stability of the cross flow. As long as y does not exceed its
critical value, ¥, the flow will remain stable.



W. Byron Brown and P. Sayre (Ref. 4) have solved the Orr-Sommerfeld stability equation
exactly, for a number of secondary flow profiles in the regions of favourable and adverse pressure
gradients with and without suction. They have shown that the critical value of y, above which
disturbances are amplified, depends to a considerable degree on the shape of the profile. They have
adopted the value |0%(n/ny,,.)/32/2,),- | as a shape parameter.

N. Gregory found that if y.; was plotted: against this second derivative, a roughly linear
relationship was possible. Thus the value of y,.;, may be determined from

Xerit = 705 4 0:625 | 3%(n/n,,.)/02/2 1), | -

In the notation used previously

Npax | 106A4/2%E

X
X , (18)
; 2
Kerit  70.5 1+ 0625 (1004)%s,
where L o
k = —_('{Z—_:' '\/R(,'
V(U2 +1V?)

and A is the value of n at which | N| = —1-16 | Mz | -

In Figs. (i), (iii) and (iv), IV profiles of the one-sided and the cross-over type are shown, with the

values of NV, and A which can be taken.

(it

N4

10‘qux

a;
0
From Fig. (iv), two apparently equally acceptable values of A can be taken, giving two distinct

values of y/x.. The difference between these values is rarely more than 10 per cent of y/yep-
From Figs. 25 and 26 N, and A can be found, given the values of 2 and 4.
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5. The Method Applied toa Wing. 'The object of this calculation was to obtain suction distributions
which would ensure stability on the upper and lower surfaces of a wing. The criterion taken was
that x/y,,i, should be kept as near to 1-0 as possible, and should not normally be allowed to exceed
1-2, except near the trailing edge. This was a lifting case, where C; = 0-3 and the flight Reynolds
number was 13 x 108,

For this calculation the boundary-layer Equations (6), (7), (8), (12), (13) and (14) were used in a
slightly different form. A variable ¢ was used in place of X. Some three-dimensional effects were
included in the equations, not, however, causing any added difficulties in their solution. The wing
was treated as a developable surface, the generators of which met at a point. ¢ was the angle made
by a generator with the leading edge. Assuming that U, I (velocity components in the ¢ and — »
directions), #* and other non-dimensional quantities are constant along a generator, the equations
in their revised form become:

dr¥ - V¥
20 - (dL— V) PH+2) — - (1435, 2r) (19)
b Ul dé / 2
dlT Vi¥
.1 gy m [U‘ﬁ +3 (,‘?U— 17) £ — ﬁ-] +
db  Ut*| 2 d dé 2
Ve* ]
o (Trat 3 —4n) ; (20)
dr, L (fUde AU ¥ UdV
S = [ ( = ,+ )t*:|r1+
dp U L2 dp \dp 2 T db
40 U2 U 37 )
(- v dV) (14 H) + 5 — V?f N2dZ| @1
dd v Tdg 2 Jo |
dr, (7 de* dU 3V U 0o
1 g[( dr F2(61(/7_371/ ldV)t%Jrz+(dU_V)t*SJ+
de U (L2 do dé 2 TV dp d¢ ,
AT r72 77 A7 %
sy -2, (‘H’ _y- U —[_’_-‘“/) sty f N*dZ +
dg VooTVdg. 2 Jo
* o
Lo f e szs : (22)
0 ]
the boundary conditions being
m+)\l+({q—V)t*~() (23)
d
dU U U
5g = Asy + (d Lopl LY dV} t* = 0. (24)
d Vo TVdé

V' is, of course, for this case no longer a constant. Terms involving cross-flow quantities occur in

(19) and (20) and terms involving f J

0

N2dZ and f " N*TdZ occur in (21) and (22).
0
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In the calculation described here, the extra terms in r, 7, and S, of Equations (19) and (20} were
not included in the step-by-step computation but a check on their magnitude was made. It was
found that this was never sufficiently large to influence the calculation to any significant extent.
An approximate idea of the value of the extra terms in (21) and (22) was also obtained and in this
calculation, they too were found to be small. If the value of these terms should be needed exactly,
a means of determining them will be found in Ref. 9. In the same paper, an account of the derivation
of these equations in ¢ is given.

5.1. The Upper Surface. In Fig. 2, the velocity distribution for the upper surface is shown
plotted against ¢. This distribution and that for the lower surface were calculated for a tapered
wing using Miss Weber’s method and including local generator sweep. Pressure was assumed
constant along a generator.

In Fig. 3 the suction distribution calculated to stabilise the flow is given, and in Fig. 4, x/x..it
appropriate to this is shown. Suction was not applied from the leading edge until y/x..;;, approached
1, having started from zero at stagnation (¢ = — 0-00035). Suction was then applied discontinuously
to keep ¥/ 0t the region of 1. The suction then fell steadily until ¢ = 0-025 was reached, and
it would have been possible to decrease suction still more, since the three-dimensional flow was
becoming increasingly stable. However, to avoid the boundary-layer thickness (depending on t¥)
becoming too large, and so bringing the two-dimensional stability into doubt, the suction was
increased from ¢ = 0-025 onwards. The x/x. continued to fall, reaching a minimum at
¢ = 0:054, and the values of | Npax | previously taken from the negative part of N profile, were
subsequently taken from the positive part (see Figs. (iii) and (iv)). x/xc then increased rapidly
but the flow was kept stable by the increase in suction. At ¢ = 0-08 the situation depicted in
Fig. (iv) was reached, necessitating a change over in the definition of A and causing an abrupt drop
in the value of x/x..- Since some doubt must be attached to the stability criterion for cross-over
profiles it would seem that keeping the value of the suction quantity up in this region is well justified.
The boundary condition for the cross flow was no longer satisfied from ¢ = 0-12 onwards. An
indication of how to deal with this situation is given in Section 8. For ¢ > 0- 14, the accuracy of the
chordwise charts could not be relied upon, so some doubt attaches to the results.

5.2. The Lower Surface. The velocity distribution is given in Fig. 5, and in Fig. 6 two suction
distributions I and II are shown, differing from ¢ = 0-033 onwards but amounting to the same
overall suction quantity. The corresponding y/y.s curves are shown in Fig. 7. Examination of
Figs. 6 and 7 discloses that comparatively little change occurs in the x/y.q distribution for the
two suction cases. It seems, therefore, that any extra suction applied early on, as in case 11, is not
wasted but plays its part in stabilizing the later flow.

For the lower surface two comparisons have been made. In the favourable pressure-gradient
region, the method was thought to be reasonably accurate for two reasons. Firstly, the profile
adhered very closely to the shape of the stagnation profile (i.e., & <€ a) and secondly, the values of
/ and m obtained in the chordwise calculation were always on the Falkner-Skan solution line
(¢f. Section 3).

Comparison from ¢ = 0-00035 20 ¢ = 0-033. To demonstrate a quick calculation taking only
a few hours it was assumed that o, the thickness parameter, was fixed at a value of 1-2}. Considering,

1 Another approximation would be to take & = 0 but such a solution would differ little from the solution
already obtained. In this solution the average value of o was 1-05.
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therefore, only the boundary condition (14) and the ;" Equation (12), which were reduced to the
one equation 7, = Pr; + (O where Pand ( are functions only of the chordwise flow, r; was obtained
and compared with that of the first solution in Fig. 12. The profiles obtained by the two methods
are compared in Figs. 8 and 9. The x/y..i, obtained by the simplified method is shown in Fig. 7.
T'his method is too approximate to be used accurately in the adverse pressure-gradient region.

Comparison ¢ = 0-033 fo ¢ = 0-14. TFrom ¢ = 0-033 onwards, Case II, with the smooth
suction distribution, was repeated using an adapted form of the differential method (Ref. 1). A
description of this process will be found in Appendix III. Comparisons of the profiles are shown
in Figs. 10 and 11, and of the y/y..; in Fig. 7. The values calculated for »; and r, are shown in
Figs. 12 and 13. In the integral method, the cross-flow boundary condition was again not satisfied
for ¢ = 0-12, but the profiles in comparison with the differential method show reasonable agreement
as least as far as ¢ = 0-14. The comparison of y/y., indicates that no change to the suction
would be required.

As an indication of the time taken for a typical calculation using the integral method the upper-
surface calculation above took two people one week. The chordwise steps taken totalied about forty,
the cross flow about thirty. Naturally a lot depends on the initial conditions and the velocity
distribution. It would take much less time if a suction distribution was initially fixed instead of
being calculated at each step to ensure stability.

6. Similar Solutions. A number of cxact solutions for the infinite swept wing exist where the
velocity distribution is in the form U/ = U X». For this velocity distribution the boundary-layer
equations can be transformed in such a way that the velocity profiles are seen to be of similar shape.
The integral method described in this paper has been compared with a few representative solutions.

In the chordwise flow, since the T profile has the same shape everywhere [ and m are constant.
Defining a non-dimensional momentum thickness for the assumption that p # — 1

o (ch)” (i'b.Jrl)]/2 _oxo-me [(PH1
X\ v, 2 2
, 2
K= — VV() X—(1»~1)/2/\/( ’*’"'\) »
P+ 1)

then chordwise Equations (6) and (7) become, noting that H = (

and a suction quantity

o =7 f; [~ AH+2) - A] (25)
2D% — HJl—~ (H=1)A = A] = A = 0, (26)

the boundary condition (8) remaining the same, but with A = 2p ©%/(p-+1), A = K©O. To obtain
the chordwise solution given K and p, these equations can be solved to yield ©, [ and m. A fuller
description is given in Ref. 2.

In the cross flow, the N profile also has the same shape everywhere and hence 7, and 7, are
constants. Since r;” and #," are zero, Equations (12) and (13) become:

~ 1O = (1+H)A — 53 =0 (27)
=1 +A) ~ (1 + H-H)A + 25y — 53— As; = 0, (28)
the boundary condition (14} being unchanged here also.
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These equations can be solved using the relationships in Section 3, expressing each equation
in terms of a, b and o.

Using Ref. 5 and Ref. 6 for some of the exact solutions required, comparisons were made which
appear in Figs. 14 to 16. In Fig. 14 is the stagnation solution p = 1. Since this is one of the basic
N profiles used in the cross-flow method and the stagnation T profile is one of the Falkner-Skan
range of solutions which were used in computing the charts, any discrepancy between the exact
solution and the calculated one would appear to arise from the chordwise solution. Indeed in most
of the calculations made for similar solutions, certain inaccuracies were encountered due to a
greater dependence of the cross flow on the approximate chordwise method, especially for the
higher suction cases. In Fig. 15 is shown the comparison between the exact and approximate
solutions for the p = — 1/11, K = 0-4 profile. For the case p = — 1/3, two values of the suction
quantity have been considered. Both results are given in Fig. 16, and that for K = 1-554 is adequate.
However, for K = 2-543, the discrepancy between the two solutions obtained and the exact solution
was directly traceable to the chordwise inaccuracies. In the two solutions referred to, one used the
method as indicated in Section 3, in which the boundary condition could not be satisfied. The
other was a solution obtained using the adapted form of the method as indicated in the next section,
and the boundary condition was satisfied.

7. Comparison of Method with an Exact Solution. In Fig. 17 there appears a velocity distribution
-and a suction distribution used in a calculation done in America by W. Pfenninger (Ref. 8). A digital
computer was used. The flight Reynolds number was 10 x 108 In his report he publishes also the
N profiles obtained for this and three other suction cases used with the same velocity distribution.
Hence comparisons of the present method with his results can be made. Two points should be noted.
Firstly at 63-11 per cent chord there is a discontinuity in the slope of the velocity distribution, and a
discontinuous start in suction. Secondly, in this case (referred to by Pfenninger as A;) there is
insufficient suction for stabilising the flow. In his other cases, in none of which the profile shapes
seem so radically different as to be impossible to obtain by this method, he claims stability for
the region between 63-11 per cent and 100 per cent, but in no case has any suction been applied
before 63+11 per cent. It might be noted that the Pfenninger calculation used here was also used
for comparison in Ref. 1,

In Figs. 18 and 19 comparisons of NV obtained up to 63-11 per cent are shown. In this region
the profile was very similar in shape to a stagnation one and the calculation of / and m gave a line
coincident with the Falkner-Skan similar solution line in the /, m plane. In fact a calculation has
been made using the stagnation type of profile only, yielding very good comparisons, but clearly
this approach lacks generality and a calculation of such a type would be less satisfactory where
suction was applied.

From 6311 per cent several calculations have been made. In Figs. 20 and 21, it may be seen that
the original calculation, carrying straight through the discontinuity ignoring any possible
difficulties, yields less satisfactory results for the 64 per cent and 65 per cent cross-over profiles
but that by the time the 70 per cent and 80 per cent profiles are reached, reasonable agreement is
achieved. From 80 per cent, unfortunately, another difficulty is encountered. As referred to in
Section § the boundary condition (Equation 14) is frequently not satisfied for a profile where large
suction is being applied, and this is what happens here. The method referred to there is applied
and two results for the 80 per cent and 90 per cent profiles are shown. As might be expected the
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difference in the results for the 80 per cent profile is not significant, but for the 90 per cent profile
a considerably better shape is obtained by using the stagnation profile with the asymptotic one, the
boundary condition then being satisfied. In Figs. 22 and 23 the two calculations of 7, and 7, are
shown with the exact results obtained from Pfenninger’s calculations.

Returning to Fig. 20 another comparison appears. From 63-11 per cent, it was considered that a
reasonable method of taking into account the discontinuity was to fix or ‘freeze’ the 63-11 per cent
profile, and allow another profile to grow from zero (¢f. 9.1). This additional profile was taken
to be directly of the asymptotic type, and it may be seen that much more satisfactory results were
obtained this way.

The », was taken to be the same as that obtained from the original calculation. Clearly such a
method could be extended throughout the whole of the region where cross-over profiles occur.

8. Alternative Basic Profiles. Referring back to Section 3 where two basic profiles f(n) = S(»)
and g(n) = A(n) — B(y) are given, it is possible that it may be better in certain circumstances to
choose a different representation for N. An example of this is where the boundary condition is no
longer satisfied.

Let N = af(n) + bg(n) + ¢h(n), 0<7n<l, n = Z/10c
N =0, n>1, (29)
where the profile shape 4(n) = A(y) is included directly.

i [ raz =5,
| #nT( =Tz = 5, (30
A,
where y;, y, and d; are known functions of o, / and m, and
1 (dh
0 ), =17
d?h
1’(1)’6 <d772)»7=0 — 2-538

1
1of h(n)dy = 3-96363,
0

then since NV is assumed linear in terms of parameters @, b and ¢, it may be seen that instead of
Equations (17), the system below is obtained.

a= — (ri—cyp)oy + (ra—cya)a,

b= — (ry—cy)Bi + (ra—cys)Be

5, = o[4-7197a — 1-16015 + 3-9636¢] — (r,—cyy)

$p = — (ry—cy)dy + (ry—cyy)dy + cdy (31)

S

! (0-86523a -+ 1-4849b+1-8570¢)
g

5 = _»12 (04104 +2-5380b +2-5380¢) .
(o
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The definition of N given in (23) involves four parameters, of which only three can be found by
the exact method, unless an extra integral equation is introduced. Such an equation could be derived
from Equation (11) by taking j(7, N) = T2. Although such a method might be expected to give
greater accuracy due to the greater diversity of shapes which could be predicted for the N profile,
it would take half as long again in use, once a new system of charts had been obtained. In practice,
to reduce the number of parameters some assumption must be made. For example, o could be fixed,
yielding a simple set of equations linear in the unknown parameters @, b and ¢. This system would
have the advantages of incorporating all three basic profile shapes given in Fig. (1) and would
presumably always satisfy the boundary condition.

The above Equations (31) have been used with the assumption that b = 0, that is the profiles
used were the stagnation (S) and asymptotic (4) only. Such a system has been used to obviate
difficulties met previously in satisfying both the boundary condition and the », and r, equations
(as for example where high suction is needed in the adverse pressure-gradient region, where the
profile tends to be of the asymptotic type). The values of the profile A(n) for intervals of 0-05
in () can be found in Table 1.

An alternative system for use when the boundary conditions fail, particularly for large values
of /, has also been evolved. This system uses the stagnation S() profile, and a cross-over profile
obtained as the difference of the asymptotic and the stagnation profiles A(z) — S(y). For this
system the expressions for use in the method become:

1 1
yy = af de’?”f (h—f)Tdn ]
0 0
1 1
7 = af FT(1 - T)dn +c'f (h=f)T(1 - T)dn
0 ]
a = — 78] + 7,8,
C = — 6 + 796 . (32)
5 = o[4-7197a — 0-75612] — ,
$y = ady + cdg
6 = L[0-8652a + 0-9918¢]
a
1 _
5= 5 [0-4104a + 2:12767],

where 8;, 8,, 61, €, dy and d; may be found from Table 2 and A(n) — f(%) may be obtained from
Table 1. The expressions are given for the III and IV lines, see Fig. 24. The 1V line is defined by:

! =0-5243, m = —0-399
[ =0-759, m = — 0-978
{=1-021, m = —1-523.

9. Concluding Remarks. 9.1. At a discontinuity in suction or in the velocity gradient 7, and 7,
may be assumed to be continuous. All other quantities should be obtained immediately after the
discontinuity, using these values of #; and r, and the boundary condition in the usual way. If the
discontinuity is large, it may be found that the method gives the integral quantities satisfactorily
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but that a small distance along the boundary layer is needed before the profile used in the method
gives a reasonable fit. An alternative method which is likely to give better results is to fix or ‘freeze’
the profile before the discontinuity and allow an additional profile to be determined to take into
account conditions after the discontinuity.

9.2. A simplification which might be made if a quicker determination were needed would be to
take values in the favourable pressure gradient along the I (Falkner-Skan) line only, of Fig. 24.
The method could also be simplified in this region by taking the stagnation profile only and
neglecting the 7, equation.

9.3. Some clarification of the stability criterion for cross-over profiles (Section 4) would appear
to be desirable, since the definition of x for these profiles is not particularly satisfactory. Perhaps it
would be possible to define some alternative measure based on integral quantities which might then
be fitted more directly into the method.

It is believed that the stability criterion used here (i.e., x/x.i¢ = 1) 15 pessimistic. Doubt must
remain until more experimental work on the stability of the three-dimensional boundary layer is
performed.
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(83324)

NOTATION

Co-ordinates in the chordwise, spanwise and vertical directions
Components of velocity in the x, y, 2 directions

Flight velocity

Chordwise component of U

Spanwise component of U

Local chordwise outer-flow velocity

U/U,

Vol U

Coefhicient of kinematic viscosity

Chord perpendicular to the leading edge measured in the
chordwise direction

Chord in flight direction
Chordwise Reynolds number Upc,/v
Flight Reynolds number (Uwé,)/»

oy

e /R,

V(T2+ T7?)
Cross-flow velocity = % (% - %)
ulU

7)/ Vo

f T(1-T

(0/co)* R,

xfcy

/

¢
2fey -t
Jeo A/t*

Velocity w at boundary 2 = 0
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NOTATION—continued

H = {' | (1 - T)dZ (dependent on displacement thickness)
o 0
H, = J- T(1— T?)dZ (dependent on energy thickness) (see Ref. 7)
[}
o ’)T 2
D* = J-') (; Z> dZ (dissipation integral)
y = f NTdz
ry = f NTA=T)iz
0

5 = f N(i - T)dZ

o ® 8N
o),z
BN
§3 =
(52)...
o (RN
s = ol
a, b, c, o Parameters used in the definition of N.
n = Z{l0c
Ay 0oy By Bas Y1 Vo Ay, do, ds Functions of [, m and o
72 | Maximum value of #
IV s | Maximum value of N
1
2, Value of z at which |z} = TG | 72ax [
. . 1
A Value of 7 at which !N[ =15 ’Nmaxl
v = lrnma‘x .2,1 _ \ —Nmux l(lOUA)k\/t*
14
Nevit Critical value of y
P Similar solution parameter derived from U = U, X?
O = Xw-v@ (P 'Zlil)l/z \/ 1

K = -W, J (_2___) X—-Di2
p+1

Dashes denote total differentiation with respect to X
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APPENDIX 1
Expressions for use in the Chordwise Method

As an alternative to the charts of Ref. 2 the following expressions may be used.
K1—0-44X) = 0-342 + 1-52(H,—1-64) + 1-667(H,—1-64)* + 0-44A,

where
H > 1-62.

I(1-0-442) = 0-2726 + 1-0901(H, ~1-60) + 0-44A  where H, < 1-62.

H =299 -2.23] — 0-52 —m, [z 0-4
H = 3-488 — 4-571 + 2-2802 — m, [ <0-4
2D* = 0-303 + 1-11122 + 0-3365m, [ > 0-4
2D* = 0-228 + 0-423/ + 0-524/2 + 0-3365m, [ < 0-4,

APPENDIX 11

In Table 2 the values of constants 4, B and C will be found and can be substituted in the
expression

8 = A + Bl + CP for any chosen value of ¢

where 3 is any one of the quantities «y, ag, By, Ba, Y1» Yo €5, ds and ds. These expressions, embodying
as much accuracy as the original computed points, may be found more convenient for computation,
Numbers I, 1T and III refer to the three lines used in the /, m plane which are shown in Fig. 24.
It has been found that linear interpolation for the value of m required, using this figure, gives
sufficiently accurate results in practice, although of course a more accurate method of interpolation
can be used if desired. It has also been found that in the favourable pressure-gradient region except
after discontinuities, the values of / and m give points very close to line I, the Falkner-Skan similar
solution line.

81, 84, €1, €y, dy and d; may also be calculated. It should also be noted that interpolation between
ITI of Fig. 24 and IV, given by [ = 0:5243, m = —0:399; [ = 0-759, m = — 0-978; and
[ =1:021, m = — 1-523, must be done where needed.
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APPENDIX III

Differential Method
Returning to Equation (9) of Section 2.3 and putting W = — {/)\tg‘ the equation may be rewritten
., ON ., ON[—2A ¢ 9 _
= —(1=TT — | D~ (T -
UT 5y = —(1-T50 az[ﬁ« anX(oT)dZ

T 1 N
~ f(, v T“’ZJ i
where all the coefficients of dN/3X, dN/0Z, 62N/0Z? can be derived from the chordwise solution.
From the remaining charts of Ref. 2 the values of T for each value of Z can be obtained. Sufficient
values of Z should be chosen to give adequate coverage of all the quantities involved. Ten values of
Z were used in the following calculation. It is possible to perform a step-by-step method, starting
from an N profile and determining its first and second derivatives? with respect to Z, and by
substituting these in the above equation finding dN/dX and hence a value of NV at the next step.

For comparison purposes in calculation II of the lower surface of Section 5 the differential method
was started at a value ¢ = 0-033. Values of N given by the integral method at this point were used,
and once approximate values of the derivatives had been obtained, the equation was used to achieve
consistency. This starting point was chosen for two reasons. Firstly it was considered that the
integral method was reasonably accurate over the region near to stagnation, and secondly the
differential method has not as yet been used where the values of U are small since difficulties might
be anticipated. The starting values at 0-033 are shown in Fig. 10, and comparisons as far as ¢ = 0-14
for this calculation are shown in Figs. 10 and 11. In Figs. 12 and 13 the values of 7, and 7, calculated
using this method are shown. As a check on how important the starting values were in the calculation
by the differential method, another calculation was done using starting values from the profile
obtained by the integral method at ¢ = 0043, By the time a few small steps had been taken as far
as ¢ = 0-051, the values computed in this calculation by the differential method were practically
coincident with those of the previous determination, as indicated in Fig. 10.

It is considered likely that the shapes of the cross-over profiles ¢ = 0-051 and ¢ = 0-06 may be
more adequately represented by the differential method but the degree of accuracy of this method
is not yet certain.

In addition to any possible difficulties near stagnation, the differential method is not so easily
adapted for a calculation where all values from the suction and the chordwise solution are not
smooth. Hence it is not very practicable to use it to determine a suction distribution where a step
in the cross flow normally follows a single step in the chordwise flow making it difficult to ensure that
all values put into the equation will be smooth. It also takes a longer time for the computation which
makes it less useful where a large number of such calculations must be done.

Two differences between the differential method as used here and in Ref. 1 should be noted.
Firstly, it was used directly rather than in the form of a difference differential equation and secondly,
the variable Z was used instead of (2/c)4/R. The advantage of this was that Z changed very little
in the course of the calculation and did not increase with the boundary-layer thickness.

1 This can be done by a graphical or a numerical procedure, using the boundary condition to ensure
accurate values at the wall Z = 0, this process being sufficiently accurate to obtain consistent results for a

small step.
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TABLE 1

Values of f(n), g(n), h(n)

U] oy s h(n)
0 0 0 0

0-05 0-377 0-454 0-657
0-10 0-651 0-556 0-933
0-15 0-853 0-452 1-0

0-20 0-963 0-240 0-942
0-25 1-0 0 0-840
0-30 0-969 —0:225 0716
0-35 0-8925 | —0-3985 0-600
0-40 0-794 —0-503 0-490
0-45 0-686 —0+559 0-397
0-50 0570 —0-555 0-306
0-55 0-453 —0-500 0-240
0-60 0-354 —0-425 0-185
0-65 0-264 —0-331 0-140
0-70 0-191 —0-241 0-110
0-75 0-138 —0-163 0-083
0-80 0-096 —0-100 0-063
0-85 0-065 —0-058 0-048
0-90 0-041 —0-029 0-036
0-95 0-028 —0-009 0-025
1-00 0-020 0 0-020
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TABLE 2

I 11 II1
A B C A B C A4 B C

o =0-7 oy 1-42863  —4-65397 4-19504 1-52186  —4-68536 4-01140 1-23621  —3-19058 2-37837
g 5-15201 —11-91875 12-43286 5-06117 —10-31592 9-25198 4-51023  —7-04055 5-41522
By 3-70376  —8-42811 7-60175 3-59787 —7-23289 5-69458 3-89160 —8-33467 7-10079
Bs 7-77082 —13-65939 1616487 7-44219 —10-85574 10-92834 7-19487  —8-78942 7-98335
d; —0-37949 1-75110  —1-59827 | —0-38116 1-72516  —1-44512 | —0-15829 0-57488 0-06584
d, —1-02680 4-91439  —2-23859 | —1-06075 4-92194 —-2-10106 | —0-75522 3-18549 0-20549
Y1 0-61158 2:74914  —1-64083 0-61254 2-42599  —1-07072 0-77602 1-67862  —0-54185
Vs 0-40991 0-64209 —0-77620 0-36691 0-82816  —0-96295 0-53064 —0-00951 0-08411
d, —0-14444 0-86762 0-17488 | —0-19778 1-15080 —0-29761 —0-15107 0-88445 —0-02201

o=0-9 oy 0-41226  ~—1-55801 1-54636 0-34609  —1-08390 0-83058 0-27883  —0-75702 0-51036
o 2-58224 —4-66233 5-16728 2-36554 —3-23970 2-98230 2-44871  —3-42398 2-98675
B 1-42819  —2-44636 2-29383 1-28624 —1-52174 0-99565 1-29993  —1-59768 1-22099
Bs 3-90344  —4-05920 6-41071 345638 —1-72104 3-12033 3-26091  —0-67007 1-36632
d, —0-21263 0-88051 —0-67944 | —0-23098 0-92526 —0-67531 —0-15985 0-50183  —0-10883
d, —0-68190 3-25254  —0-85201 —0-74758 3-33501 —0-84996 0-87843  —4-26495 7-22951
V1 1-16928 3-16683  —1-83587 1-14643 2-94491  —1-42305 1-14276 2-90833 —1-67792
Vs : 0-53313 0-71487 —1-08948 0-54559 0-60931 —0-85528 0-54596 0-51083 —0-57372
dyg b —0-14943 1-12582  —0-27121 —0-18194 1:23070 —0-43348 | —0-20811 1-28637 —0-53483

o=1-0 o 0-19971  —0-82647 0-76175 0-16239  —0-60702 0-48247 | 0-13690 —0-47232 0-33573
Qg 1-99081 —3-07638 3-46732 1-90692 —2-62882 2-82866 | 1-70370 —1-42842 1-14832
B 0-95659 —1-21161 1-00167 0-88353 —0-78351 0-45830 0-85955  —0-72837 0-51913
Bs 3-06516 —2-18291 4-38712 2-45512 0-76148 0-46593 2-47284 0-71272 0-15776
d, —0-16563 0-65782  —0-47009 | —0-17892 0-68656  —0-46865 —0-16243 0-53185  —0-23345
dy —0-55374 2-64472  —0-28388 | —0-56142 2-46420 —0-04505 —0-81844 3-48548 —1-35026
Y1 E 1-48601 3-33245 —1-93699 1-46704 3-18686 —1-73211 ; 1-41910 3-28488 —2-06980
Va ! 0-58174 0-75135  —1-24068 0-60629 0-59892  -0-94364 0-68595 0-10514 —0-18635
dy —0-13516 1-14040  —0-33290 | —0-16945 1-24807 —0-49934 | —0-27053 1-62903  —0-93031
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TABLE 2—continued

I 11 II1
A B C A B C A B C
o=1-1 o 0-07996  —0-44673 0-39672 0-11075  —0-55459 0-48890 0-02953  —0-20371 0-12724
Qy 1-61879 —2-26248 2:72056 | 149482  —1-44859 1-50879 1-52381  —1-47807 1-32338
B 0-73194  —0-93023 0-90480 0-67095 —0-57660 0-43583 0-61128 —0-33192 0-21641
B. 2-69133  —2-19317 5-01926 2-26661 —0-33644 2-42299 1-71609 2-76491 —2-01086
d, —0-12791 0-48132  —0-30062 | —0-13979 (0-51055 —0-31587 —0-14035 0-45963  —0-22661
dy —0-46333 2-26831 —0-04188  —0-45266 2-01535 0-25233 —0-56909 2-45773  —0-51290
Y1 1-19748 2-38051 —0-20611 ' 1-83033 3-11824  —1-51364 1-89282 2-76963  —1-49440
Vs 0-70541 0-17402  —0-33824 0-70807 0-24449  —0-50992 0-63922 0-52400 —0-69706
d, —0-10812 1-06076  —0-25381 —0-14370 1-19192 —0-47340 | —0-19751 1-35895 —0-67298
o=1:2 a 0-04301  —-0-42262 0-47013 0-06552 —0-47793 0-46347 | —0-01276  —0-11778 0-06624
Oy 1-42251 —2-08322 2-73977 1-34061 —1-45620 1-66701 1-27071  —1-02015 0-94814
By 0-59341 —0-87368 1-07318 0-51714 —0-38280 0-33090 0-46990 —0-18204 0-11982
B 2-45601 —2-32973 5-37251 2-10876  —0-57616 2-66882 1-46296 2:77947  —1-90384
d, —0-09926 0-34658 —0-16728 | —0-10998 0-38017 —0-20322 | —0-10966 0-34486  —0-15627
ds —0-37401 1-89269 0-24719 | —0-39412 1-83351 0-23692 | —0-48705 2-21133  —0-48806
71 2-20642 3-44687 —1-96753 2-24595 290930 —1-18299 1-88398 4-38800 —-3-07536
Vo 0-70044 0-48509  —0-94365 0-73103 0-30807 —0-62640 0-66455 0-55993  —0-77204
dy ~0-09984 1-11198  —0-39302 | —0-13862 1-25628 —0-61908 —0-13180 1-12063  —0-46097
a=1-4 oy —-0-01757 —0-22341 0-25655 0-03648 —0-44560 0-48218 —0-05548 —0-01787  —0-00577
Uy 1-12833  —1-57768 2-29293 1-17676  —1-66654 2-01006 1-09020 —1-10779 1-12972
By 0-39287 —0-55838 0-799%41 0-39707  —0-50868 0-62123 0-33781 —0-18670 0-17874
Be 1-94314 —1-14120 3-58825 2:06135 —1-24206 2-91459 2-01945 —1-23837 2-45530
d, —0-06109 0-17916  —0-01817 | —0-07481 0-23688 —0-09496 | —0-05692 0-14918  —0-01993
d, —0-22093 1-22846 0-80118 | —0-38041 2-03112 —0-42458 | —0-24742 1-41074  —0-05529
Y1 3-52931 —0-24339 4-19783 2-84263 3-64946  —2-05232 3-03181 2-78696  —1-29364
Vs 0-51552 2-18803  --3-92074 0-61685 1-20950 —1-90790 0-89215 —0-18138 —0-04765
ds —0-04579 0-99240 —0-41667 | —0-09293 1-15877 —0-60764 | —0-04816 0-86199 —0-28224




TABLE 2—continued

IT1 v
A B C 4 B C
o=0-9 3, 0-62817  —1-29865 0-74099 0-21694 —0-04228 —0-04780
3y 2-67318 —1-67175 0-73927 1-57585 1-17644  —0-70754
€ 3-28925 —3-00440 1-20527 2-07053 0-08108 —0-25281
€y 9-19541 —1-65201 0-28903 9-62400 —3-93164 3-05051
d, —0-15720 1-24740  —0-75054 0-24346 —0-26778 0-31720
ds —0-05565 005955 0-19436 | —0-10806 0-27288 —0-02192
g=1-0 3, 0-45524  —1-07463 0-75974 0-15206 —0-11053 0-02346
Sy 2-75608  —2-94032 2-22024 2-16361 —0-91191 0-50090
€ 2-71395  —3-45711 2-40294 1-53511 0-15053  —0-19450
€s §-29433  —3-94970 3-82076 8-60785  —4-30707 3-33907
d, —0-15738 1-34393  —0-93253 0-35369  —0-27933 0-30349
dy —0-11315 0-28509 0-00222 | —0-06785 0-19035 0-01806
o= 11 &, 0-29725  —0-66519 0-39580 0-17002  —0-29020 0-14336
3o 2-91846  —4-49967 3-96754 2-47538  —2-26713 1-31600
€ 2-86640 —=5-47844 4-58321 1-62657  —0-99547 0-53906
€ 10-76175 —16-93054 16-82955 9-01488 —7-51176 5-19951
dy —0-07998 1-06268  —0-69006 0-33792 —0-23113 0-25653
dys —0-11873 0-30016 0-01404 | —0-04274 0-14184 0-03945
o=1-2 8, 0-21050  —0-57504 0-40377 0-09625 —0-19681 0-09791
s 2:77405  —5-14029 4-95087 2-04807 —1-67908 0-98566
€ 1-76323  —2-38606 1-86683 1-39437 —0-99977 0-56129
€s 8-44204 —11-90013 13-43768 §:79326 —8-48110 5-62015
dy —0-04699 0-96868 —0-64062 0-32262 —-0-18271 0-20997
dy —0-10083 0-22512 0-10185 | —0-03993 0-14684 0-02954
=14 8, 0-08390 —0-54290 0-57696 0-07764 0-10186 —0-05721
S, 2-71498  —8-19880 9-30646 0-34742 1-64288  —0-85499
€ 1-47271 —4-24209 4.72923 0-03936 1-34936  —0-72213
€ 8-06968 —21-08122 26-01889 2-03721 5-11291  —2-00935
dy 0-07301 0-52409  —0-25757 0-26233  —0-01163 0-07466
dy —-0-11192 0-29721 0-01670 | —0-05340 0-20283 —0-01627
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Fic. 2. Velocity distribution, upper surface.
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