

AERONAUTICAL RESEARCH COUNCIL

 REPORTS AND MEMORANDA
A Note on Flutter of Asymmetric Controls

By E. G. Broadbent and E. V. Hartley
Defartment of Aeronautical Engineering, Queen Mary College, University of London

LONDON: HER MAJESTY'S STATIONERY OFFICE

$$
1962
$$

A Note on Flutter of Asymmetric Controls

By E. G. Broadbent and E. V. Hartley
Communicated by the Deputy Controller Aircraft (Research and Development), Ministry of Aviation

Reports and Memoranda No. 3256*
March, Ig6o

Summary. This Paper attempts to give some guidance on the question of how best to approximate to an aircraft with an asymmetric elevator control for the purpose of flutter calculations. Two examples of asymmetric controls that are common in practice are (1) the design case of a partitioned elevator each part having its own separate power unit and with one such unit having failed, and (2) the asymmetric arrangement of tabs on the elevator. Several instances of flutter involving asymmetric tab arrangements are known to have occurred in practice, but for the purpose of the calculations reported in this Paper the elevator itself is made asymmetric; this was done to reduce the work to manageable proportions. It is concluded that the more stable side of the aircraft can be replaced by a mirror image of the less stable side without serious error, at least for calculations of the type described. This appears to give a rather better approximation than taking the asymmetric aircraft and constraining it to vibrate in either symmetric or antisymmetric modes.

1. Introduction. It is a common practice to fit an elevator with tabs which are not arranged symmetrically. For example, a spring-tab might be fitted to one side and a trim-tab (of quite different frequency) to the other side of the elevator, which will then have a stiff interconnection through the fuselage. This type of arrangement has led to three or four flutter incidents in the past, and one of the difficulties met with is that the analytical treatment becomes more complicated. With a symmetric aircraft it is possible to split the calculation into two parts, a symmetric calculation and an antisymmetric calculation, but with the asymmetric aircraft the flutter motion will, in general, be neither symmetric nor antisymmetric. In order to represent this motion analytically both symmetric and antisymmetric modes must be included together, and this leads to a single calculation with nearly twice as many degrees of freedom as for either calculation on the symmetric aircraft.

Even today, however, the number of degrees of freedom that can be included in a routine calculation is limited to about six which is sufficient for a symmetric calculation or an antisymmetric calculation but not both together. The practice has therefore arisen of making four calculations for an asymmetric tail using modes as follows,
(1) symmetric modes;
(2) antisymmetric modes;
(3) the same modes as (1) but for only half the aircraft; \dagger
(4) the same modes as (2) for only half the aircraft.

[^0]The combination of (1) and (2) therefore gives an estimate of the complete effect but is always optimistic (i.e., errs on the danger side). The combination of (3) and (4) errs on the safe side. The present Paper compares these two methods with the full calculation (in an example) and gives examples of the relative magnitude of the different errors. In order to reduce the full calculation to manageable proportions it is assumed that the elevator itself is on one side only and that there are no tabs. A problem closely similar to that considered in the present Paper can arise in the design of an aircraft fitted with powered flying controls. The elevator on such an aircraft may be split into two halves and each half driven by its own separate power unit. If the possibility of a partial failure is now considered in which one power unit continues to apply a very stiff restraint to its half-elevator such that effectively on that side of the aircraft the tailplane and elevator are inexorably linked together, whereas on the other side of the aircraft much of the stiffness has been lost, then the flutter problem reduces to the kind considered in the present Paper. With regard to asymmetric tab flutter as discussed above, it is hoped that the results obtained may be typical in a comparative sense; to have included tab freedoms as well as those of the fuselage, tailplane and elevator would have made the full calculation too large to put on the Royal Aircraft Establishment flutter simulator.
2. Details of the Calculation. If an aircraft is fully symmetric about a vertical plane through its centre-line, the flutter calculations can be split into two parts which include only the symmetric modes on the one hand and only the antisymmetric modes on the other; this is because there is no coupling between any symmetric and any antisymmetric mode. In many aircraft however some of the minor features are not symmetric, and a particular case which often causes difficulties in flutter work is that of tabs on an elevator. For example, an elevator may be fitted with a spring-tab on one side of the fuselage and a trim-tab on the other side of the fuselage, the two halves of the elevator being connected by a torque tube. The two tabs will in general be of different sizes and of very different frequencies and in these circumstances elevator-tab flutter, if it occurs, will be asymmetric. In a similar way, if a control surface is partitioned and the power supply to any one segment fails the resulting increase in flexibility will be asymmetric, and if flutter subsequently occurs it too will be asymmetric. This means that if the motion is to be described in terms of symmetric and antisymmetric modes of the structure, some of each will be required. Thus the flutter calculation cannot be separated into its symmetric and antisymmetric parts and hence will require nearly twice as many degrees of freedom as for either calculation on a symmetric aircraft. For instance if n_{1} symmetric modes need to be considered and n_{2} antisymmetric modes as well as the two tabs or elevator segments, it will be necessary to carry out a single calculation with $n_{1}+n_{2}+2$ degrees of freedom instead of two separate calculations of $n_{1}+1$ and $n_{2}+1$ degrees of freedom which would have been possible had the two tabs been identical. However this would lead to a total number of degrees of freedom greater than could be solved on a typical flutter simulator; so that in practice this complete solution is generally avoided and instead the four smaller calculations are carried out using modes as follows:
(1) symmetric modes for the whole aircraft;
(2) symmetric modes for half the aircraft;
(3) antisymmetric modes for the whole aircraft;
(4) antisymmetric modes for half the aircraft.

In these calculations it is assumed that the configuration on one side of the centre-line of the aircraft, say the starboard side, is more prone to flutter than on the other (port) side. Thus in the
flutter motion, energy will be extracted from the airstream on the starboard side and given back on the port side, so the balance is zero. For this reason the amplitudes on the starboard are likely to be greater than those of the port side, which is being damped, hence calculations 1 and 3 above are likely to be optimistic. It is for this reason that calculations 2 and 4 (which assume that the port side is a mirror image of the starboard side) are carried out to obtain a conservative result. Unfortunately the difference between the two results is often so great that the practical value of this procedure is small.

The calculations in the present Paper give a comparison between a set similar to the four given above, and the complete calculation in which both symmetric and antisymmetric modes are included simultaneously. However, to restrict the calculation to a practical size a hypothetical system has been considered, consisting of a fuselage and a tailplane with an elevator on one side only. This is equivalent to the design case mentioned in the introduction in which the elevator circuit stiffness has been reduced on one side of the aircraft, e.g., by a partial power failure, whereas on the other side it remains effectively infinite. The alternative problem involving tabs would have brought in too many degrees of freedom for a complete solution to be obtained.
2.1. Geometry and Modes of Deformation. A plan view of the tailplane is given in Fig. 1. The leading dimensions are:

Tailplane chord c
Tailplane span $\quad 2 \mathrm{~s}=3 \mathrm{c}$
Elevator chord

$$
c_{\beta}=0.25 \mathrm{~s}
$$

Elevator span $\quad s=1.5 \mathrm{c}$
This represents a fairly small elevator, being one-eighth of the tailplane area, and in an extreme case tabs on an elevator could be asymmetric in about the same proportion.

The assumed modes of deformation are
(1) parabolic bending of the fuselage (symmetric);
(2) linear torsion of the fuselage (antisymmetric);
(3) starboard tailplane rotation about the quarter-chord;
(4) port tailplane rotation about the quarter-chord;
(5) elevator rotation.

Mode 1 is a symmetric mode, the fuselage assumed clamped at a point 2 c ahead of the tailplane quarter-chord. The tailplane is attached to the fuselage only at its pivot point (see modes 3 and 4) at the quarter-chord. Mode 2 is the antisymmetric mode. The five calculations are then made up as follows:
(1) asymmetric quinary-Modes $1,2,3,4,5$;
(2) symmetric ternary for the whole aircraft-Modes $1,(3+4), 5$;
(3) symmetric ternary for the half aircraft-Modes $1,3,5$;
(4) antisymmetric ternary for the whole aircraft-Modes 2 , (3-4), 5;
(5) antisymmetric ternary for the half aircraft-Modes 2, 3, 5.

The flutter coefficients for the calculations can be obtained in the usual way by applying Lagrange's equations. For solution on the R.A.E. flutter simulator ${ }^{2}$ the equations are written in the form:

$$
\left[a \ddot{q}+b v \dot{q}+c v^{2} q+d \dot{q}+e q\right]=0
$$

where $v=V / V_{0}$ and V_{0} is the chosen reference speed
$a \quad$ Square inertia matrix
$b \quad$ Aerodynamic damping matrix
c Aerodynamic stiffness matrix
d Structural damping matrix
e Structural stiffness matrix
$q \quad$ Column of generalised co-ordinates q_{r}.
Numerical values of the coefficients are given in Table 2 at the end of the Paper. In addition each mode was given structural damping of $\frac{1}{2}$ per cent critical; i.e., $d_{r r}=0.01 \sqrt{ }\left(a_{r r} e_{r r}\right)$ and $d_{r s}=0$ for $r \neq s$.

The ternary calculations for the whole aircraft (numbers 2 and 4 above) each require the combination of two of the five degrees of freedom into a single mode. For the symmetric calculation for example, the tailplane rotation can be represented by a single co-ordinate in which the displacement on each side of the aircraft has the same magnitude and sign. Numerically, therefore, the coefficients for the new second mode can be obtained by first adding the fourth row to the third row to reduce the matrices from order 5×5 to order 5×4, and then adding the 4 th column to the third column to give a set of 4×4 matrices. This process preserves the Lagrangian form of the matrices so that, for example, the inertia matrix will remain symmetric and positive definite. For the ternary calculation the second row and column are discarded in the usual way. To obtain the antisymmetric ternary $(2,3-4,5)$ a similar procedure is followed, but the fourth row and column are successively subtracted from the third row and column.
2.2. Mass Distribution. A typical tailplane mass distribution was assumed and the appropriate structural inertia coefficients were calculated. In the fuselage modes there will be additional inertia arising from the rear fuselage masses, and this was assumed to increase a_{11} by 25 per cent and a_{22} by 10 per cent. In a control-surface flutter calculation it is the inertia distribution of the control surface which is most important. In the present example the mass per unit area over the elevator was assumed constant but its value was varied in a preliminary investigation. The reason for this is that a very heavy elevator shows severe flutter, but is insensitive to typical parameters, and a very light elevator gives no flutter at all. It was important for the present example to have a degree of control-surface flutter for the unbalanced elevator that was fairly mild and therefore sensitive to the differences between the various types of flutter under investigation. Having settled a suitable value of elevator mass the principal variable in the flutter calculations was taken to be elevator massbalance which was assumed to be a concentrated mass at the elevator mid-span on an arm length $0 \cdot 1$ of the wing chord.
2.3. Structural Stiffnesses. The structural stiffnesses in the calculations are prescribed by assuming values for the uncoupled frequency ratios of the different degrees of freedom. The frequency ratios were varied to some extent, but for the purpose of the investigation the effect of the variations was found to be relatively unimportant and results are presented only for a single set of frequency ratios. Table 1 below gives the frequency ratios for which the results are presented and also the range of variations covered in the calculations. The values of frequency, ω_{r}, refer to the condition of zero mass-balance, and as mass-balance is increased these frequencies will change slightly although not to an important extent.

TABLE 1

	Calculation	ω_{2} / ω_{1}	ω_{3} / ω_{1}	
1	Asymmetric quinary	$\sqrt{ } 2^{*}, 1,1 / \sqrt{ } 2$	$2 \sqrt{ } 2^{*}, 2, \sqrt{ } 2$	All combinations covered
2	Symmetric ternary for whole aircraft	-	$2 \sqrt{ } 2^{*}, 2, \sqrt{ } 2$	-
3	Symmetric ternary for half aircraft	-	$2 \sqrt{ } 2^{*}, 2, \sqrt{ } 2$	-
4	Antisymmetric ternary for whole aircraft	$\sqrt{ } 2^{*}, 1,1 / \sqrt{ } 2$	$2 \sqrt{ } 2^{*}, 2, \sqrt{ } 2$	All combinations covered
5	Antisymmetric ternary for half air- craft	$\sqrt{ } 2^{*}, 1,1 / \sqrt{ } 2$	$2 \sqrt{ } 2^{*}, 2, \sqrt{ } 2$	Checks for all combinations

* Results presented in Figs. 2 and 3.
2.4. Aerodynamic Assumptions. For simplicity the aerodynamic derivatives are assumed to be constant with frequency parameter and have been evaluated by use of the Minhinnick Rules ${ }^{1}$.

3. Results and Conclusions. The results are presented in graphic form of velocity (v) against mass-balance weight factor, m, for frequency ratios $\omega_{2} / \omega_{1}=\sqrt{ } 2$ and $\omega_{3} / \omega_{1}=2 \sqrt{ } 2$ only. Fig. 2 gives the results obtained for the four ternary calculations separately, and Fig. 3 the comparison between the combined symmetric and antisymmetric ternaries for the whole aircraft, for the half aircraft, and the asymmetric quinary.

The combined flutter boundaries from the ternary calculations for the whole aircraft give a greater flutter-free area than does that for the quinary, whereas the combined boundary for the half aircraft gives a pessimistic result with a smaller flutter-free area. These results take the form one would expect on physical grounds, but on the whole the calculations for the half aircraft give rather better agreement with the true asymmetric results than do those for the whole aircraft, as well as erring on the safe side. It is concluded that on an aircraft with an asymmetric elevator control, e.g., with a spring tab on one side only, the flutter calculations should assume that the more stable side is a mirror image of the less stable side unless a truly asymmetric calculation is made. If this leads to adverse flutter characteristics the asymmetric calculation may have to be tackled in fuill.

LIST OF SYMBOLS

a	Inertia matrix
b	Aerodynamic damping matrix
c	Aerodynamic stiffness matrix
d	Structural damping matrix
e	Structural stiffness matrix
q	Column matrix of generalised co-ordinates
V	Airspeed
V_{0}	Chosen reference speed
v	$=$
c	V / V_{0}
s	Wing chord
ω_{r}	Elevator span
m	Natural frequency of mode r taken alone with the condition $m=0$
m	Mass-balance weight factor

REFERENCES

No.

Author

1 E. G. Broadbent Flutter prediction in practice.
A.R.C. C.P. 373. February, 1956.

2 F. Smith and W. D. T. Hicks .. The R.A.E. electronic simulator for flutter investigations in six degrees of freedom or less.
A.R.C. R. \& M. 3101. September, 1953.

TABLE 2
Asymmetric Quinary

$\begin{gathered} \text { Modes } \\ r=1 \end{gathered}$		2	3	4	5
$\begin{aligned} & a_{1 r} \\ & b_{1, r} \\ & c_{1 r} \\ & e_{11} \end{aligned}$	$\begin{gathered} 800 \cdot 3+28 \cdot 16 \mathrm{~m} \\ 188 \cdot 0 \\ 208 \cdot 0 \\ 160 \end{gathered}$	$\begin{gathered} -57 \cdot 64+26 \cdot 4 m \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 320 \cdot 7+50 \cdot 28 m \\ 262 \cdot 4 \\ 650 \end{gathered}$	$\begin{aligned} & 320 \cdot 7 \\ & 262 \cdot 4 \\ & 650 \end{aligned}$	$\begin{gathered} 27 \cdot 98-16 \cdot 76 m \\ 62 \cdot 67 \\ 628 \cdot 3 \end{gathered}$
$\begin{aligned} & a_{2 r} \\ & b_{2 r} \\ & c_{2 r} \\ & e_{22} \end{aligned}$	$\begin{gathered} -57 \cdot 64+26 \cdot 4 m \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 1057 \cdot 5+24 \cdot 75 m \\ 238 \cdot 9 \\ 0 \\ 422 \cdot 9 \end{gathered}$	$\begin{gathered} 276 \cdot 2+47 \cdot 14 m \\ 267 \cdot 2 \\ 853 \cdot 1 \end{gathered}$	$\begin{aligned} & -276 \cdot 2 \\ & -267 \cdot 2 \\ & -853.1 \end{aligned}$	$\begin{gathered} 22 \cdot 40-15 \cdot 71 \mathrm{~m} \\ 47 \cdot 67 \\ 659 \cdot 7 \end{gathered}$
$\begin{aligned} & a_{3 r} \\ & b_{3 r} \\ & c_{3 r} \\ & e_{33} \end{aligned}$	$\begin{gathered} 320 \cdot 7+50 \cdot 28 m \\ 58 \cdot 9 \\ 0 \end{gathered}$	$\begin{gathered} 276 \cdot 2+47 \cdot 14 m \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 689 \cdot 0+89 \cdot 79 m \\ 368 \cdot 0 \\ 0 \\ 1102 \cdot 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 68 \cdot 23-29 \cdot 93 m \\ 164 \cdot 5 \\ 785 \cdot 4 \end{gathered}$
$\begin{aligned} & a_{4 r} \\ & b_{4 r} \\ & c_{4 r} \\ & e_{44} \end{aligned}$	$\begin{gathered} 320 \cdot 7 \\ 58 \cdot 9 \\ 0 \end{gathered}$	$\begin{gathered} -276 \cdot 2 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 689 \cdot 0 \\ 368 \cdot 0 \\ 0 \\ 1102 \cdot 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & a_{5 r} \\ & b_{5 r} \\ & c_{5 r} \\ & e_{55} \end{aligned}$	$\begin{gathered} 27 \cdot 98-16 \cdot 76 m \\ 3 \cdot 56 \\ 2.08 \end{gathered}$	$\begin{gathered} 22 \cdot 40-15 \cdot 71 \mathrm{~m} \\ 1 \cdot 368 \\ 0 \end{gathered}$	$\begin{gathered} 68 \cdot 23-29 \cdot 93 m \\ 15 \cdot 76 \\ 13 \cdot 02 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 21 \cdot 96+9 \cdot 977 m \\ 26 \cdot 03 \\ 81 \cdot 8 \\ 0 \end{gathered}$

The above coefficients are appropriate to the frequency ratios

$$
\frac{\omega_{2}}{\omega_{1}}=\sqrt{ } 2 ; \frac{\omega_{3}}{\omega_{1}}=2 \sqrt{ } 2
$$

for the condition $m=0$. The coefficients for which no numerical values are given in Table 2, i.e., the coefficients $e_{r s}$ where $r \neq s$, are all identically zero. Structural damping coefficients, $d_{r s}$, were assumed as stated in Section 2.1.

Fig. 1. Planform of asymmetric tailplane.

(a) SYMMETRIC TERNARY FOR WHOLE AIRCRAFT

(b) SYMMETRIC TERNARY FOR HALF AIRCRAFT

(C) ANTISYMMETRIC TERNARY FOR WHOLE AIRCRAFT

(d) ANTISYMMETRIC TERNARY FOR HALF AIRCRAFT

Fig. 2a to d. Results for ternary calculations.

Fig. 3. Comparison of the two approximate methods of calculation with the exact quinary result.

Publications of the

 Aeronautical Research Council
ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures.
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 3d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels.
47s. 6d. (post 1s. 9d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structares.
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 2s. 6d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 2s. 6d.)

1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (post 3s.)
Vol. II. Aircraft, Airscrews, Controls. 13os. (post 3s.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (post 2s. 9d.)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s. (post 2s. gd.)
1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3 s. 3^{d}.)
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 2s. 9d.)
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s.)
1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 3d.)
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability; Structures, Take-off and Landing. 168s. (post $3 s .3 d$.)

Special Volumes

Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post $2 s .6 d$.)
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 147s. (post 2s. 6d.)
Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 3d.)

Reviews of the Aeronautical Research Council

1939-48 3s. (post $5 d$.) $1949-54 \quad 5 s$. (post $5 d$.)
Index to all Reports and Memoranda published in the Annual Technical Reports
1909-1947
R. \& M. 2600 6s. (post 2d.)

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 235 I-2449
R. \& M. No. 245° 2s. (post 2d.)
R. \& M. No. 2550 2s. 6d. (post 2d.)
R. \& M. No. 2650 2s. 6d. (post 2d.)
R. \& M. No. 2750 2s. $6 d$. (post 2d.)
R. \& M. No. 2850 2s. $6 d$. (post 2d.)
R. \& M. No. 2950 3s. (post 2d.)
$\begin{array}{ll}\text { R. \& M. No. } 3050 & 3 s .6 d \text {. (post 2d.) }\end{array}$

HER MAJESTY'S STATIONERY OFFICE

from the addresses overleaf

（C）Crown copyright 1962

Printed and published by Her Majesty＇s Stationery Office

To be purchased from
York House，Kingsway，London w．c． 2
423 Oxford Street，London w．I
13A Castle Street，Edinburgh 2
109 St．Mary Street，Cardiff
39 King Street，Manchester 2
50 Fairfax Street，Bristol I
35 Smallbrook，Ringway，Birmingham 5
8o Chichester Street，Belfast 1
or through any bookseller
Printed in England

[^0]: * Previously issued as R.A.E. Tech. Note No. Structures 278-A.R.C. 22,084.
 \dagger It is convenient to refer to calculations of this type as being for the half aircraft. In reality what is done is to replace the more stable half of the aircraft (e.g., the side without spring-tab) by a mirror image of the less stable half and then make the calculations for this hypothetical symmetric aircraft.

