C.P. No. 370
A.R.C Technical Report

LIBRARY
ROYAL AIRCRAFT ESTABLISH DENT $\dot{\triangle}$ EDFOFT.

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Simplified Form of the Auxiliary Equation for Use in the Calculation of Turbulent Boundary Layers

$$
B y
$$

T. J. Black, B.Sc., Whit. Schol.,

Cambridge University Engineering Department
Communicated by Prof. W. A. Mair

LONDON : HER MAJESTY'S STATIONERY OFFICE
1958
Price 2s 6d net

A Sımplified Form of the Aluxiliary Equation for Use an the Calculation of Iurbulent Boundary Layers
 - By -
 I. J. Black, B. SC. , What. fichol. Cambridge Unavorsity Enganeerıng Department
 Commanicated by Erof. W. A. Mazr

11th rebruary, 1957

SUMNAZY

A nor type of auxiliary equation has been evolvod for calculating the cevelopment of the form-parameter if $\left(=\delta^{*} / \theta\right)$ in iurbulent boundary layers wheth advorse preasure gradients. Ihas has been achzeved by conuiderably oxtending part of a previous analysis by Sponce. The chicf advantage of this now method lies in the rapıdity and ease with which the growth of F^{\dagger} may be calculated, whale results compare f'avourably wath thosc obtained uang the methods of other anvestigators. Several results of the calculations are compared wath cxperiment. Finally, attention is drawn to the symilarity betweon the form of the now equation and that of Schuh's auxiliary oquation.

Inst of Contents

Fage

1. Introduction 2
2. Lish of Symbols 2
3. Gencral Diquations

4
3.1 Derivation of Spence's form-parameter equation i_{4}
3.2 DCinvation, of present form-parsmeter oquation 6
3.3 Deterimation of $\int_{0}^{1.0} \mathrm{~F}(\mathrm{H}) \mathrm{d} \eta \quad 9$
4. ipplication of Theory 10
$4.1 "$ "athod"ors solution. . 10
Comparis wath sexpermental results
4.2 Compatizon wath sexpermental results 11
 Equationtand that of Schuh
6. Conclusions 13

Erforunces

1. Introdiaction

Whereas the growth of momentum thickness in the turbulent boundiry layer can now be calculated with reasonable speed and accuracy by such methods as those of Ref's. 1 and 2, which involvo only simple quadrature, the prediction of the form parametor renains a someshat tedious and lencthy task, whale recults obtanned using the various methods avalable do not always justaf'y the complexaty of the calculations anvolved.

In view of this, and prompted by the personal need for a mcans of performang papidly a large number of calculations of this nature, the authou felt it worth while to attompt the construction of a new nethod for determaning the growth of the form parametcr H, concentrating on wpeed and case of applycation, and accenting the need tor certain approximations in achuctung this.

Consideration of the various parameters which anfluence the growth of H shows that the external velocity disuribution is by far the most manortant. This then sugesests an auxiluary equation in which II 15 mamarily a thunction of U, with a second-ordew dependence upon 0 and Fo. In ordicr to formulate an auxiliary equation of this form, part of an analy31, by pence ${ }^{3}$ has boen introduced, and this is theveloped an the following section to gave an integral form of the auxillary equation. ${ }^{-1}$

2. L2st of Sombols

$$
x, y
$$

$$
u, v
$$

U
$\tau,{ }_{T}$
$u_{T}=\binom{r_{\mathrm{w}}}{\rho}^{\frac{1}{2}} \quad$ fruction velocity

$$
C_{P}=\frac{\tau_{w}}{-\frac{1}{2} \rho U^{2}}
$$

δ
$\delta^{*}=\int_{0}^{\delta}\left(1-\frac{u}{u}\right) d y$
$\theta=\int_{0}^{\delta} \frac{u}{u}\left(1-\frac{u}{U}\right) d u$
$\left.\epsilon=\int_{0}^{\delta} \begin{array}{ll:l}\delta & u & \left.1-\left(\begin{array}{l}u \\ - \\ v\end{array}\right)^{2}\right] \text { dy encrgy thickness of boundary laycr }\end{array}\right]$ Rg

[^0]

Addutional Symbols Usca in Descrabing Sohuh's Method

```
\(I_{1}\). \({ }^{\prime}{ }^{*}\) - Integrai definca by equation (33)
\(R_{1}=\theta R_{0}^{n}\)
```


$$
\begin{aligned}
& \lambda=\frac{U_{2}}{--} \\
& \psi=\frac{1-\lambda}{x_{2}-x_{1}}
\end{aligned}
$$

3. Ceneral Equations

3.1 Derivation of Spence's form-paraneter equation

Spence utilused the equation for the unlversal logarithmic velocity profile, as confumed by the measurements of ludwieg and Willmann

$$
\begin{equation*}
u=u_{\tau} f^{\prime}\left(y^{*}\right) \tag{1}
\end{equation*}
$$

where
and

$$
\begin{aligned}
f\left(y^{*}\right) & =A \cdot \log _{\mathrm{e}} \mathrm{y}^{*}+\mathrm{B}, \\
\mathrm{y}^{*} & =\frac{u_{\tau} y}{\nu}, \\
A & =2.5 \\
B & =5.5 .
\end{aligned}
$$

Usang equation (1), together with the contanuity equation

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0, \tag{2}
\end{equation*}
$$

the equation of motion

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\frac{d U}{\partial x}+\frac{1}{\partial x} \frac{\partial \tau}{\rho y} \tag{3}
\end{equation*}
$$

may be formulated at the height $y=\theta$ (for which equation (1) is stall generally valad), thus givang:-

$$
u_{\tau} u_{\tau}^{1} f^{2}\left(\theta^{*}\right)=\frac{d U}{d x}+\frac{1}{\rho}\left(\frac{\partial r}{\partial y}\right)_{y=\theta}, \quad \ldots(4)
$$

where

$$
\theta^{*}=\frac{\theta u}{v} \quad \begin{aligned}
& \text { and the prime denotes } \\
& \text { differontiation wath } \\
& \text { respect to } \mathrm{x} .
\end{aligned}
$$

Introducing the form parameter $y=\left(\begin{array}{l}u \\ - \\ U\end{array}\right)_{y=\theta}, f\left(\theta^{*}\right)$ is then found by putting $J=0$ in equation (1), to obtain

$$
\begin{equation*}
y=\frac{u_{\tau}}{U} f\left(e^{* *}\right) \tag{5}
\end{equation*}
$$

u_{τ}^{\prime} as found by differentiating equation (5) wath respect to x to obtain u_{τ}

$$
\begin{equation*}
\left(1+\frac{A u_{\tau}}{\gamma U}\right)_{u_{T}}^{u_{\tau}^{\prime}}=\frac{y^{\prime}}{y}+\frac{U^{\prime}}{U}-\frac{A u_{T}}{U} \cdot \frac{\theta^{\prime}}{\theta} \cdot \tag{6}
\end{equation*}
$$

Spence neglects the term $\frac{\mathrm{Aul}_{\mathrm{T}}}{\gamma \mathrm{U}}$ in the brackets on the left-hand sude, on the grounds that $\perp t$ is much less than unity in practice. The term $\bar{\theta}$ is gaven by the momentum equation, $1 . e$. ,

$$
\begin{equation*}
\frac{\theta^{\prime}}{\theta}=\frac{1}{\theta}\left(-\frac{u}{U}\right)^{a}-(H+2) \frac{U^{\prime}}{U} \tag{7}
\end{equation*}
$$

With the aid of equations (5), (6) and (7), equation (4) may be written

$$
\begin{align*}
y y^{\prime}-\frac{A y}{\theta}\left(\frac{u^{\tau}}{U}\right)^{3}= & \frac{U^{2}}{U}\left[\begin{array}{c}
1-(I T+2) \\
-\frac{A u}{U} \cdot \gamma-\gamma^{2}
\end{array}\right] \\
& +\frac{\partial}{\partial y}\binom{\tau}{\rho U^{2}}_{y=\theta} . \tag{8}
\end{align*}
$$

To simplify this equation empirically, Spence replaced two slowly varyang quantities by constants to be filted from experimental results. First, since $(H+2)$ increascs while $\frac{U^{T}}{U}$ decreases, the approximate relation

$$
\begin{equation*}
(H+2) A \frac{u^{\tau}}{U}=2 k \tag{9}
\end{equation*}
$$

may be accepted, k being an appropriate constant. Sccondly, examination of the shear stross profiles given by Schubauer and Klebanof C^{5} shows that $\frac{\partial}{\partial y}\binom{r}{--U^{2}}_{y=\theta} \quad$ becomes a progressively larger fraction of $\quad \frac{1}{-\frac{d U}{U}} \begin{aligned} & \mathrm{U} \\ & \mathrm{dx}\end{aligned}$ (which is the normal gradient of $\frac{T}{\rho \mathrm{U}^{2}}$ at $\mathrm{y}=0$) as x ancreases, and therefore as if and the quantity ($1-2 k y-\gamma^{2}$) ancreasc. This suggests the approxzmation

$$
\begin{equation*}
\frac{\partial}{\tilde{\partial} \bar{y}}\left(\frac{r}{-\cdots U^{2}}\right)_{y_{1}=\theta}=-\alpha\left(1-2 k y-y^{3}\right) \frac{U^{\prime}}{U}, \tag{10}
\end{equation*}
$$

where α is a constant to bedetermincd from experiment. With these approximations, equation (8) becomes

$$
(1-\alpha) \frac{U^{\prime}}{U}-\frac{y y^{\prime}}{1-2 y k-y^{2}}=-\frac{y}{1-2 k y-\gamma^{2}} \cdot \frac{A}{\theta} \cdot\left(\begin{array}{l}
u_{\tau} \tag{11}\\
- \\
U
\end{array}\right)^{3}
$$

Solution of (11) involves the function
$Z=\left[\sqrt{1}+k^{2}+(k+y)\right]^{\sqrt{1+k^{2}}}+k \cdot\left[\sqrt{1}+k^{3}-(k+y)\right]^{\sqrt{1+k^{2}}-k}$

Differentıatıng logarithrincally,

$$
\begin{equation*}
\frac{1 \mathrm{dZ}}{z-\overline{d y}}=-2 \sqrt{1+k^{3}} \cdot \frac{y}{1-2 k y-y^{2}} \tag{13}
\end{equation*}
$$

Thus (11) may be written,

$$
\begin{align*}
\frac{1}{2 \sqrt{1+k^{3}}} \cdot \frac{1}{Z} \cdot \frac{d Z}{d x} & +(1-\alpha) \frac{1}{U d U} \\
& =-\frac{y}{1-2 k y-y^{2}} \cdot \frac{A}{\theta}\left(\frac{\tau}{U}\right)^{3}, \tag{14}
\end{align*}
$$

which constitutes the initial equation of the present analysis.

3.2 Derivation of present formmparaneter equation

Making the substitutions
and

$$
\begin{aligned}
& \mathrm{n}=2(1-\alpha) \sqrt{1+\mathrm{k}^{2}} \\
& \mathrm{~K}=-\frac{\mathrm{An}}{1-\alpha},
\end{aligned}
$$

equation (14) may be integrated to gave

$$
\log _{e} \frac{Z_{a}}{Z_{1}}+n \log _{e} \frac{U_{a}}{U_{1}}=-K \int_{x_{1}}^{x_{2}} \frac{y\left(\frac{c_{f}}{2}\right)^{3 / 2}}{\theta\left(1-2 k y-y^{2}\right)} d x \cdot \ldots(15)
$$

The problem is now to express the raght-hand sude of equation (15) in an integrable form. The procedure adopted here may be outlined as follows.

First, c_{f} is expressed in terms of H and R_{θ} using the skin fraction relation of Ludwieg and Iillmann ${ }^{4}$.

Second, $\begin{array}{ll}\theta & \\ \theta_{1} & \text { is expressed in terms of } \\ \bar{U}_{1} & \\ & \\ & \text { using the approximate }\end{array}$ empirical relation given by Ross and Robertson ${ }^{6}$. The integral is now obtained in terms of $\frac{U}{U_{1}}, H$ and γ.

Third, since the rught-rand side of cquation (15) is normally vely small compared with either of the teme on the left-hand side, U It may be neglected to obtan a incrit approximation for -- in terms of Z (which 2 is simply a function of γ and the constant k). The variables in the integral are now roduced to y and H.

Fourth, the relation betwoon γ and H gaven by Snence ${ }^{3}$ is introduced to clamanate γ. The antogral now assumes the form

$$
\int_{x_{1}}^{x_{2}} F(H) d x_{0}
$$

wath some functions of the initial values outside the integral sign.
The procedure outlined above is descirbed in dotall in the following paragraphs and in scction 3.3, and apmroximations to the simplaried integral aro given, thus cnabling the form-parameter cquation to be used in the integral form.

Introducing Ludwacg and Tillmann's skin friction equation

$$
\begin{equation*}
\frac{c_{\hat{n}}}{2}=0.12310^{-0.678 H} \mathrm{R}_{\theta}^{-0.268} \tag{16}
\end{equation*}
$$

equation (15) may be vritton

$$
\begin{align*}
\log _{\mathrm{C}} \frac{Z_{2}}{Z_{1}}+n \log _{e} \frac{U_{2}}{U_{1}}= & -0.0431 \mathrm{~K} \int_{x_{1}}^{x_{2}}: \frac{y}{\theta\left(1-2 \mathrm{ky}-\gamma^{2}\right)} \\
& 10^{-1.017 \mathrm{Fi}_{R_{\theta}}-0.402}: \mathrm{dx} . \tag{17}
\end{align*}
$$

Ross and Robertson ${ }^{6}$ gavc, as an approximate exprossion for the growth of momentum thickness in an adverse prossure gradient, the relation

$$
\begin{equation*}
\frac{\theta}{\theta_{1}}=\left(\frac{U_{1}}{U}\right)^{2+G}, \tag{18}
\end{equation*}
$$

where the subscript 1 refers to some initial point, and G is a I'unction which an general deponds upon Reynolds number, but which may be considered constant whout great loss in accuracy. In this analysis C will therefore be assumed to have the constant value 2.8 as Ross and Foburtion suggoct.

Equation (18) then enables (17) to be written

$$
\begin{align*}
\log _{C} \frac{Z_{3}}{Z_{1}}+n \log _{e} \frac{U_{2}}{U_{1}}= & -\frac{0.0431 \mathrm{~K}}{0_{1} 5_{0}^{0.402}} \int_{x_{1}}^{x_{2}} \int_{\left(1-2 k y-y^{2}\right)}^{y} \tag{19}\\
& 10^{-1.017 H}\binom{U}{\frac{U}{U_{1}}}
\end{align*}
$$

In adverse pressure gradients, to which application of thas method is limited, the term on the rightmend sido of (19) is small compared with either of those on the left-hand side, and the following relation is approximately true;

$$
\begin{equation*}
\frac{U}{U_{1}}=\frac{Z}{Z}_{\frac{1}{n}} \tag{20}
\end{equation*}
$$

It seems reasonable, therefore, to use equation (20) in order to simplafy flurther the raght-hand side of (19).

Thus,

$$
\begin{align*}
\log _{e} \frac{Z_{2}}{Z_{1}}+n \log _{e} \frac{U_{3}}{U_{1}}= & -\frac{0.0431 \mathrm{~K}}{\theta_{1} R_{\theta_{1}}^{0.402}} \int_{x_{1}}^{x_{2}}\left\{\begin{array}{l}
\frac{y}{\left(1-2 k y-\gamma^{3}\right)}
\end{array}\right. \\
& 10^{-1.017 \mathrm{H}} \frac{Z_{1}}{\frac{1.402\left(\frac{2+G}{}\right.}{n}} \mathrm{Z} \tag{21}
\end{align*}
$$

Inserting the values:

$$
\begin{aligned}
& k=0.2, \\
& \alpha=-0.18, \\
& n=2.4,
\end{aligned}
$$

as found experamentally by Spence and

$$
G=2.8
$$

as suggested by Ross and Robertson, and antroducing the non-dimensional distance

ecuation ("く1) may be vritton in the form
 ... (22)

Accepting the power-law approximation to the velocity profiles, y may be exprossed in terms of H as

$$
y=\left[\left.\begin{array}{c}
H-1 \tag{23}\\
-H(H+1)
\end{array}\right|^{-\frac{1}{2}(H-1)}\right. \text {. }
$$

Using equations (12) and (23), the integral may now be written in the form

$$
\int_{0}^{1.0} F^{\prime}(H) \mathrm{d} \eta,
$$

and equation (22) bccomes

$$
\frac{U_{2}}{U_{1}}=\left(\frac{Z_{1}}{z_{2}}\right)^{\frac{1}{2.5}} e^{\left.-0.0915 z_{1}^{2.633} \cdot \cdots \cdot \frac{s}{\theta_{1} R_{\theta_{1}}^{0.40}} \cdot \int_{0}^{1.0} F(H) d \eta\right] . \quad \ldots(24)}
$$

Z and γ arc plotted against H in Figs. 1 and 2, while in Fig. 3

$$
\left(\frac{z_{1}}{z_{3}}\right)^{\frac{1}{2 \cdot \sqrt{4}}}
$$

is plotted as a function of H_{1} and H_{a}.

It is now necessary to expross the integral $\int_{0}^{1.0} \mathrm{~F}(\mathrm{II}) \mathrm{d} \eta$ in terms of H_{1} and H_{2}, the valucs of H corresponding to the lower and uper lamits of integration.
the function $\mathrm{P}(\mathrm{H})$ is plotted in Fig . 4. Now, because of the characturistice vaization of il with η in advcrse prossure gradients, (which may be inferred from Figs. 5 to 7) it would not be unreasonable to cxpect that a plot of $F(H)$ agaunst η, instead of agounst H should tond much morc closcly to linearity. Investigation of some oxper imontal results $5,7,8$ confirms thas, thereby suggesting the simpluf'zastion

$$
\begin{equation*}
=0.04575 \mathrm{Z}_{1}^{2.633}\left[\mathrm{~F}\left(\mathrm{H}_{1}\right)+F\left(\mathrm{H}_{2}\right)\right] \tag{26}
\end{equation*}
$$

Equation (24) may be wratten as

$$
\frac{U_{2}}{\frac{U_{1}}{1}}=\left(\frac{Z_{1}}{Z_{2}}\right)^{\frac{1}{2 \cdot L_{1}}} e^{-\beta \phi}
$$

or, sance $\beta \phi \ll 1.0$,

$$
\begin{equation*}
\frac{U_{a}}{U_{1}} \cong\left(\frac{Z_{1}}{\frac{1}{Z_{a}}}\right)^{\frac{1}{2 \cdot \sqrt{4}}}(1-\beta \phi) \tag{27}
\end{equation*}
$$

whth the ald of Firs. 1 and 4, ϕ may be detemmaned for any guven values of H_{1} and H_{2}.
4. Aprication of iheory
4.1 inethoa of solution

It is assumed that the velocity dustrabution and inatial value of H are known, and that the development of θ has been caiculated independently of H by a method of quadrature such as has been evolved by iruckenbrodt ${ }^{1}$ or Maskell2. Equation (27) can then be solved in the folloring manner.

Commoncins wath H_{1}, the anntial value of H, a value of H_{2} Is selectod (say $\mathrm{H}_{1}+0_{0}^{2} 1$). From Fig. 3, the corresponding value $\mathrm{U}_{2} / \mathrm{U}_{1}$ of -an is found, while ϕ is evaluated from Figs. 1 and 4 as 1- $\beta \phi$
Geacrabed an 3.j. A gucss must now be mado as to tho uratance s requared for H to increase from H_{1} to H_{2}, und hence a furst appioxunation to β may be found.
U_{2} / U_{1} can row bo calculated and hence x read off from the velocity distribution. The new valuc of $s\left(=x_{2}-x_{1}\right)$ is fed back to yzeld a rorc accurate valuo of β and a second value of x_{2} is dotormined. In general, the solution converges rapidly and furthor itcration should be unnecossamy. The procedure 2 s then repeated in stop-b-atop fashion from H_{2} to H_{3}, and so on.

It wall be found, howover, that the value of $\beta \phi$ rapidly becomes nocligible aftor the first fov steps. Ihereafter any step longth may be usid mithout loss of accuracy and the calculation is contanued using liag. 3 only, an conjunction with the velocity distribution.

It has koen found that accoptable accuracy as obtained by using stops of 0.1 in H until the term $\beta \phi$ becomes negligible.

$$
4.21
$$

4.2 Comparison wiil exporimental results

The following three sets of experiments have been used to test the accuracy of the precent method:

Author	Experıment	F1g.
Schubaner and Klebanof ${ }^{5}$	N.B.S. Iturbulent Eoundary Layer.	5
von Doenhofe and Tetervin?	Aerofoni NACA 65(216)-222 approx. $R=2.64 \times 10^{6}$, $\alpha=10.1^{\circ}$ 。	6
Sandbomi ${ }^{8}$	N. B.S. Turbulent Boundary Jayer.	7

In each eiase the experamental values of momentum thackness have becn used in calculating the growth of H by the present method, but this does not invalidate comparason with other methods which nave uscd calculated values of momentim thickness. Ihis is because the value of θ as only of importance during the anitial stages of the present calculation, in whach range any divergence between the experimental and calculated momentum thiclmesses must still be small.

In comparing the results with those of Spence, it should also be borme in mand that, whereas the present analysis anvolves the Ludwieg-l'illmann skin friction law

$$
c_{f}=0.246 . \quad 10^{-0.6787 \mathrm{H}} \mathrm{R}_{\theta}^{-0.263}, \quad \ldots(23)
$$

Epence adopted Squire and Young's law:

$$
c_{f}=2\left(3.59+2.56 \log _{e} R_{\theta}\right)^{-2}
$$

for the reason that, through over-estimatang the value of skan friction noas separation, it partly compensated for the omission of tho transverse pressure gradiont and Reynolas stress torms which are no longer nogligible at that stage.

Where fossible, curves calculated according to the mothods of
Maskell ${ }^{2}$, Spence 3 , Schuh 10 and thuckenbrodt have been inciuded. It wall be seen that the present method compares favourably with those of the other anvestigators.

It should be notod that, in the case of the Schubauer-Klebanoff experament, Masirell commenced has calculation at the 0.5 feet position, whereas in the other methods illustrated, ancluding the present one, the beginning of the test section at 17.5 feet was selected as the anatial point; moreover has initial values of H were obtained fiom the approximato cmpirical relationship

$$
H_{0}=1.630-0.0775 \log _{10} R_{\theta}, \quad \ldots(30)
$$

whercas the present calculations are based on an inntial expcrimental pount.
5. Similarity Bctwec, the Form of the Present Auxiliary Equation and that of ioluh ${ }^{+}$

Using the energy equation

$$
\begin{equation*}
\frac{A}{d x}\left(J^{3} \varepsilon\right)=\frac{2}{\rho} \int_{0}^{\infty} \tau \frac{\partial u}{\partial y} \frac{3 J,}{}, \tag{31}
\end{equation*}
$$

Shun ${ }^{10}$ obtained the following auxiliary equation for the growth of H :

$$
\begin{aligned}
& \mathrm{H}_{2}=-\frac{1}{\mathrm{~g}} \log _{10}<10^{-\mathrm{gH}_{1}}+2.303 . \quad(10)^{-\mathrm{P}} \mathrm{~g}\left(\mathrm{I}_{1}+2.303 \log _{10}\left(\frac{\mathrm{U}_{2}}{-2}\right)_{1}\right) ; \\
& \text { for } H \geqslant 1.30, \ldots \text { (32) }
\end{aligned}
$$

where

$$
\begin{gathered}
I_{1}=i n \int_{x_{1}}^{x_{2} d x} \frac{h}{z}=2.303-\log _{10}\left\{\begin{array}{c}
a \\
a \\
z_{1} \int_{x_{1}}^{x_{2}} \frac{U_{2}}{U_{1}}
\end{array}\right], \ldots(33) \\
z=\theta R_{0}^{m},
\end{gathered}
$$

$\mathrm{a}=0.0185, \mathrm{~b}=4.27, \mathrm{~m}=0.268, \mathrm{~h}=1 \times 10^{-3}, \mathrm{~g}=1.535$
and

$$
p=2.17
$$

In equation (32), I_{1} is small compared with the second term in the inner brackets, and shut suggests the assumption on a linear relation for U_{2} $\underset{U_{1}}{2}$. Equation (33) then becomes

$$
\begin{equation*}
I_{1}=0.121 \log _{10}\left(1+\frac{1-\lambda^{5 \cdot 3}}{\left.280 z_{1}\right)^{2}}\right) \tag{34}
\end{equation*}
$$

where

$$
\lambda=\frac{U_{2}}{U_{1}}
$$

and

$$
\vec{d}=\frac{1-\lambda}{x_{2}-x_{1}}
$$

$$
\mathrm{As} /
$$

${ }^{+1}$ lo avoid confusion, several of Schuh's symbols have been altered.

As I_{1} has littio anfluence in equation (32), H is primarily a function of $\frac{U_{2}}{U_{1}}$, with only a second order dependence on z_{1} and \mathscr{R}^{2}. The samilarity between this form of equation and that used in the present analysis is quate clear, sunce $\left(Z_{1} K_{1}\right)^{-1}$ corresponds closely to the term $\beta \phi$ in equation (24), as show below.

The terms $\binom{U_{1}}{U_{1}-U_{2}}$ and $£\left(H_{1}, H_{2}\right)$ may be considored equavalent, sunce both the present analysis and schuh's suggest that H is primarily a function of \mathbb{U}. The parameters $\frac{1}{Z_{y} \text { 渞 }}$ and $\beta \phi$ are therefore of similar form and are also of comparable order of magnztude.

By assuming a linear relation for U_{2} / U_{1}, Schuh was able to plot $\mathrm{U}_{2} / \mathrm{U}_{1}$ as a furction of H_{1} for various values of H_{2} and $\mathcal{X} \mathrm{Z}_{1}$. The case where $X Z_{1}=\infty$ corresponds to the appropriate H_{2} curves in Fig. 3 of the present report, which may be considcred as a plot of U_{2} / U_{1} against H_{1} for $\beta \dot{\phi}=0$.

Schuh's curves for $H_{2}=2.0$ and ∞ are drawn as broken Iines an Fig. 3. L-greement betweon the two curves for $H_{2}=2.013$ faurly good. For $H_{3}=\infty$, however, Schuh's curve predicts that this value is rexched at higher values of $\mathrm{U}_{2} / \mathrm{U}_{1}$, and consequently further upstream. The difforonce is also allustrated in Figs. 5 and 7, where Schun's values of H rise more rapidly towards the end of the calculation.

6. Conclusions

A mothod has bcen ovolved for calculating the growth of the form parameter H in turbulent boundary layers wath adverse pressure gradients. The auxiliary equation used has been deraved by extendang an analysis by spence and introducing the findings of Ross and of Ludwieg and Tlilmann. The equation is dafforent in form from those used by previous investigators, although it has been shown to correspond closely to a simplified form of Schuh's auxiliary equation. The new method is easily and rapidly applica and results compare favourably with those obtained using other methods.

7. Acknowledgements

The author 1 .s indebted to Prof. W. A. Maur and Dr. M. R. Head for their assistance in tho preparation of this report.

References

No.
Author(s)

1

2 E. C. Maskell

3 D. A. Spence

4 H. Ludwleg and
W. IIIlmann

5 G. B. Schubauer and
P. S. Klebanoff

6 D. Ross and
J. IN. Robertson

7 A. E. von Doenhoff and
N. letervin

9 H. B. Squire and
A. D. Young
H. Schuh

Tatle, etc.

A method of quadrature for calculation ox the laminar and turbulent boundary laycr in case of plane and rotationally symmetrical flow. N.A.C.A. Tech. Memo. 1379, 1955.

Approximate calculation of the turbulent boundary layer in two-dimensional incompressible flow. R.A. ت. Report No. Aero. 21,24 , A.R.C. 14,654. November, 1951. The development of turbulent boundary layers. J. Nero. Sci. Vol. 23, p.3, 1956.

Investigations of the wall-shearing stress in turbulent boundary layers.
N.A.C.A. I'ech. Memo. 1285, 1950.

Investigation of scparation of the turbulent boundary layer. IN.A.C.A. Tech. Note 2133, 1950.

An empirical method for calculation of the growth of a turbulent boundary layer. J. Aero. Scı. Vol. 21, p. 355, 1954.

Determination of gencral relations for the behaviour of turbulent boundary layers. N.A.C.A. Rep. 772, 1943.

Preliminary experimental investigation of low-speed turbulent boundary layers in adverse pressure gradients. N.A.C.A. Tech. Note 3031, 1953.

The calculation of the profille arag of aerofoils. R. \& M. 1838, November, 1937.

On calculating incompressible turbulent boundary laycrs with arbitrary pressure distribution. Foyal Institute of Iechnology, Sweden, Aero. Tech. Note 41, 1954.

Figs. 1\& 2.
Fig. 1

Fig. 2.

Fig. 3.

Figs 4\&5
FIG 4.
$f(H)$
2

FlG 5

FIG. 6.

Comparison with measurements made on NA.CA. 65 (216) 222 approx $R=2.64 \times 10^{6}$

$$
a=10.1^{\circ}
$$

FIG. 7

Comparison with measurements made by Sandborn (8) with highest rate of suction.
A.R.C. Technical Report

Crown copyright reserved
Prunted and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w.I
13A Castle Street, Edinburgh 2 109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Brrmingham 3
80 Chichester Street, Belfast
or through any bookseller
Printed in Great Brtain

[^0]: TThe author's attention has been draw to an unpublished communication in which D. A. Spence proposes the use of an integral form of the auxiliary equation. This equation requires numerical or graphical integration except in the particular case of a linear adverse velocity gradient, where it roduces to a form similar to that of the author's auxiliary equation.

