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Summary. A theory, involving a simple new method for turbulent boundary layers, is presented for 
interactions between normal shocks and turbulent boundary layers on flat surfaces. Experiments in a pipe 
confirm the theory's general validity. Effects on separation of convex surface curvature and sweepback of the 
shock are then considered. 

1. Introduction. When a nearly-normal shock wave occurs on an aerofoil in transonic flow, as 

in Fig. 1, the pressure Pb at the surface just behind the shock is of course greater than the pressure Pl 

just in front. The pressure ratio Pb/Pl depends in part on the Mach number/141, which is defined 

according to the isentropic flow relations by the ratio pl/Ho, where H o is the stagnation pressure. 

However, even in the absence of separation, Pb/Pl is almost never as great as the value predicted by 

inviscid-flow theory for a normal shock with an upstream Mach number  M 1. 

To see why this is so, consider first the simpler case of a normal shock in a uniform stream past 

a flat plate, as in Fig. 2. In inviscid flow the pressure at the surface would rise discontinuously under 
the shock, but the boundary layer cannot support a discontinuous rise of pressure. Hence the 

external flow pattern becomes modified so that near the wall the shock is replaced by a band of 

compression waoes. At the surface the initial rise of pressure is very steep if the boundary  layer is 

turbulent, but downstream the gradients become much less steep. For weak shocks this falling off 

of the pressuregradients begins to occur somewhere near the point where the pressure p is equal to 

the sonic value, 0. 528H 0. For stronger shocks, where separation occurs at a point whose pressure 

is below sonic, the falling off in gradient occurs just downstream of separation, and the flow pattern 

then becomes as shown in Fig. 3. In either case on a flat plate the overall rise of pressure would be 

the same as in inviscid flow, but  we may say that locally under the shock the pressure only rises 

sharply to a value Pb, less than the full normal-shock downstream pressure, and defined, say, as 

t h e  point of maximum curvature on the pressure distribution. I t  is this sort of pressure that is 

picked out as the pressure P0 just behind the shock on an aerofoil. The  sharp rise of pressure from 
pl to Pb typically occurs within about 3 to 5 boundary-layer thicknesses. The much more gradual 

pressure gradients downstream merge with the general shape of the pressure distribution, which 

depends on the shape of the aerofoil. Thus there is not in general any well-defined point on t h e  
pressure distribution corresponding to the full normal-shock pressure rise. 
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When, as is often the case, the aerofoil surface has an appreciable curvature, convex to the flow, 
we might expect an additional effect to be superimposed on the above. In inviscid flow it can be 
shown 1, ~ that the pressure at the surface under the shock would rise abruptly to the full normal-shock 

value, but would fall rapidly again just downstream. Thus  there is a sharp pressure peak, and it 
would not seem surprising that the boundary layer should smooth this off, giving a downstream 

pressure p~ less than the full normal-shock value. In closer detail, however, the flow pattern must 

still be modified by the boundary layer in much the same way as it is on a flat plate (Fig. 2). Where 
the external flow is supersonic there will be a compression-wave region, and since the compressions 

are abrupt the surface slope is not likely to change much under this region, except for sharply-curved 
aerofoils. Thus  on this closer view we should expect that the compression-wave region would be 

much as on a flat plate, and that only the downstream part of the pressure distribution would be 

significantly affected by the curvature. Hence pv itself might not be very greatly different from its 
value on a flat plate. 

The above discussion assumes the thickness of the boundary layer to be, say, of the order of 1 per 

cent of the chord, as typically encountered on an aerofoil not too close to the leading edge. If  the 

boundary layer is exceptionally thin, the pressure rise under the shock, though spread out over 

many boundary-layer thicknesses, will still not be greatly spread out relative to the chord, and Pl, 

may therefore be judged to be much closer to the inviscid value. 

Usually, however, the interaction between the shock wave and the boundary layer directly 

affects the pressure distribution over a region of the order of 30 per cent of the chord. It may have 

a still more important indirect effect if it causes the boundary layer near the trailing edge to thickeh 

markedly, as this will affect the circulation round the aerofoil and hence the shock position. Such 

effects on the circulation are usually only important if the shock is strong enough to cause separation, 

though even then there may not be any serious effects if reattachment occurs a short way behind the 
shock. Clearly, however, general studies of the interaction between turbulent boundary layers and 

normal shocks, with special reference to the occurrence of separation, will be helpful in increasing 
our understanding of the behaviour of aerofoils and wings in transonic flow, and this Paper is 

intended as a contribution to that end. It is also of course relevant to other practical situations, 
such as intake flows, which may involve interactions between normal shocks and turbulent boundary 
layers. 

The Paper is divided into several parts. The first following this introductory section is a theoretical 
study of the interaction between the turbulent boundary layer on a flat plate and a normal shock 
in a uniform stream, the configuration of Fig. 2. Next an experiment on normal shocks in a pipe 
of circular cross section is described, and its findings compared with those of the above-mentioned 

theory. The effects of surface curvature on the minimum local upstream Mach number 2VI 1 for 

which separation occurs are then discussed, with reference to experiments carried out on aerofoils 
of different shapes. The final section considers how far the findings concerning separation in 

two-dimensional flows are applicable to sweptback shocks on three-dimensional swept wings. 

2. The Interaction between the Turbulent Boundary Layer on a Flat Plate and a Normal  Shock in 

a Uniform Mainstream. This problem was considered earlier by the present author in Ref. 3, but 

that theory has now been improved, especially with regard to the treatment of the boundary layer. 

The overall flow pattern is as shown in Figs. 2 and 3. The boundary layer thickens under the 

action of the adverse pressure gradients, and this displaces the external flow away from the wall. 



The pressure distribution in the external flow is in turn governed by this displacement, and hence 
the theoretical problem, as with all cases of interactions between shock waves and boundary layers, 

is to determine the conditions under which the pressure distribution can be matched to the 

boundary-layer thickening. Most previous interaction analyses have, however, been concerned 

with laminar boundary layers and with mainstream flows that are everywhere supersonic. The 
present problem is more difficult both because turbulent boundary layers are less tractable 

theoretically than laminar ones, and also because the flow outside the boundary layer is partially 

subsonic. Where the flow is supersonic and of the simple-wave type the pressure is simply related 
to the flow direction, but in subsonic flow the pressure at any point depends on the configuration 

of the flow as a whole. Moreover behind the shock, local Mach numbers up to 1 are encountered, 

so that the relevant equations are non-linear, and not of the relatively simple Laplace type. All this 
means that any theoretical solution of the problem can only be roughly approximate. 

When the shock is fairly weak, so that separation, if it occurs, is not extensive, the flow pattern 

resembles Fig. 2 rather than Fig. 3. The present Paper will be concerned in the main with such 
relatively weak shocks. It is assumed that the compression-wave region shown in Fig. 2 is of the 
simple-wave type, with the Mach waves emanating from the edge of the boundary layer intersecting 
the shock wave and being terminated by it. This terminating shock wave is vanishingly weak at 
the edge of the boundary layer, so that the layer is not called upon to support any discontinuous 
jump of pressure. Away from the wall the shock becomes stronger. At the point where the most 
upstream Mach wave of the compression-wave region intersects the shock, the latter is somewhat 
in~lined, and the pressure just behind it is less than the full normal-shock downstream pressure. 
Ho,~vever, with increasing distance from the wall the shock becomes more nearly normal. It is 
assumed that the distance of the shock from the line x = 0 perpendicular to the wall and passing 
through the end of the shock at the edge of the boundary layer is everywhere fairly small, say 
less than 5 times the thickness of the boundary layer just upstream of the interaction region. The 
experiments of Section 3 appear to justify this assumption. Then to a rough approximation the 
boundary conditions imposed by the shock on the flow downstream may be taken as applying along 

the line x = 0. These boundary conditions are, in the outer part of the flow, the relations between 
the downstream pressure and the flow angle appropriate to a shock with a Mach number M 1 just 

upstream of it. Nearer the edge of the boundary layer the relations are in theory more complicated, 
since the flow" deflection is then made up of a part achieved continuously in the simple-wave flow, 

and of a part occurring abruptly through the shock. However, it is shown in Section 2.1 that it is 
- reasonably accurate to take a single form of relation between pressure and flow angle as applying 

everywhere behind the shock. 

Section 2.1 also gives the relation between pressure and flow angle in the simple-wave region, 

as it applies along the edge of the boundary layer upstream of the shock, and Section 2.2 sets out 
• the equations for the external flow downstream of the shock. Sectior~ 2.3 presents the boundary-layer 

analysis, showing how the thickness of the layer may be related to the pressure, which is assumed 
to be constant across the boundary layer. This assumption is probably fairly accurate except near 
the upstream end of the interaction region at the higher upstream Mach numbers. It is also shown 
l~ow the skin friction may be roughly predicted. Section 2.4 combines the results of Sections 2.1 and 
2.3 to predict the pressure distribution at the wall upstream of the shock. Section 2.5 gives a very 
crude analysis for the pressures at 'the wall and in the stream downstream of the shock, and finally 
Section 2.6 discusses the complete solution, including the conditions for boundary-layer separation. 

3. 
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2.1. The Relations between Pressure and Flow Angle in the Compression-Wave Region and just 

behind the Shock. Consider first the simple-wave compression region. 
Let a parameter k, related to the pressure p, be defined by 

2y 
P - 1 + ( M , 2 - 1 ) ( 1 - h )  (1) 
Pl y +  1 

where suffix 1 denotes conditions in the external flow upstream of the shock, y is the specific-heat 

ratio, and ~lq is the Mach number. Thus k = 1 upstream, and k -+ 0 downstream, where the pressure 

must approach the full normal-shock value. In other words 1 - k = ( p - p a ) / ( p z - p , ) ,  where Pz is 

the pressure far downstream. In the external flow the relationship between the Mach number M 

and k may be derived in the following way: 

y - 1  ( 1 +  

where I is the enthalpy, so that 

1 ( r +  1 - 1  + 
r - -  7 

The external flow is everywhere approximately isentropic if M,  is not too large (say ~< 1.3), 

and hence 
I ,  _ [ p ]-(~/-*,lr 2(y- 1) 
I "\~/" ~ 1  Y +  1 ( 1 -  k) (M,= - l) 

from (1). Hence approximately 

M ~ - 1 = ( 2 k -  1)(M, z -  1). (2) 

For M 1 as large as 1.3, this relation is fairly accurate upstream of the shock, where 1 ~< k ~< ½, but 

it is inaccurate downstream where, however, it is not required. 
Consider Fig. 4, showing a short length ac of a streamline in the simple-wave region. The line ab 

is a Mach line so that k is constant along ab, and be is normal to ac. The angle abc is 
tan-* (M ~ -  1) 1!~ ~ t an - l [ (2k -  1)V2(M,2- 1) 1/~] by Equation (2). Hence if n represents distance along 

the normal and s distance along the streamline, 

Ok k~, - k~ k .  - k~ (kr~-k~) 
- - (2k  - 

an bc bc ac 

Oh 
= - ( 2 k -  - -  

c%" 

The pressure gradient normal to the streamline balances the centrifugal force associated with the 
streamline curvature. Thus if the angle of the streamline to the wall is ~, 

~p a~ O~ 
an pqZ ~s YP3/I2 ffss 

where p is the density and q the speed along the streamline. The product p M  z does not vary 

enormously throughout the interaction region, as can be seen from the following Table: 

M 1 1.1 1.2 1-3 

pMZ/Ho O. 528 O. 567 O. 594- O. 610 
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Hence approximately 

But 

Hence 

and 

@ O~ 
On - ~PlM12 Os-" 

@ 
an 

2~'Pl (M1 z -  1) c~k 
+ 1 ~n'  by (1) 

c~s 
2(M1 ~ -  1) ,gk 
(r + 1)11412 On 

2(Mr2-  1)sl~ (2k - 1) ~,'~ Ok 
(~,+I)M12 " 0 s '  

2(M12 - 1)3I~ 
- 3(y + 1)3//1 ~ [1 - ( 2 k -  1)s/~], (3) 

since a = 0 when k = 1, in the undisturbed free stream. Equation (3) is of course only valid for 

1 >/k/> ½, the range of k for which the flow is supersonic. When k is very close to 1, Equation (3) 

approximates to the well-known form 

- -  - -  1 

yM12 

but this is not valid for local Mach numbers close to 1, when k approaches ½-. 

Consider now the shock wave. In general this is inclined as shown in Fig. 5. Let quantities just 

upstream of the shock be distinguished by suffix u. Far away from the wall these upstream quantitie s 

will take their undisturbed free-stream values, denoted by suffix 1, but near the wall the shock will 

occur as the termination of a compression-wave region, as shown in Fig. 2, and hence here the flow 

conditions just upstream of the shock will differ from those in the free stream. If  quantities just  

downstream of the shock are distinguished by suffix d, then e, the deflection Which streamlines 

undergo on passing through the shock, and Pa, Pa, and qa, will depend on p~, p,~, and q~ and on the 
angle ~ which the shock makes with the streamlines upstream of the shock. Four equations may be 

written down in the usual way, namely those of energy, momentum parallel to the shock, momentum 

perpendicular to the shock, and continuity, so that any four of the quantities e, Pa, pa, qa, and ~ may 
be eliminated. The oblique-shock relations usually presented in the literature leave ~ in as a variable, 
but it can of course be eliminated and e can be expressed merely as a function ofpa and the upstream 
conditions. The  resulting relation s is 

From Equation (1) 

and from (2) 

sin2e I(',I- YPu ~, + 1 
1) (Pa-P,3 + 2(V - 1) 

(Pa-P~,) l YP" - ( y Z l ~  2 1 p,,q~2 

Pa - P~, ~ 2V 
P,, 9' + 1 (M12 - 1) ( k . -  ka) 

M~, 2 - 1 = (2k~- 1)(M~ 2 - 1). 

Hence (4) becomes approximately 

6 , -  1)p,,q,? t 

@ + 1)(Pa-Pu) t  (4) 
2p~% 2 I 

2EM 2_ l~al2 
~ J /k k 1) l ;2(k~-kd) .  

5 

(5) 

(6) 



From Equation (3) it follows that the inclination of the flow to the wall .just downstream of the 
shock is given by 

2(Ml 2 - 1)3'2 
~(z - ~-2H 1)-35~- {~[1 - (2h,,- 1) B'2] + (k, + k , t -  1)1/2(h,- k,~,)}. (7) 

If  k ,  is close to 1 the approximation (6) f o r e  is fairly good even if M 1 is not very close to 1. The 

errors arise mainly from those terms in the bracketed expression on the left-hand side of (4) which 
are omitted in deriving (6). The omitted terms are equal to 

i 

7 -V 1 (p,~-p~,) 2 
2 ( y -  1) (y - 1)p,rM, 2 ( y -  1)Mu2 ' 

and partially cancel one another. If, on the other hand, k, is near to 2,1 Equation (5) becomes rather 

inaccurate, but any errors thereby introduced into (6) will not have an important effect on % as 
given by (7), since e will then be small. 

In Equation (7), k~, can vary between 1 and ½ and k~z between 0 and k,. For e to be real, 
k,  + k,z - 1 must be positive. Under these conditions 

½ [1 - ( 2 k , -  1) 3/2] + (k~, + k~z - 1)~'2(k~- kd) ~ k~t~12(1 - k~,). (8) 

Thus  if k,, = 1, (8) is accurately true. If k, = 0.5, so that k,~ must be 0.5 also, A, the left-hand,side 

of (8) is equal to 0. 333, whilst B, the right-hand side, is equal tO 0-354-. For k,j = 0"75, so that 
0"25 ~ k,l ~< 0"75, we have: 

k~ 0.25 0-30 0.50 ' 0-75 

A 0.216 0-317 0'341 0"216 

B 0.375 0-383 0.354 0.216 

Hence for most possible combinations of k,,, and k~, Equatiofi (8) is not greatly in error and (7) 
simplifies to 

2(M/- - 1) 3;~ 
~,t - (y  + 1 ) M ~  ~ k ,~ /2 (1  - k~,) .  (9)  

Replacing (7) by (9) is equivalent to saying that the flow angle behind a band of compression waves 

terminated by a shock is approximately the same as that behind a shock on its own giving the same 

downstream pressure. As mentioned in the previous section, this relation for % is assumed to apply 

along the line x = 0, through the foot of the shock perpendicular to the wall, and this forms one 

boundary condition for the flow downstream of the shock. 

2.2. The Eq~ations for the External Flow Downstream of the Shock. Let suffix 2 denote conditions 
behind the normal shock in inviscid flow. Thus 

27 P 2 _  1 +  (M12-1)  
(T-f) 

and 
- ' y - l )  

M2~" = (I  + Y - - ~  M 1 2 ) / (  yMI2 2 ' 

from the standard normal-shock relations. From (1) it follows that 

P 

P2 
- ( 1 - - -  + 1 (M~2- 1)k ,1 + ~ + 1 (M~2- 1) 

2;/ (1-M~2)k.  
y + l  

(lO) 



The  pressure gradient normal to the streamlines must  balance the centrifugal force associated . 

with their curvature, and hence if the angle ~ of the streamlines to the wall is small 

Op ~o~ 8o~ 
Oy - pqZ Ox -- yPM2 ax' 

where the x and y directions are parallel and perpendicular to the wall. At the sonic point, where 

the end of the shock meets the edge of the layer, the product  p M  z is.equal to 0. 528//0: it does not 

differ enormously from this far away from the wall behind the normal palTt of the shock where 

suffix 2 conditions are achieved, as can be seen from the following Table:  -, 

M1 Pl/Ho M2 P21P~ P2M22/Ho 
1- 1 O. 468 O. 912 1.245 O. 485 

t 

1.2 0.412 0. 842 1.513 0.442 

1.3 0.361 0. 786 1. 805 0. 404 

Hence since the pressure is close to the sonic pressure only over a small region downstream of the 

shock, p M  2 may be replaced by p2M22 downstream, and from Equation (10), 

3c~ 2(1 - M2 ~) Ok 
3x - ( y +  1)M2 z 3y (11) 

A second relation between a and k can be obtained from the continuity equation, which can be 

writ ten 

+ _ 0 
3x 33, 

approximately. Since the external flow is everywhere almost isentropic, even for M 1 as large as 1.3, 

and 

where I is the enthalpy. Hence f r o m  the energy equation I +  q~/2 = 12 + q~2/2, and from 

Equation (10), 
2(1 - M22) ~ 

Pq - 1 + k ( 1 - k )  + 0(1-M2~)  a 
P2q2 (Y + 1)M22 " 

I f  the third term on the right is to be neglected here, it might appear that M 2 in the denominator  

of the  second t e r m  ought to be set equal to 1. However  the approximation is much closer if it is 

included. Thus  consider conditions at the sonic point where k = 1 according to the approximate 

relation (2). With M~ = 0.786, corresponding to M 1 = 1.3, 

2(1 - M ~ ) ~  k(1 - k )  = 1.0488 
1 ~ (Y+ 1)M22 

and 
2(1 2 

1 + k ( 1 - k )  = 1. 0302, 
y + l  

whereas the correct value of Pq/P~qz is 1. 0443. Substituting the approximate relation for pq into the 

continuity equation we obtain 

3~ 2(1 - M ~ )  2 3 
ay - (7 + 1)M2°'t ~ (k - k2). (12) 

7 



From Equation (11) it follows that 

32k Oak 3ZkZ 
3x ~ + a.92 - Ox ~ 

where 
y = (1 - M2Z)l12y. 

In terms of this variable Equations (11) and (12) become 

and 

3c~ 2(1 - M2~) alz Ok 
Ox (y+  1)Mz z ~.9 

2(1 - Mz2) a/z 3 ( k -  k2). 
(y + 1)M~ ~ ax 

(13) 

(14) 

To,facilitate matching these relations to the relations (3) and (9) for a in the simple-wave flow region 
and behind the shock, we note that (1-M2~)a,'2/M= 2 is not very different from (M12- 1)a"~/M1 ~, as 
can be seen from the following Table: 

M1 Ms (M,2-1)a,'21M, ~ (1-M2z)at=lMz 2 

1.1 0" 912 0" 080 O" 083 

1.2 O" 842 O" 203 0" 222 

1.3 0"786 0.338 0"381 

Hence, approximately 
3a _ 2(M, 2 - 1) a:z Ok 

and 

(is) 

(16) 

Ox ( y +  1)M, ~ a.Y 

& ~  2(M1~-1) a~2 O (k_k2)  
ay (7 + 1)M1 ~ Ox 

in the external flow downstream of the shock. 

2.3. The Boundary-Layer Thickness and Skin Friction. Suppose the boundary- layer  velocity 

profile upstream of the region of interaction is of the form 

where suffix 'a' denotes conditions at a station at the upstream end of the region of interaction, 
suffix 'e' denotes conditions at the edge of the boundary layer, u is the velocity component parallel 
to the wall, and 8 is the total boundary-layer thickness. The  exponent K is frequently in the literature 
given the values 5, 7, or 9, and experimentally measured velocity profiles for a constant-pressure 
boundary layer can often be fitted by a power-law form with K = 7. At some general point suppose 
that 

u (:_;. 
I t  e 

The mass flow between the wall and the edge of the boundary layer is equal to pudy. Upstream 
0 

this equals m,  = K(foeueS)~d(K+ 1), and at a general point it equals m = .fpjt~8/(n + 1), where f is a 
factor which would be equal to 1 if the Mach number were low, so that the density were constant, 



equal to p, across the boundary layer. For M 1 = 1.3 -and K = 7, f,, = 0. 822, and in general f is 
only a little less than 1. When the pressure rise is very rapid, as it is in the upstream part of the 
interaction region, it may reasonably be assumed that m ~ rn~. More generally it is assumed that the 
rate of entrainment of fluid into the boundary layer from the external flow is the same as just 
upstream of the region of interaction. This is probably an underestimate, since Seddon's interesting 
paper 4 concerning the interaction with a normal shock with M 1 = 1.47 shows that in that case the 
rate of mass entrainment becomes much larger downstream than it is upstream. However it is difficult 
to formulate a more accurate relation for the entrainment, and since the effect is only important in 
the downstream part of the interaction region, where the solution is necessarily crude, the simple 

assumption of a constant rate is probably good enough. Thus 
r 

[ f - K+IKL + 

To a good approximation the product term inside the square brackets here may be neglected 
upstream of the shock, and downstream it may be replaced by x(dS/dx),, x being measured from the 

foot of the shock. 
The general profile will, because of the adverse pressure gradients, be less 'full' in shape than the 

upstream profile, i.e., n will be greater than 1/K. This is a factor tending to make f smaller than f,, 
because, for the general profile as compared with the upstream one, there will tend to be a bigger 

difference in velocity, and hence in density, between a point in the middle of the boundary layer 
and the edge of the layer. On the other hand, the fact that M e is less than A~rl tends in itself to 

diminish the variation in density at the downstream positions, so tending to make f larger than f,,. 
Thus since both f and f~ are not much less than 1, f J f  is likely to be very nearly equal to 1. 
Hence (17) becomes 

n+l IMI~Ti]M~ / T~(~+l~/2(~ -1) ~ - K+IK [3a+(x_x~)(d~)ldx ~ (18) 

where T is absolute temperature, since in isentropic flow pu oc MT(~+a~.'2(7 -~), and conditions at 
the edge of the boundary layer at station 'a' are the same as suffix 1 conditions, defined in the 
undisturbed upstream flow. 

An additional relation is needed to determine the two unknowns, ~l and ~, in terms of M~. This is 
provided by the so-called energy-integral equation, obtained by multiplying the equation of 
momentum parallel to the wall, 

Ou Ou du~ Or 

by 2u and integrating from y = 0 to y = 3, making use of the continuity equation 

a(#u) O(pv) 
- - +  - 0 .  ax ay 

The resulting equation is 

PeUe3 - - - -  

o PeZte 1 .o2!@ +2po"?dXjo.o ay= o 



When there is zero heat transfer 

Zt 2 "tte 2 

throughout the boundary layer, so that 

} ; ; = 7 =  1 - . o 2 7 = 1  2 Mo2-- 1 -  p~ u~ 2) . ,  

Hence if 0 'x' is the energy thickness, - -  1 - dy, the energy-integral equation becomes 
o p~u~ u~U 

f e  8u a (p ,,20'9 + ( r -  0* = 2 

or, since 
d,l e {Me~ 3 { ~  (T+1)/2(9'-1, d {Te~ 

(r- 1)Nle~pjte 2 dx Pluaa - -  ~ ] ' 

and 

peHe3 = p1H13 ( Me ~ 3 [ ~e ~ (3T-1)I2(7-1) 

d r(Mc~3~Te~(y+I)J2(T-1) (Mc~3 (~(y÷l)/g(y--l) 
d~ [_\Mx] \T~] 0 :~'] =2 \M1] \T,]  d, (19) 

where d may be termed the non-dimensional dissipation or turbulent-energy-production integral, 

defined as (r/pjt~2){O(U/Ue)/Oy}dy. 
0 

Where the pressure gradients are very abrupt it follows that Me aT~(r+l):2(r-1)0~ remains approxi- 

lnately constant, since d on the right-hand side of (19) will be of the same order as upstream and 
'dx' will be very small. More generally, we assume that d = d,; this will not be accurate but it is 

probably good enough since the assumption only significantly affects matters downstream of the 
shock. In terms of the assumed boundary-layer profile shapes, 

Off* = 2Kg~8~ 
( K +  1) (K+ 3) 

and 
Oe = 2rig8 

(n+ 1)(3n+ 1)' 

where the factors g~ and g would be equal to 1 if the density were equal to O~ across the boundary 
layer. In reality they are a little less than 1, but by arguments similar to those advanced above regarding 
f andf~ in Equation (17), it may be assumed t h a t g , / g  is equal to 1. Hence 

(n+1)(-3n+l)  tMl ]  tTU a = ( K + I ) ( K + 3 )  _8<~+ 

+ dx << x~ \ M ~ /  \~7  A" (20) 

As with the corresponding term in Equations (17) and (18), the integral on the right-hand side may 
be neglected upstream of the shock, and downstream its lower limit of integration may be replaced 
b y x  = 0. 

10 



An attempt maybe  made to deduce the skin friction from the boundary-layer momentum-integral 
equation, 

-: Ct = 2dx  x + 2 0  
• M~ l + - r -  - M ~  T .  ' 

in the usual notation. In terms of the assumed boundary-layer profile 0 = hnS/(n+ 1)(2n+ 1), 
where h is a factor, a little less than 1, arising from the variation of the density across the boundary 
layer. Hence from Equation (18) 

hnK Ml (T1)(Y+1)I2(~'-1)[ (d3) l 
O = ( 2 ~ + 1 ) ( X + l ) M  ~ ~ ~<,+(x-x.) ~ . 

We may take h to be approximately constant, equal to h., because as M e decreases, tending in itself 
to make h nearer to 1, the profile becomes less 'full' in shape, tending to decrease h, and the net 
variation in h is likely to be small. Thus for positions up to the shock and a little way downstream, 

h,nK M x { I"l"I (Y+1)/2(y-1) 
0 = (2n+ 1 ) ( K + I )  M e [T~] 3<, 

and 
dO n(e + K) M: ( T,) (~+~)lar -') 

. d x -  2 (2n+l )  M e Te ' Ci" + 

+ K +  1 !Meh"K3"tMl(T1)(r+l)i2(r-1)d(~ ~ -2n~-' ~ ) +2n + l d x n  d[Mi[TllrT+l','2(~'-l'~l~\_T_~! _J " 

From Equations (18) and (20) 

n M~ ~ 1 
3n + 1 M12 K + 3 . 

in the upstream part of the interaction region, so that 

n =  [(K+ 3) M~2 1 -~ 3//1 ~ - 3 . (Zl) 

The other term of the momentum-integral equation to be evaluated is H, the ratio of the displacement 
thickness 3 ~'~ to the momentum thickness 0. In terms of the assumed profile, when there is zero heat 
transfer 

0 ( :  (t '~ -  t '~'~) 
- = J y -  1 dt 

where t = u/u~, and 8 0 1 +  --~--- Me2(1 - F  *~) 

? 8" ¢ :  1 +. M~2(1 - t 2'~) - t" 
- -  = I dt 8 2 0 1 + Y - ~  Me2(1 - t 2'') 

. : (t,~_t~.,,)dt I1 ~@}-3/i~21 ": (1-2t',~+t2,~.)dt 
= [1 + ( y - i ) M e  2] fol+ r 7  2 M ~(1_ t~,~) + + J 6 1 +  ~ M~2(1-F") 

= [ I + ( , - I ) M ~  2] ~ +  ( 1 +  ~ M~Z) n - ( ' - I ) M ~  fo  [ 1 +  ~_ / lg~2( l - t2 '~ )12  
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/[ ] integrating by parts. Now the average value of (t '~- t ~'~) 1 + M~(1 - t  2-r~) over the range 

0 < t < 1 is 0/8, so it can be assumed that the average value of (t ~ -  t~)  ~ 1 + M~2(1 - t 2.~) 

is roughly 02/82, and hence 

/ - / =  0 - =  l + ( y - 1 ) M ~  ~ + 2 ( 1 - N )  1 +  Me ~ n,  (22) 

where 

N -  y -  1M~ ~0 (23) 
• 2 3" 

An average value of 0.03 may be taken for N upstream of the shock because, N being small, 

fractional errors made in it are not important. The momentum-integral equation becomes 

f **(2 + K)  Cj,, + ~,, - 
2 n +  1 ( 2 n + 1 ) ( K + l )  ~ M e 1 +  - M~ ~ 

+ + ½1 "4 
M1 T1 (y-1-1),,2(y-z) 

This simplifies, using Equation (21), to 

( 
Cj . . . . . . . .  2-51. dMe 1 - N _ 1 (24) 

Cj 
(K+ 3) ~ - 1 ( K +  a) 71//7 ( K +  3) ----M, 2 - 

where we assume 0~, = CI,,R, -11~, so that Clc ~ = (8/5)CRa -lta, where C is a constant, I~ is the 

distance of s t a t ion ' a '  from the leading edge, and R,  is the Reynolds number based on free-stream 

conditions and the length 1~. 
Equations (18), (20) and (24) represent a simple solution for the turbulent boundary layer 

subjected to sharp adverse pressure gradients, applicable up to moderate supersonic speeds provided 

the pressure is constant across the boundary layer. For very low supersonic Mach numbers this 

condition is probably satisfied in interactions between shock waves and boundary layers, but when 

M,  = 1.3, say, the pressure is likely to vary considerably across the boundary layer at the upstream 

end of the region of interaction, since in the outer part of the boundary layer the pressure tends to 

be constant along Math  lines rather than along lines perpendicular to the wall. However, at and 

downstream of the point where M e = 1-1, say, the pressure is likely to be fairly constant across 

the boundary layer. It may be expected that relations (18) and (20) would then describe the thickness 

and shape of the profile at such downstream positions even though in deriving the relations the 

pressure has been assumed to be constant across the boundary layer at all points. 
The  merit of this solution for the present purposes is that it gives a simple explicit relation for 

the boundary-layer thickness in terms of the pressure. This can be matched to the outer flow as 
will be described in the following sections. We conclude this section, however, with examples of 
the application of the method to several general cases, to demonstrate that it gives acceptable results. 
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• Schubauer and Klebanoff's work 5 gives the most detailed experimental results for a case in 

incompressible flow with a fairly abrupt adverse pressure gradient after a region of almost constant 

pressure. An idealised version of the experimental external-velocity distribution is 

u~ = ul, 0 < l <  18.25, 

uA = 1.792 - 0.0434l, l > 18.25, 
ul 

where l is the distance from the leading edge in feet. This fits the experimental data quite well in 

the region of the pressure rise, as can be seen from Fig. 6. The effective origin of the turbulent 
boundary layer is a little downstream of the physical leading edge, so that for the point at the 
beginning of the pressure rise, 18.25 ft from the actual leading edge, the effective value of l,,. is 
15.05 ft. It can be seen from Fig. 7 that at the position immediately upstream of where the pressure 
begins to rise, the boundary-layer velocity profile is quite well represented by the relation 
u/u 1 = (y /2 .11)  1!G, where y is in inches. Fig. 7 also shows the profiles calculated from Equations 
(18) and (20) at downstream positions for the idealised linear external-velocity distribution and the 
one-sixth power upstream profile. The full-line curves are those calculated neglecting the right-hand 
terms in (dS/dx),  of Equations (18) and (20), and the dotted curves are the results obtained when 

these terms are included. It can be seen that the dotted curves agree fairly well with the experimental 

measurements, except at the most downstream station, which is close to separation. 
Fig. 8 shows the skin-friction variation deduced from Equation (24) for the full line, and from 

the basic momentum equation for the dotted line, corresponding to the dotted-line results of Fig. 7. 

The experimental points are those deduced by Spence 6 from the shapes of the velocity profiles 

close to the wall. Clearly the theory does not predict the skin friction adequately, even though as it 

happens the first approximation gives roughly the correct position of separation. The experimentally 
measured values of 0 and H, if fed into the momentum equation, give similarly erroneous results 

for the skin friction. It has been argued G that the momentum equation is invalid for estimating the 
skin friction, because it neglects a term involving the Reynolds stress and also a term involving 
the variation, if it is present, of pressure across the boundary layer. As regards the Reynolds stress 
it appears from Schubauer and Klebanoff's results that this is too small to make any appreciable 

difference. The variation of pressure across the boundary layer may well have been important in 
the experiment, and also the flow may well not have been strictly two-dimensional, and for both 
these reasons it is invalid to use the momentum equation for the calculation of skin friction from 
the experimentally measured values of 0 and H. However, an ideal experiment can be imagined in 
which the flow would be strictly two-dimensional and in which there were no variations of pressure 
across the boundary layer. It seems intuitively very likely that such an ideal experiment would, 
for the same surface pressure distribution, yield roughly the same distributions of 0, H, and C I as 
the actual, imperfect, experiment. The momentum equation ought to apply almost exactly to the 
ideal experiment, and this is possible because the actual distributions of 0 and H need not be altered 
much to be in harmony with the proper skin-friction distribution. Any theory of the turbulent 
boundary layer aspires to predict the results of such imaginary ideal experiments, and hence the 
skin friction ought to be deducible from the momentum equation and the theoretical values of 
0 and H. However, it is very stringent to test the theory by seeing if the predicted skin-friction 

distributions are even only moderately accurate, since it would only pass such a test if the predicted 

distributions of 0 and H were very accurate. 
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It may therefore be considered to be not worthwhile to make any attempt to deduce (he skin 

friction from Equation (24). However, the experimental results of Section 3 suggest that in interactions 

with normal shocks the boundary-layer profiles keep reasonably close to the power-law form, at 

least over the upstream part of the interaction region. If  the profiles were exactly of the power-law 

form the theory ought to be almost exact, provided the neglect of pressure differences across the 

boundary layer is permissible. Hence there is'a possibility that the predicted results for skin friction 

may be roughly correct, though clearly not too much weight can be attached to them. The method is 

used in default of a better one to predict the occurrence of separation, defined as taking place when 

the skin friction becomes zero. The usual criteria for turbulent separation will clearly fail u n d e r  

the conditions of very steep adverse pressure gradients encountered under the st~ock. Thus  if we say 

that separation occurs when the shape parameter H reaches a certain value, this will not predict 

separation soon enough. As Stratford v has shown, if the pressure gradient suddenly became infinite 

after an upstream region of zero gradient, separation would occur with a vanishingly small pressure 
rise, and only the shape of an infinitesimal part of the profile next to the wall would be affected. 

Thus  H at separation would be the same as for a flat plate. The Ludwieg-Til lmann skin-friction 
criterion ~ would fail in these circumstances for the same reason, since in deriving it, it is assumed 
that the 'law of the wall' equation is valid up to a distance 0 from the wall. 

There remains the possibility of using Stratford's separation criterion. This was deduced for 
conditions of sharp adverse pressure gradients, and in this respect it should be suitable for the 
present problem, though effects of compressibility were not considered in deriving it. The 
relation is 

(2C~,)(zc-~'t~(l-d~-l~)~/~= 1 • 06fi(10-6R) lno 

where C~ = 1 - u~2/¢tt 2, l is the distance from the leading edge, R is the Reynolds number based on 

l, and/? is an empirical constant, taken by Stratford to be 0.66. To extend this formula to compres- 

sible flow we note that according to Equation (24), a compressible-flow case for which M J M  1 is 

some prescribed function of l, say F(l), would have separation occurring at almost the same position 

as an incompressible case with the velocity distribution uJu 1 = F(l). The equivalence would be 

exact if N in Equation (24) were zero, and in fact N is very small. Thus we may expect Stratford's 

formula to be applicable to the compressible case if Ct~ is interpreted as ] -M,,2/M1 ~. In the 

upstream part of the interaction region l--~ l,. Also we assume that 

= (25) 

a formula fairly accurate up to moderate supersonic Mach numbers. Hence from Equation (2) 
Stratford's criterion for separation becomes 

M ?  = 0- 1 6/3, (26) 

where X -- x/S,. 
Stratford shows that in incompressible flow, if the pressure is constant up to station 'a' at a 

distance l,,~ from the leading edge, and then follows the law 

C~, = 0"850f32'a lO'435Ro)~a [(~,)~"~- l l  i 2m , (27) 

the skin friction will be zero downstream of 'a', the boundary layer being everywhere just on the 
point of separation. This relation is compared in Fig. 9 with that deduced f rom Equation (24) for 
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zero skin friction downstream of 'a' for the case K = 7, R ,  = 2 x 106. It can be seen thatthe present 
theory predicts a pressure distribution of much the same form as Stratford's, and though the present 
theory probably makes C~ rather too large, the fact that the results are at least of the right order 
gives additional grounds for not dismissing Equation (24) as completely worthless for predicting 
skin friction in situatioias, such as shock-wave boundary-layer interactions, where the adverse 
pressure gradients are very abrupt. " " 

As for Equations (18) and (20), further evidence in support of their reasonable accuracy is provided 
by the experiments of Section 3, as will be shown in that section, and also by Seddon's experiment4 

on a normal shock with an upstream Mach number of 1.47. In this latter case there were probably 
appreciable variations of static pressure across the boundary layer, because of the relatively high 
Mach number, but nevertheless the theory works quite well, as can be seen from Fig. 10, which 

shows the profiles 1, 2, and 3 of Seddon's paper. The upstream profile is well represented by the 

power law u / u  1 = ( y /O .  14) 1/5'5. This seems to fit the experimental points slightly better than the 

1/7th power form suggested by Seddon. The predicted form for profile 2 is fairly close to the 

experimentally-measured profile. This profile station is close to separation, and the fact that the 

profile is much 'fuller' in shape than separation profiles with more gradual pressure gradients e 

illustrates the point made above, that the shape factor H is much smaller at separation when the 

pressure gradients are very abrupt than when they are more gradual. Profile 3 is beyond the separation 

point, and is not at all well represented by the Simple predicted power-law form. However if the 
velocity profile were assumed to be of the form 

Zt 

-- = 0, 0 < y  <3v, 
U e 

-- = , 3 7 < y  < 8 +37, 
u¢ 

the theory would predict n and ~ to be the same as if it is assumed that u/z1 c = ( y / S )  ~. This is because 
an inner region of zero velocity makes no difference either to the mass flux or to the energy thickness. 
Hence 37 is really arbitrary according to the theory, and by putting 37 = 0.04, the resulting profile, 

.shown dotted in Fig. 10, can be made to fit the experimental profile tolerably well. 
This brings to light a possible defect Of the theory, that since neither the energy thickness nor the 

mass flux is sensitive to variations of profile shape near the low-velocity end, the shape here is not 
really tied down by the theory. The displacement thickness is, however, critically dependent on the 
shape of the inner part of the profile, so we really have no right to expect the theory to give the 
displacement thickness accurately. Fortunately, however, it seems to be an empirical fact that 
upstream of separation the profiles do often approximately fit the simple power-law form, close to 
the wall as well as away from it, and this is the reason for the success of the method. 

The power-law family of profiles seems to fail to apply before separation is reached in the case of 
the results of Ackeret, Feldmann, and Rott 8 for interactions between normal shocks and turbulent 

boundary layers on curved surfaces, convex to the flow. The experimental profiles become 

considerably less 'full' in shape than the predicted profiles, as can be seen from the example shown 
in Fig. 11, where the downstream profile station is probably close to separation. If the predicted 

profile is displaced outwards by an arbitrary amount, as in the dotted curve, the fit is more 

~° cf., Fig. 7, where the most downstream profile is measured a little upstream of separation. 
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reasonable. It is not clear, however, why this displacement should be necessary when Seddon's  
separation profile and those of the experiments of Section 3 of this Paper can be fitted quite well 
without any such displacement. There is presumably some effect of curvature at work, and a 
tentative explanation of it will be advanced in Section 4, where it will be seen that the effect may be 
of considerable significance in affecting the conditions for separation on curved surfaces. 

Michel's results 9, also obtained on a convex surface, show what at first sight appear to be 'fuller' 
profiles under the shock. This, incidentally, led Michel to conclude that separation was not taking 
place under the shock, since he assumed in effect that for separation to occur the shape parameter H 
must reach a value typical for separation with fairly gentle pressure gradients. This is not true, as 
has been pointed out above, if by separation we mean that the skin friction becomes zero, and 
separation in this sense may well be taking place under the shock in some of Michel's tests. It is not 
possible to make a direct comparison between Michel's results and those of the present theory, or 
between his results and those of Ackeret as typified by Fig. 11, because Michel's work was done on a 
bump on a tunnel wall. This meant that the boundary layer just upstream of the region of interaction 
consisted of a thin inner layer inside the remnants of the thick upstream layer, and hence the 
upstream profile cannot be well represented by a power law. 

To sum up, it seems that in the main, for flat surfaces, the theory of the present section predicts 
the general shape of the profiles quite well, and may give some idea of the skin friction. This is 
provided that the departure from the initial upstream shape of the profile is not too extreme, and 

provided also that the pressure distribution is of the general shape envisaged by the theory. Thus 
there must be an initial region of zero gradient (or of favourable gradient, which can be regarded 
as, in effect, a shorter length of zero gradient 6,v), followed by fairly sharp adverse gradients. The 
theory would not work, therefore, in cases where there are adverse gradients right from the leading 
edge. This restricts the application of the theory as compared with other methods. All these other 

methods, however, seem to involve empirical constants, whereas the present method does not, and 
this may be considered a point in its favour, additional to the advantage of its simplicity. 

It is of incidental interest that the method even gives results of the right order of magnitude for 

laminar layers, if we put K = 1, as will be shown in an Appendix to this Paper. It is also worth 
noting that the present method, in its use of the mass-flux relation (18), has affinities with the 
method of Crocco and Lees 1°, though the present method is very much simpler. 

2.4. The Interaction Between the Boundary Layer and the Simple-Wave External Flow Upstream 

of the Shock. In Equations (18) and (20) the terms on the right involving (d3/dx),, may be neglected 
upstream of the shock and the edge of the boundary layer, y = 3, is therefore a streamline. The 
relation for 8 is 

M~ e K M t - -  3., (28) 
3 =  [ ( K + 3 ) M . ~ _  3] K + I  Me. + y ~ _  M12/ 

Ml 2 

from (21) and (18). If 8/8~ = r and X -~ x/Sa, x being the distance along the surface in the stream 
direction measured from the sonic point under the shock, it follows from Equation (3) that 

dr 2(M1 ~-  1) a,2 
dX - 3(y+ 1)M, ~ [1 - ( 2 k -  1)a/2]. (29) 
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Hence 

o r  

3(y+ 1)21411 f k  (dr/dh)dk . 

x - 1 - 

3(y + 1)M~2 I r f k  3(2k_l),/2rdhl 
- X - 2 7 - M ) -  r0.  1 - ( 2 k - 1 )  ' 

where r0. 5 is r at k = 0.5. This may easily be evaluated numerically to give X as a function of k 
upstream of the shock, since r is given as a function of k from Equations (28) and (2). Calculated 
results are given in the following Table: 

Case 

M I =  1.1, K =  5 
M I =  1.2, K =  5 
M,=l .3 ,  K = 5  
M I =  1.1, K = 7  
M I =  1.2, K = 7  
M~=1.3, K = 7  

- X for k equal to 
0-5 0.6 0.7 0"8 0-9 

0 0.45 1.18 2.04 3.89 
0 0.78 1.49 2.11 3.10 
0 1.20 1.92 2.52 3.18 
0 0-23 0.68 1.13 2.62 
0 0-36 0-76 1.15 1.65 
0 0.45 0-90 1-24 1.53 

For the case M 1 = 1.3, K = 7, - dr/dh is slightly negative for h = 1, though it becomes positive for 
k less than about 0-9. Thus the boundary layer is predicted to decrease in thickness initially with 
rising pressure, rather than to increase, and the integration of the above equation for X becomes 
impossible for values of h close to 1. In the terminology of Crocco and Lees 1°, the boundary layer is 

'supercritical'. The source of the trouble is the assumption that the pressure is constant across the 
boundary layer. With the higher Mach numbers and 'fuller' boundary-layer profiles a considerable 
part of the flow in the boundary layer is supersonic, and supersonic stream tubes tend to contract on 
encountering a rise in pressure. In reality however the pressure is not constant across ;he boundary 

layer, but tends to be constant along Mach lines in the outer part of the layer, and this is why the 

solution fails upstream. Where the local Mach number at the edge of the layer has fallen, however, 
the pressure is likely to vary less across the layer, and the solution for X as a function of k as given 
in the above Table should then be applicable. 

2.5. The Interaction Downstream. The downstream solution has necessarily to be crude, because 
of the complexity of the equations and the boundary conditions. The procedure we adopt is to choose 

a suitable mathematical form for the distribution of k in the x, 07 plane downstream of the shock. 

This distribution has a number of disposable constants which are chosen by making the distribution 
fit various integral conditions derived from the equations and the boundary conditions. 

From Equation (15), since ~ J+0 as x --> 0% 

2(Mi~-  1) ~'2 [ ~ ~k 
~d = (~ + 1)M12 ~o  ~ dx, 

where a a is the flow angle immediately downstream of the shock, assumed to lie along the line 
x = 0. Hence from Equation (9) 

kel'2(1-ke) f :  = -  ~ d x .  
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If  we integrate this equation from 37 = 0 to y = oo, where 37 = 0 is at a distance from the wall equal 

to the thickness of the boundary layer at x = 0, it follows that 

[h'e(1 - k)]x= 0 d37 = (k)v= 0 dx, (30) 
0 0 

since k -> 0 as 37-+ Go, where the pressure approaches the full theoretical pressure behind a normal 

shock in inviscid flow. The line 37 = 0 is, strictly speaking, within the boundary layer downstream 

of the shock, but it approximates near enough to the edge of the boundary layer. 
Similarly by doubly integrating the equation of motion (13) with respect to x and 37 from x = 0 

to co and from 37 = 0 to co we obtain 

f l  "~ \oy/(a~k=tra=o dx= fo~° I ( 1 _  2k) ~xJ.=0 dy . 3 k  (31, 

The  two sides of Equation (31) are equal to [(y+ 1)M,2/2(M, 2- 1)a~](~).=~=0, and this is equal 

to * from Equation (3). Hence a-, 

- _  _ _ o  g¢ =o = 3 '  

From Equation (29) 
3k) 2(M1 ~ - 1) a'~ V (33) 

x=>:0 = 3(Y+ 1)M*~S,*(dr/dk),~=o'5 = 3." 
Finally from Equation (15) 

o~ 3h dxdx = 2(M1~_ 1)a~ 2 - W8~ (34) 
0 x ~ = 0  

where A is the effective displacement of the external flow away from the wall due to the boundary- 

layer growth between the shock and downstream. We may take this to be roughly given by 

[ <)1 A - n,. 3.r, K 3~ + (x,~-x~) dxx ' 
n m + 1 K + 1 

where suffix m denotes some downstream station where the pressure has almost reached its maximum 
value, which is the full downstreffm pressure. The term nmS,J(n,~+ 1) here is approximately the 
displacement thickness at station m, and the term which is subtracted from it on the right-hand 
side is approximately what the displacement thickness would be at this position if there were no 

shock. Far downstream the displacement thickness behind the shock should grow at much the 
same rate as if there were no shock, so A should tend to a roughly constant value. Strictly (35) 

represents the effective displacement over the whole region of interaction, and not just between the 
shock and downstream, but  the increase of displacement thickness up to the shock is usually fairly 

small compared with 5 as given by (35). 
The  distribution we assumed for h is 

(e-Xl.a + ze-XtB) l ( ~)  ( x ) X e-.~'Ee-~d'F I (36) 
k = 2 ( l + z )  1 + 1 - ~ e  -*IE e - ~ I ° + ~  

where z, A, B . . . F are constants. This makes h = ½- at x = y = 0, satisfying the condition that the 

pressure is sonic at the foot of the shock, k -> 0 as x, 37 -+ oo, satisfying the boundary conditions at 

infinity, and ak/a37 = 0 at x = 37 = 0. This latter condition follows from (15) and (29) if we make &e/Ox 
at the edge of the boundary layer continuous at x = 0. The assumed distribution (36) also takes 
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relatively simple and convenient forms along the lines x = 0 and 37 = 0, i.e., along the lines which 

roughly coincide with the shock and the edge of the boundary layer. We arbitrarily assume 
z = ~ a n d E =  A/4.  T h e n a t x =  0 

k = ~ 1 + e-~le 

and 

Ox - 2D ~ + IOA + 1 - ~  1 + e-5~c, 
whilst at 07 = 0 

and 

k = 1 (4e_X,. 1 + e_XIB) 

Ok (4e -*~ + e-X:B)xe-4*t~ 

027 IODF 

If  B < 0.1A, say, an assumption justified ~ posteriori, Equation (30) approximates to 

C = 0.222A. 

Equation (32) approximates to 

4A 2 1 

250DF - 3 '  

and Equation (34) becomes 

8A 3 
1 2 5 0 D F -  WSa" 

Hence 

A = 7"5W8,, 

From (33) 
1 V 4 

1 0 B -  8~ 10A" 

Also from (31) and (32) 
F a 

2D(F + C) ~ 
Hence, if F = ~PSa, 

C = 1.67WSa, and 
1 F 
D 2" 7 W 28a 2" 

3c(1 1) 1 
4 2 D + l ~ + l ~  = j "  

/7~ /v 
5.4W=[F + 1.67W] 2 - 0-232 ~ -  1-25WV = 0"333. 

Thus all the coefficients may be found if V and W are known. Equation (28) gives V, and W may be 

found roughly from Equations (18) and (20). In Equation (20) we crudely approximate the integral 
term on the right-hand side at the downstream station m by 

where M 2 is the Mach number downstream of a normal shock in inviscid flow with upstream Mach 
number M 1. The justification for this approximation is that M e varies between 1 and M 2 downstream 
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of the shock. We assume various trial values for {(Xm--x~)/8,}(dS/dx),. Th en  (18) and (20) give n,,~ 

and 8~,~/8,, and (35) gives A and hence W. F rom Equation (25) 

, ~ 0" 30R(, -1t~ , 

and for a typical value R~ = 2 x 10 G, (dS/dx), ~ O. 017. We assume x m - x~ ~ 2A = 15 W3~, because 

at j = 0, k = 0"4e-*/~ + 0" le-~/~--~0"4e -~tA far away from the shock, since B ~ A, and when 

x = 2.4 conditions will approach fairly closely their ultimate downstream values. Hence 

3,, ~ ~ ~ 0 . 2 6 W .  

If  this does not agree with the original trial value, another value is chosen, and so on until the correct 

value is found. T h e  coefficients in the distribution (36) for k can then be found, and the following 

Table  gives some calculated results: 

M~ 
K 

A/8~ 
B/8~ 
C/8~ 
D/3o 

B/A 

1.1 
5 

19.5 
0-71 
4-34 
1.60 

11.4 
0.036 

1.2 
5 

23.8 
1.07 
5-31 
1.96 

14.0 
0. 045 

1.3 
5 

36.7 
1.79 
8.17 
3.12 

20.7 
0. 049 

1.1 
7 

11.7 
0.40 
2.60 
0.95 
6-9 
0.034 

1.2 
7 

13 "1 
0.53 
2.92 
1.08 
7-6 
0. 040 

1.3 
7 

17.2 
0.53 
3.82 
1.37 

10.3 
0-031 

It can be seen that in all cases B < 0 .1A,  as assumed in the analysis above. 

2.6. General Remarks on the Solution and the Prediction of Separation. Corresponding to the 

tabulated results of Sections 2.4 and 2.5, Figs. 12 to 17 show some calculated distributions of 1 - k 

(proportional to the pressure rise) as a function of X = x/8~. I t  can be seen that the pressure 

distribution at the wall has the general form sketched in Fig. 2. Th e  reasons for the pressure gradients 

becoming infinitely steep upstream with K = 7, M 1 = 1.3, have already been pointed out, in 

Section 2.4. Although the gradients do not of course become infinite in reality, it is not unreasonable 

that the theory should predict that the position of maximum pressure gradient occurs upstream of 

the sonic point  at the higher Mach numbers,  whereas at M 1 = 1.1 it occurs at the sonic point. 

Extrapolating this predicted t rend in the pressure gradients to still higher Mach numbers,  we see 

that we can expect the 'kink' pressure Pb, at the point of maximum curvature on the pressure distri- 

bution, to decrease as M 1 is increased. This  indeed appears to be the case for the K = 5 results of 

Figs. 12, 13, and 14, though the predicted shape of the pressure distribution just downstream of the 

sonic point is sensitive to the arbitrary assumption made concerning z in Equation (36), and hence 

not much importance can be attached to Pb as deduced from Figs. 12 to 17. Th e  falling off in Pb 

becomes marked when extensive separation occurs, though then the flow pattern resembles Fig. 3 

rather than Fig. 2, and the theory breaks down, partly because the shock is assumed to lie close to 

the line x = 0, passing through the point of sonic pressure at the edge of the boundary layer. 

Seddon 's  results 4 show that in fact at high Mach numbers  M 1 there is a 'supersonic tongue '  just  

outside the boundary  layer extending well downstream of the shock. Also, as we have seen in 

Section 2.3, when there is considerable separation, the boundary-layer  profiles are not well 

represented by the simple power- law family assumed in the theory. 
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The way in which the boundary layer is predicted to thicken through the region of interaction is 

shown in the following Table: 

M1 
K 

8~18<, 

1.1 
5 
1.056 
1.83 

1.2 
5 
1. 126 
2.33 

1.3 
5 
1.232 
3-55 

1.1 
7 
1.033 
1-50 

1.2 
7 
1.064 
1-74 

1.3 
7 
1-102 
2-28 

Here 8 s is the boundary-layer thickness at the point of sonic pressure, under the lower end of the 

-shock, and 8 m is the thickness at the downstream station near the pressure maximum, as discussed 

in Section 2.5 above. It should be borne in mind that the boundary-layer thickness downstream 

continues to increase with increasing distance from the shock, due to the normal 'flat plate' boundary- 

layer growth, so 8,~ has no precise significance. For a given Mach number M 1 the length of the 

interaction region as a multiple of the boundary-layer thickness 8~ is roughly proportional to 8s/8  a - 1 

or to 8 m / 8  a - 1, which increase as K is decreased. However, although 8s /8"  - 1 and 8 m / 8  a -- 1 are 

much bigger for M 1 = 1.3 than for M 1 = 1.1, the length of the interaction region does not vary as 

much with Mach number. This is because the maximum flow angles c~ at the edge of the boundary 

layer are smaller at the lower Mach numbers, the maximum value of a varying as (3//1 ~-  1) 3f2. 

Hence at the lower Mach numbers it still takes quite a long interaction region to accommodate a 

relatively small increase in boundary-layer thickness. 

Just behind the shock the pressure at a sufficient distance from the wall in Figs. 12 to 17 becomes 

close to the full downstream pressur.e behind a normal shock, but the gradient of pressure is initially 

falling. This is because the stream tubes must contract to be consistent with the streamlines being 

roughly parallel to the wall a long way from it, and inclined with a positive slope at the edge of the 

boundary layer. This tendency for there to exist regions where the pressure falls in the streamwise 
direction only operates downstream of the shock. Upstream, the contraction of the stream tubes 

outside the boundary layer due to the latter's thickening is consistent with positive pressure 

gradients everywhere, because in supersonic flow stream tubes contract on encountering a rise of 

pressure. Thus it seems intuitively reasonable that the average pressure gradients downstream of 

the shock should be less than those upstream. This is reinforced by the fact that the boundary 

layer thickens much more downstream of the point of sonic pressure than upstream of it, since its 

thickness is a non-linear function of pressure. 

Figs. 12 to 17 also show the skin-friction distributions calculated from Equation (24) for 

R~ = 1 x 106 and 5 x 106. The large negative values at M 1 = 1.3 are probably unrealistic, but the 

general shape of the distributions is reasonably consistent with the experiments of Section 3. 

Separation is indicated at a Mach number M 1 of about 1.2 for the 1/7th power profiles, and rather 

less for the 1/5th power profiles. These figures are of the right order. Stratford's criterion (26) would 

seem to indicate rather lower values for M~ giving separation, as can be seen from the following Table: 

M1 
k 

L.H.S. of (26), 
K = 7  

L.H.S. of (26), 
K = 5  

1.1 
0.8 

0.014 

0. 029 

1.1 
0.6 

0. 050 

0. 075 

1.1 
0.5 

O. 059 

O. 076 

1.1 
0.4 

0. 042 

0. 065 

1.2 
0.8 

0. 045 

0. 072 

1.2 
0.6 

0.118 

0.121 

1.2 
0.5 

0. 140 

0.127 

1.2 
0.4 

0. 106 

0.132 

1.088 1.3 
0.~ 0.6 

0. 0. 175 

0.107 0.147 

1.3 
0.5 

0. 228 

0.143 

1.3 
0.4 

0. 164 

0. 109 
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The right-hand side of (26) is equal to 0. 116 if/3 = 1 and 0-077 if fi = 0-66, the value deduced 
from experiment by Stratford. This latter value of/8 would lead to the conclusion that separation 

occurs with M 1 not much above 1.1, which is too low. It may be, of course, that the pressure 
gradients predicted by the present theory are too steep. However, they enter Equation (26) only in a 
square-root form, and the gradients would have to be reduced to about } of their theoretical values 

to make separation occur at M 1 = 1.2 according to Equation (26) with K = 7 and fi = 0.66. The  
experiments of Section 3 do not suggest that the theoretical gradients are in error by as nmch as this. 

It  may be that, despite the indications of Equation (24) that incompressible separation formulae can 
be used in cases with compressibility if C~ is interpreted as 1 - Me2/M1 ~, there is in fact some 

compressibility effect present, and this takes the form of increasing the effective value of/~ in 
Stratford's formula. More will be said about this, however, in Section 4. 

3. The Experiments on Normal Shocks in a Pipe. 3.1. Description of the Apparatus. A small 

blow-down tunnel was specially constructed for investigating normal shocks. The working section 

was a perspex pipe 25 in. long, tapering linearly between in terna l  diameters of 5 and 5.3 in. at 

the upstream and downstream ends respectively. In its original form the arrangement was as 

shown in Fig. 18. Downstream of the main tunnel contraction there was a perforated section. By 

adjusting the tunnel stagnation pressure so that the pressure within this section was greater than 

atmospheric, air was made to blow out of the perforations into the room, so that the boundary 

layer formed in the main contraction was removed and the boundary layer at the entrance to the 

pipe was very thin. The entrance to the pipe formed a ' throat ' ,  and supersonic flow was developed 

in the pipe. At about half way along, where there were presshre tappings, the Mach number was 

about 1.25. To obtain lower Mach numbers at this position a wooden fillet could be fitted into the 

pipe as in Fig. 18. A normal shock could be made to occur at any desired position in the pipe by 

suitably positioning a cone which choked the exit to the working section. 

This axially-symmetrical arrangement was chosen in preference to forming a normal shock on a 
flat plate in a conventional wind tunnel partly because a suitable tunnel was not conveniently 
available, and partly because it was felt that the interaction on a flat plate Would suffer from 
undesirable interference effects arising in the side-wall boundary layers. However, the present 

arrangement was also found to have serious disadvantages, as discussed later. 
In the original version of the tunnel, shown in Fig. 18, pitot- and static-pressure measurements in 

the stream were made with tubes which could be traversed across the pipe, but not axially. To make 
axial traverses through the shock, the latter was moved along the pipe relative to the pressure probe. 

The  perforated section was subsequently modified to the form shown in Fig. 19, with the 

minimum-area section at the perforations. The throat was thus formed here. By raising the stagnation 
pressure so that more air was blown out of the perforations the effective throat area could be reduced, 

so raising the Mach number  of the flow entering the pipe. Thus  the arrangement formed a 

primitive variable Mach number  tunnel. To mitigate the abrupt changes of flow angle at the 
upstream and downstream ends of the perforated part, the ends were made in a saw-tooth form, 

as shown in Fig. 19. With this arrangement the Mack number at the middle part of the pipe could 

be varied between about 1.26 at 20 p.s.i, gauge stagnation pressure and 1.34 at 40 p.s.i, stagnation 

pressure. A further group of pressure tappings was inserted nearer to the upstream end of the pipe: 

at these tappings the corresponding Mach numbers were about 1.15 at 20 p.s.i, and 1.27 at 40 p.s.i. 

However, Mach numbers in between 1.15 and 1.27 could not conveniently be obtained because 

22 



weak oblique shock waves caused by the crudity of the effective tunnel 'nozzle' impinged on the 

upstream measurement station a't stagnation press~res intermediate between 20 and 40 p.s.i. 
The arrangements for making boundary-layer traverses were also improved for the later experi- 

ments. A brass tongue was made to fit into the Perspex pipe as in Fig. 20, and traverses could 

be made through this tongue at a number of positions along it. The traverse position could readily 
be altered by removing the tongue from the tunnel, pulling out the pitot tube, and moving the 
actuating micrometer. Thus the tube could be removed without taking the whole working section 

to pieces, as was necessary with the earlier arrangement of Fig. 18, and the shock did not need to 
be moved axially in order to make pitot traverses upstream and downstream of it. There were a 
number of static-pressure holes in the brass tongue. For determining skin friction two of these holes, 
one in the upstream measurement region and the other in the downstream, were covered by small 
pieces of razor blade, as in Fig. 21. These formed Stanton tubes, of the simple and convenient type 
first used by Hoo111, and they measured the pitot pressure much closer to the wall than was possible 
with a conventional pitot tube. By comparing the Stanton-tube readings with those of the same 
pressure holes with the shock in the same position when the razor blades were removed, the skin 

friction could be estimated. 
For the measurement of static pressure in the stream, static tubes of the conventional type were 

unsuitable, since they would give false readings close behind a shock when the tip of the tube 
protruded through the shock whilst the holes were behind it. Hence a tube of the wedge-shaped 
type shown in Fig. 22 was used. This was proposed by Girerd and Guienne 12 for use in low-speed 

flow. Its advantage is that it is very insensitive to yaw in the plane of the front edge of the wedge 

and the tube axis. Fig. 22 shows that it is also suitable for use at transonic speeds where it is still 

insensitive to yaw and also fairly insensitive to incidence up to + 3 deg in the plane at right angles to 

the apex of the wedge. The tube does not measure the true static pressure at alI Mach numbers, of 

course, but the calibration curve is smooth and nowhere has it any very steep gradients, as do the 

calibration curves of most other kinds of tube at Mach numbers close to 1. 

3.2. Results obtained. Figs. 23 and 24 show results obtained with the earlier arrangement of 

the tunnel, when detailed static-pressure surveys were made in the stream. The values of k shown 
in these figures have been computed from Equation (1), so that h = 0.5 does not exactly correspond 
to the sonic pressure. The results of Fig. 23 were obtained with a wooden fillet in the tube, as in 

Fig. 18, to reduce the Mach number. It can be seen that well away from the wall the pressure rises 
much more steeply than at the wall. Probably in fact the pressure rise well away from the wall 
through the shock is virtually discontinuous, but the non-zero size of the static probe and the slight 
unsteadiness in shock position somewhat 'smear out' this abrupt rise. But for these factors it seems 
likely that the pressure behind the shock at 2 in. from the wall would be equal to the full theoretical 
pressure behind a normal shock, as indicated by the dotted lines in Figs. 23 and 24. This high 
pressure is followed by a fairly sharp fall in pressure. In this the experimental findings resemble 
those of the theory, as can be seen from Figs. 12 to 17. However, in the experiment the pressures 
become virtually uniform across the pipe at about 10 boundary-layer thicknesses downstream of the 
shock, and this uniform pressure is considerably below the theoretical pressure behind a normal 
shock. This  is because the boundary layer thickens on passing under the shock, so reducing the 
effective area of the pipe downstream, and hence reducing the downstream pressure. Once the 
pressure has become uniform across the pipe, it gradually rises with distance along the pipe, due 
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to the slight taper of the pipe. In a case with an infinite uniform stream the pressure could not 
become uniform along lines perpendicular to the wall until the full normal-shock downstream 

pressure had been reached. Hence the external flow downstream is essentially different in the pipe 
experiments from what it would be in the infinite-stream case. The fact that in Figs. 23 and 24 the 

full normal-shock downstream pressure is achieved closer to the wall just behind the shock than in 
Figs. 12 to 17 is accordingly no proof that the theory is wrong in this respect. 

Despite the differences in the external flow it may be that the constraint effect of the finite 
diameter of the pipe does not completely alter the pressure distribution at the wall. Figs. 12 to 17 

compare reasonably well in this respect with Figs. 23 and 24, and also with Figs. 25 to 28. These latter 
figures show distributions obtained with the later arrangement of the tunnel, when the primary 

object was to measure skin friction, as will be discussed below. Meanwhile, reverting to the pressure 

distributions at the wall, we should expect these to be broadly comparable with those predicted by 
the theory at least up to the sonic point. However, the flow in the pipe may be said to have a 

'coaxial character', in the sense that the surfaces of constant pressure, velocity, etc., in the fluid are 
all coaxial with the pipe axis, and thus have transverse curvature. This somewhat affects the simple- 
wave character of the external flow upstream of the shock, a point which is discussed further in 
Section 3.3. The following table compares the pressure gradients predicted by the theory with those 
found experimentally at the point where k = 0.75, i.e., where the pressure is half way between its 
value just upstream of the region of interaction and the sonic pressure. 

Theory: 

Experiment: 

M~ 
K 

- d k l d X  

Fig. No. 
M1 

in. 
K 

- dk/dX 

1.1 
5 
0.18 

23 
1.12 
0.138 
7 
0.14 

1.2 
5 
0.15 

24 
1.25 
0.165 
6 
0.17 

1.3 
5 
0..14 

25 
1.15 
0.12 
7 
0.16 

1.1 
7 
0.27 

26 
1.27 
0.10 
8 
0.13 

1.2 
7 
0.26 

27 
1.26 
0.19 
8 
0.17 

1.3 
7 
0.30 

28 
1.34 
0.17 
8 
0.16 

The theoretical value for - d h / d X  with M 1 = 1.3, K = 7, is too high, due to the neglect of 
pressure variations across the boundary layer, leading to infinite gradients being predicted upstream 
for this case. For the same reason, all the other predicted pressure gradients are probably somewhat 
too high. The experimental values for - d h / d X  are probably too small, because the unsteadiness of 
the shock would tend to reduce the pressure gradients measured at the wall where the gradients 
are steep. Moreover, the coaxial character of the flow would be expected to reduce the pressure 
gradients slightly, as is discussed below. Hence, though the measured pressure gradients are in 
most cases roughly a half what would be expected from the theory, the discrepancy is probably 
considerably less in reality. 

The values of 3 and K in the table above giving the experimental pressure gradients were obtained 
by fitting curves of the form util e = (y/8)11 r; to the boundary-layer profiles measured ahead of the 
region of interaction. The pitot traverses determine the Mach number distributions through the 
boundary layer as shown in Figs. 23 and 24, and from these the velocity distributions can be deduced 
by assuming the total temperature to be constant across the boundary layer. From the power-law 
profile fitted to the measurements just upstream of the region of interaction the skin friction can be 
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calculated. Thus we assume that a flat plate with turbulent flow from the leading edge 3 = 0.38/R, -1/5 
at a distance l from the leading edge. This is a reasonably accurate formula up to moderate super- 

sonic Mach numbers. Hence from the momentum equation 

C 1 = 0"477 ~ R~ -114. (37) 

Here Rs is the Reynolds number based on free-stream conditions and the length 3, and 0/3, the 
ratio of the momentum thickness to the total thickness of the boundary layer, is a function of the 
power-law index K and of M1, the free-stream Mach number. The numerical values of 0/3 are 

given in Ref. 13. The skin friction may also be deduced from the Stanton-tube readings. Since the 
Mach number is not much above 1, the calibration of the Stanton tube is not greatly affected by 
compressibility, and under these circumstances it is shown in Ref. 14 that the skin friction is given by 

CI _ 1.77.10-2 (3012,3 (Ap~2t3 (38) 
M, ~ \ p  / \pd/  ' 

where p is the staticpressure in inches of mercury absolute, Ap, in inches of mercury, is the excess 
pressure over the static pressure, recorded by the Stanton tube, and d is the Stanton-tube height in 
thousandths of an inch. It is assumed that the wall temperature is atmospheric, as was the case in 
the present experiments. For the razor-blade type of tube used, d is the height of the sharp edge 
above the surface as in Fig. 21, and it was 3.2 thousandths of an inch for the forward tube and 

2.8 for the rear one. The two estimations of skin friction.just ahead of the region of interaction agree 

quite well, as can be seen from the table: 

Fig. No. 25 26 27 28 

M 1 1- 15 1.27 1.26 1.34 

Cj, Equation (37) 0.0023 0.0020 0.0019 0.0017 

CI, Equation (38) 0. 0021 0. 0017 0. 0021 0. 0016 

Thus we can place considerable confidence in the Stanton-tube measurements of skin friction 

upstream of the region of interaction. 
The variation in skin friction under the shock wave is shown in Figs. 25 to 28. It can be seen 

from a comparison with Figs. 12, 13, 15 and 16 that for the lower Mach numbers the theory predicts 

a variation broadly similar to that found experimentally, though for M 1 = 1.3, in Figs. 14 and 17, 
the skin friction is predicted to become much too markedly negative. This is probably because the 
theory does not predict the shape of the boundary-layer profiles accurately within a region of 
separation. In such a region, therefore, there are likely to be serious errors in the estimated skin 
friction, which is very sensitive to small errors in the predicted distributions of the boundary-layer 
momentum thickness 0 and the shape parameter H, though the thickening of the boundary layer 
may be predicted well enough for the estimation of the pressure distributions. The theory has been 
worked out for Reynolds numbers Ra, based on the distance from the leading edge to station 'a', 
of 106 and 5 x 106, but the resuks are not very sensitive to variations in Ra. For the experimental 
cases effective Reynolds numbers R~ may be defined as equal to 3-35Rs,, TM, which follows from 
Equation (25), and the values for Figs. 25 to 28 respectively are 7.0, 10.0, 12-7 and 19.3 times 10 G. 

In Figs. 27 and 28, separation is almost certainly taking place, though the skin friction as deduced 
from Equation (38) does not fall quite to zero, but only becomes very small. As is discussed below, 
however, any reversed-flow region that there may be must certainly be extremely thin, so that the 
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reverse-flow velocities must be very low. Hence any 'base pressure' effect, tending to make the 

forward-facing Stanton tube read lower than the static pressure, will be very small, and will 

probably be outweighed by a small rise of pressure associated with the displacement away from the 

wall of the outer, downstream-moving streamlines, as sketched in Fig. 21. Even in the light of this 

process it does not at first sight appear that separation is occuring in Fig. 26, at the upstream set of 

pressure tappings, yet this case should be closely equivalent to Fig. 27, at the downstream set of 

tappings, because M 1 was about the same for the two cases and the upstream profiles were both 

roughly of the 1/Sth power form. However, the results of Fig. 26 are probably somewhat anomalous 

because with this case there were appreciable spanwise variations of pressure, indicating that the 

plane of the shock was not quite normal to the tunnel axis. This presumably was due to the crudity 

of the nozzle. The results of Fig. 25 should be more reliable because the spanwise variations of 

pressure were much less. This case appears to be not too far from separation. If we accept the 

theoretical results of Figs. 15 and 16 as being a valid guide to the rate at which the minimum value 

of CI/CIc ~ decreases with increasing M 1 until separation occurs, we can tentatively infer from 

Fig. 25 that separation first occurs when M 1 reaches a value of about 1.21. 

Oil-flow measurements suggested that the cases of Figs. 26, 27 and 28 were separated but that the 
case of Fig. 25 was not. For these observations a thin layer of pigment-containing oil was smeared 

onto the surface. Where the skin friction was large the oil was teased out into filaments moving in the 
downstream direction, but immediately under and just behind the shock it remained unmoved at 
the larger values of M 1. A thick application of oil showed some movement under the shock even at 
the highest Mach numbers. Wavelets appeared in the oil with their fronts at right-angles to the flow 

direction, and these wavelets moved slowly downstream. This might happen even though the air 
in contact with the oil exerts a zero frictional force on it, or even a small frictional force in the 
upstream direction. If any irregularity in thickness of the oil layer arises, the consequent distortion 

of the streamlines in the downstream-moving part of the boundary layer, as sketched in Fig. 29, 

probably gives rise to pressure forces sufficient to move the wavelet downstream. A thinly-applied 

layer of oil cannot hump up into wavelets, and so remains unmoved in regions of separation. 
However, it is very difficult to determine exactly when, with increasing Mach number M1, some 

of the oil is first brought to rest. It is thus difficult to determine exactly; either by the oil technique 

or by Stanton-tube measurements, what is the minimum Mach number M I for separation to occur. 
The value suggested above, M I = 1-21 for the pipe experiments, is far from precise. 

Of course, when separation is only incipient and therefore difficult to detect, as discussed above, 

it does not have any important practical effects. Nevertheless, it is of considerable interest to 

determine the conditions for incipient separation, because they represent a lower bound to the 
conditions which give rise to the important effects of well-developed separation. 

As mentioned above and discussed in more detail in Section 3.3 the coaxial character of the flow 
probably reduces the instantaneous pressure gradients. The average gradients as measured are 

also reduced by the shock oscillation. Presumably the separation point oscillates with the shock: 
this, incidentally, would be a further reason for the Stanton tube to read too high a pressure at 
separation when the extent of the separated region is very small. However, the oscillation is probably 
not rapid enough to make the conditions for separation differ significantly from what they would be 
with a steady pressure gradients equal to the instantaneous values. Separation probably first occurs 
somewhere near the point of sonic pressure, and here the analysis of Section 3.3 suggests that the 
coaxial character of the flow decreases the instantaneous pressure gradients by about 19 per cent, as 
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compared with a flat-plate case with the same upstream Mach number M 1. Hence Stratford's 
separation criterion (26) suggests that 3//1 ~ - 1 for the first occurrence of separation is probably 

increased in the pipe by roughly 10 per cent, so that separation at 214rl = 1.21 in the pipe would 

correspond to separation at about M 1 = 1.19 on a flat plate. Equation (24) would similarly suggest 
M 1 --- 1.19 for the equivalent flat-plate separation. This sort of figure for the minimum M 1 for 

separation is consistent with Figs. 12 to 17, which suggest that separation first occurs at M 1 ----- 1-20 

for K = 7 in the upstream power-law profile, and at M~ ~ 1.16 for K = 5. For Fig. 25, from 

which the figure of M 1 = 1- 19 has been inferred, the approximate value of K is 7. 

The experimental results of Fig. 25 suggest that under conditions of incipient separation, the 

separation point will be somewhere near the position of sonic pressure, and that the skin friction will 

become positive again downstream. This is in line with Equation (24), because the multiplier of 

dMJdx on the right-hand side increases steadily as M e decreases, i.e., it is bigger for positions of 

higher pressure, but - dMe/dx itself becomes small in the downstream part of the interaction region. 

Hence the product is a maximum somewhere near the sonic point, and this is therefore where 

separation would first be expected to occur. This reasoning also suggests that the Mach number M 1 

for which separation first occurs will not be much affected if the shape of the pressure distribution 

well downstream of the sonic point is distorted in any way. Such distortions may occur, for example, 

with a shock wave situated on an aerofoil, where the change of flow angle in the vicinity of the 

trailing edge will affect the flow well downstream of the shock, but it may not necessarily affect 

separation. If the surface has convex curvature in the stream direction, however, as is often the 

case on aerofoils, this does seem to have an important influence on the conditions for incipient 

separation, as is discussed in Section 4. 
Figs. 30 and 31 show velocity profiles deduced from the Mach number profiles of Figs. 23 and 24. 

The upstream profiles have been fitted by power-law relations, and the downstream profiles then 
predicted by Equations (18) and (20). It can be seen that the predicted shapes downstream agree 
quite well with the experimental measurements, and this provides a further check on the validity 
of the theory. There is probably separated flow at the downstream profile position in the case of 
Fig. 31, but no sign of this appears in the profile. The experimental point nearest the wall was 
obtained with the pitot tube touching the wall, and the effective centre of the tube may well have 

been displaced here, so that the shape of the inner part of the measured profile may not be quite 

correct. However, it is clear that if there is a dead-air or reversed-flow region, it must be extremely 

thin. This is the reason for the small positive Stanton-tube readings and the behaviour of oil 

wavelets in separated regions, as discussed above. It is not possible to deduce the skin friction by 

trying to fit the measured velocity profile near the wall by a 'law of the wall' form. At the wall the 

rate of change of friction stress normal to the wall, Or/Oy, is equal to the pressure gradient, dp/dx, 
and when the latter is very large, r varies too violently withy for the 'law of the wall' to be applicable. 

Downstream of the very sharp pressure gradients, the profile probably remains distorted from the 

'law of the wall' form for a considerable distance. 
The region of compression-wave flow indicated in Fig. 2 is detected in the static-pressure traverses 

of Figs. 23 and 24, where at 0.5 in. from the wall the pressure rises much less abruptly under the 

shock than it does through the shock further from the wall. This effect is also shown in Figs. 32 
and 33, which present the results of pitot traverses made upstream and downstream of the shock. 

The plotted quantity is 1 -pT/Ho, where PT is the pitot pressure and H 0 the tunnel stagnation 
pressure. In a supersonic flowp~, is less than H 0 because of the total-head loss through the bow shock 
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of the pitot tube. For the fairly low supersonic Mach number of the present experiments, 1 - p~,/H o 

is very small, but nevertheless it is clear that it is greatly reduced behind the inner part of  the shock. 
This is to be expected because at the edge of the boundary layer the compression should, according 
to Fig. 2, be isentropic, with P'z' = Ho downstream of it, where the flow is subsonic. A little further 
from the wall the compression is achieved partly isentropically and partly through a weakened 
shock, so that the loss is still reduced. Well away from the wall the loss should be the same whether 
the pitot tube is behind the main shock or ahead of it, when it generates its own bow shock. The 
small differences between the upstream and downstream curves well away from the wail in Figs. 32 
and 33 are due to the taper of the pipe and the method of measurement, moving the shock relative 
to the probe. When the shock was moved downstream, to obtain the distribution upstream of the 
shock, the Mach number immediately ahead of the pitot-tube bow shock was a little higher than that 
just ahead of the main shock when the latter was moved upstream. This was because the upstream 
position of the main shock was appreciably ahead of the pitot tube, at a position where'the pipe 
diameter was smaller, by a small but significant amount, than the diameter at the plane of the 
pkot-tube mouth. The variations in pitot loss outside the boundary layer with distance from the 
wall upstream of the shock are due in the main to small variations of the stream Mach number across 

the pipe. However, the small dip in the upstream curves just at the edge of the boundary layer is 
probably due to the bow shock of the pitot tube interacting with the boundary layer, causing it to 

generate a small compression-wave region, as in Fig. 34, so reducing the pitot loss. When the pitot 

tube is moved right into the boundary layer, of course, the pitot loss becomes relatively very large, 
because of the frictional loss of total head. 

The distances over which the isentropic effects of the compression-wave region associated with 
the main shock should be felt in Figs. 32 and 33 can be estimated from Figs. 23 and 24. Thus in 

Fig. 23 the upstream end of the interaction region is about 0.6 in. ahead of the sonic point. Hence 
the Mach wave from the upstream point, where M 1 = 1.12, intersects the plane of the shock, 
(i.e., according to Fig. 2 the vertical through the sonic point) at a distance of 0.6 cot [sec -I 1.12] 
or 1-2 in. from the edge of the layer. The corresponding distance for the case of Figs. 24 and 33 is 
0.7 cot [sec -1 1.25] or 0.9 in. These distances agree very roughly with the distances over which 
the upstream and downstream curves of Figs. 32 and 33 differ significantly from each other, though 
the estimated distances may be slightly too large because the oscillation of the shock probably means 
that the measured upstream-influence distances are a little too large. 

3.3. Estimation of the Effects of the Coaxial Character of the Flow. The fact that the compression- 
wave region extends over about an inch in the experiments, where the pipe radius is only about 2½ in., 
raises the question as to how far the compression differs from the two-dimensional simple-wave 
type assumed in the theory of Section 2. This problem can be treated as follows. 

Take co-ordinate axes x and r for the pipe as shown in Fig. 35. For the pressure gradient in the 
radial direction to balance the centrifugal force associated with the streamline curvature we require 

ap 0o~ 
Or ~ Plul~ ~ ' 

whilst the continuity equation becomes 

Ox Or r 
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As before we put  p/p~ = 1 + 2r(M~ 2 -  1 ) ( 1 - k ) / ( y +  1), and the governing equations then become 

and 

o~ 2(M1~-.1) & 
~x ( y +  1)M1 ~ Or 

(39) 

o~ + 7 = (r+ 1)M? (2k-  1) ~ .  (40) 

The  continuity equation here involves similar approximations to those made in the corresponding 

equation of Section 2.2. The  term a/r in (40) vanishes when r -+ co, and it represents the coaxial 
effect on the flow. 

Assume that the pressure is constant along lines satisfying the relation dx/dr = - C, where  

C = [1 + a(k)] (M1 ~ -  1)1/~(2k- 1) 1/~ . 

I f  a = 0, these isobars have the slope - d r / d x  = (3//i ~'- 1)-m(2k - 1) -l/z appropriate to two-  
dimensional simple-wave flow, so that (1 + a) -1 is the factor by which the slopes of the ' two- 
dimensional'  isobars are multiplied. The  assumption that 'a' is a function of k only means that along 

an isobar the slope is constant, i.e., the isobars are straight. This will not be accurately true, but  it 
may not be too much in error because the most upstream Mach wave of the compression-wave 
region will be straight with the ' two-dimensional '  slope, so that a ( 1 ) =  0. By definition 
Ok/Or = COk/Ox, so that (39) becomes 

Hence 

m ~ m 

~x 
2(3/12 - 1) 8e 
(r + 1 ) M ?  [1 + ~] [2k - 1]~'~ a_k Dx" 

2(M1 ~ 1) ae 

- ( r +  1)M1 = J~  

since c~ --> 0 upstream, where k -+ 1. It  follows that 

aa _ 2 ( M l e  - 1)a/~ (1 + a) (2k  - 1) 1/~ 3k 
Or ( r +  1)M12 Or 

2(M1 ~ -  1)~ ak 
( y +  1)3//12 (1 + a)2(2k - 1) -ax" 

Hence the continuity Equation (40) becomes 

2(M1 ~ 1)al ~ 
el 1 (1 + a) ( 2 k -  1)l]2dk = (2a + a=)2(M12- 1) ~ (2k- 1) Ok 

(y+I)M12r  3,~ ( y + l ) M ~  2 Yx" 

We crudely satisfy an averaged, integrated form of this equation along the edge of the boundary 
layer where r ~ constant = rb, making the further simplifying assumption that a(k) = A ( 1 -  k), 

where A is a constant. At B in Fig. 35 k = ½, whilst at C and A it is 1. Hence an average value of 
Ok/Ox along the edge of the boundary layer is 

1 1 

2AB 2(3//12- 1)l/eh ' 
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where h is the height BC of the compression-wave region at the plane of the shock. The equation 
integrated from k = ½ to k = 1 becomes 

2k f*  f * [ 1  + A(1-k ) ] (2k -1 )* /2dkdk  
l'b 1/2 1,: 

= - f*  [ 2 d ( 1 - k ) + A 2 ( 1 - k )  2 ] (2k-1)dk .  
1/2 

Hence 

r/, 12 96'  

and for k/r~ ~ 0.4, as in the present experiments, A ~ - 0.94. Accordingly the flow direction is 
given by 

2(3//12 - 1)a/2 
- (7'+ 1)M, 2 {0. 17711 - ( 2 k -  1) al~] + 0-09411 - ( 2 k -  1)~'2]}. 

When k -> 1, c~ -+ %, where % is the ' two-dimensional '  value of c~ as given by Equation (3). At the 

sonic point, where k = e,1 a/% = 0.81, and when k = 3/4, ~/% = 0.89. The fact that A is 
negative means that the isobars are steepened. This can be thought of as due to compression waves 
of the second family generated at the smaller radii, as in Fig. 35. 

In support of the above crude analysis it may be worth noting that it gives answers of the same 

order as those given by Ward .5 for linearized flow, where k is close to 1, for the case of flow through 
a hollow quasi-cylinder. For such flow, if 

f l  2(M'2 - 1)a'2 [1 + A(1 - k)] ( 2 k -  1)*/2dk, 

P --  P I  

7"p , M , 2 

But the continuity Equation 

2(M, 2 - 1) (1 - k) 
(7' + 1)M12 

(40) then requires 

1 E 
(M, ~-1)1/2 a +  

(1 - A ) ( 7 '  + 

A 

where (3k/ax)~ is an average 

being necessary because d is 

2(M, 2 -  1)*/2r(ak/ax)a,' 

value of 3k/ax over the region where ok/a  is significant, the average 

taken to be constant. Also 

(Ok) _ (7+1)M12 ( a s )  (7+1)M12a 
,,~ 2 (M,2 -1 )  a,2 8xx (,. = - 2 ( M ~ - ~ - l ~ , ) '  

where l and l, are the distances from the leading edge, I, being the point where ~ first becomes 

non-zero. Hence, approximately 

p - p ,  1 [ [ a( l -  l,,) 
7"p~M12 - (M~2_ 1)*12 ~ + 4(M,~_ 1)*~2r] " 

Ward's result for flow inside a hollow cylinder reduces to 

P - P l  1 I 0"5 f [ J l ]  
7"P,M* 2 - (M,2 - 1)if ~ e~ + (M,2 - 1)l12r 
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in a case where the compression is abrupt, so that l - l a ~ (11//12- 1)1/2r. Thus if, say, 

= l; = o,  1 < 

P - Pl 1 la) ] 
- (M~ - 1) m + 4 ( M 2 _  1)llZr] 

according to the present crude theory, whereas the correct answer is 

P -- Pl 
7plM 2 - (M2 - 1) lI2 [_ + 6 ( M 2 _  1)1/2rJ " 

I f  ~ = ~( l - la) ,  Ia/> l; ~ = 0, l < l~, so that the streamline has a circular-arc segment, the present 

crude theory gives the correct answer. The averaging processes adopted above for (Ok/Ox)~ v and 

(Oc~/aX)a v are then  exact, and the assumptions of the present theory are presumably correct. 

Returning to the non-linear problem of the interaction with a normal shock in a pipe, we note 

that the boundary-layer analysis of Section 2.3 is not appreciably affected by the transverse curvature 

of the wall. Hence the boundary-layer thickness as a function of pressure should be unaffected, but 

the pressure gradients should be reduced in the same ratio as ~/~2. The measured pressure gradients 

were compared above with those of the flat-plate theory at the point where k = 0.75, and here 

the small coaxial effect, combined with what are probably the bigger effects of the shock oscillation, 
may make the measured gradients significantly smaller than they would be on a flat plate with a 

steady shock. Also the reduction of the instantaneous pressure gradients in the vicinity of the sonic 
point should have some, fairly small, effect on separation, as discussed above. 

4. Shock-induced Separation on Two-dimensional Aerofoils. We have seen that when turbulent 

separation is induced on a fiat surface by a normal shock, the distance of the separation point from 

the upstream end of ' the interaction region is only a few boundary-layer thicknesses. Distortions of 

the shape of the pressure distribution downstream of separation are unlikely to have any effect on 

the conditions at the point of separation, though they may of course very much affect the extent of 

the separated region. As was pointed out in the introductory Section 1, surface curvature, such as is 

encountered on an aerofoil, would be expected to affect the downstream part of the pressure 

distribution, but at first sight there seems no reason to expect the upstream part of the pressure 

distribution to be much affected for weakly-curved surfaces up to the point of sonic pressure, 

where p = 0 .528H 0. Hence  if we define the upstream Mach number M 1 as that corresponding in 

isentropic flow to the pressure ratio pl/Ho, where Pl is the pressure at the surface just upstream of 

the interaction, we might expect that the minimum M 1 for separation to occur on a weakly-curved 

surface would be very nearly the same as on a flat plate. This is assuming provisionally that the 

initial separation point occurs at or before the point of sonic pressure. In fact, as will be seen below, 

M 1 for incipient separation increases quite sharply with curvature, and we now consider why  this 
i s  SO. 

First suppose that for a given surface pressure distribution the boundary-layer profiles are 
unaffected by curvature. Thus  we might suppose that Equations (18) or (20) are valid irrespective 
of curvature. Then  for weak curvature the interaction with the external flow ought to be virtually the 
same as on a flat plate up to the sonic point, and hence if separation first occurs at this point, the 
separation pressure ought to be virtually unaffected. For more strongly curved surfaces, the pressure 
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distribution at the surface could not remain exactly the same as on a flat plate, because the inclination 
of the flow at the edge of the boundary layer to its direction at the upstream end of the interaction 
region would be a little reduced, as in Fig. 36. The pressure gradients would need to become a 
little steeper to permit the flow at the edge of the boundary layer to have its proper inclination as a 

function of pressure relative to the upstream direction. Thus, again assuming separation occurs at 
or before the sonic point, we should, in virtue of Stratford's separation criterion (26), or the 

momentum-equation form (24), expect separation to occur at a slightly lower value of M 1, contrary 

to what we find experimentally. 
However, as was pointed out in Section 2.3 in connection with the experiments of Ackeret, 

Feldmann, and Rott 8, there is some direct evidence that curvature affects the way in which the 

boundary-layer velocity profiles respond to the rise of pressure. For a given rise of pressure, the 

boundary-layer thickening seems to be increased by convex surface curvature. If this increase is 

sufficient, it may mean that for the correct flow angles to be achieved in the external flow the adverse 

pressure gradients must be reduced, despite the small direct effect of curvature, discussed in the 

previous paragraph, tending to work in the opposite direction. Thus separation might be delayed by 

this mechanism to a higher value of M 1. 
A tentative physical explanation of this apparent effect on the behaviour of the boundary-layer 

profiles can be advanced in terms of the directions of streamlines within the boundary layer, as 

follows. At the sonic point the inclination of the flow at the edge of the boundary layer relative to 

its direction just upstream of the interaction is a function of M 1 only, independent of curvature. 

Hence at the point of sonic pressure the inclination between the streamline at the edge of the boundary 

layer and the wall is increased a little by convex surface curvature. Streamlines within the boundary 
layer must therefore on the average be diverging more rapidly than on a flat surface. However, the 
outer part of the boundary layer behaves in a quasi-inviscid manner, as shown by Stratford 7. Thus 

the streamline divergence here would not be expected to be much affected by curvature, and the 
increase must therefore fall mainly on the inner part of the layer. It seems quite likely, therefore, 

that for corresponding pressures, the profiles with curved surfaces will have lower velocities near 

the wall, so that the boundary layer may thicken more under the action of the adverse pressure 

gradients. 
An alternative or possibly additional reason why M 1 increases with curvature may be that the • 

flow is modified just behind the shock, where the external flow is subsonic. As mentioned in the 

Introduction, Section 1, a shock on a convex surface in inviscid flow would be followed by a rapidly 

falling pressure. This presumably means that when a boundary layer is present the flow becomes 

modified downstream of the sonic point, with smaller gradients than on a flat plate, though, as we 

have seen above, up to the sonic point the flow would only be expected to differ greatly from that on 
a flat plate if curvature affects the variation in boundary-layer thickness. If for incipient separation 

the separation point is a little downstream of the sonic point, the reduced downstream gradients 

will increase M 1. The theory of Section 2 suggested that the incipient separation position was 

close to the sonic point, and the experiments of Section 3 confirmed that it was indeed probably 
in the general vicinity of this point, but it is by no means impossible that it is in reality a little 

downstream. 
Whatever may be the true explanation, there seems little doubt that increasing convex curvature 

does increase M 1 for incipient separation. Evidence for this is shown in Fig. 37. Here values of M 1 

for cases for which it is inferred that separation is just on the point of occurring are plotted against a 
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parameter t, proportional to the ratio of the boundary-layer thickness just upstream of the interactior~ 
to the local radius of curvature of the surface. In fact t is defined as 

rr d ~  1 ~za M ~  

where ~ is the surface slope of the aerofoil in degrees, I is the distance from the leading edge, suffix 

'a'  denotes the point justupstream of the region of interaction, c is the aerofoil chord, R e is the 

Reynolds number based on the Mach number, M 1, the tunnel stagnation pressure, and the chord, 

and M is the local Mach number corresponding in isentropic flow to the ratio of the surface pressure 

to the stagnation pressure. The product (rr/180) [dc~/d(l/c)]a is equal to the ratio of the chord to the 

radius of curvature of the surface. In the tests a thin layer of roughness was applied to the aerofoils 

near the leading edge, so the boundary 1}tyer could be assumed to be turbulent from the leading 

edge. Hence the ratio of the boundary-layer thickness to the chord would be approximately 

proportional to (l,/c)415Re -115 if the surface pressures were uniform up to the position l~. The term 

f l :  (M/M1)ddl (l/la) represents roughly the factor by which the 'flat plate' boundary-layer thickness. 

is multiplied due to the upstream pressure gra.dients. (@ Ref. 6.) 
in virtue of Equation (25), t is approximately 2.6 times the ratio of the boundary-layer total 

thickness to the radius of curvature. The distance between the most upstream point of the interaction 

region and the sonic point is probably of the order of three boundary-layer thicknesses. Hence when 

t = 0. 015, the change of surface slope over this length is about 0-017 radians, or 1 deg. This is an 
appreciable fraction of the change of external-flow angle that occurs over the same length, this change 

of angle being about 3½ deg at M 1 = 1.20 and 6 deg at M1 -- 1.30. Thus it is not surprising that 

surface curvatures sharp enough to give values of t = 0.015 should significantly affect/141 for separation. 
The principle criterion used for determining when separation was on the point of taking place 

is represented by the open points in Fig. 37. It was based on the behaviour of the pressure p~ jus t  

behind the shock. Fig. 38 shows a family of pressure distributions, obtained at a fixed incidence for 

various free-stream Mach numbers M o, for one of the aerofoils tested. Pressure has been plotted 

increasing downwards, as is usual with aerofoil results. The pressure at the point of maximum 

curvature on the pressure distribution just behind the shock can be taken as Pb. In most of the. 

tests increasing M 0 decreases the pressure Pl just upstream of the region of interaction, so increasing: 

the local upstream Mach number M1, and increasing the likelihood of separation. In these circum- 

stances it is usually found that po abruptly decreases at a certain value of Mo, and correspondingly 

of M 1. Thus in Fig. 38, Pb is appreciably less for M 0 = 0.890 than it is for M o = 0-885. The 

condition immediately before this decrease occurs, i.e., in Fig. 38, M 0 = 0-885, ~J, = 1-231, is, 
taken to be the condition for incipient separation. This criterion was suggested by Pearcey 16. The. 

underlying idea is that once separation has occurred, the boundary layer can no longer withstand 

such a sharp adverse gradient, and hence the pressure gradients fall off downstream of separation. 

This reduction of the downstream gradients implies a reduction of p~. Figs. 27 and 28 provide 

examples of the way in which increasing M 1 beyond the value for separation decreases Pb. Corre- 

sponding to the reduction of pb, the flow pattern tends to change from the type shown in Fig. 2 

to that of Fig. 3. 
For the filled symbols of Fig. 37, the first occurrence of separation was inferred from Stanton-tube 

pressures. A piece of razor blade was fixed over one of the static-pressure holes on the aerofoil 
surface, as in Fig. 21. The static hole had to be selected by inspection of the pressure-distributior~ 
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family. This would sometimes suggest that the shock which seemed likely to be provoking incipient 
separation was situated in a fortunate position with respect to a pressure hole, so that the pb-pressure 

position, somewhere near which separation was most likely to occur, was just over the hole. In these 
circumstances the pressure recorded by the hole should in theory be unaffected by fixing a Stanton 
tube over it. In practice the Stanton tube might slightly increase the recorded pressure, due to the 

streamline displacement affect of Fig. 21, discussed in Section 3 above. At lower free-stream Mach 

numbers the shock would be too weak to provoke separation, and the Stanton pressure would be 

more definitely higher than the static pressure, whilst at higher Mach numbers, the shock would 

move behind the hole, and the Stanton pressure would again exceed the static pressure. The  technique 

was therefore to plot the static pressure of the selected hole as a function of Mo, and then to plot the 

pressure measured with the Stanton tube, as in Figs. 39 and 40. If  the two curves met at any point, 

this definitely indicated separation, and even a close approach might well mean separation. Failure 

of the two curves to approach closely would not necessarily mean that separation did not occur, but 

merely that it did not occur at the chosen hole position. Likewise incipient separation might in fact 

occur at a rather lower Mach number Mt  than that for which the Stanton pressure became equal 

to the static pressure. The  method did, however, possess the advantage over the pb-divergence 

method that it was direct, and not based on inference. Likewise it was not easy to find Pb precisely, 

since the static holes on the aerofoils were not very closely spaced, and it was possible to draw the 

pressure-distribution family in a variety of slightly different ways, still making the curves pass through 

all the experimental points. 
Fig. 37 shows that the two criteria for separation give results which are reasonably consistent, 

if some elasticity is permitted in the interpretation of the Stanton-tube results. Thus the Stanton-tube 
results of Fig. 40, corresponding to the pressure distributions of Fig. 38, were taken as confirming 

tha t  separation occurs for M 0 = 0. 885, M 1 = 1. 231, the conditions for pb-divergence, even though 
the  Stanton tube reads a slightly higher pressure than the static pressure here. In the case of Fig. 39, 

however, for a more curved surface, separation was taken to occur when the Stanton and static- 

pressure curves actually meet, at 21/i o = 0. 765, M 1 = 1. 282. It  might very well be objected that this 
means adopting a more stringent criterion for separation in the curved surface cases, and that 
accordingly the trend in Fig. 37 is exaggerated. I f  we were to assume that separation occurs whenever 

the difference between the p/H o values of the Stanton and static-pressure readings does not exceed 
'0. 012, the minimum difference in Fig. 40, then separation would be taken as occurring in the case of 

Fig. 39 at a value of M 0 of about 0. 757. The corresponding value of M 1 would have been 1. 260, 
:as compared with the value 1. 282 where the curves meet. Likewise the Stanton-tube point giving 

the  highest value of M 1 in Fig. 37 would have had its M1 reduced from 1.310 to about 1-290. 
'Thus the trend of increase of M 1 with curvature would have been somewhat reduced. However, 
in the author's opinion the procedure actually adopted for defining separation in the Stanton-tube 
points of Fig. 37 is defensible, as follows. Where the surface is locally flat the dead-air region, when 

it first occurs, is very thin, and the Stanton tube then probably indicates wrongly a small positive 

skin friction, as discussed in Section 3. Where the surface is curved, however, it may curve away 
from underneath the separated layer, giving a thicker dead-air region in which the Stanton tube 

correctly indicates zero skin friction. This is closely connected with the way the profiles at separation 

seem to become less 'full ' in shape on convex surfaces, as discussed above. These arguments are 

reinforced by the fact that the oil technique, subject to the usual difficulties of precise interpretation, 
appears to confirm that incipient separation occurs according to the criteria adopted in Fig. 37. 
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The tentative value M 1 = 1-19 deduced for incipient separation on a flat plate from the pipe 
experiments of Section 3, is not too far off the straight line drawn through the results in Fig. 37, 

with M 1 = 1.215 at zero curvature. The considerable scatter of the experimental points about the 
line may be partly due to the difficulties in finding M 1 accurately by either technique used. It is also 
almost certainly partly due to the influence of other factors. Thus compression or expansion waves, 
incident upon the interactio a region from upstream, would modify the interaction and hence affect 

M 1 for separation. Likewise the pressure distribution upstream of the region of interaction must 
affect the shape, as well as the thickness, of the boundary-layer profile just upstream, though the 

factor t only includes the effect on the thickness. However, provided the gradients immediately 

upstream are only moderate, the upstream profile will probably not differ a lot from a 1/7th power 

form. The theory of Section 2 suggests that small differences in the shape do not make an enormous 

difference to M 1 for separation, which is predicted to be about 1.20 for K = 7 and about 1.16 for 

K = 5. The factor multiplying dmJdx in the skin-friction Equation (24) increases rather sharply 

as K is decreased for a given ratio MdMI, but dMe/dx is predicted to be decreased, i.e., the pressure 

gradients are less severe for the less full upstream profiles, so the net effect on separation is not too 

large. Nevertheless, all in all it is clear that there are other factors, besides the curvature parameter, 

t, affecting M 1 for incipient separation, but  since the results of Fig. 37 cover a fairly wide range of 

aerofoil shapes and incidences, it seems that the surface-curvature factor is probably the principal 
one. 

Fig. 41 shows the results, corresponding to those of Fig. 37, for the downstream pressure Pb as a 

function of the curvature parameter t. The large scatter is indicative of the difficulty in defining Pb 

accurately, but there is clearly a trend for Pb to be less on curved surfaces than on flat ones. This is 

in line with what was said earlier in this section concerning the inviscid-flow effect of curvature, 

namely the falling pressure behind the shock, tending, when a boundary layer is present, to make the 

pressure gradients fall off more rapidly downstream of the sonic point. It also agrees with the finding 
of Holder and Cash 17 that relatively high values ofp~ are encountered for a shock on/~ flat surface in 
the absence of separation, or when separation is only incipient. The filled Stanton-tube points of 

Fig. 41 tend to be lower than the rest, because the Stanton-tube method often tends to indicate 
separation a little later than the pb-divergence method. Hence for such Stanton-tube points, Pb will 
have decreased relative to the value taken on the divergence basis. The duct experiments of Section 3 
give values of pv rather lower than the results of Fig. 41 extrapolated to zero curvature. This is 
probably because the transverse curvature of the flow pattern in the pipe, discussed in Section 3, 
reduces the pressure gradients near the point of sonic pressure, and correspondingly the constraint 
effect of the finite-diameter pipe reduces the downstream pressures. 

Fig. 1 shows the appearance of the shock in a schlieren photograph when separation is judged to 

be on the point of occurring from a locally flat surface. In fact the case is that with M 0 = 0. 885 

in Figs. 38 and 40. The interaction region has a broadly similar appearance in all the other cases 

judged as being on the point of separation, though there is a tendency for the compression waves to 

form a more definite front limb to the shock at higher surface curvatures. Fig. 42 gives an extreme 

example of this, corresponding~to the point t = 0. 0123, M 1 = 1.288 in Fig. 37. The apparent kink 

in the surface of the aerofoil in Fig. 1 and in Fig. 42 is a 'direct shadow' effect due to the fact 

that the schlieren pictures are focussed on the central plane of the tunnel, and not on the edge 

of the model nearest to the light source. Upstream of the shock the light rays close to the surface of 

the model become bent away from it due to the rapid density changes associated with the way in 
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which the velocity changes abruptly from zero at the wall to quite a high value close to it. Behind the 
shock the velocities close to the wall are greatly reduced, except with very weak shocks (cf. Figs. 23 
and 24), so the deflection of the light rays is correspondingly reduced. Thus the surface of the model 
appears distorted outwards upstream of the shock, but more nearly in its true position downstream. 

The foregoing has been concerned with incipient separation. It must be emphasized that the 
occurrence of such separation does not immediately lead to any marked change in the overall character 
of the flow over the aerofoil. Such pronounced changes only occur if the thickness of the boundary 
layer at the trailing edge increases markedly, so as to affect the circulation. The rate of change of the 
pressure at the trailing edge with free-stream Mach number M 0 is a sensitive indicator of such effects 
of shock-induced separation 1G,18. It is not unreasonable to suppose that the boundary layer at the 
trailing edge is always close to separation when trailing-edge-pressure divergence occurs, and in 
many cases the boundary layer will be close to the condition of separation all the way between the 
shock and the trailing edge. Very crudely the pressure distribution on the aerofoil between the shock 
and the trailing edge will resemble that of Fig. 9, which plots Equation (27) predicted by Stratford 7 
to give zero skin friction downstream of the point at a distance lc~ from the leading edge, the pressure 
upstream of the s tat ion 'a '  being assumed uniform. Equation (27) can be written 

Hence at the trailing edge where I = c and the external-flow Mach number is MI,, 

-34T ~ I (~)1/~12'7 1 M~ 2 - 1.60]3 2/3 1 -  , (4-1) 

where, in line with what was said in Section 2.3, we interpret velocity ratios in Stratford's formulae 
as Mach number ratios, and we take R e = 4 × 106 and K = 7. Most 'flat plate' turbulent velocity 

profiles can be fitted approximately with a power law of index K = 7, the value R c = 4 x 106 is not 

untypical of aerofoil tests, and the results are very insensitive to the value of R c chosen. Fig. 43 
shows results obtained on aerofoils for conditions where trailing-edge-pressure divergence is just 
occurring. The results are mainly from unpublished experiments performed by various workers 
at the N.P.L. under the guidance of Mr. H. H. Pearcey. The ratio M T / M  1, where the trailing-edge 
Mach number IV/~, is deduced from the loc.al pressure and the tunnel stagnation pressure, is plotted 
as a function of the shock position l~/c. Equation (41) with/3 = 0.66, as used by Stratford, is also 
plotted. The dotted part of the line indicates where the theory underlying (41) becomes invalid. The 
chain-dotted curve represents the result deduced from the theory of Section 3, Equation (24). 
Equation (41) would agree quite closely with this if the empirical factor fi were taken to be 1, not 
0.66. It was suggested in Section 2.6 that the value/? = 1 might give better results for separation 
behind shocks than/~ = 0.66. The experimental results of Fig. 43 appear to contradict this, since 
they fit the theoretical curve with ~ = 0.66 reasonably well, better than the curve derived from 
Equation (24). However it must be borne in mind that drastic simplifications have been made in 
saying that the experimental situation of shock-induced trailing-edge-pressure divergence resembles 
that envisaged in Stratford's theory. Thus the agreement may be partly fortuitous. Nevertheless 
Fig. 43 suggests that although trailing-edge-pressure divergence, like any other boundary-layer effect, 
must depend on the shape of the pressure distribution over the whole surface of the aerofoil, the fine 
details of this distribution are relatively unimportant compared with a few dominant, coarse 

characteristics, such as the shock position, .8//1, and M T. By contrast, the conditions for incipient 
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separation at the shock probably do depend on either the small-scale details of the shape of the 

pressure distribution under the shock, as they are affected by curvature, or on the minutiae of the 

effects of curvature on the response of a boundary layer to abrupt adverse pressure gradients. 

5. Separation Indztced by Swept Shocks. On swept-back wings shocks which are nearly normal 

to the surface close to it, but which are swept with respect to the stream often occur. It is therefore 

of interest to consider under what conditions such shocks give rise to separation. 

We might suppose that for incipient separation, the component Mach number Mix normal to 
the shock would vary with the ratio of the boundary-layer thickness to the surface curvature in a 

plane perpendicular to the shock in much the same way as M 1 varies with t in Fig. 37. In particular 

for a locally flat surface Mix would not be far off 1.215, the figure suggested by the results of 
Fig. 37, or 1.19, the result inferred from the experiments of Section 3. It would be reasonable 
to expect this if the flow behaved in a quasi-two-dimensional manner, such that the flow patterns 

in the boundary layer at different stations along the shock were similar. For then referred to axes 

x, y, and z, with x parallel to the wall normal to the shock, y normal to the wall, and z parallel to 

both the wall and the shock, derivatives with respect to z would vanish, and the equations of 
motion, s{~bject to the usual boundary-layer approximations, would be 

and 

au au dp a% 

aw 3w a% 
pu + p v  ay  - ay  ' 

a(pu) 
--+ -0, ax ay 

where u, v and w are the velocity components in the x, y and z directions, and % and % are the 

frictional stresses on planes parallel to the wall in the x and z directions. In laminar flow % and % 

would be t,(3u/ay) and t,(3w/ay) respectively, and so would mainly depend on the shapes of the 
u and w profiles respectively. If we suppose that similarly in turbulent flow there is no direct 

coupling between % and the z-direction flow, the equations for the x-direction flow would be 

independent of those for the z-direction. They would be identical wi th  the equations for the 

corresponding two-dimensional case with the normal component flow, except  that the density 

and viscosity would vary more widely across the boundary layer in the three-dimensional case, 
on account of the total Mach number at the edge of the layer being higher. However, provided 
the total external-flow Mach number did not exceed 2, say, it might be thought that this would 

lead only to a small difference from the two-dimensional case. Such difference that it did make 
would be expected to be in the direction of reducing M1N for incipient separation, since the relatively 
higher wall temperatures and consequent lower densities near the wall in the three-dimensional 
case would be expected to facilitate separation slightly. 

Quite a different conclusion is however reached by Rogers and HalP 9 on the basis of oil-flow 

measurements on swept wings. They find that the component Math number M,N for incipient 
separation increases with shock sweep, up to about 1.4 when the effective shock sweep is in the 

region of 45 deg. The effective sweep is defined as ¢ - 0, where ~ is the sweep of the shock relative 

to the free stream, as in Fig. 44, and O is the angle of the streamlines at the edge of the boundary 
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layer just ahead of the shock. The criterion adopted for judging separation is as follows. When a 

thin layer of pigment-containing oil is smeared on to the surface, it becomes teased out into 

filaments by the action of the airflow. The shock wave abruptly turns the oil filaments on the 

surface, and for a strong enough shock the filaments run tangentially together near the shock to 

form a well-defined line, the separation line, as in Fig. 45. When there is extensive separation 

many of the filaments behind this separation line lie parallel to it, or run towards it, but separation 

is judged to be incipient when only the oil filament immediately behind the separation line lies 

parallel to it, those further behind being more sharply swept. Fig. 45 shows what is judged to be an 

incipient shock-induced separation, according to this criterion. It may be, however, that this is not 

the appropriate criterion to take if comparison is being made with two-dimensional tests. Rogers 

and Hall assumed that the separation line coincided with the shock position, and measurements 

were later made with static probes to see if this was true. Inaccuracies in the traverse gear made it 

difficult to position the probes precisely, but insofar as the measurements could be trusted they 
suggested that for a shock near the leading edge the shock does indeed virtually coincide with the 

separation line, but further back on the wing, the shock is more highly swept than the separation 
line, the difference in angle of sweep being of the order of 3 deg. In these latter circumstances we 

should judge M1N for incipient separation to be lower if we were to take as our criterion of separation 
that the oil filaments should be turned parallel to the true position of the shock, rather than that 
they should just form a separation line. This is because we should choose a case where the oil 
filaments are turned through a smaller angle, and also because the angle of ~ - 0, used in finding 
the normal component, would be taken to be greater. It is not contended that this criterion is 
superior to that used by Rogers and Hall. On the contrary, their definition is probably more logical 

as a definition of separation in three dimensions. However, by relating directions to the shock 

itself we might get better agreement with the two-dimensional results. This is because when the 

streamlines near the wall have been turned parallel to the shock, the velocity components perpen- 

dicular to the shock that they originally possessed will have been destroyed, and this is analogous 

to the bringing to rest of the fluid near the wall in a two-dimensional separation. Of course the fact 

that the shock is not parallel to the separation line, or with weaker shocks to the locus of points 

where the oil filaments abruptly turn, means that the flow under the shock is not quasi-two- 

dimensional. The upstream influence of the shock on the boundary layer is bigger for the more 

downstream positions along the shock. This makes it impossible in practice on a swept wing to 

decide what the precise position of the shock is, unless traverses are made in the stream above the 

wing. It also means that there is no real reason to suppose that the component Mach number Mix 
for incipient separation, defined in either way, should be close to what it would be intwo-dimensional 

flow, since the relationship between the thickening of the boundary layer and the pressure gradients 
normal to the shock or to the separation line may be quite different from what it is in two-dimensional 
flow. 

In fact, however, Stanbrook's experiments ~°, where separation is related to the shock direction 
as discussed above, do give reasonable agreement with two-dimensional results. In these experiments 
a shock was generated by a plate sticking out perpendicularly from the flat wall of a supersonic 
tunnel at an incidence to the stream, as shown in Fig. 46. The interaction between the shock 
generated at the leading edge of the plate and the turbulent boundary layer on the wall was studied. 
Separation was judged to occur when a filament of oil ran from the junction of the leading edge 
of the plate and the wall along the shock direction, which in this experiment was known from the 
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incidence of the plate. For free-stream Mach numbers between 1.6 and 2.0, the pressure ratio 
P2/Pl across the shock that was judged in this way to produce incipient separation was almost 
constant, at about 1.48. It follows from equation (1) that the corresponding component Mach 
number is given by 

1.48 = 1 + ~ ( M L v  2 -  1), 

or M1N = 1.19. The shock-sweep angle for incipient separation varied between about 43 deg at a 
free-stream Mach number of 1-6 to 53 deg at a free-stream Mach number of 2.0. Thus according 
to Stanbrook's exPeriments and his criterion for incipient separation, increasing sweep does not 
increase Ml:v, the value obtained being roughly the same as the two-dimensional result for flat 
surfaces. 

In Stanbrook's experiments the boundary layer was quite thick. When he judged incipient 

separation to be occurring, the oil filaments did not run together near the shock to form a separation 
line. Instead the filaments turned parallel to the shock, but were not fused together, those originating 
from points further from the leading edge of the shock-generating plate running progressively 
further upstream of the shock as indicated in Fig. 46. Thus the locus of points where the oil 
filaments were abruptly turned from their original free-stream direction was less swept back than 
the shock. The filaments only fused along a line starting from the plate leading edge and running 
increasingly ahead of the shock at higher incidences than those judged by Stanbrook to represent 
incipient separation: 

The question, therefore, seems largely to revolve around the definition of separation. It is not 
certain that defining it in Stanbrook's way would always give approximate agreement with the 
two-dimensional results. Some of the data used by Rogers and Hall in their analysis were from 
cases with shocks close to leading edges. Here the boundary layer is very thin, and though the 
upstream effect of the shock as a multiple o f  the boundary-layer thickness may still increase with 
distance along the shock, the boundary-layer thickness is so small that the angle between the 
shock and the oil separation line must be small. It is difficult to see, therefore, how the values for 
MI~- deduced according to the separation-line criterion from such cases could be significantly 
reduced by defining separation with reference to the shock direction instead. It may be that some 
of these cases were with curved surfaces, so that M1N ought to be rather greater than on a flat 
surface, according to Fig. 37. Perhaps, however, the proper conclusion is that interactions with 
swept shocks are essentially three-dimensional phenomena, and it is therefore unreasonable to 
look for close quantitative relations with the corresponding two-dimensional interactions. 

6. Concluding Remarks. A theory has been presented for the interaction between a normal 
shock in an infinite stream and a turbulent boundary layer on a flat surface. This involves a new 
and simple method for calculating the effects of sharp adverse pressure gradients on the velocity 
profiles of a turbulent boundary layer. The "~heory as a whole gives reasonable results, predicting 
that the pressure distribution at the wall has an initial region of sharp adverse gradients followed 
by a long 'tail' of greatly reduced gradients. Separation is predicted to occur when the upstream 
Mach number exceeds about 1-2. For much higher Mach numbers, when extensive separation 
occurs, the assumptions underlying the theory would become unrealistic. For small regions of 
separation, the boundary-layer profiles in the separated region appear quite 'full' in shape, and 
would not at first sight suggest the presence of separation. 
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Experiments on normal shocks in a pipe have broadly confirmed the approximate validity of 
the theory. The interaction in a pipe differs, however, from that on a flat plate in an infinite stream 
partly because of the 'coaxial' or transverse-curvature effects on the supersonic part of the flow, 

and partly because of the constraint effect of the finite pipe diameter on the downstream flow. 
The boundary layer thickens on passing through the shock, so reducing the effective downstream 
area of the pipe and hence reducing the downstream pressures. Because of these effects, it might 
have been preferable from the point of view of providing comparisons with the theory to have 
performed the experiment on a flat plate, on the lines of Seddon's experiments 4, but at lower Mach 
numbers. However, with this arrangement there may be serious interference effects due to the 
interactions on the side and top walls of the tunnel, and in any case a suitable tunnel was not 
conveniently available for such experiments. 

Results obtained on aerofoils in a slotted-wall tunnel do however provide interesting information 
concerning the minimum local upstream Mach number necessary to provoke separation. It appears 
that this Mach number increases as the convex curvature of the surface increases. 

Finally we have considered interactions between turbulent boundary layers and shocks which, 
though perpendicular to the wall, are swept back relative to the stream. Such interactions occur 
on swept-back wings. The relation between the first occurrence of separation and the component 
Mach number perpendicular to the shock or to the separation line has been considered. The 

difficulty is how to define separation. If it is defined as occurring when the streamlines in the 
boundary layer closest to the wall become turned under the shock to be parallel to it, then it seems 
that in some cases, at least, the component Mach number for incipient separation is much as in 

two-dimensional flow. If, however, separation is defined as first occurring when the streamlines 
closest to the wall first run in together tangentially to form a line, the separation line, then the 

component Mach number normal to this line is often much higher than the corresponding 

two-dimensional value. The swept-shock interaction is, however, essentially three-dimensional, 

and two-dimensional criteria should not really be expected to apply to it. 
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Boundary-layer energy thickness, pu 1 - dy 
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Turbulent friction stress parallel to the wall 

-r at the wall 

Denotes conditions at the edge of the boundary layer just upstream of the region of 
interaction (upstream free-stream conditions on a flat plate) 

Denotes conditions behind a normal shock in inviscid flow corresponding to 
suffix 1 upstream conditions 

Denotes conditions at a station 'a' at the upstream end of the region of interaction 

Denotes conditions immediately behind the shock, where the pressure distribution 
at the surface has its maximum curvature 
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shock 

Denotes conditions at the edge of the boundary layer 
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A P P E N D I X  

Application of the Boundary-Layer Theory to Laminar Layers 

Interactions between laminar boundary layers and shock waves can already be dealt with simply 
and effectively 2~,2~, and the boundary-layer theory of the present paper is not seriously suggested 
as an alternative method for such interactions. However,  it does perhaps increase one's  faith in the 
general validity of the theory to note that it does give results of the right order of magnitude for 
laminar interactions. 

For laminar layers we may crudely assume the upstream profile to be linear in y, i.e., K = 1. 
Then neglecting the terms in (d3/dx)a in equations (18) and (20) we obtain for y = 1.4. 

l + 0 . 2 M ~  2 t ( 1 - 8 t ) ,  

where M r =/141(1 - t ) .  The  linearised simple-wave pressure relation gives 

d~ (MI~_ 1)112 
t .  

dx 1 + O" 2M1 ~ 

To give the correct skin friction at station 'a '  for a case with Prandtl number  equal to 1 and 
viscosity proportional to absolute temperature we put  

3. = l.(1 + 0.2Ml~)/(O.332.v/R.), 

where l, is the distance of station 'a '  from the leading edge and R ,  is the Reynolds number  based 
on l,. Hence 

l -  lo.ot 3 . 0 1 ( 5 _ 0 . 2 M l ~ ) ( l + 0 . 2 M 1 2 )  [-t dt 

l = (M1 ~ -  1) lj~ R ,  11~ Jo.01 t(1 ~ 8t) ~ 

The pressure distribution corresponding to this relation is compared in Fig. 47 with experimental 
results for a case with M 1 = 2, R ,  ~ 2 x 105. It  can be seen that the theoretical pressure curve is of 

the right general shape, but  that the maximum pressure gradients are much too large and the rise 
of pressure to the 'plateau' is nearly twice as high as it should be. However,  it is perhaps surprising 
that the predicted pressure increases, though too large, should nevertheless be of the right order 
of magnitude, since the power- law profiles only bear the crudest similarity to the actual ones in 
laminar flow. The use of a more realistic family of profiles might give better results, though not 
necessarily, since the outer edge of the boundary layer is not well defined in the actual profiles. 
The  same difficulty arises in the Crocco-Lees method ~°, which also uses the mass-flux condition. 
For turbulent  boundary layers, the edge of the layer is rather better defined. In order to do justice 
to the inner part of the laminar layer, where viscosity is important, it might be preferable to use a 
two-parameter  family of profiles, satisfying the condition that O(/x Ou/Oy)/ay = dp/dx at the wall, 
in addition to the mass-flux and energy-thickness conditions. 
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